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Abstract–In this paper, bidirectional long short-term memory (B-LSTM) deep learning modeling is 

proposed as an approach to facilitate autonomous return-to-home (RTH) aerial navigation in environments 

with compromised global positioning system (GPS) reception. Logged samples of ten radiometric features 

are extracted from onboard sensors (i.e., accelerometer, barometer, GPS, gyroscope, magnetometer) in two 

outdoor experimental scenarios of different altitudes and velocities. These samples are used for training and 

validating B-LSTM models with single and parallel architectures. The former architecture consists of a 

single B-LSTM model that processes all input features across the x-, y-, and z-axes to predict a three-

dimensional local position, whereas the latter comprises three parallel B-LSTM models, each for processing 

only the features of a specific dimension (i.e., x, y, or z) and predicting local position in the respective axis. 

Evaluations demonstrate the validity of the proposed approach, with a four-meter average mean square 

error (MSE). This is achieved without imposing resource-consuming computational overhead, 

modifications to existing hardware, or changes to physical infrastructure and communication protocols. 

Due to using existing onboard sensors and accommodating varied scenarios, the proposed approach finds 

applications in autonomous navigation, including unmanned aerial vehicles (UAVs) and ground vehicles. 

 

Keywords: Bidirectional long short-term memory, global positioning system, return-to-home, unmanned 

aerial vehicles. 

 

1. Introduction 

Recently, the use of unmanned aerial vehicles (UAVs) has increased significantly in many applications, 

such as search and rescue missions, surveillance, construction, delivery of goods, agriculture, and smart cities 

[1–3]. Consequently, the UAV market has grown notably and is expected to reach USD 38.3B by 2027 [4]. 

This growth is thought to be due to the increasing demand for autonomous operations as well as the advances 

in enabling control and navigation technologies (e.g., swarm networking and communications). 
 

The global positioning system (GPS) is instrumental in any operation that requires synchronization and 

location information. However, the GPS signal strength at the receiver is often in the magnitude of 10–14 

watts (i.e., –110 dBm); and therefore, is subject to limitations that potentially compromise a reliable 

utilization in autonomous navigation [5–9]. For example, multipath fading, caused by signal reflections off 

surrounding objects, leads to multipath copies with varying arrival times, attenuations, and phases that result 

in inaccurate position calculations [10]. To address the multipath challenge, a solution encompassing 

omnidirectional infrared cameras in parallel with a satellite orbit simulator was exploited to identify 
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surroundings in urban areas and exclude the satellites with obstructed or non-direct line of sight links from 

positioning estimation [11]. Although this solution demonstrated improved positioning accuracy, the 

associated additional hardware and computational requirements setback its ready acceptance. An adaptive 

code/carrier phase measurements filtering technique for multipath error reduction was studied in [12]. 

Nevertheless, the validity of this technique was limited to stationary GPS receivers without considering 

mobile scenarios, where multipath effects differ significantly. A multipath mitigation methodology via a 

nonlinear regression was explored in [13]. However, this methodology was tested with stationary receivers 

in environments with fixed surrounding objects. In [14], multipath mitigation via the fusion of GPS 

measurements was introduced, which benefits from a cooperative positioning of multiple GPS receivers. 
 

One other challenge that affects the quality of GPS reception is the denial-of-service (e.g., jamming 

attack), which involves disrupting location awareness by launching interference that overpowers authentic 

transmissions [15]. Various solutions were introduced in the literature for such a particular challenge, 

including those with integrated angle of arrival, null steering, and adaptive notch filtering protocols [16–
18]. However, these solutions require additional hardware (e.g., antenna arrays) and impose higher 

computational complexity. In [19], deep reinforcement learning and reconfigurable intelligent surfaces 

(RISs) were explored as an approach for GPS jamming mitigation. Nevertheless, this approach was 

validated in simulation environments; not to mention the limitations associated with integrating RISs with 

autonomous vehicles. Similarly, a RIS-based positioning, navigation, and timing approach utilizing 

reinforcement learning and game theory was introduced in [20]. However, this approach was developed 

and evaluated in a simulation environment. Moreover, it assumed the presence of anchor nodes, RISs, and 

that targets can receive beacon signals from such nodes. 
 

