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Abstract

1.

Large grazers modify vegetated ecosystems and are increasingly viewed as key-
stone species in trophic rewilding schemes. Yet, as their ecosystem influences
are context-dependent, a crucial challenge is identifying where grazers sustain,

versus undermine, important ecosystem properties and their resilience.

. Previous work in diverse European saltmarshes found that, despite changing

plant and invertebrate community structure, grazers do not suppress below-
ground properties, including soil organic carbon (SOC). We hypothesised that,
in contrast, eastern U5 saltmarshes would be sensitive to large grazers as exten-
sive areas are dominated by a single grass, Spartina alterniflora. We predicted that
grazers would reduce above- and below-ground Spartinag biomass, suppress inver-

tebrate densities, shift soil texture and ultimately reduce SOC concentration.

. We tested our hypotheses using a replicated 51-month large grazer (horse) exclu-

sion experiment in Georgia, coupled with observations of 14 long-term grazed

sites, spanning ~1000 km of the eastern US coast.

. Grazer exclusion quickly led to increased Spartinag height, cover and flowering,

and increased snail density. Changes in vegetation structure were reflected in
maodified soil texture (reduced sand, increased clay) and elevated root biomass,
yet we found no response of SOC. Large grazer exclusion also reduced drought-

associated vegetation die-off.

. We also observed vegetation shifts in sites along the eastern U5 seaboard where

grazing has occurred for hundreds of years. Unlike in the exclusion experiment,
long-term grazing was associated with reduced 50C. A structural equation model
implicated grazing by revealing reduced stem height as a key driver of reduced soil

organic carbon.

. Synthesis: These results illustrate the context dependency of large grazer im-

pacts on ecosystem properties in coastal wetlands. In contrast to well-studied
European marshes, eastern U5 marshes are dominated and structured by a single
foundational grass species resulting in vegetation and soil properties being more

sensitive to grazing. Coastal systems characterised by a single foundation species
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1 | INTRODUCTION

Large herbivores, particularly equids and bovids, exert top-down
control on the structure and diversity of vegetated ecosystems
(Augustine & Frank, 2001; Waldram et al.. 2008). Large grazers were
likely more abundant and functionally relevant in the past than in
modern ecosystems (Malhi et al, 2016), leading to calls for their
inclusion in rewilded systems (Svenning et al., 2016). Large equids
form free-roaming, wild or semi-wild populations in many parts of
the world, and may already be, at least partially, functionally replac-
ing extinct herbivorous megafauna (Lundgren et al., 2018). Yet, while
large grazers are often associated with increased landscape hetero-
geneity and vegetation diversity (Oldén & Halme, 2014; Waldram
et al, 2008), in some contexts they shift communities to non-
desirable states (e.g. low vegetation cover; Hempson et al., 201%;
McSherry & Ritchie, 2013). Systems with low plant diversity may
be especially sensitive to large grazers, particularly when combined
with other stressors such as invasive species or climatic extremes
because other plant species are not present to replace those tar-
geted by grazers (Biggs et al., 2020). While there is growing under-
standing of context-dependent effects of large grazers on terrestrial
systems (Maestre et al., 2022), progress in coastal wetlands such as
saltmarshes has been hampered by a geographic bias in study effort
and an emphasis on farmed rather than wild or semi-wild grazers
(Davidson et al., 2017).

Saltmarshes are socially and economically important systems,
with large biogeographic structural variation that may have impli-
cations for their responses to large grazers (Davidson et al., 2017:
Yando et al, 2023). These coastal wetlands form extensively
around the world's wave-sheltered temperate coastlines (Mcowen
et al., 2017), where they provide multiple ecosystem services that
mitigate environmental hazards, and provide matenial goods, rec-
reational opportunities and wildlife habitat (Barbier et al., 2011;
Costanza et al, 1997; Pétillon et al., 2023). Saltmarshes are
generally characterised by high primary and secondary produc-
tion, which drives much of their ecosystem service provisioning
(Barbier et al., 2011). Although large grazers occur on saltmarshes
in all major saltmarsh-containing regions world-wide (Gaskins
et al., 2020), their impacts have been most extensively studied in
European marshes (Davidson et al., 2017). European marshes host
rich floral assemblages, and substantial experimental and observa-
tional research has documented that they are resistant to grazing
(Elizabeth et al., 2022; Harvey et al., 2019). While grazing reduces
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might be inherently vulnerable to large grazers and lack resilience in the face
of other disturbances, underlining that frameworks to explain and predict large

grazer impacts must account for geographic varniation in ecosystem structure.

biodiversity, blue carbon, ecosystem resilience, horses, multifunctionality, Sparting alterniflora,
Sporobolus alterniflorus, trophic cascade

above-ground biomass, it tends to increase plant diversity and can
even increase soil carbon storage (Elschot et al., 2015; Meirland
et al., 2013; Olsen et al., 2011). In comparison, the role of large
grazers in structurally varied marshes elsewhere in the world has
been largely neglected (Davidson et al. 2017). Saltmarshes in
Morth America, for example, are some of the most extensive in the
world, with along history of grazing by introduced horses and other
livestock dating back over 400years (Mcowen et al_, 2017). In the
U5, although this practice has now declined (Gedan et al., 2009;
Gruenberg, 2015; Reimold et al., 1975; Smith et al., 1989), free-
ranging horses and cows graze on saltmarshes on multiple bar-
rier islands along the eastern seaboard (Gruenberg, 2015). Most
studies of grazing impacts in Morth American saltmarshes have
been purely observational, comparing neighbouring grazed and
ungrazed islands (Dolan, 2002; Hay & Wells, 1991; Reimold
et al, 1975), or focused strictly on plant dynamics (Furbish &
Albano, 1994: Turner, 1987). Yet, previous synthesis tentatively
supports a greater sensitivity of these marshes to large grazers
than their European counterparts (Davidson et al_, 2017).

