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Abstract
Hundreds of studies have characterized the response prop-
erties of the fusiform face area (FFA), but we have yet to
reveal the computational mechanisms underlying its repre-
sentations. A methodological challenge is that distinct com-
putational models can make indistinguishable predictions for
randomly sampled faces. This fMRI study employs synthetic
controversial face stimuli designed to elicit distinct predictions
of six candidate neural network models of face representa-
tion in FFA. We present preliminary data from one participant
scanned in four sessions. The controversial faces revealed
many significant differences among the models in terms of
their ability to predict FFA representational dissimilarity matri-
ces (RDMs), whereas randomly sampled faces did not enable
reliable adjudication among models. A neural network trained
on inverse rendering—mapping face images to a latent space
of a 3D face model—outperformed alternative models shar-
ing the same architecture but trained on identification, classi-
fication, or autoencoding. Our results support the view that
face recognition involves representations that reflect the phys-
ical structure of faces and demonstrate the need for optimized
controversial stimuli to adjudicate among brain-computational
models with neuroimaging experiments.

Keywords: neural networks; representational geometry; repre-
sentational similarity analysis; model comparison; controversial
stimuli; fusiform face area

Introduction
While functional neuroimaging studies in the past few decades
have identified several occipitotemporal regions selective
for different functional aspects of human face processing
(Kanwisher, McDermott, & Chun, 1997; Haxby, Hoffman, &
Gobbini, 2000), brain mapping does not directly probe the
underlying computational mechanism of face processing. A
deeper computational understanding requires testing quanti-
tative predictions of brain-computational models against be-
havioral and neural data (Kriegeskorte & Douglas, 2018). Re-
cent studies of face representation have begun testing quanti-
tative predictions of brain-computational models against neu-
ral responses elicited by face stimuli (e.g., Carlin & Kriegesko-
rte, 2017; Grossman et al., 2019; Ratan Murty, Bashivan,
Abate, DiCarlo, & Kanwisher, 2021). However, these stud-
ies used randomly sampled faces, and their results illustrate
that distinct models can make indistinguishable predictions
for these stimuli. In this fMRI study, we compare six com-
putational hypotheses about face representation in the right
FFA using controversial stimuli (Golan, Raju, & Kriegeskorte,
2020; Golan, Guo, Schütt, & Kriegeskorte, 2022) synthesized
to elicit distinct representational predictions from the models.

Methods
We trained the VGG16 architecture on six distinct objectives:
(1, 2) face identification for Basel-Face-Model (BFM; Gerig et
al., 2018) and natural faces, (3) object categorization, (4, 5)
autoencoding of BFM and natural faces, (6) inverse render-
ing (see Yildirim, Belledonne, Freiwald, & Tenenbaum, 2020;
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Figure 1: Controversial face synthesis. (A) Maximizing
model discriminability by face-latent optimization. We imple-
mented a differentiable version of the 3D morphable Basel
Face Model (Gerig et al., 2018) as our face generator. The
generator initializes a set of faces parameterized by shape
and texture latents. Given the rendered face images, each
candidate model generates its prediction of the representa-
tional geometry in the right FFA, measured as a representa-
tional dissimilarity matrix (RDM). Using a variant of the differ-
entiable model discriminability objective proposed in our pre-
vious behavioral study (Golan, Guo, et al., 2022, [Eq.1]), we
iteratively adjusted the face latents to increase the discrim-
inability of the RDMs predicted by candidate models.

Golan, Guo, et al., 2022). The trained neural networks provide
six computational hypotheses for human right FFA.

To efficiently discriminate among these models, we synthe-
sized a controversial stimulus set by optimizing the face la-
tents of 24 BFM faces. The latents were iteratively adjusted
to maximize model discriminability based on their represen-
tational geometries (Figure 1). Given a stimulus set ξ, we
used each layer l of each model m in turn as the ground
truth, data-generating model and measured the discriminabil-
ity of its predicted representational geometry from each of the
other candidate models. The stimulus optimization procedure
maximized the expected value of this discriminability measure
across potential data-generating models and layers.