 Other solutions utilized visual localization (e.g., template matching, feature points matching, 

simultaneous localization and mapping, inertial navigation, computer vision) to offer a GPS-free navigation 

[21–25]. However, these solutions require contributions from multiple receiver nodes as well as added sensor 

devices (e.g., LiDAR, cameras). In [26, 27], sensor fusion methods were used as a navigation solution in GPS-

denied environments. These methods, however, are susceptible to accumulating sensor errors, which may 

result in imprecise positioning estimation over time. The use of deep learning techniques to provide GPS-free 

navigation solutions was explored in [28–31]. However, these solutions were implemented in simulation 

environments or incorporated visual sensors; not to mention their imposed high computational requirements. 
 

This work addresses the aftermath of losing GPS reception amid navigation and suggests a countermeasure 

strategy that enables a safe and autonomous return to the launch location, i.e., return-to-home (RTH), with the 

use of deep learning. The approach proposed herein exploits bidirectional long short-term memory (B-LSTM) 

modeling by leveraging data from the UAV onboard sensors during the flight. The primary reason for adopting 

the B-LSTM architecture stems from the sequential properties of UAV sensory measurements during 

navigation. In other words, B-LSTM is characterized for bidirectional information processing, which allows 

for capturing temporal dependencies and relationships among the features within a dataset. Therefore, it 

represents an attractive candidate for predicting and reversing flightpaths. On the other hand, conventional deep 

learning models (e.g., convolutional neural networks, transformer-based models) excel at spatial feature 

extraction. Nevertheless, these models face challenges in handling and predicting data of a sequential nature. 

It is paramount to point out that other models, e.g., recurrent neural networks (RNNs), can also be used to 

process sequential data. However, RNNs often suffer from the vanishing gradient, which limits their ability to 

capture long-term temporal dependencies. It is paramount to point out here that the proposed approach differs 

from those reported in the literature in the following aspects: 
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i. This approach utilizes feature samples extracted from readily available onboard sensors (e.g., 

accelerometer, barometer, GPS, gyroscope, magnetometer) and does not require added hardware 

devices, such as antenna arrays, Lidars, or cameras [11], [16–20], [22–24], [30]. 
 

ii. This approach does not require any cooperative communications between multiple receiver nodes 

and does not assume available backup radio connections with the control station [14, 16, 20, 23, 25]. 
 

iii. This solution is unaffected by weather or light conditions and does not require high computational 

resources in comparison to those that involve data from visual sensors [11], [21–27], [30–31]. 
 

iv. This approach is based on datasets of feature samples collected from experimental setups under different 

flightpath scenarios. These datasets are used to develop realistic B-LSTM models that take into account 

radiometric factors which are often overlooked in simulation setups [19-20], [22, 25], [28–29]. 
 

The remaining of this article is organized as follows: Section 2 presents the experimental feature 

extraction setup for two flightpath scenarios as well as the associated extracted feature samples. Section 3 

elaborates on the proposed RTH approach and includes an evaluation of two developed B-LSTM 

architectures. Finally, conclusions and future work are provided in Section 4. 

