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Abstract

Causal reasoning is a fundamental cognitive ability that enables individuals to learn
about the complex interactions in the world around them. However, the mechanisms
that underpin causal reasoning are not well understood. For example, it remains unre-
solved whether children’s causal inferences are best explained by Bayesian inference
or associative learning. The two experiments and computational models reported here
were designed to examine whether 5- and 6-year-olds will retrospectively reevaluate
objects—that is, adjust their beliefs about the causal status of some objects presented
at an earlier point in time based on the observed causal status of other objects pre-
sented at a later point in time—when asked to reason about 3 and 4 objects and under
varying degrees of information processing demands. Additionally, the experiments and
models were designed to determine whether children’s retrospective reevaluations
were best explained by associative learning, Bayesian inference, or some combina-
tion of both. The results indicated that participants retrospectively reevaluated causal
inferences under minimal information-processing demands (Experiment 1) but failed
to do so under greater information processing demands (Experiment 2) and that their
performance was better captured by an associative learning mechanism, with less
support for descriptions that rely on Bayesian inference.
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Research Highlights

* Five- and 6-year-old children engage in retrospective reevaluation under minimal
information-processing demands (Experiment 1).

* Five- and 6-year-old children do not engage in retrospective reevaluation under
more extensive information-processing demands (Experiment 2).

* Across both experiments, children’s retrospective reevaluations were better
explained by a simple associative learning model, with only minimal support for a
simple Bayesian model.

* These data contribute to our understanding of the cognitive mechanisms by which

children make causal judgements.
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1 | INTRODUCTION

Few capacities are more important than the ability to reason and make
inferences about causal relations. Causal reasoning enables human
learners to make predictions and inferences (e.g., Bullock, et al., 1982;
Shultz, 1982), to intervene on those relations to generate new effects
(e.g., Butler et al., 2020; Schulz et al., 2007), and to reason about coun-
terfactual claims—both about what might have been and how events
could have turned out differently (e.g., Harris et al, 1996; Walker
& Nyhout, 2020). These, and many other studies (e.g., Bonawitz &
Lombrozo, 2012; Gopnik et al., 2001; Legare et al., 2010; Meltzoff
et al., 2012; Walker & Gopnik, 2014), posit that young children have
sophisticated causal reasoning capacities.

A fundamental question that underlies this research is how children
make such inferences. One answer to this question is that children’s
causal inferences are best described by rational processes such as
Bayesian inference. This process is thought to derive from more basic
processes such as statistical learning that are present in early infancy
(e.g., Gomez, 2002; Kirkham et al., 2002; Marcus et al., 1999; Saffran
et al,, 1996) and that with time enable infants to infer abstract pat-
terns of coherent causal structure from probabilistic data (Gopnik &
Wellman, 2012; Weisberg & Sobel, 2022). Although this view is often
described as a computational level of analysis (cf. Marr, 1982), some
advocates suggest that children use cognitive mechanisms that approx-
imate or even represent Bayesian calculations (Bonawitz et al., 2014;
Xu, 2019; see also Griffiths et al., 2015).

An alternative perspective is that associative learning alone is
sufficient to describe children’s causal inferences. On this view, chil-
dren’s causal knowledge reflects learned associations between causes
and effects. Connectionist models—which learn largely via associa-
tive learning—have provided a proof of concept that causal learning
can emerge from such associative processes (e.g., Benton et al., 2021;
McClelland & Thompson, 2007). Additionally, comparative investiga-
tions between non-human animals and adults (e.g., Heyes, 2012) and
studies of instrumental action and conditioning in human infants (e.g.,
Greco et al., 1990; Rovee-Collier, 1999) provide behavioral support for
associative learning as a candidate mechanism for how children reason
in the world.

One way to illustrate the tension between these hypotheses in
development is through investigations of retrospective reasoning such
as backwards blocking (Shanks, 1985). This is a form of reasoning that
involves reevaluating the causal status of an ambiguous event based
on learning more about the status of other unambiguous events (see
also De Houwer et al, 2002; Kruschke & Blair, 2000; Larkin et al, 1998;
Lovibond, 2003; Van Hamme & Wasserman, 1994, for other work on
adults). One of the first studies to examine backwards blocking reason-
ing in children was carried out by Sobel et al. (2004). They introduced
3- and 4-year-olds to a machine called a “blicket detector” that lit up
and played music when certain objects called “blickets” were placed on
it (Gopnik & Sobel, 2000). Children were then shown that two novel
objects, A and B, activated the machine when they were placed on it

at the same time. Children were then shown that object A alone either
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did or did not activate the machine. On both types of trials, children
were then asked whether each object was a blicket. Children indi-
cated that object A was a blicket when it activated the machine and
that it was not a blicket when it did not activate the machine. Their
judgments of object B also differed across these conditions. Children
were more likely to conclude that object B was a blicket when object
A failed to activate the machine than when A activated the machine.
Using modified procedures, toddlers and even infants as young as
8 months of age showed a similar pattern of responses (Sobel &
Kirkham, 2006).

These findings—and specifically the finding that children’s causal
inferences are sensitive to base rates (e.g., Sobel et al., 2004, Exp. 3)—
have been interpreted as support for a Bayesian description of causal
reasoning rather than as support for an associative learning mecha-
nism. This is because some associative models (e.g., Rescorla & Wagner,
1972) predict that the strength between object B and the machine’s
activation is equivalent between the Backwards Blocking trial (where
A'is effective) and another trial in which A is not effective (labeled Indi-
rect Screening-Off trials). Moreover, even a modified version of the
Rescorla-Wagner model (e.g., Van Hamme & Wasserman, 1994) does
not predict differences in such reasoning when the base rates of the
causal effectiveness of an object is manipulated.

However, there are two facets of these data that warrant fur-
ther consideration. First, McCormack et al. (2009) questioned what
exactly was being reevaluated in a backwards blocking inference. They
showed 4- and 5-year-olds that two objects (A and B) activated the
machine together, and then that object A activated the machine alone.
They compared children’s causal status judgments for object B with a
sequence in which a third object (C), unrelated to the compound set,
activated the machine (i.e., AB+, C+). The 4-year-olds did not differ
in their judgments (although 5-year-olds did—they were less likely to
choose B than C). This control measure—which we adopt here—is a
superior measure of assessing whether children reevaluate their causal
judgments and specifically of examining whether children reevaluate
the causal status of the object(s) shown independently, or the object
only shown as part of the initial ambiguous data.