A key issue underlying the expected sensitivity of Morth
American marshes to large grazers—and other compounding
stressors—is a lack of capacity for functional compensation at
both the individual plant and community levels. Many Eastern
Morth American saltmarshes are dominated by a single founda-
tion species, Sparting alterniflora (hereafter Sparting), which has a
powerful influence on ecosystem structure and function (Bortolus
et al., 2019). This species forms some of the most productive veg-
etated systems on Earth, donates substantial root and leaf tissue
to soil organic carbon (SOC), provides tall and dense canopies that
facilitate deposition of clay particles known to enhance SOC, and
supports a diversity of infauna (Altien et al., 2007; Fagherazzi
et al_, 2012; Oades, 1988; Reichle, 2023). In turn, soil quality (50C)
and infaunal communities have strong effects on ecosystem func-
tioning and resilience (Angelini et al., 2015, 2016, 2018; Bastida
et al, 2021; Bertness, 1985; Carney & Matson, 2005; Daleo
et al., 2007; Gittman & Keller, 2013; Griffin & Silliman, 2018;
Hensel & Silliman, 2013; Holdredge et al., 2009; Silliman
et al., 2005). Spartina shows little capacity for compensatory
responses to grazing by, for example, shifting to below-ground
production (Valdez et al., 2023), and is reduced or eliminated by
high densities of invertebrates or vertebrates (Hensel et al_, 2021;
Silliman et al., 2005). Although succulents may increase in abun-
dance following Spartina declines (Bertness et al., 1992), they are
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unlikely to functionally compensate due to their lower productiv-
ity, shorter stature, and lack of mutualistic partnership with res-
ident invertebrates. Despite the dominance and unigueness of
Spartina compared with succulent replacements, few studies have
investigated how grazing from large herbivores impacts Spartina,
and how potential vegetation community shifts cascade to salt-
marsh soil properties and invertebrate communities, for example
crabs, snails, and mussels (Reimold et al, 1975; Turner, 1987).
Furthermore, grazing takes place—in the United States and glob-
ally—in the context of changing stressors and disturbances, such as
invasive species and climate change (Angelini et al., 2018; Gedan
et al., 2009; Sharp & Angelini, 2016; Silliman et al., 2005). If large
grazers are having strong negative effects on saltmarsh vegeta-
tion in US saltmarshes, especially given limits to their functional
redundancy, they could undermine ecological stability in the face
of other stressors, thereby compromising important ecosystem
functions including the accumulation of SOC.

In this study, we combined experimental exclusion and a broad-
scale observational survey to investigate how large grazers affect
a coastal ecosystem dominated by a single foundation species: US
East Coast saltmarshes dominated by Sparting. To test causal effects
of grazers on community and ecosystem properties when combined
with other stressors, we used replicated grazer exclusion plots in
Spartina saltmarsh on Cumberland Island, Georgia, maintained over
S1months. During this period, the expenmental sites underwent
marsh die-off, a mass mortality of 5. parting associated with drought
and consumer pressure (Alber et al., 2008, McKee et al., 2004;
Silliman et al., 2005), allowing us to explore how large grazers im-
pact marsh ‘resilience’, as indicated by the capacity of marshes to
maintain living Sparting cover in the face of die-off. We also exper-
imentally tested how grazing influenced marsh recovery by simu-
lating invasive hog disturbance, a common stressor of eastern US
marshes (Sharp & Angelini, 2019). To evaluate the generality of ex-
perimental results and assess the effects of long-term (>100vyears)
grazing across a large spatial scale, we measured similar properties in
14 grazed and 12 ungrazed saltmarshes over ~1100km of coast be-
tween Florida and Maryland, USA. We hypothesised that in contrast
to well-studied European marshes, eastern U5 saltmarshes would be
highly sensitive to large grazers due to their dependence on a sin-
gle foundation grass species. Specifically, we predicted that grazers
would reduce Sparting above- and below-ground biomass, and since
these marshes lack a functional replacement for Sparting, grazers
would reduce invertebrates, shift soil texture, and ultimately sup-
press SOC concentration. We further expected grazing to reduce re-
silience to other stressors such as drought and feral hog disturbance
as grazing was expected to reduce plant energy reserves, leaving
marshes more vulnerable to compounding disturbances. Finally, we
predicted that the long-term grazed/ungrazed sites would reflect
the dynamics and interactions of both fast processes whose rates
change or saturate over time (e.g. plant growth) and slow processes
that may require several years to become detectable (e.g. slow
change in soil carbon), while the measurable response of short-term

exclusion plots would mostly reflect fast processes but depend on
the recovery rates of individual variables.

