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Abstract—This paper introduces machine learning (ML) as a solution 
for the detection and range localization of jamming attacks targeting 
the global positioning system (GPS) technology, with applications to 
unmanned aerial vehicles (UAVs). Different multi-output multiclass 
ML models are trained with GPS-specific sample datasets obtained 
from exhaustive feature extraction and data collection routines that 
followed a set of realistic experimentations of attack scenarios. The 
resulting models enable the classification of four attack types (i.e., 
barrage, single-tone, successive-pulse, protocol-aware), the jamming 
direction, and the distance from the jamming source by yielding a 
detection rate (DR), misdetection rate (MDR), false alarm rate (FAR), 
and F-score (FS) of 98.9%, 1.39%, 0.28%, and 0.989, respectively. 

 
Index Terms—Global positioning system (GPS), jamming 

classification, jamming localization, machine learning (ML), 
unmanned aerial vehicles (UAVs). 

 

I. INTRODUCTION 
NMANNED aerial vehicles (UAVs) have been utilized 
recently in many applications, including search and 
rescue missions, surveillance, construction, delivery of 
goods, agriculture, and smart cities [1–3]. This increased 

exploitation of UAVs incentivizes attackers to disturb their 
operation with cyberattacks of irreversible consequences, 
featured by compromising sensitive information (e.g., payload, 
technology) as well as damaging private properties and public 
infrastructure. For example, a U.S RQ-170 surveillance drone 
was captured by the Iranian forces in 2011 with the use of 
cyberwarfare. Later in 2012, Iran announced the hacking of the 
drone controls and the building of a similar copy [4]. 
 

With the readily available and affordable software-defined 
radio (SDR) units, cyberattacks can conveniently be launched for 
targeting the UAV’s onboard global positioning system (GPS) 
module. Location spoofing and jamming are common attacks; 
the former is concerned with transmitting a falsifying GPS-like 
signal to redirect targets toward a desired destination, whereas the 
latter entails launching an interference to block the authentic GPS 
signal to the target’s impact location awareness. Detecting and 
anticipating the source of such attacks facilitate timely actions 
and countermeasures against attackers. Hence, this paper 
addresses GPS jamming detection/classification and suggests an 
approximate location of the source w.r.t to the target (i.e., UAV). 
 

 

Various approaches were examined recently in literature to 
detect jamming presence. For instance, jamming classification 
according to received signal strength (RSS) was proposed in 
[5]. However, this approach was evaluated within a simulation 
framework that overlooks other factors influencing practical 
RSS measurements (e.g., channel characteristics), leading to a 
compromised overall accuracy. The use of machine learning 
(ML) models trained with the in-phase and quadrature-phase 
signal components was explored in [6]. Although this approach 
has shown an acceptable performance, it utilized a dataset that 
failed to capture other GPS-related features; not to mention that 
it involved a two-stage detection and classification process that 
often introduces an additional computational overhead. A 
“return to-home” jamming mitigation solution based on 
estimating the angle of arrival at the jammed UAV was 
investigated in [7]. Other solutions benefited from null steering 
and adaptive notch filtering techniques [8, 9]. Nevertheless, 
such solutions require expensive sophisticated hardware (e.g., 
antenna arrays) and introduce a high computational complexity. 
Jamming localization techniques have also received significant 
attention lately. Such techniques span the use of RSS, carrier-
to-noise density power ratio, and network topology information 
[10–14]. Nevertheless, these techniques necessitate knowledge 
of target location and require a large number of nodes as well 
as sensory hardware components. 

 

This work presents a single-stage hybrid approach to detect 
and localize jammers, providing the following advantages: 

 

1. The solution proposed herein offers multi-output 
multiclass ML models that enable concurrent 
jamming classification and range localization. 

2. This solution exploits a set of features obtained 
from the existing onboard GPS receiver module. 
Therefore, no additional hardware is needed.  

3. The training and validation datasets for developing 
the ML models convey feature samples extracted 
from measurement setups of staged scenarios with 
and without the presence of attacks. 

4. This solution does not assume location awareness of 
the jammed UAV or require multiple localizing nodes.  
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Fig. 1. The experimental setup for capturing signal features with 
and without the presence of four jamming attack types. Dashed, 
dotted-dashed, dotted, and solid lines represent circles with radii 
r1 = 3, r2 = 10, r3 = 17, and r4 = 24 meters, respectively. 
 