2. Experimental Feature Extraction Setup 

Figure 1 depicts the flightpaths for two experimental scenarios designed for extracting signal features 

and collecting samples. Such flightpaths are performed in an open field with a moderate presence of 

physical structures (e.g., dormitory buildings). Both scenarios are designed with QGroundControl software 

to ensure no damages occur to surrounding infrastructure during autonomous navigation [32]. This is 

realized via defining digital fences that the UAV cannot bypass as well as through precise calibration of 

onboard sensors and careful planning of the flightpaths. It is noteworthy to point out that the calibration of 

onboard sensors ensures accurate readings and stable navigation. A demonstration video for creating a 

flightpath can be found in [33]. The UAV used in these scenarios is an open-source drone from COEX that 

is equipped with a u-blox M8 GPS receiver and a PX4 flight controller for logging sensory measurements 

throughout the flights [34]. The adopted QGround Control software, GPS receiver, and flight controller are 

found in many commercial applications and research-grade equipment [35–37]. Scenario 1 characterizes a 

flightpath with fixed altitude and ground velocity; whereas Scenario 2 conveys an altitude and ground 

velocity that vary across the flightpath, as described in Table 1. The proposed RTH approach benefits from 

the readily available logged GPS data, sensory measurements (i.e., barometer, magnetometer), and inertial 

measurement unit (IMU) measurements (i.e., accelerometer, gyroscope) before GPS signal is compromised. 

Hence, flightpaths are launched without interfering with the GPS reception or other sensor measurements. 

 The accelerometer and gyroscope onboard sensors are utilized for measuring the rate of change in 

velocity and angle (i.e., roll, pitch, yaw), respectively, around the three axes. On the other hand, the 

barometer measures air pressure to assist in determining the altitude, while the magnetometer detects the 

earth’s magnetic field to facilitate direction information. Finally, the GPS sensor provides location 

information to the UAV (e.g., longitude, latitude, altitude). It is worth pointing out that the GPS, barometer, 

magnetometer, and IMU measurements are processed with an extended Kalman filter (EKF) to obtain local 

position estimates [38]. A total of 10 features, showcased in Table 2, are logged with 989 samples per 

feature collected for scenario 1 and 739 samples per feature collected for scenario 2. The features are chosen 

for their attribute to offering a B-LSTM based RTH navigation solution. The timestamp provides the 

temporal context, while the onboard accelerometer and gyroscope sensors are utilized for measuring the 

rate of change in velocity and angle (i.e., roll, pitch, yaw), respectively, around the three axes. On the other 

hand, the barometer measures air pressure to assist in determining the altitude, while the magnetometer 

detects the earth’s magnetic field to facilitate direction information.  
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(a) (b) 

Figure 1. The flightpaths of the experimental scenarios: (a) scenario 1 with fixed altitude and ground velocity over 

the flightpath course, and (b) scenario 2 with varied altitude and ground velocity over the flightpath course. 
 

Finally, the GPS sensor provides location information to the UAV (e.g., longitude, latitude, altitude). These 

are fundamental parameters for determining the UAV's position and orientation and allow for predicting a 

precise reverse flightpath. The developed B-LSTM model exploits all available samples (i.e., in this context, 

flight initiation to GPS signal loss). Consequently, there is no splitting of that dataset into training and 

testing sets. To avoid overfitting, 10% of the data is dropped during training. Collected samples (i.e., 

training datasets) can be found in [39]. 
 

3. RTH Solution Development and Evaluation 

In Section 3.1, the development of the single and parallel B-LSTM architectures is elaborated, whereas their 

performance evaluations with the use of the mean square error (MSE) are detailed in Section 3.2. 
 

Table 1:  Altitudes and ground velocities for the two experimental scenarios illustrated in Figure 1. 

Scenario 1 Scenario 2 

Waypoint Altitude (m) Velocity (m/s) Waypoint Altitude (m) Velocity (m/s) 

a 0 0 a 0 0 

b-k 3 1 b-e 3 1 

m 0 0 f-h 7 2 

- - - i-n 5 3 

- - - o 0 0 
 

Table 2:  The extracted features from onboard sensors. 