2 | METHODS
21 | Datacollection
211 | Experimental study site

Cumberland Island is a 29km long barrier island located off the
coast of Georgia, southeast USA, at 30.85%N, 81.45°W and contains
3490ha of saltmarsh (Dolan, 2002). Horses have roamed freely on
the island since the 18th century, grazing predominantly on sand
dune and saltmarsh vegetation (Dolan, 2002; Goodloe et al., 2000).
The horses are unmanaged, have no natural predators, and number
150-140 (D. Hoffman, personal communication, 18 July 2019). The
island is also grazed by native white-tailed deer (Odocoileus virgin-
ianus) and is home to invasive feral hogs (5us scrofa), although popu-
lations of deer and hogs are hunted. Appropriate fieldwork permits
were granted for this study by the relevant governing bodies (see
Supplementary Methods: Experimental Study).

21.2 | Experimental study design

We studied the effect of horse grazing on saltmarsh properties by
excluding large fauna from eight 5= 5m experimental plots with
barbed wire strung between four corner posts. Each 5x=5m ex-
perimental plot was paired with a 5=5m grazed plot, consisting
of four corner posts but no barbed wire, positioned 8 m away to
form a treatment block. Blocks of exclusion and grazed plots were
spaced ~120m (+&0) apart. The plots were divided between two
marshes lying on either side of a major creek on the southern end
of the island (Figure 51a,b). The plots were erected in March 2017
using 2.5m metal posts driven into the ground to 1m depth and
strung with three strands of high-tensile barbed wire. The plots
were positioned 20m (+5) from the nearest drainage creek, and all
were initially similar in elevation, vegetation community, and fau-
nal community. All plots were positioned in the mid-marsh zone
of short- and medium-form Spartina (canopy height: 30-120cm),
the dominant species in southeastern US marshes (Adam, 1990;
Anderson & Treshow, 1980) where the horses mostly graze
(Dolan, 2002). We also established six unmarked reference points,
plotted mid-way between each block. Grazing indicators were as-
sessed at these points and compared with grazing indicators at the
grazed plots, to ensure the corner posts were not acting as an at-
tractant or repellent to the horses or other fauna (e.g. marsh peri-
winkle snails, Littoraria irrorata). We found no differences between
reference points and grazed plots, therefore the reference points
were not included in any further analyses. Although we did not
directly compare grazing intensity between plots at the intiation
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of the expeniment, we did detect a difference in hoofprint density
between the two marshes (Figure 51a) and included plot pair and
location as a random variable in all models.

Plots were sampled 0, 7, 13, 18 and 51 months after the exper-
iment was initiated (March 2017 to June 2021). At 0 and 7 months,
we sampled from three 0.3 = 0.3 m quadrats distributed haphazardly
within each plot and used the mean value of every vanable for each
plot. After 1vyear, each plot was instead divided into four quarters
(a-d), and each plot quarter was sampled independently to better
account for within-plot vanability (Figure 51c). We extracted one soil
core (7 cm diameter = 15 cm depth) from each quadrat that was stored
onice for subsequent analysis. Within each plot, the outer 0.5m edge
was used as a buffer zone and was never sampled. We collected data
on sediment properties (elevation, redox potential, porewater salin-
ity and pH, soil organic carbon, soil texture and soil moisture), plant
properties (living cover, dead cover, proportional cover of Spartina,
Salicornia sp., hereafter Salicomnia (see Supplementary Methods:
Expenimental study regarding taxonomy), and Distichlis spicata, av-
erage stem height, stem density, flowering stem density, root bio-
mass, benthic algae density), the invertebrate community (mussel,
snail, and crab density), and grazing intensity (hoofprints, dung piles,
and stem damage) as detailed in Table 51. In the absence of direct
measurements of 50C, we used the equation from Craft et al. (1991)
to convert loss on ignition to 50C, as it was originally parameterised
in marshes in the study region (Morth Carolina) and parameterised
global equations do not perform as well. Note that we measure the
concentration of soil organic carbon (%), not accumulation rate or
per unit area store of carbon which require additional consideration
of bulk density and accretion rate (Meubauer et al., 2002). We as-
sess the effects of grazers by comparing the grazed and ungrazed
plots at the final time point. We focus on the 51-month data as it
integrates effects of grazing over a longer time, thus potentially al-
lowing treatment effects on slower-responding variables (e.g. 50C)
to be detected. Although there was considerable time between 18-
and 51-month sampling campaigns, including expected background
variability in environmental conditions, there was little evidence of
unusual extreme events (Figure 52). Furthermore, our random as-
signment of treatments to experimental plots means that any in-
teraction with background environmental vanability through time
represents part of the natural and long-term context of the study.
We saw no evidence of other large grazers (eg. deer or hogs) in
grazed or reference plots, suggesting horses were the only grazers
accessing these marshes. Full details of field and laboratory methods
are provided in the Supporting Information.