Second, although there are investigations suggesting Bayesian mod-
els are a better account for children’s retrospective reasoning (e.g.,
Griffiths et al., 2011; Sobel et al., 2004), these investigations focus on a
simplified case in which learners are asked to reason about exactly two
candidate causes. Indeed, when three candidate causes are presented,
some of children’s inferences are better explained by Bayesian models,
whereas other inferences are better explained by associative reasoning
(Griffiths et al., 2011; Experiment 3). This suggests an intriguing possi-
bility: As the number of candidate causes increases, children might fall
back to simpler strategies such as associative learning from more ratio-
nal reasoning strategies (akin to System 1/System 2 reasoning, Evans,
2003, 2011; Kahneman, 2011).

But how, exactly, is associative learning a simpler mechanism than
Bayesian inference? The answer concerns the nature of the hypothesis
spaces that underlie both models. Some associative models (including

the one we instantiate here) posit a linear increase in the complexity
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of the underlying hypothesis space based on the number of potential
causes; that is, as the number of potential causes moves from 2 to n,
the complexity of the hypotheses under consideration increases lin-
early from 2 to n, such that children must keep track of n associative
values between each candidate cause and the effect. In contrast, in
Bayesian models (as we will instantiate below) the underlying hypoth-
esis space grows exponentially as the number of candidate causes
increases. For example, if each object can either be a blicket or not
and children are asked to reason about two potential blickets, then
children would need to determine which of 22 or four causal hypothe-
ses is correct. If, instead, children are asked to reason about just two
more potential blickets for a total of four candidate blickets, then the
underlying hypothesis space increases four-fold to 16 (i.e., 2%) poten-
tial causal hypotheses. Thus, if children are sensitive to this increase
in the size of the underlying hypothesis space and they possess limited
information-processing abilities, then they might rely on simpler modes
of processing such as associative learning than on more sophisticated
forms of thinking that approximate normative Bayesian inference.
The premise is that children have both associative and more rational
causal reasoning mechanisms, but default to the former under more
information processing demands.

There is now considerable evidence demonstrating that children
do default to simpler modes of thinking when their information-
processing abilities are taxed (e.g., Doebel & Zelazo, 2015; Frye et al.,
1995; Zelazo et al., 1996; Zelazo et al., 2003). For example, recently
Kenderla and Kibbe (2023) demonstrated that 8- and 10-year-old
children showed decreased reliance on working memory and greater
dependence on manual exploration during a challenging virtual mem-
ory game. The goal of this game was to find three cards with shared and
differing features. Given that children were not required to maintain
information in memory when manually exploring, manual exploration
ostensibly was a less cognitively effortful strategy than one that
required an already resource-limited system such as working memory.
Similarly, Richland et al. (2006) found that 3- and 4-year-old children
made more featural and relational errors when asked to reason about
multiple relations or when the task included a salient distractor than
when asked to reason about a single relation without a distractor.

Evenininfancy there is development from more associative to more
rational inferences. Using an anticipatory eye-gaze measure, Sobel and
Kirkham (2007) found that 8-month-olds exhibited backwards block-
ing inferences similar to preschoolers, but 5-month-olds’ inferences
were more associative in nature. When infants make judgments about
the reliability of others’ information, their decision-making seems to
be best explained by associative processing (Sobel et al., 2020; Tum-
meltshammer et al., 2014). As children enter the preschool years,
those judgments become more rational in nature (Sobel & Kushnir,
2013), although occasionally, they will default to associative forms of
processing, particularly under information processing demands (e.g.,
Hermes et al., 2018; Luchkina et al., 2020). Further, on other kinds
of retrospective causal reasoning tasks, as the information demands
of the procedure increase, only older children between 3 and 7
years of age succeed (e.g., Erb & Sobel, 2014; Fernbach et al., 2012;
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Sobel et al., 2017). Finally, beyond explicit causal reasoning tasks,
preschoolers’ performance on theory-of-mind and social-problem-
solving tasks was adversely affected when they first completed tasks
that taxed their information-processing abilities compared to when
such capacities were not taxed (Caporaso & Marcovitch, 2021; Pow-
ell & Carey, 2017; Steinbeis, 2018). Considered together, these studies
indicate that children use different reasoning processes under differ-
ent information-processing demands; the higher those demands, the
simpler the process (e.g., Cohen, 1988).

In the present study, we considered how children made retrospec-
tive inferences when first shown ambiguous data (i.e., three objects
together produce an effect), followed by further evidence involving one
of those objects (Experiment 1) or two of those objects (Experiment
2). In both cases, the logic of our design followed McCormack et al.
(2009), in which we contrasted these retrospective inferences with
control trialsin which children saw the same initial ambiguous data, and
then unrelated objects that had similar efficacy. The question across
both experiments was whether children show qualitative evidence for
Bayesian inference and associative learning with an edge towards asso-
ciative learning. After presenting these behavioral data across two
experiments, we present a pair of computational models to determine
to what extent children’s performance in Experiments 1 and 2 was bet-
ter explained by Bayesian inference, associative learning, or both. The
value of computational modeling here is that it can help to elucidate
the cognitive mechanism or mechanisms by which children engage in
retrospective reevaluation in ways that the experiments alone cannot.
Specifically, by implementing as computer simulations theories about
how children engage in retrospective reevaluation, it is possible to
determine the theory—and by extension, the mechanism—that better
accounts for the behavioral data.

2 | EXPERIMENT 1

Five- and 6-year-olds observed three objects (A, B, and C) together
cause a machine to activate. Then they observed that object A
either caused (Backwards Blocking trials) or failed to cause (Indirect
Screening-Off trials) the machine to activate by itself. They were then
asked whether each object individually caused the machine to acti-
vate. These experimental trials were compared to control trials in
which children observed three different objects (A’ B’ and C’) activate
the machine together, followed by a fourth object (D), which either
did (Backwards Blocking control) or did not (Indirect Screening-Off
control) make the machine activate.