Feature Representation Source Unit 

Timestamp since system starts  T Flight controller µs 

North position in NED* earth-fixed frame x EKF m 

East position in NED earth-fixed frame y EKF m 

Down position (negative altitude) in NED earth-fixed frame z EKF m 

Acceleration in FRD** board frame x-axis Ax Accelerometer m/s2 

Acceleration in FRD board frame y-axis Ay Accelerometer m/s2 

Acceleration in FRD board frame z-axis Az Accelerometer m/s2 

Angular velocity in FRD board frame x-axis Gx Gyroscope rad/s 

Angular velocity in FRD board frame y-axis Gy Gyroscope rad/s 

Angular velocity in FRD board frame z-axis Gz Gyroscope rad/s 
 

(*)    x-north, y-east, and z-down 

(**)         x-forward, y-right, and z-down 
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Figure 2. The configuration of the proposed B-LSTM deep learning model: “n” is the input/output sequence length 

in the 1st B-LSTM layer and “m” is the input/output sequence length in the 2nd B-LSTM layer after dropout (m<n). 

3.1 Development of the Bidirectional Long Short-term Memory Architectures 

Figure 2 illustrates the configuration of a B-LSTM model, which conveys an input layer for receiving, 

scaling, and reshaping the feature samples. Such a layer is followed by a B-LSTM layer with 128 LSTM 

cells and return sequences. Sequence returning enables subsequent layers to access information from each 

time step of the input sequence, allowing the model to effectively capture temporal patterns and relationships 

in the data. The bidirectional aspect of the LSTM model is concerned with processing the input sequence in 

both forward direction and backward direction, unlike unidirectional models, which allows for capturing and 

extracting more temporal dependencies [40]. The output of the aforementioned layer is passed to a dropout 

layer for ensuring proper fitting considering an optimized dropout rate. In each training iteration, this layer 

randomly drops 10% of the cells output before they are passed to the next layer. Then, a second B-LSTM 

layer with 64 cells and no return sequences is incorporated for further processing the data and combining the 

information into a single hidden state vector. The resulting output is processed by a dense layer with 25 

neurons and a ReLU activation function to introduce non-linearity to the model and allow for learning 

complex patterns and relationships within the data. This layer is connected to another dense layer that serves 

as the output layer. Figure 3 shows the proposed RTH approach with a single B-LSTM architecture, which 

consists of forward sequence training and backward sequence prediction, as follows: 
 

a. Forward sequence training: During the flight, the UAV logs multiple feature samples, including the 

accelerometer and gyroscope measurements, timestamp, and local position estimates obtained via the 

EKF. These samples are recorded at constant predefined rates until the GPS reception is no longer 

available. Then, the accelerometer, gyroscope, and timestamp measurements are used as an input vector, 

while the logged local position features estimated by the EKF are used as a target output. Logged samples 

are scaled before training to learn the relationship between the UAV sensory data and its position.  
 

b. Backward sequence prediction: The logged feature samples are processed such that the timestamp and 

accelerometer sequence measurements are inverted; whereas the gyroscope sequence measurements are 

inverted and multiplied by –1 to reverse angular variations for achieving a mirrored trajectory. This 

procedure entails reversing the direction and movement sequence of the UAV, thereby enabling a return 

flightpath. The processed samples are fed to the flight controller as target readings to adjust the flightpath 

(i.e., altitude, velocity) accordingly, which is facilitated by the offboard mode on the flight controller. 

Simultaneously, the samples are scaled and used as an input to a B-LSTM configuration to predict the 

UAV local position. Finally, postprocessing is incorporated to refine predictions and eliminate noise. 
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Figure 3. Proposed RTH approach with a single B-LSTM architecture: (a) forward sequence training, and (b) 

backward sequence prediction. 
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Figure 4. Proposed RTH approach with a parallel B-LSTM architecture: (a) forward sequence training, and (b) 

backward sequence prediction. P denotes x-, y-, or z-dimension. 
 

Figure 4 represents the proposed RTH approach with a parallel B-LSTM architecture. Here, three 

separate B-LSTM configurations are employed, one for each local coordinate denoted as P (for x, y, or z). 