2.1.3 | Ecosystem resilience

After the start of the expenment, some areas of the study marshes
were affected by saltmarsh die-off, a loss of vegetation associ-
ated with drought (Alber et al., 2008). Therefore, on every visit, we
visually assessed the plot for devegetation of all plant species and
gave a score of 0-3 for die-off seventy (0: 0%-25% bare ground,
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1: 26%-50% bare, 2: 51%-75% bare, 3: 76%-100% bare), which we
distinguished from grazing, which left plants alive, by whole plant
browning and death. This allowed an indication of saltmarsh resil-
ience to die-off under different grazing treatments. This metric of
resilience assesses the general state of vegetation following die-off
but does not distinguish die-off impact (resistance) and recovery.
Although we do not know the cause of the die-off or when it began,
there was a period of severe drought (May-June 2017) that likely
influenced die-off seventy (Figure 53).

To investigate saltmarsh capacity for recovery under different
grazing treatments, we simulated hog damage within a 1«1m area
in one-quarter of each plot in October 2017, Although invasive hogs
are kept at low densities on Cumberland Island by hunting and did not
appear to forage at the study sites, they commaonly forage and wallow
in marshes elsewhere on barnier islands along the eastern seaboard
(Barrios-Garcia & Ballan, 2012; Sharp & Angelini, 2019). Invasive feral
hogs damage standing biomass and soil structure through their tram-
pling, rooting, and wallowing activities (Sharp & Angelini, 2016, 2019).
In the simulated disturbance, we uprooted and discarded 20 clumps
of Sparting to simulate root herbivory and two researchers vigorously
trampled on a 1= 1m square of 1.25cm plastic mesh for 605 to sim-
ulate wallowing. Data were collected from these 'damaged’ quadrats
(located in quarter ‘b’ of each plot) six and 12 months after simulated
disturbance and were analysed separately from data collected in un-
disturbed quadrats (Figure 51b). We measured ‘recovery’ as the natu-
ral log-transformed response ratio (log(RR), Equation 1) of vegetation
metrics (plant cover, stem height, and biomass) in hog-disturbed plots
relative to undisturbed reference plots in each grazed or ungrazed
treatment block at 6 and 12 months after hog disturbance treatment;
recovery was calculated for each plot.

Iog(RR) = In( Vegetation metric from plots with pig damage ) ®

Vegetation metric from plots without pig damage

214 | Observational study

To assess the varability of grazing effects across the region, we
sampled 26 marshes at nine sites (islands or nature reserves)
along ~1100km of coast between 30.52°N (Florida) and 38.30°N
(Maryland) during both March and October 2017 (Figure 1, Table 52,
see Supplementary Methods: Observational Study for permit infor-
mation). We identified 14 marshes across five sites that were grazed
by large ungulates, then selected 12 ungrazed marshes (seven sites)
that could act as ungrazed controls (see Table 52 for site details).
When possible, grazed and ungrazed marshes were located at the
same site, otherwise, we selected marshes at a nearby site (<25km)
with similar geophysical and hydrologic features (e.g. tidal charac-
teristics, elevation, tidal creek density and protection from open
ocean). We assessed the grazing intensity on each marsh as light,
moderate or heavy based on visual assessment (Table 53) and infor-
mation provided by site managers. All grazed marshes were grazed
by horses except for one marsh grazed by cattle (Creighton Island,
Georgia). We include this cattle-grazed marsh to increase sample
size, and because horses and cattle are likely to have similar effects
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FIGURE 1 Location of observational
sites along the southeast US coast. Each
site contained between 2 and 5 survey
marshes. See Table 52 for further details
of location, grazing history, and grazing
levels at the 26 surveyed marshes.
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Cumberland Island
.. t
<y Amelia lsland

due to their similar body size, energy requirements, and grazing hab-
its (Cymbaluk, 1990; Halls, 1970; He & Silliman, 2016; Hubbard &
Hansen, 1974).

At each marsh, we surveyed two parallel transects, starting
10-20m from the creek edge and running inland up to 100m._ At
the start, midpoint and end of each transect, we surveyed a 1 =1m
quadrat for sediment charactenstics (redox potential, porewater
salinity and pH, soil organic carbon, soil texture), vegetation prop-
erties, and invertebrate abundance using the same methods as the
expenmental study (Supplementary Methods: Observational study).

During the March 2017 surveys, we also measured vegetation
and invertebrate variables in quadrats placed every 10m along the
transect to increase sample resolution of these features. In total we
collected data from 308 quadrats (113 ungrazed, 57 lightly grazed,
81 moderately grazed, 57 heavily grazed) and 150 soil cores (65 un-
grazed, 22 lightly grazed, 42 moderately grazed, 21 heavily grazed).

