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Abstract—We consider the problem of reconstructing an undi-
rected graph G on n vertices given multiple random noisy sub-
graphs or “traces”. Specifically, a trace is generated by sampling
each vertex with probability pv , then taking the resulting induced
subgraph on the sampled vertices, and then adding noise in
the form of either a) deleting each edge in the subgraph with
probability 1 � pe, or b) deleting each edge with probability
fe and transforming a non-edge into an edge with probability
fe. We show that, under mild assumptions on pv , pe and fe,
if G is selected uniformly at random, then O(p�1

e p
�2
v log n) or

O((fe � 1/2)�2
p
�2
v log n) traces suffice to reconstruct G with

high probability. In contrast, if G is arbitrary, then exp(⌦(n))
traces are necessary even when pv = 1, pe = 1/2.

I. INTRODUCTION

We consider the problem of reconstructing a graph G given
noisy observations of random subgraphs of G. We call these
observations traces and consider two different noise models:
edge deletions or edge flips. Formally, we have the following.

Definition 1.1 (Traces): Given a graph G = (V,E), a trace

G
0
= (V

0
, E

0
) is a random graph generated as follows: first,

each vertex of G is sampled independently with probability
pv , to form V

0 ✓ V . Then G
0 is formed from the induced

subgraph on V
0, denoted G[V

0
], by either:

1) Edge Deletion Trace: Deleting each edge in G[V
0
]

independently with probability 1� pe.
2) Edge Flip Trace: Deleting each edge in G[V

0
] indepen-

dently with probability fe and adding an edge between
each non-adjacent pair in G[V

0
] with probability fe.

Note that the vertices are not labeled; given two traces G0
1 and

G
0
2, it is impossible in general to determine whether a vertex

v 2 G
0
1 and v

0 2 G
0
2 correspond to the same vertex in G.

We are interested in the number of independently generated
traces that are necessary to reconstruct the graph G (with high
probability). We refer to this number as the sample complexity

of reconstruction. The problem was studied by McGregor and
Sengupta [1], who considered the noiseless setting where pe =

1 (or equivalently fe = 0). They showed that O(p
�2
v

log n)

traces are sufficient for random graphs drawn from G(n, 1/2)
(i.e., n-vertex graphs where edges are present independently
with probability 1/2), assuming pv = ⌦(n

�1/6
log

2/3
n).

They also showed that 2⌦(n) traces are necessary to distinguish
arbitrary graphs, even when pv = 1/2.

The graph reconstruction problem outlined above is partially
inspired by the analogous problem for binary strings, initially
proposed by Batu et al. [2] and subsequently studied exten-
sively [3]–[16]. In the case of strings, the traces correspond
to random subsequences (potentially subject to further noise).
Despite extensive research, there is still a considerable gap
between the best known upper and lower bounds on the
sample complexity, whether the unknown string is arbitrary
or random. The other motivation for our problem is the graph

reconstruction problem from classical structural graph theory.
There, the objective is to reconstruct an undirected n-vertex
graph from the multiset of its induced subgraphs on (n � 1)

vertices. Determining whether this is possible for arbitrary
graphs is a famous unsolved problem [17], [18].

A. Our Results

In this paper, we show the following upper bound on the
sample complexity of reconstructing random graphs.

Theorem 1.1 (Upper Bound for Random Graphs): Let G ⇠
G(n, 1/2) and:

pv = !(log n/
p
n)

pe = !(p
�1/3
v

n
�1/6

p
log n)

fe = 1/2� !(p
�1/4
v

n
�1/8

(log n)
3/8

) .

Then, in the edge deletion model, 4p
�2
v

p
�1
e

log n traces are
sufficient to reconstruct G with probability at least 1 � 1/n,
where the probability is also taken over the random choice
of G. In the edge flip model, the corresponding bound is
12p

�2
v

(1/2� fe)
�2

log n.
This theorem generalizes the result by McGregor and Sen-

gupta [1], which only applied when pe = 1 or fe = 0,
i.e., when the the traces are noise-free. However, even in that
setting, our approach improves upon the previous result: our
algorithm is simpler, and holds for a larger range of pv values.
The improvement is based on a new approach for recognizing
when two vertices in difference traces correspond to the same
vertex in the original graph.