In these trials, a retrospective reevaluative causal inference is
defined as participants treating the objects in the control trials that go
on the machine together (A, B, and C') differently from the objects in
the experimental trials that initially went on the machine together in
the first demonstration, but whose individual efficacy was not revealed
(i.e., B and C). In the Backwards Blocking trials, participants were said
to engage in this form of reasoning if they were more likely to choose

objects A, B, and C (i.e., the objects that were not shown on the machine
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by themselves) in the control trials than objects B and C in the exper-
imental trials (i.e., the objects that were not shown on the machine
by themselves). The reason for this is straightforward: Given that A
was shown initially in combination with B and C, observing subse-
quently that A causes the machine to activate by itself should affect
participants’ inferences about B and C. However, because object D was
never shown in combination with A’-C’, D’s causal status should have
no bearing on participants’ treatment of objects A’-C’. In the indirect
screening-off trials, participants were said to engage in this form of
reasoning if they were more likely to choose objects B and C in the
experimental trial than objects A, B, and C in the control trial. The
rationale for why these ratings should differ is identical to that for the
Backwards Blocking condition—because A was shown in combination
with objects B and C, A’s, but not D’s, causal status should affect how
participants rate the objects that never participated on the machine
alone. Because McCormack et al. (2009) found that 5 and 6-year-olds
made such retrospective inferences about two candidate causes, we

have decided to test children of the same age.

2.1 | Method
2.1.1 | Participants

Participants were 32 five-year-olds (16 boys and 16 girls; M = 64.81
months, range = 60-71 months, standard deviation [SD] = 3.48) and
31 six-year-olds (17 boys and 15 girls; M = 77.81 months, range = 72-
83 months, SD = 3.78). Sample size was determined based on previous
studies on backwards blocking reasoning in children (e.g., Griffiths
et al, 2011; Sobel et al, 2004). Two children were excluded from
analysis for failing to participate (N = 1) or missing video (which
made coding their responses impossible) (N = 1). We did not collect
demographicinformation about the sample, but the demographicinfor-
mation about sample of children collected by the laboratory during this
time was as follows: 82% White/Caucasian, 3% Black/African Amer-
ican, 4% Asian/Asian American, 0.5% Native American, and 11% of
Mixed Descent. Sixteen percent identified as Hispanic/Latinx. Simi-
larly, the overall household income level of families tested in the lab
during this time was as follows: Less than 30K: 7%, 30-50K: 7%, 50-
70K: 14%, 70-90K: 9%, 90-120K: 25%, Over 120K: 38%. The median
income for the population as measured by the 2020 Census was
~$74K.

2.1.2 | Materials

The “device” used in the current study was a computer-animated ver-
sion of the blicket detector (Gopnik & Sobel, 2000). The device was a
white rectangle with a black border that measured 5.99 cm x 23.47 cm
and that was presented on a computer screen. If the device was “on,”
the white region of the rectangle turned blue when objects touched it.
If the device was “off,” the white region remained white. A maximum

of four differently colored circles were shown on the screen. Each cir-
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cle measured 2.67 cm x 2.67 cm (see Figure 1 below). The machine
was designed such that it activated immediately when the bottommaost
edge of a circle—predetermined to be a blicket—contacted it. At the
start of any given trial, three or four equally spaced circles appeared
above the machine. Finally, the videos contained a built-in script, which
experimenters, but not the study participants, read. All video events
were created in Microsoft PowerPoint.

2.1.3 | Procedure

All study procedures were reviewed and approved by the University’s
Institutional Review Board, and parental informed consent and child
assent was obtained before each experimental session. Participants
were tested in a quiet room in a local children’s museum. At the begin-
ning of the experiment, all participants were shown a pretraining video.
The text, “We're going to play a game with my machine. This is a very
special machine. It's my blicket machine. Blickets make the machine go.
So, let’s find all the blickets” appeared on the screen and was read to the
participants by the experimenter. The video consisted of a rectangular
base (i.e., the previously mentioned “blicket detector”) and two shapes
(i.e., a gray triangle and a gray pentagon). Crucially, these shapes were
unrelated to the circles used during the experimental portion of the
experiment. The pretraining phase began with the triangle (object A)
and pentagon (object B) next to each other above the machine. Object
A then descended until it contacted the machine, which immediately
activated (i.e., the white region changed from white to blue). Object A
then returned to its starting position above the machine. Object B then
descended until it contacted and failed to activate the machine. Object
B then returned to its starting position. Finally, both objects descended
until they contacted and activated the machine. Participants were then
asked whether each object was a blicket. This event ensured that par-
ticipants understood the task and recognized that individual objects
could activate the machine and that it activated if at least one effective
object was placed on it.

Following this pretraining phase, participants were given four trials.
Half the participants received two backwards blocking experimen-
tal trials and two backwards blocking control trials. The other half
received two indirect screening-off experimental trials and two indi-
rect screening-off control trials. The order of these trials within each
condition was counterbalanced using a Latin square design. Differ-
ent colored objects were used across all trials to prevent carryover
effects. A schematic of this procedure is shown in Figure 1. Finally, all
study responses were coded offline after each study session. Although
study responses were coded offline, an experimenter was present

throughout an entire study session.

2.1.4 | Backwards blocking experimental and
control trials

The two backwards blocking experimental trials began with three dif-

ferently colored objects, which were located above the machine. The
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FIGURE 1 Schematic of a Backwards Blocking experimental trial. The upper-right portion of the figure shows the backwards blocking event as
it unfolded across time. The lower-left portion of the figure shows the three objects and the text, “Is this one a blicket?” above each object across

time.

text, “Look, | have these three toys. Let’s find the blickets. Watch what
happens” appeared above the objects. All three objects (i.e., objects
A, B, and C) then descended until they contacted and activated the
machine. At this point, the text, “Look, these also make the machine go!”
appeared above the objects. The objects then returned to their starting
positions.

The left- or right-most (counterbalanced) object (which here we will
refer to as object A) then descended until it contacted and immediately
activated the machine. The text, “Look, this one makes the machine
go!” then appeared above the objects. This object then returned to its
starting position. Children were then asked whether each object was a
blicket. Specifically, the text, “Is this one a blicket?” with a downward-
facing arrow then appeared above each object, and participants were
asked to indicate whether each object was a blicket. Children received
two of these trials, which were identical except for the color of the
objects.

The two backwards blocking control trials began with four dif-

ferently colored objects (i.e., objects A, B, C, and D), which were

located above the machine. Objects A, B, and C then descended
until they contacted and activated the machine; object D remained in
place while objects A-C descended onto the machine. Object D then
descended by itself until it contacted and activated the machine. The
left-right position of object D was counterbalanced. Children were
then asked whether each object was a blicket. Children once again
received two trials, which were identical except for the color of the
objects.

2.1.5 | Indirect screening-off experimental and
control trials

The procedures for the indirect screening-off experimental and control
conditions were identical to the backwards blocking trials except that
object A (experimental trials) and D (control trials) failed to activate the
machine. Table 1 below illustrates the key trial structures for the Back-

wards Blocking and Indirect Screening-Off conditions in Experiment 1.
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TABLE 1 Schematic of the task structure for the backwards
blocking and indirect screening-off experimental and control trials.