2.2 | Dataanalysis

To test the effect of horse grazing on ecosystem properties in both
the experimental and observational study we used generalised linear

mixed models (LMM) and Akaike Information Criterion (AIC) with
Erazing presence or grazing intensity (observational study) as predic-
tors (see Supplementary Methods: Data Analysis for details about
each analysis). Models were used for eight sediment, 13 vegetation,
and five invertebrate fixed response vaniables. In the experimental
study, blocks were treated as a random effect. In the observational
study, season, creek distance, and latitude were treated as covari-
ates and site as a random effect while grazing intensity was binned
as ungrazed, light, moderate or heavy. We used binomial error fami-
lies for proportional data (species presence, live and dead vegeta-
tion cover) and Gaussian families for all other data. We performed all
analyses on z-transformed predictor variable data to allow compari-
son of each response on the same scale. Model assumptions were
verified by inspecting residual plots for deviations from normality
(graphically and using the Shapiro-Wilk test) and testing goodness-
of-fit (Kolmogorov-Smirmov) of observed versus expected values.
Response variables were transformed as necessary using Box—Cox
transformation. We used likelihood ratio tests using maximum likeli-
hood (ML) estimation to test the significance of each fixed effect
(commecting p-values to control the false discovery rate within sets
of soil, vegetation, plant, and invertebrate response variables within
each study; Benjamini & Hochberg, 1995) and used post hoc Tukey
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tests for pairwise comparison of intensity levels (ungrazed, light,
moderate and heavy) when grazing intensity was found to be a sig-
nificant predictor.

Generally, 5OC is negatively correlated with higher sand content
in soils (Oades, 1988) and grazers could potentially prefer sandier,
firmer substrate, driving a spunious association between grazing and
S0C. To test their influence on 50C in the observational survey, we
developed a global LMM and models with only soil sand content or
grazing, then compared AIC to assess the best predictors of 50C.
We also developed a Structural Equation Model to elucidate indi-
rect relationships between grazing intensity, plant, invertebrate, and
soil metrics (Table 54, Figure 54). We then tested the significance of
added or removed pathways using tests of directed separation and
evaluated global goodness-of-fit.

All statistical analyses were conducted in R Studio running
R3.5.2 (R Core Team, 2019). Generalised LMMs were fitted using
Ime4 (Bates et al., 2015) and R® values were calculated using
piecewiseSEM (Lefcheck, 2014). We used the emmeans pack-
age (Lenth et al, 2019) to perform post hoc pairwise contrasts
of factor levels and calculate predicted means for graphing
Mon-parametric tests were conducted using the vegon package
(Oksanen et al., 2019).
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31 | Experimental study

3 | RESULTS

3.11 | Effectof grazing on community and
ecosystem properties

There was no difference between grazed plots and unmarked refer-
ence points or ungrazed experimental plots at the start of the exper
iment for any recorded variable (Tables 55 and 56). After 51 months
of grazer exclusion, there were significant changes to multiple plant
properties: the exclusion of horses led to increased stem height,
flowering, stem density, above- and below-ground biomass, and
Spartina cover, but reduced Salicomia cover and die-off intensity of
all vegetation (see Figure 2, noting that it is orientated to show the
effect of grazing rather than exclusion, also see Table 57 for model
outputs). We also observed an increase in clay and decrease in sand
content, and higher densities of periwinkle snails, but 50C was not
significantly affected by grazer exclusion.

For properties that were significantly different at final obser-
vation, we investigated their responses to grazer exclusion at each
time point (0, 7, 13, 18, 51months; contingent on data availability,
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FIGURE 2 The effect of grazing horses on ecosystem properties based on data from the final sampling period (18 months after grazer
exclusion for Elevation, Redox, and Flowering or 51 months after exclusion for all other data) in the grazer exclusion experiment. Points
show the standardised coefficients +95% confidence intervals (calculated on z-transformed response vanable data) for the effect of
grazing (in control plots) using linear mixed models. The figure is orientated to show the effect of grazing (rather than exclusion) to facilitate
compansons with observational data in Figure 4. FDR corrected-p values indicated as * < 0.05; **<0.01; *** < 0.001. 50C, soil organic

carbon, accompanying statistics are reported in Table 57.
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Table 58). The increase in stem height and above-ground biomass
was significant after just 7months, but stem density and the in-
crease in relative Spartina cover and decrease in relative Salicornia
cover were not apparent until 13months, and stem flowering until
18 months (although flowering could have occurred in the first year
but did not align with our monitoring). The decrease in periwinkle
snail density was significant at 7 and 51 months (October and June,
respectively) and may represent underlying seasonal differences in
snail grazing and movement. Root biomass (aggregated and upper
horizon), die-off resistance, sand content, and clay content took
51 months to diverge from grazed plots.

While simulated hog damage had enduring impacts on several
key vegetation variables, large grazers do not appear to further
compound these effects and hamper recovery (Figure 3, Table 59).
After 12months, hog-damaged areas in grazed and ungrazed plots
did not differ, statistically, though in grazed plots stem height in
hog-damaged areas had converged with undamaged areas (Figure 3,
Table 59).