The remaining of this article is organized as follows: Section 
II presents the experimental setup for extracting signal features 
with and without the presence of attacks. Section III details the 
preprocessing of the resulting samples dataset according to 
correlation and importance. It then elaborates on the development 
and evaluation of different ML models for jamming detection and 
localization. Finally, conclusions are given in Section IV. 

 

II. EXPERIMENTAL SETUP 
 Fig. 1 depicts the experimental configuration for extracting 

signal features and collecting samples. It comprises four circles 
centered at the jamming source, each is with a unique radius (i.e., 
3, 10, 17, and 24 meters). Attacks are designed with GNURadio 
software and are launched with a B-210 SDR from National 
Instruments. Fig. 2 illustrates a simplified flow graph for 
launching four jamming attack types; namely, barrage, single-
tone, successive-pulse, and protocol-aware. Barrage jamming is 
concerned with launching an interference that spans a particular 
bandwidth, and is especially useful when the transmission band is 
unknown to the jammer. Single-tone is considered effective as 
long as interference is launched at the same target communication 
frequency. Successive-pulse is created with launching a train of 
discrete pulses within the target transmission bandwidth. Lastly, 
protocol-aware is focused on launching a low-power pulsating 
interference to minimize the probability of detection. 

 
 
 

TABLE I 
DIFFERENT GAIN LEVELS AS A FUNCTION OF EFFECTIVE JAMMING RANGE 

 

The target UAV is an open-source drone from COEX, 
featuring a u-blox M8 GPS receiver and a PX4 flight controller 
that is capable of logging multiple GPS features during the flight. 
The experimental setup is performed in two phases: Phase 1 
entailed confining the jamming to a range where all types are 
deemed ineffective in order to prevent interference with other 
nearby electronic devices. To test this range, barrage jamming is 
launched from an SDR at the lowest gain (i.e., specified in 
GNURadio) considering fixed attenuation settings (i.e., obtained 
with 50-ohm 10-dB attenuator). Here, barrage jamming is selected 
for its highest severity in covering larger ranges compared to 
the other types. Then, gain settings are varied such that GPS 
reception (i.e., tested with a Garmin satellite receiver) is restored 
at a jammer-receiver distance of 27 m. Table I shows the different 
gain settings and the associated effective jamming range. In Phase 
2, experiments are carried on by logging samples of authentic 
features as well as others undergoing jamming attacks via the 
aforementioned drone’s onboard GPS module. Each jamming 
type is launched considering all circles, and for each circle, the 
drone is placed at four locations, one at a time. These locations are 
at the north, south, east, and west of the jammer position. To 
collect samples leading to balanced datasets that account for the 
diversity of satellite constellations and physical layer conditions, 
data logging is performed over four days such that sets of 
authentic and jammed samples are collected each day as 
illustrated in Table II. A total of 14 features are logged in this 
experiment with an overall 17,960 samples per feature. Tables III 
and IV summarize the logged features and the distribution of the 
collected samples, suggesting a balanced set consisting of 9,904 
and 8,056 attack and authentic samples, respectively. 

 
TABLE II 

FEATURE LOGGING ROUTINE OVER FOUR DAYS 
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Fig. 2. Simplified GNURadio flow graph for launching the jamming attacks [15]. 

Gain (dB)   Attenuator (dB)   Jamming Range (m) 
45           10           5.5 
50           10           13.5 
55           10           15.0 
60           10           27.0 

 r1 r2 r3 r4 
Day 1 P-aware Single-tone Succ.-pulse Barrage 
Day 2 Single-tone Succ.-pulse Barrage P-aware 
Day 3 Succ.-pulse Barrage P-aware Single-tone 
Day 4 Barrage P-aware Single-tone Succ.-pulse 



TABLE III 
THE EXTRACTED GPS FEATURES  

 
III. CLASSIFIERS DEVELOPMENT AND TESTING 

 

Feature samples are combined into a dataset and output Labels 
1–3 are created, corresponding to circle radius at which samples are 
collected, direction of the jammer w.r.t the drone, and jamming 
type, respectively. Each output Label has the following five classes: 
 

Label 1: < r1–4, N> 
Label 2: < south, north, east, west, N>,  
Label 3: <barrage, single-tone, p-aware, success.-pulse, N> 
 

where N refers to authentic reception (i.e., no jamming). It is 
paramount to point out that Label 1 yields a separation distance 
(in meters), with ri being the jammer-receiver separation. 
Dataset preprocessing is performed by analyzing the correlation 
of features using Spearman algorithm, which assumes 
nonlinearity among sample points. The resulting heatmap of this 
analysis is shown in Fig. 3, suggesting (eph, epv), (eph, s_var), 
and (sat, hdop) as strongly correlated feature pairs, based on a 
threshold of |0.8| for high correlation.  
 