In Section V, we discuss lower bounds for reconstructing
arbitrary graphs. The proof technique used in [1] to establish
an exp(⌦(n)) lower bound when pv = 1/2 and pe = 1 can be
modified to show that exp(⌦(n)) traces are necessary in the
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noisy setting where pe = 1/2, even when pv = 1. However,
we conjecture that this bound can be strengthened to show
that exp(⌦(n2

)) traces are necessary. We briefly discuss the
challenges in proving such a result.

II. PRELIMINARIES

1) Notation and Conventions: Let [k] denote the set
{1, . . . , k} and, for a set S, let

�
S

k

�
denote all subsets with

cardinality k. We only consider undirected graphs G = (V,E).
We use (u, v) to denote an edge, and {u, v} to denote a pair
in

�
V

2

�
, regardless of whether (u, v) 2 E or not. For v 2 V ,

�G(v) denotes the neighborhood {v0 2 V : (v, v
0
) 2 E}.

Given two graphs, G1 = (V1, E1) and G2 = (V2, E2) where
|V1| = |V2|, and a bijection ⇡ : V1 ! V2, define the induced

bijection on vertex pairs to be �⇡ :
�
V1

2

�
!

�
V2

2

�
, where

�⇡({u, v}) = {⇡(u),⇡(v)}. Also, for S ✓
�
V1

2

�
we define:

�
S
⇡
:= |{{u, v} 2 S : (u, v) 2 E1 iff (⇡(u),⇡(v)) 62 E2}|

and �⇡ := �
(
V1
2 )

⇡ . The quantity �⇡ measures how “far” ⇡ is
from being an isomorphism (by mapping edges to non-edges,
and vice versa). For instance, if G1 and G2 are isomorphic,
there exists a bijection ⇡ such that �⇡ = 0. If the mapping is
clear from the context, we will suppress the subscript on �⇡ .

Now suppose G1 and G2 are subgraphs of traces, and
hence V1 and V2 are subsets of V . For the sake of analysis,
suppose the vertices in V have distinct labels, which V1 and
V2 inherit (we reiterate that these labels are not available to
our reconstruction algorithm).

In this situation, we say v 2 V1 is fixed by ⇡ if v 2 V1

and ⇡(v) 2 V2 have the same label. Otherwise, v is non-fixed.
Similarly, we say a pair of vertices {u, v} 2

�
V1

2

�
is fixed by

�⇡ if {label(u), label(v)} = {label(⇡(u)), label(⇡(v))}. The
following lemma1 establishes a lower bound on the number
of non-fixed pairs in �⇡ .

Lemma 2.1: Suppose the bijection ⇡ has b non-fixed vertices
and that |V1| = |V2| = n

0 � 6. Let mb be the the number of
non-fixed pairs in �⇡ . Then mb � b(n

0 � 1� b/2) � n
0
b/3.

2) Correlated Bits and Concentration Bounds: For a ran-
dom variable X and a probability distribution D, we say
X ⇠ D to denote that X is distributed according to D. We
denote by Bin(N, �) the binomial distribution with parameters
N and �. We use the following lemma throughout to quantify
the probability that, given two traces containing vertices u and
v, the edge (u, v) is present in exactly one of them.

Lemma 2.2: Let X1, X2, Y1, Y2 2 {0, 1}, Z1, Z2,W1,W2 2
{�1, 1} be independent random variables, where:

Pr[Xi = 1] = 1/2 Pr[Zi = 1] = 1/2

Pr[Yi = 1] = pe Pr[Wi = 1] = 1� fe .

1In the interest of space and readability, our technical proofs are omitted
and can be found in the full version [19].

for i 2 {1, 2}. Then, we have:

Pr[X1Y1 6= X2Y2] = pe(1� pe/2)

Pr[X1Y1 6= X2Y2|X1 = X2] = pe(1� pe)

Pr[Z1W1 6= Z2W2] = 1/2

Pr[Z1W1 6= Z2W2|Z1 = Z2] = 2fe(1� fe) .

The next lemma establishes concentration bounds that we
will need at multiple steps of our analysis.