3.2 | Observational study

Grazing was associated with significant differences in three sediment
and two plant properties, but not with any invertebrate properties
(Figure 4, Table 510). Grazing was associated with higher stem den-
sity, but lower plant cover and stem height. The effects of grazing on
stem density and stem height strengthened with increased grazing
intensity (Figure 55, Table 511). Raw plant species composition data
(Figure 56) indicate that grazing is associated with reduced Spartinag
cover and increased cover of other species (Salicornia, Distichlis spi-
cata, Juncus reemarianus and Batis maritima), although the increased
species richness and reduced probability of a grazed quadrat being
100% Spartina were not statistically significant (Table 511). Grazing
did, however, significantly affect plant community composition, irre-
spective of whether a presence/absence or abundance-related com-
munity dissimilarity measure was used (PERMANOVA Fy 35-=3.66,
p=0039 and F; 55;=4.89, p=0.014 for 5erensen and Bray-Curtis
dissimilarity matrices, respectively). Multivariate tests of group
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FIGURE 3 Matural log-transformed response ratio—log(RR}—of (a) live plant cover, (b) stem height of Spartina alterniflora, and (c)
aboveground biomass recovering from simulated hog damage with reference to undamaged plots (damaged/undamaged equivalent)

in grazed (blue) and ungrazed (orange) plots after 6 months and after 12 months. There are no significant differences between grazing
treatments for any given time point or response variable. Points show response ratio means +95% confidence intervals. See Table 59 for
pairwise effects of hog damage in each grazing treatment. Dashed line indicated the reference level of undamaged marsh in equivalent
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FIGURE 5 Structural equation model (SEM) showing direct and
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boxes endogenous vanables, and blue box the response vanable.
Arrow size directly corresponds to z-transformed effect size. Site
was treated as a random effect. *p<0.05; **p=0.01; ***p=0.001.

dispersions indicate that these differences were due to increased
dispersion within grazed marshes, that is, the plant communities
within grazed marshes were more dissimilar than the plant commu-
nities within ungrazed marshes (PERMDISP Fyaps=4-28, p=0.044
and Fy 3p5=5.79, p=0.008 for Sgrensen and Bray-Curtis dissimilar-
ity matrices, respectively).

Grazing was associated with lower 50C, but also with higher
sand content. However, our experimental results provide causal evi-
dence that grazers substantially increase sand content and decrease
clay content, demonstrating they can drive—rather than simply re-
spond to—soil texture and SOC. We also compared soil testture (sand
or clay) and grazing as alternative predictors of SOC and found that
grazing was consistently the best predictor (Table 512). Furthermore,
our Structural Equation Model (Figure 5), which is consistent with
the data (Fisher's C=11.038, p=0.53, df = 12), suggests that grazing
has a strong, negative indirect effect on SOC primarily by regulating
Spartina canopy height, which in turn drives 50C loss directly and
indirectly through loss of soil clay and root biomass (Figure 5).

4 | DISCUSSION

Context dependency is presumed to be common in ecological sys-
tems but identifying the underlying causes is necessary for broad
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understanding (Catford et al, 2022). In saltmarshes, previous re-
search on the effects of large grazers has been dominated by stud-
ies on flonstically diverse European marshes, with comparatively
little known about the structural and functional consequences
of large grazers in other global regions, including the extensive
yet low diversity—and potentially less resistant—Morth American
marshes. Our combined results from a grazing exclusion experi-
ment and a large-scale observational survey build on these find-
ings by demonstrating that large grazers affect multiple structural
and functional ecosystem attributes in eastern US saltmarshes.
Grazers cause reductions in above- and below-ground biomass
of the foundational plant (Spartina), shift and disrupt vegetation
towards a less productive succulent (Salicornia), and make soil
sandier, all of which leads to soils holding lower concentrations
of soil organic carbon (SOC). Although the observational study
alone could not conclusively determine that horses increased sand
content, our field experiment demonstrates that grazers increase
sand content and reduce clay content in marsh soils. Invertebrates,
on the other hand, were relatively resistant to grazing. Moreover,
our experiment indicated that grazing was associated with marsh
die-off intensity but did not affect recovery from simulated hog
damage. Collectively, and when compared with previous work on
European marshes, these results illustrate large-scale varnation in
the impacts of grazers on coastal wetlands and show how multiple
functionally relevant plant and soil properties lack resistance to
large grazers in a system structured by a single foundational plant
Species.

41 | Plant above- and below-ground responses

Grazing reduced multiple indicators of plant productivity, with impli-
cations for ecosystem services. In both our experimental and obser
vational studies, grazers reduced above-ground biomass, stem height
and cover of Sparting, as expected from previous work (Turner, 1987).
Grazers correspondingly reduced root biomass in our experiment.
Although most plant responses aligned across the two approaches,
stem density without grazing was lower in the observational,
but higher in the expenmental study. In the observational study,
marshes without grazing likely undergo self-thinning as taller stems
shade their neighbours while marshes where grazing was recently
excluded have yet to exhaust soil nutrients and reach this density-
dependent feedback (Liu & Pennings, 2019). Motwithstanding, re-
duced above-ground plant biomass and structure in grazed marshes
are likely to impair multiple ecosystem services, such as shoreline
stabilisation due to reduced accretion (Turner et al., 2002), storm
protection due to reduced wave attenuation (Fairchild et al, 2021;
Maller et al_, 2014; Shepard et al,, 2011), fishenes support due to less
detnital biomass entering the marine food chain (Baker et al., 2014;
Levin et al, 2002), and provision of habitat for wildlife that rely
on tall vegetation for nesting (Sherr, 2015). Reduced biomass can
also decrease soil organic carbon accumulation, a large component
of ‘blue’ carbon stores, due to reduced plant inputs and lower clay

X111 R R

(lia) g prgravsy

oy i, e R ] 0 ) Oy g, s L By EFSMAI) 4 2011 9111 11 T e gy

'I:hll r

far

) ] I T Yy ity iy A o b, o s TR i i o e 0 RO ) K 0



SHARP ET AL

2632
Journal of Ecology .

accretion (Kelly et al, 1996; Oades, 1988), an outcome of grazing
also consistent with the results in our study.