 
 

 

TABLE IV 
DISTRIBUTION OF THE COLLECTED SAMPLES 

 
Such an analysis is followed by a feature importance study 

utilizing the mean decrease in impurity method for determining 
the features to be discarded. This study is carried out for each of 
the three output labels as presented in Figs. 4(a)-(c). According 
to the resulting correlated pairs and their relative importance 
characterized in Fig. 4, the eph and sat features are removed from 
the dataset. Finally, a standard scaling is applied to all the 
samples, such that xijˊ = (xij – μj)/σj, where xijˊ is the scaled ith 
sample of the jth feature, and μj and σj are the mean and standard 
deviation of the sample values within the jth feature, respectively. 
 

The developed dataset is used for training and evaluating a 
variety of ML models; namely, random forest (RF), k-nearest 
neighbor (KNN), multi-layer perceptron (MLP), logistic 
regression (LR), decision tree (DT), support vector machine 
(SVM), and naïve Bayes (NB). The training and evaluation 
components are performed on a MacBook Air laptop with an 
M1 CPU running at @ 3.2 GHz and 8 GB of DDR4-4266 MHz 
memory. A 10-fold cross-validation process is performed with 
70% and 30% of the dataset samples allocated for training and 
testing, respectively. Random search is applied for optimizing 
each model, yielding the hyperparameters presented in Table V. 
The developed dataset used in this work can be found at [16]. 
 

Fig. 3. Correlation heatmap of GPS features obtained with Spearman algorithm. 
 
 

Extracted Feature Short Description Unit 
s_var GPS speed accuracy estimate m/s 
c_var GPS course accuracy estimate Radians 
eph GPS horizontal position accuracy Meters 
epv GPS vertical position accuracy Meters 

hdop Horizontal dilution of precision – 
vdop Vertical dilution of precision – 
noise GPS noise per millisecond dB 
jam Indication of jamming occurrence – 

vel_m_s GPS ground speed m/s 
vel_n GPS North velocity m/s 
vel_e GPS East velocity m/s 
vel_d GPS Down velocity m/s 
COG Course over ground  Radians 
sat Number of satellites – 

 r1 r2 r3 r4 Total Samples 
Barrage 565 1,165 530 563 2,823 

Single-tone 544 526 528 550 2,148 
P-aware 528 617 584 547 2,276 
Succ.-pulse 1,012 532 546 567 2,657 
Clean 2,000 2,020 2,010 2,026 8,056 



   
       (a)                                                               (b)                                                               (c) 

Fig. 4. Relative importance of features with respect to (a) output Label 1, (b) output Label 2, and (c) output Label 3. 

TABLE V 
OPTIMIZED HYPERPARAMETERS FOR THE ADOPTED ML MODELS W.R.T LABEL 1 

 
The performance of the developed models is evaluated using 
the detection rate (DR), precision, recall, F-score (FS), false 
alarm rate (FAR), and misdetection rate (MDR). The DR is 
used to evaluate the percentage of samples that have been 
accurately classified. Precision is a measure of the classifier’s 
ability to correctly categorize negative samples (i.e., authentic) 
as negatives and positive samples (i.e., attacks) as positives. 
The recall, on the other hand, assesses the classifier’s in 
accurately predicting all positive samples. The FAR estimates 
the likelihood of detecting false positives, while the MDR 
provides the likelihood of failing to detect an attack. These 
metrics are obtained with the true positive (TP), which represents 

the positive samples predicted as positive, true negative (TN), 
which corresponds to negative samples predicted as negative, 
false positive (FP), which denotes negative samples predicted as 
positive, and false negative (FN), which indicates positive 
samples predicted as negative, and are expressed as: 

 

DetectionRate (DR)
TP TN

TP TN FP FN



  