Lemma 2.3: Let pe  1/2 and 1/4  fe  1/2. Define:

�1 = pe(1� pe) �2 = 2�1/3 + �4/3

�3 = �1/3 + 2�4/3 �4 = pe(1� pe/2)

⇢1 = 2fe(1� fe) ⇢2 = 2⇢1/3 + ⇢4/3

⇢3 = ⇢1/3 + 2⇢4/3 ⇢4 = 1/2

Then, we have:

Pr[Bin(N, �1) � �2N ]  exp(�p3
e
N/108)

Pr[Bin(N, �4)  �3N ]  exp(�p3
e
N/108)

Pr[Bin(N, ⇢1) � ⇢2N ]  exp(�(1/2� fe)
4
N/4)

Pr[Bin(N, ⇢4)  ⇢3N ]  exp(�(1/2� fe)
4
N/4) .

3) Parameter Ranges: In the rest of this paper, we will
assume pe  1/2 and fe � 1/4 to make the analysis simpler.
However, our results immediately hold for larger pe and
smaller fe values. This follows because, in the edge deletion
model, if pe > 1/2, then deleting every edge in the observed
traces with probability (pe � 1/2)/pe ensures that every edge
is ultimately deleted with probability (1 � pe) + pe · (pe �
1/2)/pe = 1/2. In the edge flip model, if fe < 1/4 then
flipping the state of every pair in a trace with probability
(1/4� fe)/(1� 2fe) ensures the final flip probability is

(1� fe) ·
1/4� fe

1� 2fe
+ fe ·

✓
1� 1/4� fe

1� 2fe

◆
= 1/4 .

We may also assume fe  1/2 because otherwise, we can flip
the state of each pair in the traces.

III. RECONSTRUCTING RANDOM GRAPHS:
EDGE DELETION MODEL

To understand our approach, first suppose the vertices of the
unknown graph G have n unique labels, and that these labels
are preserved when the traces are generated. If this were the
case, in the edge deletion model we would just need to ensure
that we take enough traces so that every edge in the original
graph was present in at least one trace. We will shortly argue
that ⇥(p

�2
v

p
�1
e

log n) traces are sufficient for this to hold with
high probability. Unfortunately, in our setting, the vertices of
the graph do not a priori come equipped with these labels. Our
main technical contribution is a systematic way to label the
vertices in each trace consistently, i.e., two vertices in different
traces would receive the same label iff they correspond to the
same vertex in G. Our approach will be to construct bijections
in order to “pair” common vertices in each pair of traces
G1 = (V1, E1) and G2 = (V2, E2) where V1, V2 ⇢ V , i.e.,
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we will be able to identify the vertices common to V1 and
V2. Of course, if we can do this for all pairs of traces without
any errors, then we can extend these bijections to equivalence
classes; two vertices in different traces will be in the same
equivalence class iff they correspond to the same vertex in G.
If every vertex appears in at least one trace, then there will
be exactly n equivalence classes, which would give consistent
labels to the vertices. Once this is done, reconstruction would
be easy.

The following key lemma establishes the number of traces
required to ensure that every edge in the original graph appears
at least once, and shows that if we can pair vertices between
each pair of traces with sufficiently high probability, then we
can reconstruct the graph.

Lemma 3.1 (Reconstruction via Pairing Traces): Let:

pv = !(log n/
p
n) pe = !(p

�1/3
v

n
�1/6

p
log n) .

Given two traces G1 = (V1, E1) and G2 = (V2, E2) of
G ⇠ G(n, 1/2), suppose that it is possible to identify the
vertices in V1 \ V2 and find the correct correspondence
between those vertices with probability at least 1 � 1/n

10,
where the probability is taken over the generation of G1, G2

and G. Then, t := 4p
�2
v

p
�1
e

log n traces are sufficient for
reconstruction with probability at least 1� 2/n

2.
Proof: First note that

t = o((
p
n/ log n)

2�1/3
n
1/6

p
log n)  n ,

for sufficiently large n, given the conditions on pv and pe.
By the union bound, with probability at least 1 � t

2
/n

10 �
1 � 1/n

8, we can pair up the vertices between every pair of
traces. For any (u, v) 2 E, the probability that this edge is
preserved in a given trace is p

2
v
pe (since both vertices as well

as the edge itself need to be preserved). So with t traces, at
least one of them preserves this edge with probability 1 �
(1 � p