4.2 | Soil texture and organic carbon responses

Grazers consistently affected soil texture and, in the long-term
grazed sites, reduced soil organic carbon concentration. Grazer-
driven shifts in sediment texture away from fine-grained clay
towards sand were evident in our experiment, concordant with re-
duced vegetation biomass having a lowered capacity to capture fine
clay particles (Mudd et al., 2010). Higher sand alone is associated
with lower SOC (Oades, 1988), and grazers could prefer sandier sub-
strate, thus sand content could potentially drive a spurious associa-
tion between grazing and S0OC. However, the experiment provides
causal evidence to corroborate the novel conclusion that grazers are
driving long-term and large-scale changes in sediment composition
in eastern US marshes, rather than responding to firmer underfoot
conditions that likely result from coarser sediment. In these long-
term grazed marshes, we observed lower 50C, which again we at-
tribute to grazers causing rather than responding to soil texture. We
draw this conclusion both because grazing emerged as a parsimo-
nious predictor of S0C over and above soil texture, and our SEM
supported a plausible mechanism whereby grazing reduces canopy
height, which also indirectly reduces root biomass and clay con-
tent, thus reducing biotic Sparting inputs to the S0OC pool. Indeed,
these biotic inputs are likely to be especially crucial in those Morth
American marshes without significant sediment inputs (e.g. marshes
of eastern Morth America removed from the influence of large riv-
ers) which mostly accrete by accumulation of organic matter (bio-
genic) rather than by deposition of silt and sand (minerogenic)—the
dominant mechanism of accumulation in European marshes (Bai
et al, 2014; Hu et al., 2014; Kelleway et al., 2016; Mudd et al., 2010).
At smaller scales, the influence of nearby tidal creeks can also be an
important predictor of soil properties (Table 510) and may modulate
the influence of grazing on SOC.

The lack of a S0OC response in the expenment compared to
the long-term observational sites was not unexpected, as changes
in marsh SOC are slow and can take several decades to manifest
(Craft, 2001). Yet, importantly, key mechanisms linking grazing to re-
duced 50C appeared to be in motion in both the experimental and
observational studies, such as reduced soil clay content, reduced
above- and below-ground biomass, and shifts in vegetation com-
position away from Spartina. One caveat to our results is that we
only measured 50C in the top 15cm of the soil. Past work suggested
that surficial ungulate grazing likely only affects SOC in the top Scm
of the soil (Augustine & McMaughton, 2006; Schulz et al., 2014).
Mevertheless, there could be impacts on deeper SOC that we did not
account for. In the absence of multi-decadal experimental tests of
large grazers in Morth American marshes, we suggest that the com-
bination of experimental and observational results provided here,
together with previous meta-analysis results (Davidson et al., 2017),
offer strong evidence that large grazers are drivers of reduced SOC

concentration in eastern U5 marshes and may thus have significant
influences on ecosystem function, including carbon storage, micro-
bial diversity, and nutrient cycling (Bastida et al., 2021; Carmney &
Matson, 2005).

4.3 | Ecological responses

Within the time frame of our experiment, removal of grazers had
mixed impacts on ecological resilience. Large grazers decreased
resistance to marsh die-off. an important issue facing eastern US
saltmarshes (Alber et al., 2008), and may act similarly to marsh peri-
winkles (Silliman et al., 2005) in worsening and promoting the expan-
sion of die-offs. Coastal managers must account for large grazers in
plans to predict or enhance die-off resilience, especially as multiple
stressors associated with die-offs appear to be ramping up under
climate change (Adams, 2020; Crotty et al, 2017). We suggest that
without positive interactions of tall neighbouring vegetation, includ-
ing self-shading, desiccation increased (Angelini et al., 2016). Grazing
may also initiate a positive feedback in which leaf tissue C:M is re-
duced, increasing palatability to grazers and decomposers, which
further reduces below-ground resources—including non-structural
carbohydrates in rhizomes necessary for shoot regrowth and lateral
recolonization (Roth et al_, 2023). Regardless of the mechanisms, our
result suggests that interactions between climate-driven stressors
and large herbivores may play an important role in coastal wetlands.

However, despite simulated hog damage exerting lasting impacts
on saltmarsh vegetation, grazer removal had little effect on marsh re-
covery from hog damage. This could be due to the different timing of
these disturbances. The simulated disturbance took place relatively
early in the experiment, before root biomass had diverged between
grazing treatments, thus both grazed and ungrazed plots likely had
similar below-ground resource pools to fuel recovery. Alternatively,
the more intense disturbance caused by our simulation, which dam-
aged both above- and below-ground biomass of plants, may have
overwhelmed prior effects of grazing damage. Together, these
differential effects of grazing on die-off resistance and simulated
hog disturbance underline that stability responses vary with prop-
erties of disturbances and facets of stability (Donohue et al., 2013;
Radchuk et al., 2019).