Specifically, for each layer l and model m, we computed
the whitened Pearson correlation rw (Diedrichsen et al., 2021)
between the ground truth RDM dm,l and the RDM of each al-
ternative model m′, taking the highest correlation across the
layers of model m′ as the performance of model m′. The dis-
criminability is the difference between the performance of the
true model (here, rw is always 1.0, since we did not account
for noise or multiple model realizations) and the mean perfor-
mance of the alternative models (which should be as low as
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possible). We thus define the global utility U of a stimulus set
ξ as the following objective to be maximized:

U(ξ) = ∑
m

p(m)∑
l

p(l|m)
(

1−mean
m′

max
l′

rw(dm,l ,dm′,l′)
)
,

(1)
where p(m) is our prior belief in model m as the best candi-
date model, and p(l|m) is our belief that layer l is the best
data-generating representation in model m. We assumed uni-
form distributions for both models and layers before data col-
lection. See Golan, Guo, and colleagues (2022) for a thor-
ough description of stimulus synthesis method for disentan-
gling model representational geometries. As a baseline con-
dition, we generated 24 faces that maximized the sum of latent
variances (i.e., first computing the faces’ variance in each la-
tent dimension and then summing across dimensions). For
both conditions, each face’s shape and texture latents were
separately constrained within an L2-norm ball.

One subject participated in four fMRI sessions. First,
we located the right FFA using a functional localizer
(Stigliani, Weiner, & Grill-Spector, 2015) and cortical land-
marks (Rosenke, van Hoof, van den Hurk, Grill-Spector, &
Goebel, 2020). We then recorded 14 runs of fMRI responses
to the face stimuli over three sessions. Each stimulus was
shown at least 22 times in total. We presented each stimulus
with a size of 8 degrees visual angle, using a three-flash (3 cy-
cles of 800 ms ON, 200 ms OFF) design (Allen et al., 2022),
followed by a 1000-ms interstimulus interval. Eye movements
were tracked to verify fixation, and a memory task was con-
ducted at the end of each run to encourage attention.

Results
We used fMRIPrep (Esteban et al., 2018) for preprocessing
and GLMsingle (Prince et al., 2022) for estimating voxelwise
BOLD response amplitude for each trial. The controversial
face set showed a higher noise ceiling than the randomly sam-
pled baseline face set (Figure 2, left panels), indicating that its
face stimuli elicited response patterns that were more distinct
from each other compared to those of the baseline set.

To compare the models, we evaluated model performance
on each run using whitened Pearson RDM correlation, where
the best layer for each model was chosen based on the other
runs (Figure 2, right panels). Paired t-tests among the Fisher-
transformed correlation coefficients indicated that in the con-
troversial condition, the VGG16 network trained on inverse
rendering (i.e., predicting face latents and scene properties of
synthetic BFM faces) significantly outperformed all other can-
didate models. Four of the six models were significantly less
accurate than the lower bound on the noise ceiling. The base-
line condition failed to uncover a winning model and found no
significant gaps between the models and the noise ceiling.

Conclusion
We demonstrated that face stimuli synthesized to maximally
discriminate among alternative models of cortical represen-
tational geometry facilitate model adjudication with fMRI.

Among our neural networks optimized with distinct objectives,
the single-subject results here favor a model of the right FFA
that is optimized to recover the parameters defining the 3D
shape, texture, and external scene properties of the human
face perceived.
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Figure 2: Accuracy of model predictions of the represen-
tational geometry of right-FFA fMRI response. The left
panels show the average layer-wise model prediction accu-
racy across 14 fMRI runs for the randomly sampled faces (top)
or controversial faces (bottom). Each colored line indicates
one model’s prediction accuracy (whitened Pearson RDM cor-
relation, rw) averaged across runs, and the corresponding
shaded region indicates a 95% confidence interval. The grey
region marks the noise ceiling bounds. The lower bound was
estimated as the average performance of predicting each run
by the mean of all other runs; for the upper bound, we used the
average performance of predicting each run by the mean of all
runs, including the predicted run itself. The right panels show
cross-validated best-layer RDM prediction accuracy on each
fMRI run. Each dot depicts the performance of one candidate
model for one fMRI run. On the right are the results of paired
t-tests between the Fisher-transformed correlation coefficients
of each pair of candidate models. Each solid dot connecting
to a set of open dots indicates that the model aligned with
the solid dot significantly outperforms the candidate models
aligned with the open dots (FDR controlled at q = 0.05). The
randomly sampled faces lead to a low noise ceiling and sim-
ilar model performance. The controversial face stimulus set
lifts the noise ceiling and elicits significantly distinct represen-
tational geometries in different candidate models. The results
indicate that the VGG16 network trained on inverse rendering
of synthetic faces outperforms all other models.
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