2
v
pe)

t � 1 � exp(�p2
v
pet). Union bounding over n

2

pairs gives us a probability of 1�n
2
exp(�p2

v
pet) = 1�n

�2,
since t = 4p

�2
v

p
�1
e

log n. So the overall success probability is
1� 1/n

2 � 1/n
8 � 1� 2/n

2.
Algorithm 1 describes our procedure for pairing two traces

by matching their common vertices. Informally, given two
traces G1 = (V1, E1) and G2 = (V2, E2), we find two
induced subgraphs G1[S] and G2[T ] with |S| = |T | = k,
that are as close to being isomorphic as possible; specifically,
we match their vertices in a way that minimizes the number
of vertex pairs that induce an edge in one but not in the
other. We set k sufficiently large such that k ⇡ |V1 \ V2|.
Our analysis shows that this process is guaranteed to find a
large subset of the intersection V1 \ V2. We then augment
the bijection to also match the remaining vertices in V1 \ V2.
To do this, for each v 2 V1 and v

0 2 V2, we generate a
signature based on S and T respectively, and match v and v

0

iff their signatures are sufficiently similar. The signature is a
binary vector that encodes the neighbors and non-neighbors
of v (resp. v0) amongst S (resp. T ). The intuition is that these
vectors are sufficiently similar iff v and v

0 correspond to the
same vertex in G.

Algorithm 1 Pairing Traces in the Edge Deletion Model

1: Initialize r  
p

33p2
v
n log n. If pv = 1, k  n and

k  p
2
v
n� r otherwise.

2: Given traces G1 = (V1, E1), G2 = (V2, E2), find S
⇤ ⇢ V1

of size k, T ⇤ ⇢ V2 of size k, and bijection ⇡
⇤
: S

⇤ ! T
⇤

that minimizes �⇡⇤ .
3: Pick an ordering of the elements in S

⇤
= {s1, s2, . . . , sk}

arbitrarily. Let ti = ⇡
⇤
(si) for all 1  i  k.

4: For v 2 V1 and v
0 2 V2, define binary strings:

sig1(v) = (I(s1 2 �G1(v)), . . . , I(sk 2 �G1(v)))

sig2(v
0
) = (I(t1 2 �G2(v

0
)), . . . , I(tk 2 �G2(v

0
))) ,

where I(E) denotes the indicator function of event E .
5: Pair v 2 V1 and v

0 2 V2 iff

H(sig1(v), sig2(v
0
))  k(�1 + �4)/2� 1 ,

where H(x, y) is the Hamming distance between x and y.

A. Analysis

Let G = (V,E) ⇠ G(n, 1/2), G1 = (V1, E1), and G2 =

(V2, E2) be defined as above.
Lemma 3.2: Let A1 be the event that:

p
2
v
n� r  |V1 \ V2|  p

2
v
n+ r ,

where r =
p

33p2
v
n log n. Then, Pr[A1] � 1� 2/n

11.
Note that if A1 occurs, then |V1| and |V2| both have size

at least |V1 \ V2| � k, and so there exists at least one triple
(S, T,⇡) where S ⇢ V1, T ⇢ V2, and |S| = |T | = k; in
other words, step 2 of the algorithm returns some triple. Let
T denote the set of such triples. We next argue that with
high probability the triple (S

⇤
, T

⇤
,⇡

⇤
) that minimizes �⇡⇤

has mostly fixed vertices. To do this, we define a mapping on
triples f : T ! T with f(S, T,⇡) := (S

0
, T

0
,⇡

0
), where S

0

is an arbitrary set of vertices satisfying:

|S0| = k and S \ V2 ✓ S
0 ✓ V1 \ V2 .

Let T 0
= S

0 and let ⇡0 be the identity map. Note that f is well-
defined, as (S0

, T
0
,⇡

0
) 2 T . We now show that it is very likely

that �⇡0 is less than �⇡ if ⇡ has many non-fixed vertices.
Lemma 3.3: For any (S, T,⇡) 2 T and (S

0
, T

0
,⇡

0
) =

f(S, T,⇡), we have Pr[�⇡ > �⇡0 ] � 1 � 4 exp(�kb ·
p
3
e
/1296), where b is the number of non-fixed vertices in ⇡.

Proof: Let N be the set of non-fixed pairs of the induced
bijection �⇡ , and let F =

�
V1

2

�
�N be the fixed pairs. Then

�⇡ can be written as �
N
⇡
+�

F
⇡

. Let N = |N | and F = |F|.
Claim 3.4: N can be partitioned as N1 [N2 [N3, s.t. for

all i, |Ni| � N/4 and �
Ni
⇡
⇠ Bin(Ni, �4).