              (1.a) 

Precision
TP

TP FP



                            (1.b) 

Recall
TP

TP FN



                                (1.c) 

2 Precision Recall
F-score

 Precision Recall
 




                   (1.d) 

FalseAlarmRate (FAR)
FP

FP TN



                    (1.e) 

MisdetectionRate (MDR)
FN

TP FN



                   (1.f) 

The scores for all evaluation metrics are given in Table VI. 
MLP exhibited the optimum overall performance for accurately 
capturing output Labels 1–3, averaging a DR, FS, FAR, and 
MDR of 98.9%, 0.989, 0.28%, and 1.39%, respectively, 
followed by KNN, which averaged a DR of 97.8%, FS of 0.978, 
FAR of 0.61% and MDR of 2.78%. On the other hand, NB 
yielded the worst performance among all models. 

 

The prediction time (PT) for each model is also calculated and 
recorded in Table VI. DT, SVM, and LR models resulted in the 
lowest PT of 1.26 ms, 2.23 ms and 2.33 ms, respectively, at the 
expense of their DRs. Furthermore, it is noteworthy to point out 
that the excellent detection quality of the KNN model is 
associated with the highest PT (i.e., 2296 ms) due to its 
characteristics in searching the entire training dataset to 
determine the nearest neighbors during prediction. These PTs are 
computed using all samples in the testing dataset (i.e., 5,388 
samples), leading to 50 μs per sample, based on the PT of MLP 
model. With such a high prediction accuracy and low PT, real-
time jamming detection, classification, and range localization can 
be achieved without resorting to additional hardware resources.

Category Classifier Parameter 

Ensemble RF 

Quality of split criterion: Log loss 
Max. tree depth: 21 
Min. number of samples at a leaf node: 33 
Min. number of samples to split a node: 183 
Number of trees: 129 
Cost-complexity pruning parameter: 9.3E–3 

Instance KNN 

Leaf size: 48 
Number of neighbors: 12 
Weight function: Distance 
Nearest neighbor comp. algorithm: Brute 
Distance metric: Euclidean 
Power parameter for distance metric: 4 

Discriminative SVM 

Norm used in penalty: L2 
Loss function: Squared Hinge 
Dual optimization algorithm: True 
Max. number of iterations: 1117 
Regularization parameter: 9.59 

Regularization LR 

Optimization: Newton conjugate gradient 
Norm used in penalty: None 
Regularization parameter: 1.773 
Max. number of iterations: 119 

Tree DT 

Quality of split criterion: Log loss 
Max. tree depth: 21 
Min. number of samples at a leaf node: 33 
Min. number of samples to split a node: 183 
Node split strategy: Best 
Cost-complexity pruning parameter: 9.3E–3 

 Neural network MLP 

Optimization:Limited-memory Broyden–

Fletcher–Goldfarb–Shanno 
Hidden layers and neurons: 453,207, 
and 374 
Activation function: Relu 
Max. number of iterations: 939 
L2 regularization term strength: 2.18E–5 
Early stopping: True 

Probabilistic Gaussian NB Smoothing stability parameter: 1.11E–10 



TABLE VI 
ML CLASSIFIERS DISTANCE EVALUATION SCORES (L1: OUTPUT LABEL 1, L2: OUTPUT LABEL 2, L3: OUTPUT LABEL 3)

 
IV. CONCLUSION 

To conclude, a real-time jamming detection, classification, 
and location approximation solution with applications to UAVs is 
proposed. Experimental scenarios were established for extracting 
signal features with and without the presence of four types of 
jamming attacks, resulting in a dataset of 17,960 samples. This 
dataset was preprocessed for features correlation and importance 
to reduce its dimensionality. Then, 70% of the overall samples 
were used for training seven multi-class multi-output ML models, 
whereas the remaining 30% were utilized for testing. The MLP 
model had the optimum performance, characterized by an average 
DR, FS, FAR, and MDR of 98.9%, 0.989, 0.28%, and 1.39%, 
respectively, in conjunction with a PT of 50 μs/sample. For future 
work, the MLP model will be integrated with a reinforcement 
learning environment to address the mitigation of jamming via 
flightpath rescheduling in considering static and mobile jammers. 
Such an environment will exploit the direction of jamming in 
efforts to navigate away from the jamming source. 
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