First Second

learning learning
Condition phase phase
Backwards blocking (experimental) ABC+ A+
Backwards blocking (control) ABC+ D+
Indirect screening-off (experimental) ABC+ A-
Indirect screening-off (control) ABC+ D-

2.2 | Results

Figure 2 shows participants’ responses to “Is this a blicket?” for
each object. Participants’ yes/no responses were treated as the
primary binary dependent measure. All analyses were conducted
with the Ime4 package in R (Bates et al.,, 2015). Deidentified data
for all experiments, along with all analysis code, is available on OSF
(https://osf.io/nébmvqg/?view_only=a6bh8231a6b9743c7bfe896baleab
58f3). Data were entered into a five-way mixed-effects logistic regres-
sion with Age as a continuous fixed effect, Condition (Backwards
Blocking vs. Indirect Screening-Off) as the between-participants fixed
effect, Trial Type (Experimental vs. Control), Objects (A vs. B vs. C vs.
D), and Trial Number (Trial 1 vs. Trial 2) as the within-participants fixed
effects, and participant as the random effect. This analysis yielded
several experimental-effects and two-way interactions, which were
qualified by a single three-way interaction among Condition, Trial
Type, and Object, ¥2(2) = 64.85, p < 0.001.

To unpack the nature of the interaction among Condition, Trial Type,
and Object, we ran separate two-way mixed-effects logistic regressions
separately for the Backwards Blocking and Indirect Screening-Off con-
ditions, with Trial Type (Experimental vs. Control) and Objects (A vs. B
vs. C vs. D) as the within-participants fixed effects and participant as
the random effect. This analysis revealed a main effect of Trial Type,
£2(1) = 9.62, p = 0.002 and an interaction between Trial Type and
Objects, ¥2(2) = 16.38, p < 0.001. To explore this interaction, we con-
structed a set of one-way mixed-effects logistic regressions for the
experimental and control trials within the Backwards Blocking condi-
tion. The Objects factor was treated as the sole within-participants
fixed effect in these follow-up analyses. Participants were once again
treated as a random effect to control for the within-participant vari-
ance from multiple responses. The one-way mixed-effects logistic
regression for the control trials within the Backwards Blocking condi-
tion did not reveal a significant effect of Objects, ¥2(3) = 1.33,p =0.72.
This means that participants treated the objects similarly in the con-
trol trials of the Backwards Blocking condition. In contrast, the second
one-way mixed-effects logistic regression for the experimental trials
within the Backwards Blocking condition revealed a significant exper-
imental effect of Objects, ¥2(2) = 19.29, p < 0.001. This experimental
effect reflected the fact that participants judged object A as a blicket
more often than object B, odds ratio = 204.79,95% C| [33.96,4609.11],
p < 0.001, and object C, odds ratio = 129.67, 95% CI [18.75, 2824.63],
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p < 0.001. However, participants treated objects B and C equivalently,
odds ratio = 1.58,95% CI[0.62, 4.19], p = .34.

The two-way mixed-effects logistic regressions for the Indirect
Screening-Off condition also revealed a main effect of Trial Type,
X2(1) = 26.91, p < 0.001, a main effect of Objects, ¥2(3) = 67.32,
p < 0.001, and an interaction between Trial Type and Objects,
£2(2) = 19.59, p < 0.001. To explore this interaction, we constructed
a set of one-way mixed-effects regressions for the experimental and
control trials within the Indirect Screening-Off condition. The two
one-way mixed-effects regressions for the experimental and control
trials revealed a significant experimental effect of Objects, both x2-
values > 36.78, both p-values < 0.001. In the experimental trials,
participants judged object A as a blicket less often than any of the
other objects, all odds ratios < 0.07, all p-values < 0.001. Likewise, in
the control trial, participants considered object D to be less likely to
be a blicket than any of the other objects, all odds ratios < 0.06, all

p-values < 0.001. No other differences reached statistical significance.

2.2.1 | Evidence of retrospective reasoning

To examine whether participants engaged in backwards blocking
reasoning, data for the experimental and control trials within the Back-
wards Blocking condition were entered into a two-way mixed-effects
logistic regression with Trial Type and Object as the within-participants
fixed effects and participants as the random effect. This analysis
revealed only a main effect of Trial Type, ¥2(1) = 17.72, p < 0.001.
This result indicated that participants did engage in backwards block-
ing reasoning. In particular, a follow-up, one-way mixed-effects logistic
regression showed that participants were less likely to consider the
objects whose efficacy was not shown individually in the experimen-
tal trial (i.e., objects B and C) to be blickets than the objects that were
placed on the machine together in the control trial (i.e., objects A’ B,
and C’), odds ratio = 0.19, 95% CI[0.09,0.78], p < 0.001.

We also ran the same analysis as above, but this time for the Indi-
rect Screening-Off condition. Although this analysis also revealed a
main effect of Trial Type, ¥2(1) = 4.39, p = 0.04, a follow-up, one-way
mixed-effects logistic regression indicated that participants’ treated
the objects that did not participate on the machine in the experimental
trials (i.e., objects B and C) and the objects that did not participate on
the machine in the control trials (i.e., objects A, B, and C) equivalently,
odds ratio = 0.50, 95% CI1[0.25, 1.01], p = 0.052.

2.3 | Discussion

In the experimental trials of Experiment 1, children were shown three
objects that together activated a machine and then shown that one of
those objects was or was not effective on its own. When that object was
effective, children reevaluated the efficacy of the other two objects:
They stated that they were less likely to be effective than objects in
a control condition in which a fourth, unrelated object was effective.

When that object was not effective, children did not retrospectively
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show standard error.

reevaluate the efficacy of the other objects and judged the objects
equivalently across both conditions.

Before discussing possible cognitive mechanisms that might under-
lie these data, we wanted to consider a second, related type of
retrospective inference. In Experiment 1, following the ABC+ event,
participants were either shown an A+ event (in the Backwards Block-
ing condition) or an A- event (in the Indirect Screening-Off condition).
Experiment 2 was similar to Experiment 1 except for what children
observed following the ABC+ events (e.g., McCormack et al., 2009).
In the experimental trial in the Backwards Blocking condition, they
observed an AB+ event during the second learning phase; in the con-
trol trial in the same condition, children observed a DE+ event during
the second learning phase. Children in the Indirect Screening-Off con-
dition were shown the same series of events except that the machine
did not activate. If children’s ability to engage in various forms of ret-
rospective reevaluation is related to their information processing, in
Experiment 2 children should be less likely to engage in retrospective
reevaluation than those in Experiment 1.