It follows that �⇡ = �
N1
⇡

+�
N2
⇡

+�
N3
⇡

+�
F
⇡

. The crucial
observation is that all fixed pairs in �⇡ are fixed pairs in �⇡0 ,
and so �⇡0 = �

F
⇡0 + �

N1[N2[N3
⇡0 where �

F
⇡0 = �

F
⇡

and
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�
N1[N2[N3
⇡0 ⇠ Bin(N, �4). Therefore, Pr[�⇡ < �⇡0 ] can be

bounded above as:

Pr

2

4
X

i2[3]

�
Ni
⇡

< �
N1[N2[N3
⇡0

3

5

 Pr

2

4
X

i2[3]

�
Ni
⇡

< N�3

3

5+ Pr

h
�

N1[N2[N3
⇡0 > N�3

i


X

i2[3]

Pr[Bin(Ni, �4) < Ni�3] + Pr[Bin(N, �1) > N�2]


X

i2[3]

exp(�p3
e
Ni/108) + exp(�p3

e
N/108) ,

using Lemmas 2.2 and 2.3. This is upper bounded by:

Pr[�⇡ < �⇡0 ]  3 · exp(�p3
e
kb/1296) + exp(�p3

e
kb/108)

< 4 · exp(�p3
e
kb/1296) ,

using Ni � N/4 and N � kb/3 (Lemma 2.1).
Theorem 3.1: Let A2 be the event that the triple in T min-

imizing � has no non-fixed vertices. Then Pr[A2|A1] � 1 �
4n exp(�kp3

e
/2592+2r log n) assuming 4 log n  k·p3

e
/2592.

Proof: Let mb be the number of triples (S, T,⇡) in T
where ⇡ has b non-fixed vertices. Let m = |V1 \ V2|. Note
that there are at most

�
m

k�b

�
n
b ways to pick S, and then given

S,
�

k

k�b

�
n
b choices for ⇡ because we can first choose k � b

fixed elements of S, and then choose the images of the other
b vertices. This also fixes T . Hence, assuming A1, we have:

mb 
✓

m

k � b

◆
n
b

✓
k

k � b

◆
n
b

 exp(2b log n+ b log k + (2r + b) logm)

 exp(4b log n+ 2r log n) .

By Lemma 3.3, for any triple in T with at least b non-
fixed vertices, there exists another triple with all fixed ver-
tices that has a smaller value of � with probability at least
1�4 exp(�kbp3

e
/1296). So the probability there are any non-

fixed vertices is at most
P

n

b=1 4·exp(�kbp3e/1296+4b log n+

2r log n), by the union bound. If 4 log n  kp
3
e
/2592, then this

is at most 4n exp(�kp3
e
/2592 + 2r log n).

Theorem 3.2: Let U = V1 \ V2, m = |U |, and let ⇡U be
the identity map between vertices U ⇢ V1 and U ⇢ V2. Pick
an arbitrary ordering of U = {u1, . . . , um}. Finally, for all
v 2 V1 and v

0 2 V2 define:

psig1(v) = (I(u1 2 �G1(v)), . . . , I(um 2 �G1(v))) ,

psig2(v
0
) = (I(u1 2 �G2(v

0
)), . . . , I(um 2 �G2(v

0
))) .

Let A3 be the event that for all v 2 V1 and v
0 2 V2:

v = v
0 ) H(psig1(v), psig2(v

0
))  �2m ,

v 6= v
0 ) H(psig1(v), psig2(v

0
)) � �3(m� 2) .

Then Pr[A3] � 1� 2n
2
exp(�p3

e
m/216).

Proof: If v and v
0 correspond to the same vertex in G,

then H(psig1(v), psig2(v
0
)) is distributed as Bin(m, �1) or

Bin(m � 1, �1) depending on whether or not v 2 U . On the
other hand, if v and v

0 are different vertices in G, then the
Hamming distance is distributed as Bin(m, �4) (if they are
both outside U ), Bin(m�2, �4)+X+Y (if they are both inside
U ), or Bin(m� 1, �4) +X (if one is inside U and the other
is outside) where X ⇠ Bin(1, pe/2) and Y ⇠ Bin(1, pe/2).