Each configuration receives inputs specific to its assigned coordinate and produces a single output: x, y, or 

z. The B-LSTM configurations in both architectures are modeled considering the MSE as loss function. To 

this end, combinations of empirical experimentations and grid search optimizations are performed to 

optimize the hyperparameters; particularly, number of layers, number of cells in each layer, and dropout 

rate. It is worth noting that a fixed dropout rate is adopted in this research as it balances between modeling 

complexity and accuracy, which is of a grave importance, especially for resource-constraint applications 

(e.g., UAVs with limited processing and power supply capacities). MinMax scaling is adopted over 

standard scaling during training as it normalizes input features to a predefined range. This contributes to 

maintaining consistent magnitudes and improving stability against exploding or vanishing gradients, 

making it more suitable for handling sequential and temporal data. The optimized hyperparameters are 

given in Table 3. Figure 5 depicts the learning curves of the developed architectures. In both scenarios, the 

parallel architecture achieves lower average loss values as compared to the single architecture. 
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Table 3: Optimized hyperparameters of the developed B-LSTM architectures. 

Hyperparameter Single Architecture  Parallel Architecture 

No. of B-LSTM layers 2 2 

No. of cells in each B-LSTM layer 128/64 128/64 

Number of neurons in each dense layer 25/3 25/1 

Activation function ReLU ReLU 

Optimizer Adam Adam 

Learning rate 0.001 0.001 

Batch size 1 1 

Number of epochs 
10 (scenario 1) 10 (scenario 1) 

20 (scenario 2) 20 (scenario 2) 

Dropout rate 0.1 0.1 

Scaler MinMax (–1, 1) MinMax (–1, 1) 

 

3.2 Model Evaluation  

The MSE is used to evaluate the two developed architectures. In this evaluation, three cases are investigated 

according to the location where the GPS reception is assumed no longer available. Such cases, w.r.t. Figure 1, 

are Case 1: GPS reception loss occurs at the end of the flightpath, Case 2: GPS reception loss occurs after 

waypoint i-a (scenario 1) or k-a (scenario 2) of the path is executed, and Case 3: GPS reception loss occurs 

after waypoint e-a of the flightpath is executed. This investigation allows for examining the impact of the 

dataset size and altitude/velocity variations on the training of the architectures. A moving average filter is 

adopted as a postprocessing stage to improve the proposed RTH solution and mitigate the impact of sensor 

noise. Figures 6 and 7 illustrate the predicted trajectories in comparison to the planned and executed trajectories 

for the three GPS signal loss cases in each of scenarios 1 and 2 with and without incorporating the filter. The 

resulting predictions are in proximity to those executed by the UAV, with MSEs detailed in Tables 4 and 5. 
 

The evaluation scores show that the parallel B-LSTM architecture has a lower average MSE in comparison to 

the single B-LSTM architecture, especially in cases 2 and 3 that exhibit lower training dataset sizes. The 

improved MSE performance of the parallel architecture is attributed to the reduced number of input-output 

features that this architecture processes. In other words, the single architecture processes the inputs-outputs of 

the three dimensions (i.e., x-, y-, and z-axes) simultaneously with one B-LSTM model to predict a three-

dimensional local position. On the other hand, the parallel architecture employs three separate models; each is 

dedicated to processing features and predicting the local position of a single dimension (i.e., x, y, or z). This 

performance, however, comes at the expense of increased training and prediction times as indicated in Table 6.  
 

  
(a) (b) 

Figure 5. The learning curve of the developed B-LSTM models: (a) Scenario 1, and (b) Scenario 2. 
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Table 4: Scenario 1 evaluation scores for the developed architectures. 

 MSE (Single B-LSTM Architecture) MSE (Parallel B-LSTM Architecture) 

 x-axis (m) y-axis (m) z-axis (m) x-axis (m) y-axis (m) z-axis (m) 

Case 1: m-a 2.63 7.88 0.21 3.05 6.74 0.15 

Case 2: i-a 5.62 3.78 0.19 1.24 6.08 0.19 

 Case 3: e-a 5.16 29.12 0.30 0.22 4.45 0.04 

Average MSE 4.48 13.59 0.23 1.50 5.76 0.13 
 

Table 5: Scenario 2 evaluation scores for the developed architectures.  