3 | EXPERIMENT 2

Experiment 2 was analogous to Experiment 1 except for the number of
objects that were placed on the machine during the second part of the
experimental and control trials. In the experimental trial, children were
shown that three objects activated the machine together, and then that
two of those three objects either did or did not activate the machine

when they were placed on it together. These data were compared with

Developmental Science

Indirect Screening-Off
objectType
M-
M-
c
Mo
control experimental

Participants’ responses expressed as percentages to whether each object was a blicket across the conditions and trial types. Bars

a control trial in which three different objects activated the machine,
and then two additional novel objects either did or did not activate the

machine in tandem.

3.1 | Method
3.1.1 | Participants

Participants were 32 five-year-olds (18 boys and 14 girls; M = 65.31
months, range = 60-75 months, SD = 3.65) and 32 six-year-olds
(10 boys and 22 girls; M = 76.56 months, range = 65-83 months,
SD = 4.33). Participants were recruited in the same manner as
Experiment 1. Participants were 12% Asian/Asian American, 9%
Black/African American, 10% Hispanic, and 69% White/Caucasian, but
no other specific demographic data were collected (see Experiment 1
for overall demographic data from the laboratory).

3.1.2 | Materials and procedure

The materials and procedure for Experiment 2 were identical to that
for Experiment 1 with the following exceptions: During the experimen-
tal trials in the Backwards Blocking condition following an event in
which objects A, B, and C together activated the machine, two objects,
A and B, descended onto and subsequently caused the machine to acti-
vate. Likewise, during the control trials in the same condition which

consisted of five objects (i.e., objects A-E), objects D and E descended
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TABLE 2 Schematic of the task structure for the backwards blocking and indirect screening-off experimental and control trials.

Condition First learning phase Second learning phase
Backwards blocking (experimental) ABC+ AB+
Backwards blocking (control) ABC+ DE+
Indirect screening-off (experimental) ABC+ AB-
Indirect screening-off (control) ABC+ DE-
Backwards Blocking Indirect Screening-Off

1.00 7

0.751

0.504

0.251

# of questions children judged object was a blicket

0.00-

control experimental

objectType
[
|

o
B
B

control experimental

FIGURE 3 The participants’ responses expressed as percentages to whether each object was a blicket across the conditions and trial types.

Bars show standard error.

onto and subsequently caused the machine to activate. Objects D and
E did not descend onto the machine during the initial event in which
A, B, and C activated the machine and in this way were unrelated to
objects A, B, and C. The experimental and control trials in the Indirect
Screening-Off condition were identical to the backwards blocking tri-
als except that the machine neither activated when objects A and B
descended onto it in the experimental trial nor when objects D and E
descended onto it during the control trial. The left- and right-most posi-
tions of objects A and B during the experimental trial and objects D
and E during the control trial were counterbalanced. Table 2 shows the
structure of the events used in Experiment 2.

3.2 | Results

Figure 3 shows participants’ responses to “Is this a blicket?” for each
object. Data were entered into a five-way mixed-effects logistic regres-

sion model with Age as a continuous fixed effect, Condition (Backwards

Blocking vs. Indirect Screening-Off) as the between-participants fixed
effect, Trial Type (Experimental vs. Control), Objects (A vs. B vs. C vs.
D), and Trial Number (Trial 1 vs. Trial 2) as the within-participants fixed
effects, and participant as the random effect. This analysis only yielded
a main effect of Trial Type, ¥2(1) = 14.33, p = 0.04. This reflected that
fact that across the Backwards Blocking and Indirect Screening-Off,
participants were less likely to treat the objects in the experimental tri-
als as blickets than objects in the control trials, odds ratio = 0.45, 95%
Cl1[0.33,0.62],p <.001.

3.2.1 | Evidence of retrospective reasoning

We next examined whether participants engaged in retrospective rea-
soning using the operationalization of it from Experiment 1. Data were
entered into a two-way mixed-effects logistic regression with Trial
Type and Object as the within-participants fixed effects and partici-

pants as the random effect. This analysis did not reveal any main effects
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Hypothesis 5

Hypothesis 4

Hypothesis 6 Hypothesis 7

FIGURE 4 The eight different causal hypotheses indicating the possible causal relations for a causal event that involves three objects and one
blicket detector. A, B, and C correspond to the three objects that were used on the machine and E indicates the activation of the machine.

or interactions, all)(z—values < 1.91, all p-values > 0.18. The same pic-
ture emerged for the indirect screening-off condition—this analysis did
not reveal any main effects or interactions, all)(z—values < 1.79, all p-
values > 0.41. Thus, unlike Experiment 1, there was no evidence that
participants engaged in any form of retrospective reevaluation. This
finding is likely the result of the increased demand on children’s infor-
mation processing abilities: Children were not only required to reason
about 3 and 4 objects (as in Experiment 1), but they were also required
toreason about 2 rather than 1 object during the second learning phase

in the Backwards Blocking and Indirect Screening-Off conditions.

3.3 | Discussion

Unlike Experiment 1, in Experiment 2 there was no evidence that chil-
dren engaged in retrospective reasoning. Specifically, children treated
the objects equivalently between the experimental and control trials.
In addition, across both experiments there was no evidence that ret-
rospective reevaluation undergoes developmental change between 5
and 6 years of age. We return to this issue in the General Discussion.
In the next section, we present fits from two computational models
to determine whether an associative mechanism, a Bayesian mecha-
nism, or some combination of both best captures children’s judgements

across Experiments 1 and 2.

4 | COMPUTATIONAL MODELS

We fit two computational models to the behavioral data. The first was a
model based on Bayesian inference. This model was described initially
by Sobel et al. (2004) and in more detail in Griffiths et al. (2011). The

second was a simple connectionist model, trained with the Delta Rule
(Widrow & Hoff, 1960).

41 | Bayesian model

The Bayesian model we use here has been described previously (Grif-
fiths & Tenenbaum, 2005; Griffiths et al., 2011; Tenenbaum & Griffiths,
2001). We refer the reader to these citations for more of a technical
description. Here, we describe the basics of the model. Bayesian rea-
soning assumes the learner has a set of hypotheses H. Each hypothesis
h € His assigned a prior probability, p(h), which indicates the initial belief
that a learner has in a particular hypothesis prior to seeing data. After
the learner observes data, d, the learner computes a posterior proba-
bility, p(h|d)—an updated belief about each hypothesis given the data.