So, if v = v
0, then using Lemmas 2.2 and 2.3, we get:

Pr[H(psig1(v), psig2(v
0
)) > �2m]  Pr[Bin(m, �1) > �2m]

 exp(�p3
e
m/108) .

On the other hand, if v 6= v
0, we get:

Pr[H(psig1(v), psig2(v
0
)) < �3(m� 2)]

 Pr[Bin(m� 2, �4) < �3(m� 2)]

 exp(�p3
e
(m� 2)/108)  exp(�p3

e
m/216) .

Applying the union bound over v and v
0 yields the result.

Recall pv = !(log n/
p
n) and pe = !(p

�1/3
v n

�1/6
p
log n).

Then, we have:

r =

p
33p2

v
n log n = o(np

3
e
p
2
v
/ log n)

kp
3
e

= p
3
e
(p

2
v
n� r) = p

3
e
p
2
v
n(1� o(1))

np
2
v
p
3
e

= !(log n) .

Note that the last two of these imply that kp3
e
= !(log n),

and so for large enough n, 4 log n  kp
3
e
/2592, so the

conditional in Theorem 3.1 applies. Therefore, using Lemma
3.2 and Theorems 3.1 and 3.2, we have:

Pr[A1 \A2 \A3]

� 1� 2/n
11 � 4n exp(�kp3

e
/2592 + 2r log n)

� 2n
2
exp(�kp3

e
/216)

� 1� 2/n
11 � 4n exp(�p2

v
np

3
e
/2592 + o(p

2
v
np

3
e
))

� 2n
2 · exp(�p2

v
np

3
e
/216 + o(p

2
v
np

3
e
))

� 1� 2/n
11 � 4n exp(�!(log n))� 2n

2 · exp(�!(log n))
� 1� 1/n

10
.

Assuming A1 \A2 \A3, for any v, v
0, we have:

v = v
0 ) H(sig1(v), sig2(v

0
))  H(psig1(v), psig2(v

0
))

 �2m  �2k + 2r

v 6= v
0 ) H(sig1(v), sig2(v

0
)) � H(psig1(v), psig2(v

0
))� 2r

� �3(m� 2)� 2r � �3k � 2� 2r .

Finally, note that:

(�3 � �2)k = kp
2
e
/8 = !(

p
npv log n) = !(r) ,

and so �2k+2r < �3k�2r�2 for sufficiently large n. Hence:

k(�1 + �4)

2
� 1 =

(k�2 + 2r) + (k�3 � 2r � 2)

2
,

and so the threshold in Algorithm 1 always lies between �2k+

2r and �3k � 2r � 2.
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IV. RECONSTRUCTING RANDOM GRAPHS:
EDGE FLIP MODEL

The algorithm and analysis for the edge flip model follows
along almost identical lines to those for the edge deletion
model. In fact, almost all of the necessary changes are achieved
by replacing every occurrence of �i by ⇢i and appealing to
Lemmas 2.2 and 2.3. Specifically,

1) The only change in the algorithm is to replace the pairing
condition to H(sig1(v), sig2(v

0
))  k(⇢1 + ⇢4)/2� 1.

2) The lower bound on the probability of A2 in Theorem
3.1 becomes 1�4n exp(�kfe(1/2�fe)4/96+2r log n)

assuming 4 log n  kfe(1/2� fe)
4
/96.

3) The event A3 is defined in terms of ⇢2 and ⇢3, and the
lower bound for the probability of A3 in Theorem 3.2
becomes 1� 2n

2
exp(�mfe(1/2� fe)

4
/8).

To quickly verify this, note that changing each �i to ⇢i and
appealing to the second part of Lemma 2.3 results in every
occurrence of p3

e
/108 getting replaced by (1/2�fe)

4
/4. With

this substitution, the valid ranges for pv and fe become:

pv = !(log n/
p
n) (1)

fe 2 [1/4, 1/2� !(p
�1/4
v

n
�1/8

(log n)
3/8

)] . (2)

Once these ranges are set, it is easy to verify that k(1/2 �
fe)

4
= np

2
v
(1/2 � fe)

4
(1 � o(1)) = !(log n), so the

conditional in the edge flip equivalent to Theorem 3.1 applies.
Modifying the pairing proceduring (Lemma 3.1) is slightly

more involved. We now need enough traces so that for each
pair of vertices {u, v} 2

�
V

2

�
, the majority of traces containing

both nodes contain the edge (u, v) iff (u, v) 2 E.
Lemma 4.1 (Reconstruction via Pairing Traces): Let pv and

fe satisfy Eqs. 1 and 2. Given two traces G1 = (V1, E1), G2 =

(V2, E2), suppose that it is possible to pair the vertices in
V1 \ V2 with probability at least 1 � 1/n

10. Then, t :=

12p
�2
v

(1/2�fe)�2
log n traces are sufficient for reconstruction

with probability at least 1� 2/n
2.