 MSE (Single B-LSTM Architecture) MSE (Parallel B-LSTM Architecture) 

 x-axis (m) y-axis (m) z-axis (m) x-axis (m) y-axis (m) z-axis (m) 

Case 1: o-a 4.53 3.62 0.24 2.24 7.95 0.38 

Case 2: k-a 3.24 3.06 0.24 1.21 2.76 0.46 

Case 3: e-a 0.32 0.74 0.12 0.08 0.28 0.06 

Average MSE 2.70 2.47 0.20 1.17 3.67 0.30 

 

Figure 6. Scenario 1 comparative flightpath performance for the developed architectures: (a) cases 1–3 without 

incorporating a moving average filter, and (b) cases 1–3 with incorporating a moving average filter. 
 

It is noteworthy to point out that the reported times and memory are from averaging five independent executions 

per architecture. The prediction time per sample set in scenario 2 (Case 1) is 1.1 ms, which results from dividing 

the overall prediction time (i.e., 0.87 second) by the total number of samples in the dataset (i.e., 739 samples). 

This demonstrates the timely prediction of the proposed solution without necessitating any parallelization 

techniques (i.e., prediction time less than GPS sampling time of 100–1000 ms). Scenario 2, which characterizes 

varying altitudes and velocities, demonstrates an improved MSE as compared to Scenario 1. This variation 

facilitates a dynamic dataset that enables the model to better capture complex relationships within features and 

leads to improved generalizations. Table 6 also illustrates a comparative analysis benchmarking the 

performance of each architecture with the use of conventional unidirectional LSTM layers and stacked 

unidirectional LSTM layers (i.e., two stacks) instead of the B-LSTM layers in the configuration presented in 

Figure 2. Such an analysis shows that the utilization of B-LSTM layers improves the average MSE. 

Nevertheless, it increases the overall training and prediction times as well as the required memory. 

   
(a) 

   
(b) 
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Figure 7. Scenario 2 comparative flightpath performance for the developed architectures: (a) cases 1–3 without 

incorporating a moving average filter, and (b) cases 1–3 with incorporating a moving average filter. 

 

Table 6: Comparison between the proposed architectures with different LSTM configurations considering Case 1. 

  Single Architecture Parallel Architecture 

  LSTM Stacked LSTM B-LSTM LSTM Stacked LSTM B-LSTM 

Avg. MSE±Dev (m) 
Scenario 1 5.84±2.40 5.80±4.83 3.59±0.76 5.16±0.71 4.77±1.89 3.82±0.39 

Scenario 2 3.68±2.03 4.08±1.86 3.13±0.89 3.13±1.23 3.04±1.17 4.02±0.51 

Training    (s) 
Scenario 1 124.39 158.55 220.30 240.32 381.43 435.97 

Scenario 2 201.93 239 293.12 401.31 518.78 542.64 

Prediction (s) 
Scenario 1 0.33 0.44 0.72 0.67 0.88 1.31 

Scenario 2 0.29 0.35 0.43 0.66 0.74 0.87 

Memory (MB) 
Scenario 1 48.25 58.97 78.92 36.50 65.35 90.14 

Scenario 2 48.83 56.25 96.59 35.52 65.12 78.69 
 

Therefore, the proposed RTH approach offers a flexible offline navigation solution for meeting the requirements 

of a given application. For example, short autonomous missions with low memory requirements can benefit 

from a higher location accuracy. On the other hand, long missions with high memory expectations can adopt the 

proposed approach with a marginal impact, characterized by an increase in location error. All the developed 

architectures presented in this article can be found in [39]. Finally, a comparison between the proposed approach 

and other state-of-the-art methods that facilitate navigation solutions in GPS-denied environments is provided 