This is done using Bayes' rule, shown in Equation (1):

p (dih) p (h)

h|d) = =——4mm————
P = S ) o)

(1)

In this formula, p(d|h) is the probability that the data d will be
observed under a particular hypothesis h. This value is also known as
the likelihood of the data.

Forming the initial hypothesis space for this model assumes that
there is a set of objects O and a detector d, such that any objecto € O
can potentially cause d to activate. Given that participants are shown
that the machine activates when objects with the label “blicket” are
placed on its surface, a hypothesis h corresponds to a causal structure
that posits whether individual objects have the causal effectiveness to
activate the detector—that is, an arrow between a node representing
an object and a node representing the machine’s activation (see Grif-

fiths & Tenenbaum, 2005, for more computational details; see Figure 4
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TABLE 3 Model fit indices for the various models and instantiations for the data overall and the data for the backwards blocking, indirect

screening-off, experimental, and control trials in Experiments 1 and 2 data.

(A) Model fit to the data overall

Experiment 1

Connectionist* Bayesian model

RMSE MAE RMSE MAE
0.15 0.11 0.17 0.17

(B) Model fit to the backwards blocking data only

Experiment 2

Connectionist* Bayesian model
RMSE MAE RMSE MAE

0.13 0.11 0.16 0.13

Experiment 1

Connectionist* Bayesian model

RMSE MAE RMSE MAE
0.19 0.16 0.20 0.18

(C) Model fit to the indirect screening-off data only

Experiment 2

Connectionist* Bayesian model
RMSE MAE RMSE MAE

0.13 0.11 0.15 0.14

Experiment 1

Connectionist® Bayesian model

RMSE MAE RMSE MAE
0.08 0.07 0.18 0.16

(D) Model fit to the experimental trials only

Experiment 2

Bayesian model*
RMSE MAE RMSE MAE
0.11 0.11 0.12 0.03

Connectionist

Experiment 1

Connectionist Bayesian model

RMSE MAE RMSE MAE
0.19 0.16 0.19 0.16

(E) Model fit to the control trials only

Experiment 2

Connectionist Bayesian model*
RMSE MAE RMSE MAE

0.16 0.14 0.14 0.12

Experiment 1

Connectionist® Bayesian model

RMSE MAE RMSE MAE
0.10 0.08 0.20 0.17

Abbreviations: MAE, mean absolute error; RMSE, root mean square error.

Experiment 2

Connectionist? Bayesian model
RMSE MAE RMSE MAE

0.11 0.09 0.17 0.17

fCorresponds to the better fitting overall model based on average RMSE and MAE.

for the hypothesis space). Griffiths et al. (2011) describe the formal
parameterization of this hypothesis space and model that results in the
hypothesis space shown in Figure 3, in which nodes A, B, and C repre-
sent objects A, B, and C each being placed on the machine respectively,
and node E represents the “effect”—the machine activating.

To instantiate the model, each hypothesis is given a prior probability
p(h), which is a function of the child’s belief about how likely any object
isto be a blicket (i.e., the base rate of blickets), p. This prior corresponds
to the number of blickets posited by the hypothesis. For example, in the
figure, Hypothesis O posits 3 blickets, so its p(h) = p3. Hypotheses 1, 2,
and 4 posit exactly 2 blickets, so their p(h) = p2(1—p). Hypotheses 3, 5,
and 6 each posit 1, which makes their p(h) = p(1—p)2. Finally, Hypothesis
7 posits no blickets, which makes its p(h) = (1-p)°.

For the purposes of this demonstration, we will assume that the
model itself assumes that objects with causal efficacy will act deter-
ministically on detectors.! As a result, the likelihood of each hypothesis
is equal to 1 if that hypothesis could produce the data and O if not.
This allows each model to be updated based on Bayes’ rule, given the

data. The way the model then determines the probability that an object
is a blicket is based on the posterior probability of the models in the
hypothesis space. The probability that an object o is a blicket is the
probability that it activates the machine, given the data d (i.e., p(o—E
| d). This can be calculated by Equation (2)

plo—Eld) = ) plo— E|h)p(hld) (2)
heH

where p(o—E | h) is 1 if there is an edge between that object and the
detector in that particular hypothesis, and O otherwise.

Crucially, because the predictions of this (or any) Bayesian model
will depend on the prior probability that any given object is a blicket, we
fit a Bayesian model with the following prior probabilities: 0.5,0.65, 0.8,
0.95,and 1. We considered a range of prior probabilities because it was
unclear what participants’ baseline assumptions were about the prior
probability of blickets in the absence of explicit manipulations to those

probabilities. Thus, by deriving the model’s predictions for various prior

[umo( ‘€ *¥T0T ‘L8ILLIY]

:sdny woxy pap

ASULOI'T suowto)) dANeaI) a[qearjdde ay) Aq pauIaA0S a1k SA[ONIR V() 9SN JO SN J0f ATRIQIT dUI[UQ) A[IAY UO (SUONIPUOD-PUE-SULID}/ WO AB[IM" ATRIQI[AUI[UO//:sdNY) SUONIPUOL) Puk SWLIA ], ) 39S “[$70Z/T1/61] U0 Areiqr autjuQ Ko[iA\ ‘A1eIqrT A)SIOATUN) umolg Aq $94¢[9Sap/[ 1" [/10p/w0d"K[im A.



BENTON ET AL.

Activation of the
blicket machine

Output Layer

FIGURE 5 The connectionist model used to simulate
Experiment 1.

probabilities, it was possible to compare the model’s predictions for the
different probabilities to children’s actual treatment of the objects. The
best quantitative fit of this model to the data in Experiments 1 and 2 is

shown below in Table 3.

4.2 | Connectionist model

We also built a set of two-layer connectionist models. One of these
models corresponded to Experiment 1 and the other corresponded to
Experiment 2. The model architecture for the Experiment 1 simulations
is shown in Figure 5. The rationale for building only a two-layer model
was to explore whether a simple learning model trained with the Delta
Rule (Kruschke, 1992; Widrow & Hoff, 1960)—which is formally equiv-
alent to the traditional Rescorla-Wagner model (Danks, 2003; Gluck &
Bower, 1988)—could be used to explain these data. Similar to children,
we trained 16 models (i.e., “participants”) per condition for both exper-
iments (i.e., 32 total model runs for Experiment 1 and 32 total model
runs for Experiment 2), and like the children, each model received two
trials. Each new participant began with a fresh set of small random
weights (sampled uniformly between + 0.1). Finally, data were aggre-
gated over the responses of each model to allow us to fit the model’s
responses to participants’ count data (as shown in Figures 2 and 3).