V. LOWER BOUNDS FOR ARBITRARY GRAPHS

In this section, we consider lower bounds for reconstructing
arbitrary graphs in the edge deletion model. For the rest of this
section, assume pe = 1/2 and pv = 1.

We first observe that the lower bound technique used in
McGregor and Sengupta [1] can be modified to prove a result
in this setting, thereby providing an exponential separation
between the cases of random graphs and arbitrary graphs.

Theorem 5.1 (Lower Bound for Arbitrary Graphs): Consider
the graphs Cn, an n-cycle, and Cn/2+Cn/2, the disjoint union
of two (n/2)-cycles. Then, exp(⌦(n)) traces are necessary to
distinguish them with constant probability, in the edge deletion
model with pv = 1, pe = 1/2.

We conjecture that reconstructing arbitrary graphs actually
requires exp(⌦(n

2
)) traces. Note that this would match the

trivial upper bound of exp(O(n
2
)), which is a consequence

of the fact that with this many traces, one of the traces is likely
to be the entire graph!

However, it seems difficult to construct two non-isomorphic
graphs such that distinguishing them requires exp(⌦(n

2
))

traces. For instance, consider the following plausible approach.
Let n = 16r � 8 for a large integer r, and let Pi denote a

path graph with i vertices. Let G0
1 be the vertex disjoint union

of r copies of P2, r� 1 copies of P3, r� 1 copies of P5, and
r copies of P6. Let ui be a leaf of the ith copy of P2 and
let vj be either of the middle vertices of the jth copy of P6.
Similarly, let G0

2 be the vertex disjoint union of r � 1 copies
of P2, r copies of P3, r copies of P5, and r � 1 copies of
P6. Let wk be a leaf of the kth copy of P3 and let x` be the
middle vertex of the `th copy of P5. Let G1 (resp. G2) be the
complement of G0

1 (resp. G0
2). Note that G1 and G2 both have

n vertices and are not isomorphic.
Let E1 be the r

2 edges in G1 of the form (ui, vj), and E2

be the r
2 edges in G2 of the form (wk, x`). Note that G1�e1

is isomorphic to G2�e2 for any e1 2 E1 and e2 2 E2 (Fig. 1).

ui

vj

x`

wk

Fig. 1. The subgraph in G
0
1 formed by adding (ui, vj) is isomorphic to the

subgraph formed in G
0
2 by adding (wk, x`). Therefore, in the complements

G1 and G2, removing those edges create isomorphic graphs.

Note that with probability at least 1� 1/2
r
2

, some edge e1

from E1 is deleted if the original graph is G1 (or e2 from E2

if the original graph is G2). Since G1 � e1 is isomorphic to
G2 � e2, it might then seem reasonable that the variational
distance between the distributions of traces generated from
G1 and G2 is bounded above by 2

�O(r2). Since r = ⇥(n), it
would then follow that we need 2

⌦(n2) traces to distinguish
them. However, this turns out to not be the case.

Proposition 5.1: We can distinguish between G1 and G2

with high probability using only exp(O(n
1/3

log
2/3

n)) traces
in the edge deletion model with pv = 1, pe = 1/2.

We leave the problem of closing the gap between the upper
and lower bounds as an open problem.

VI. CONCLUSION

Our main result was to establish an upper bound on the
number of traces required to reconstruct a random graph with
high probability. We note that our result is optimal in the edge
deletion setting, since we require ⇥(p

�2
v

p
�1
e

log n) traces to
ensure every edge shows up at least once. It is conceivable that
a similar analysis can show that the theorem is also optimal
in the edge flip setting.

As in many variants of the trace reconstruction problem, an
important direction for future research is in the realm of time
complexity. While we optimized significantly for the sample
complexity, we still require a subroutine that goes over super-
exponentially many triples (S, T,⇡). This process might be
sped up, but this is outside the scope of this present work.
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