44 | Invertebrate responses

Despite significant changes to saltmarsh vegetation with grazing,
most saltmarsh invertebrates were unaffected by grazing. The ex-
periment did, however, show that ungulate grazing reduces marsh
periwinkle densities. Marsh peniwinkles are closely associated
with Spartina, on which they farm fungi (Silliman & Mewell, 2003)
and climb to escape benthic predators (Grffin & Silliman, 2011). In
turn, while reduced periwinkle density might be expected to tem-
per their impacts, the relatively low densities observed during our
study would have precluded strong feedback (Atkins et al., 2015). It
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is likely that snails in the experniment dispersed from grazed areas
of stunted grass to taller grass in the exclusion plots. This kind of
local dispersal to taller plants was not an option in the observational
study in which entire marshes were grazed, explaining the similar
snail densities between grazed and ungrazed areas that we recorded
in our observational survey. This suggests that invertebrate assem-
blages in eastern US marshes are either largely robust to grazing and
associated competition and disturbance or respond nonlinearly such
that our surveys fail to capture their subtle responses.

This result contrasts with a significant negative effect of large
ungulates on herbivorous saltmarsh invertebrates seen in a global
meta-analysis (Davidson et al., 2017). It is possible that the high pro-
ductivity of east coast US marshes, restricted distribution of large
grazers, frequent tidal flooding and redistribution of organic mat-
ter, and a flexible diet of the common invertebrates (Teal, 1962),
means that invertebrates are unaffected by competition or distur-
bance from large herbivores. The lack of invertebrate response in
this observational study indicates that functions related to inverte-
brates such as secondary production, bioturbation, and infiltration
(Aangelini et al., 2015; Hensel & Silliman, 2013) are likely not affected
by horse grazing.

45 | Vegetation composition and Spartina as the
singular foundation species

Large grazers drove reduced plant biomass (both studies), substan-
tial shifts in soil texture (both studies), and reduced soil organic car-
bon (observational study) largely due to their impacts on Spartina.
Despite evidence of compensatory responses of less palatable spe-
cies (Furbish & Albano, 1994), these results illustrate the singular
foundational role of Sparting in the functioning and service provi-
sioning of these marshes. While grazing-driven compositional shifts
across species were straightforward in the experiment, from Sparting
to the succulent Salicornia, over large scales and outside expenmen-
tal conditions, 2 more complex picture emerged. The observational
study showed an increase in compositional vanation among grazed
plots, indicative of an increase in B-diversity. Although greater com-
positional variation (B-diversity) may support ecosystem functioning
in some systems (Mon et al, 2018, it may also indicate degraded
states, such as where patchy disturbances and inconsistent ecologi-
cal responses generate spatial turnover in vegetation composition.
Vegetation shifts away from Sporting dominance, observed in
both studies, can be expected to impair multiple ecosystem ser-
vices. Sparting supports higher rates of soil carbon accumulation
than other saltmarsh plant genera (Quyang & Lee, 2014), and indeed
our results support a key role of Sparting canopy in supporting this
process. Further, as one of the tallest saltmarsh plants (Adam, 1990),
it is particularly effective for wave attenuation (Marayan et al., 20106;
Shepard et al, 2011). Finally, Sparting facilitates saltmarsh estab-
lishment (Altien et al., 2007; Yando et al.. 2019), so reduced below-
ground stores in Sparting necessary for shoot emergence and lateral
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spread may lower the capacity to establish new marshes or recol-
onise following disturbance or die-back. Ecosystem services, in-
cluding biogenic inputs that drive SOC, may be markedly reduced
by grazing in U5 marshes because of reliance on the single founda-
tion species (Sparting) compared to more diverse European marshes
(Adam, 1990) that may confer an increased redundancy, and thus re-
sistance and adaptability to grazing (Callaway et al_, 2005; Meirland
et al, 2013). The effects of grazing on marshes in other parts of the
world remain understudied (Davidson et al., 2017), although some
studies suggest that South American and Asian marshes similarly
lack redundancy and show wulnerability to large grazers (Isacch
et al_, 2006; Meng et al_, 2020).

tore generally, while there has been much interest in how func-
tional redundancy can increase resilience to disturbance, particu-
larly exerted by large grazers in grasslands (Biges et al.. 2020; Chillo
et al, 2011; Laliberté et al.. 2010), our findings point towards the
inherent vulnerability of ecosystems supported by single foundation
species. When disturbance, including herbivory, parasitism, and dis-
ease, selectively target singular species lacking a stabilising functional
analogue, declines in ecosystem function should be greater than
in systems with compensatory redundancy (Johnson et al, 1996).
Therefore, ecosystems with a singular foundation species support-
ing multiple functions (e.g. monotypic stands of Rhizophora mangle in
neotropical swamps or Tsuga canadensis in temperate forest of the
Eastern US; Deyoe et al,, 2020; Ellison et al_, 2019) may be most vul-
nerable to perturbation and collapse, especially as stressors increase
in number and intensity under global change.
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