The input layer for the model consisted of four units for Experiment
1 (corresponding to the four objects) and five units for Experiment 2
(corresponding to the five objects), and the output layer consisted of
a single unit for the simulation of both experiments (corresponding to
the activation of the machine). When object was placed on the machine,
the activation value of its corresponding input unit was set to a value of
1 (and O otherwise). The input units could not take on any other values
beside O or 1. If an object that was a blicket was placed on the machine,
then the model was trained to turn on the single output unit (i.e., to
produce an activation of 1).

All simulations used a learning rate of 0.05 but no momentum.
Model weights were initialized to small random values (distribution
range =+ 0.1), and the output units used sigmoidal or logistic activation

Developmental Science

functions. The activation of the single output unit was interpreted as
the model’s confidence (or prediction) that a given object was a blicket
and could range between 0 and 1 due to the sigmoid activation func-
tion (unlike the input units, whose input values were “hard clamped” or
fixed).

Turning on the first three input units simulated placing objects A,
B, and C on the machine, and training the model to turn on the sin-
gle output unit corresponded to teaching the model that the machine
activated when objects A-C were placed on it. During the subsequent
A+ trials in Experiment 1 or the AB+ trials in Experiment 2, only the
first input unit (for the simulation of Experiment 1) or the first and
second input units (for the simulation of Experiment 2) were turned
on, but again the model’s task was to activate the single output unit.
The control trials in the Backwards Blocking condition were identical
to the experimental trials except that the fourth input unit (corre-
sponding to object D in Experiment 1) or the fourth and fifth input
units (corresponding to objects D and E in Experiment 2) were turned
on following the ABC+ trial. The experimental and control trials in
the Indirect Screening-Off condition were identical to the backwards
blocking experimental and control trials except that the model was
trained to turn off the single output unit (i.e., to produce an output
activation of 0) during the experimental and controls for the simula-
tions of Experiments 1 and 2. Each phase of the simulations—which
were shown twice to be consistent with the behavioral study—lasted
anywhere between 200 and 1000 epochs. This meant that one com-
plete simulation lasted anywhere between 800 (i.e., 200 x 4) and 4000
(i.e., 1000 x 4) epochs. Networks were trained for different numbers
of epochs to ensure that the model-fit results were not idiosyncratic to
the precise number of training epochs. The best quantitative fit of this

model to the datain Experiments 1 and 2 is also shown below in Table 3.

4.3 | Results

To assess the quantitative fit of the predictions of the connectionist
and Bayesian models to the data, we computed the root mean square
(RMSE) and mean absolute error (MAE) between each model’s predic-
tions (for the connectionist model these were the average activation
of the single output unit in response to each object; for the Bayesian
model these were point estimates) and participants’ mean responses
to the objects across Experiments 1 and 2. One or both metrics have
been used in previous simulation studies to assess a model’s quantita-
tive fit to behavioral data (e.g., Bhat et al., 2022; Buss & Spencer, 2014;
Spencer et al., 2022; Steyvers et al., 2003; Stojnic et al., 2023). Lower
values on each metricindicate better model fit. Table 3 above shows the
model fits for the different connectionist and Bayesian model instan-
tiations across both experiments and for different subsets of the data
(e.g., model fit to the data overall, to the backwards blocking data only,
etc.).

The main finding from Table 3 is that, although the Bayesian model
outperformed the connectionist model in 2 situations and exhibited
comparable performance in 1 situation, the connectionist model gen-

erally performed better than the Bayesian model (achieving better fits

Tumoq ‘€ “vT0T ‘L8ILLIY]

:sdny woxy pap

:sdny) suonipuo) pue swd, Ay 32§ “[$70T/T1/61] uo Arerqry sunuQ Adqip ‘Areiqr Ansioarun) umolg Aq p9pE1-98dp/1111°01/10p/w0d Kapim A,

110)/W00" S 1A

P

AsURDI'] suowto)) aAnear)) s[qesrjdde ayy £q pausoAoS are sapOIIE Y AN JO SI[NI 10§ AIRIqIT SUI[UQ) AS[IAL UO (SUODIP



12 0f 16 Developmental Science
2 | WILEY

to the data in 7 of the 10 situations). These findings suggest that par-
ticipants may simultaneously be relying on associative processing and
Bayesian inference, even when there is a greater tendency to rely on
associative learning to reason about multiple potential causes. Stated
somewhat differently, these data neither clearly support the conclu-
sion that children rely exclusively on Bayesian inference to reason
about retrospective reasoning, nor do they permit the conclusion that
children rely exclusively on associative learning about such inferences.
Instead, these data support the conclusion that children weigh these
two cognitive mechanisms differently depending on the number of
potential causes about which they are asked to reason. Bayesian infer-
ence may be given more weight than associative learning when there
are a small number of potential causes (such as in Sobel et al., 2004),
but as the number of causes and the information processing demands
of the task increase, participants may give more weight to associative

learning (such as in the current study).

5 | GENERAL DISCUSSION

The purpose of this study was to examine whether and how children
engage in retrospective reasoning under more strenuous information
processing demands, in which they must track the efficacy of more
than two objects. Experiment 1 indicated that when shown first that
three objects activated a machine together, and then that one of those
objects did so individually, the other two objects were judged as less
likely to be efficacious than analogous objects in a control condition.
When the individual object did not activate the machine on their own,
judgments of the efficacy of the other objects were not different from
the control condition. However, in Experiment 2 when two of the
three objects were revealed to activate or not activate the machine
together (following the ABC+ event), children did not show evidence
of retrospective inference in either type of trial.

We subsequently fit a Bayesian model and a connectionist model
to the data from both experiments. The Bayesian model did make
some qualitative predictions about retrospective reevaluation that
were seen in children’s responses in Experiment 1 but not Experiment
2. However, overall, the connectionist model tended to provide bet-
ter fits across the trials and experiments. In contrast to findings where
children only must reason about two objects, increasing the demand
characteristics of the experiment caused children to default to a more
associative strategy. This was especially true in Experiment 2 where the
information processing demands were even greater than in Experiment
1.