in Table 7. The proposed approach offers a unique solution for a reliable and autonomous RTH under sudden 

losses of GPS reception. This solution leverages the readily available measurements of onboard sensors. Thus, 

it does not incorporate extra hardware components (e.g., antenna arrays, LiDARs, cameras) that are often 

required to facilitate visual-assisted GPS-free navigation. While these added components can improve 

performance, the resulting navigation accuracy is susceptible to external channel conditions (i.e., weather, 

lighting). The proposed approach also offers a low computational overhead as compared to other solutions that 

adopt cumbersome and resource-consuming image processing routines. In addition, the proposed solution is 

validated with UAV-specific data obtained via realistic experiments rather than laboratory simulations. Lastly, 

the approach proposed herein does not require supporting infrastructure (i.e., transceiver nodes with access to 

GPS), and most importantly, does not assume any cooperative communications between multiple transceiver 

nodes. 

   
(a) 

  
 

(b) 
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Table 7: Comparison between the proposed approach and other state-of-the-art research for UAV applications. 
 

Ref. Data source Utilized Hardware Adopted Approach Offered Solution 

[16] Experiments antenna arrays trilateration   RTH 

[19] Simulations RIS reinforcement learning path planning 

[24] Experiments camera, IMU, sonar EKF with SLAM* GPS-free navigation 

[25] Experiments altimeter, camera, IMU, Lidar UKF** with SLAM GPS-free navigation 

[26] Experiments 
barometer, IMU, range finder, magnetometer, 

optical sensor 
EKF GPS-free navigation 

This work Experiments barometer, GPS, IMU, magnetometer EKF with B-LSTM RTH 

(*)    Simultaneous localization and mapping 

(**)         Unscented Kalman filter 
 

Overall, the solution presented herein is developed with realistic experimental setups. It also features the 

advantages of reduced cost and improved robustness to varying navigation environments as well as 

flightpaths (altitudes, velocities). Such advantages makes it suitable for resource-constrained platforms that 

benefit from autonomous navigation. 

4. Conclusion and Future Work  

To conclude, a B-LSTM approach is utilized as an RTH autonomous navigation solution in the absence 

of GPS reception. Two architectures are trained for predicting the path of an already executed mission with 

the use of logged samples from ten features. To validate this approach, samples were collected in two 

experimental scenarios comprising different altitudes and ground velocities. Evaluation results showcased 

the efficacy of the proposed approach, yielding an average MSE as low as 1.17 m, 3.67 m, and 0.30 m w.r.t 

the x-axis, y-axis, and z-axis, respectively, with an average MSE uncertainty of ±0.89 m. Furthermore, the 

training of the proposed B-LSTM architectures utilized a memory of less than 100 MB and exhibited a timely 

prediction close to 1 ms per sample set. This approach does not require additional hardware; rather, samples 

from sensors that are commonly found in autonomous aerial vehicles are exploited, which makes it attractive 

and scalable. Future work will entail exploring the integration of LSTM configurations with reinforcement 

learning to develop a hybrid navigation mechanism for tactical, mission-critical applications. The 

environment in such applications is dynamic in the sense that a forward flightpath may not include threats 

(i.e., physical obstacles, cyberattacks), while during performing the RTH reverse flightpath, the presence of 

these threats may compromise the vehicle. Hence, this integration is expected to significantly improve the 

robustness of the RTH navigation, especially in complex or unpredictable situations of unforeseen 

environments. In addition, there is a tradeoff between performance accuracy, energy efficiency, and memory 

in artificial intelligence-based models. Therefore, another future research may be concerned with 

investigating an analysis scheme that addresses real-time energy consumption, model precision, and memory 

in different use cases, such as multiple channel conditions, dataset sizes, and preprocessing methods. Finally, 

the adaptation of the proposed RTH solution to other types of autonomous vehicles (e.g., ground vehicles) 

has the potential to impact the transportation industry, traffic management, as well as safety and accessibility. 
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