The value of the connectionist model is that it provided a plausible
account of the nature of children’s associative processingin the current
study. This can be seen perhaps most clearly when one considers how
the model arrived at its judgements for the objects in the control tri-
als in the Backwards Blocking condition in the first study. For example,
when the model saw three objects activate the machine together and
then a fourth do so independently, it arrived at its causal judgements
based on a relatively simple counting strategy. During the simulation
of this trial, when all four objects were first presented to the model,

BENTON ET AL.

the resulting difference at the output layer between the activation of
the single output unit and the predicted activation of that unit was
equivalent for all four objects. Thus, because the difference between
the observed and predicted activation of the output unit was equiva-
lent for all four objects, the model made equivalent weight adjustments
in sign and magnitude to the connections between each object and
the output unit. Crucially, these connections instantiated each object’s
association with the machine’s activation. As such, because objects A-
D were shown with the “machine’s activation” (i.e., the output unit = 1)
an equal number of times, the strength of the association between each
object and the machine’s activation was equivalent. Given that the con-
nectionist model provided a better fit overall (and in various specific
places) than the Bayesian model, it seems likely that children might also
be relying on a similar associative-based counting procedure.

In contrast, the Bayesian model predicted a clear difference
between the causal effectiveness of the first three objects and the
fourth objects in the control trials. Because the fourth object was
placed on the machine by itself, its causal status as an effective object is
unambiguous and should be high. In contrast, when all children know
is that three objects activate the machine together, the only conclu-
sion they can come to is that at least one of the other three objects
has efficacy. A Bayesian model predicts that the probability that each
is efficacious is greater than the base rate, but not necessarily at ceil-
ing. Whereas the Bayesian model made qualitative predictions about
retrospective reevaluation in the experimental trials that were mostly
upheld (at least in Experiment 1), children made closer to ceiling-level
responses in the control trials (particularly in Experiment 2).

But what accounted for why children engaged in retrospective
reevaluation in Experiment 1 but not in Experiment 2? The cur-
rent study suggests that when tasks exceed children’s information-
processing abilities, they will resort to less sophisticated strategies and
cognitive mechanisms such as associative learning (e.g., Cohen et al.,
2002), even though multiple processes (in this case, associative learn-
ing and Bayesian inference) may be simultaneously in operation but to
different degrees.

Before closing, some potential criticisms are worth noting. First, in
the present study, children’s reasoning overall was more consistent
with an associative model than one that is described by Bayesian infer-
ence. Yet, that does not mean that Bayesian models could not explain
the data under some circumstances. For instance, one of the pieces of
evidence for a Bayesian description of causal inference is that children
are sensitive to and make different inferences about the base rates of
causal properties (e.g., Griffiths et al., 2011; Sobel et al., 2004; Sobel &
Munro, 2009). Here, we did not present children with base rates prior
tothem making aninference. If we were to have done so, and in the case
where the base rate that any one object was a blicket was rare, chil-
dren might have been cued not to use an associative counting strategy,
even given multiple potential causes. In other words, their inferences
about unambiguous data (i.e., individual objects that specifically do or
do not activate the machine) should be unchanged, but other infer-
ences about ambiguous data might be different. Although we can think
of modifications to the associative model presented here, which could

theoretically consider such base rate data, the simple connectionist
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model that we used to simulate the data here would be less explanatory
than the Bayesian model we present.

A second criticism concerns the artificial nature of the paradigm
used here, which was necessitated by the COVID-19 pandemic. Test-
ing remotely on a computer screen may have introduced a level of
noise in the data that is fundamentally different than testing in per-
son with real objects. Future studies should replicate our study using
real objects and a real blicket machine. If such a study revealed that
participants performed more normatively than associatively in person,
this would suggest that children’s normative inferences may not be as
robust as originally thought—it is present when tested in person but
nearly absent when tested on a computer. Such a finding would be
interesting regardless because it would add nuance to the literature on
children’s causal inferences.

A third criticism concerns the logic behind our model fitting. Our
model fits were based on aggregating a group of children’s yes/no
responses and fitting those averages to a model’s stochastic predic-
tions. Previous studies on children’s causal inferences used such an
approach. However, studies with adults asked them to make more
graded inferences (e.g., rate on a scale of 1-10 how likely a particu-
lar object caused the machine to activate). Given that we investigated
a slightly older sample than some other studies of retrospective rea-
soning in children, such a graded response measure could be used in
a reproduction of these studies. This could further help distinguish
between the qualitative predictions of each model and the quantita-
tive model fits. Relatedly, the logic behind our decision for the sample
size of the studies was based on prior studies that demonstrated chil-
dren’s reasoning that were better described by Bayesian models. The
choice of aggregating children’s yes/no responses might not have been
sufficiently powerful here to demonstrate some of the more subtle
inferences predicted by a Bayesian account.

A fourth potential criticism concerns the absence of developmental
change in children’s retrospective reevaluations: Children’s backwards
blocking and indirect screening-off inferences were unrelated to age
in both experiments. Although we failed to observe an age effect, the
current results do have developmental implications. If we are correct
that children resort to more associative forms of processing when their
information-processing capacities are stretched, then these results
suggest that if younger children are tested in a replication of the
current study their inferences should be even more associative than
the 5- and 6-year-olds tested here. This is because younger children
presumably possess less robust information-processing abilities than
older children and thus should be more affected by the increase in
the number of objects used (relative to past studies on retrospective
reevaluation) than the 5- and 6-year-olds tested here. Conversely, if
children older than that tested here or even adults are tested in a repli-
cation of the current study, then not only should they be less affected
by the increase in the number of objects presumably because they
possess more information-processing abilities than the children tested
here, but their inferences should also better align with the predictions
of the Bayesian model than the associative model.

Although it remains to be seen whether these predictions will hold

in younger children, recent data by Benton and Rakison (2023) do
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support these predictions: In a study that was similar to the current
one—including in the use of three and four objects—adults’ backwards
blocking inferences better aligned with Bayesian processes than asso-
ciative ones. When one considers this finding given the current results,
a clearer developmental picture emerges: They not only suggest that
cognitive processing evolves from a more associative approach in
younger children to a more Bayesian-oriented strategy in adults but
that this developmental shift may be supported by increases in under-
lying information-processing. Nonetheless, future research will want
to test younger children than that tested here to better assess the
viability of the current information-processing account.

5.1 | Conclusion

This study constitutes one of the first systematic attempts to exam-
ine retrospective reasoning in human children in the context of
multiple potential causes. A longstanding view has been that the
cognitive mechanism by which people reason about causal events
is Bayesian inference rather than associative processes. The experi-
ments reported here support a different conclusion: Although children
possess both associative-based and more rational mechanisms for
reasoning about causes, they may rely more on associative learn-
ing than on Bayesian inference when their information processing is
taxed.
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