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Abstract—This paper introduces machine learning (ML) as a solution
for the detection and range localization of jamming attacks targeting
the global positioning system (GPS) technology, with applications to
unmanned aerial vehicles (UAVs). Different multi-output multiclass
ML models are trained with GPS-specific sample datasets obtained
from exhaustive feature extraction and data collection routines that
followed a set of realistic experimentations of attack scenarios. The
resulting models enable the classification of four attack types (i.e.,
barrage, single-tone, successive-pulse, protocol-aware), the jamming
direction, and the distance from the jamming source by yielding a
detection rate (DR), misdetection rate (MDR), false alarm rate (FAR),
and F-score (FS) of 98.9%, 1.39%, 0.28%, and 0.989, respectively.

Index Terms—Global positioning system (GPS), jamming
classification, jamming localization, machine learning (ML),
unmanned aerial vehicles (UAVs).

I. INTRODUCTION

NMANNED aerial vehicles (UAVs) have been utilized

recently in many applications, including search and

rescue missions, surveillance, construction, delivery of

goods, agriculture, and smart cities [ 1-3]. This increased
exploitation of UAVs incentivizes attackers to disturb their
operation with cyberattacks of irreversible consequences,
featured by compromising sensitive information (e.g., payload,
technology) as well as damaging private properties and public
infrastructure. For example, a U.S RQ-170 surveillance drone
was captured by the Iranian forces in 2011 with the use of
cyberwarfare. Later in 2012, Iran announced the hacking of the
drone controls and the building of a similar copy [4].

With the readily available and affordable software-defined
radio (SDR) units, cyberattacks can conveniently be launched for
targeting the UAV’s onboard global positioning system (GPS)
module. Location spoofing and jamming are common attacks;
the former is concerned with transmitting a falsifying GPS-like
signal to redirect targets toward a desired destination, whereas the
latter entails launching an interference to block the authentic GPS
signal to the target’s impact location awareness. Detecting and
anticipating the source of such attacks facilitate timely actions
and countermeasures against attackers. Hence, this paper
addresses GPS jamming detection/classification and suggests an
approximate location of the source w.r.t to the target (i.e., UAV).

Various approaches were examined recently in literature to
detect jamming presence. For instance, jamming classification
according to received signal strength (RSS) was proposed in
[5]. However, this approach was evaluated within a simulation
framework that overlooks other factors influencing practical
RSS measurements (e.g., channel characteristics), leading to a
compromised overall accuracy. The use of machine learning
(ML) models trained with the in-phase and quadrature-phase
signal components was explored in [6]. Although this approach
has shown an acceptable performance, it utilized a dataset that
failed to capture other GPS-related features; not to mention that
it involved a two-stage detection and classification process that
often introduces an additional computational overhead. A
“return to-home” jamming mitigation solution based on
estimating the angle of arrival at the jammed UAV was
investigated in [7]. Other solutions benefited from null steering
and adaptive notch filtering techniques [8, 9]. Nevertheless,
such solutions require expensive sophisticated hardware (e.g.,
antenna arrays) and introduce a high computational complexity.
Jamming localization techniques have also received significant
attention lately. Such techniques span the use of RSS, carrier-
to-noise density power ratio, and network topology information
[10-14]. Nevertheless, these techniques necessitate knowledge
of target location and require a large number of nodes as well
as sensory hardware components.

This work presents a single-stage hybrid approach to detect
and localize jammers, providing the following advantages:

1. The solution proposed herein offers multi-output
multiclass ML models that enable concurrent
jamming classification and range localization.

2. This solution exploits a set of features obtained
from the existing onboard GPS receiver module.
Therefore, no additional hardware is needed.

3. The training and validation datasets for developing
the ML models convey feature samples extracted
from measurement setups of staged scenarios with
and without the presence of attacks.

4. This solution does not assume location awareness of
the jammed UAYV or require multiple localizing nodes.
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Fig. 1. The experimental setup for capturing signal features with
and without the presence of four jamming attack types. Dashed,
dotted-dashed, dotted, and solid lines represent circles with radii
r1=3,r =10, r3 =17, and r4 = 24 meters, respectively.

The remaining of this article is organized as follows: Section
IT presents the experimental setup for extracting signal features
with and without the presence of attacks. Section III details the
preprocessing of the resulting samples dataset according to
correlation and importance. It then elaborates on the development
and evaluation of different ML models for jamming detection and
localization. Finally, conclusions are given in Section IV.

II. EXPERIMENTAL SETUP

Fig. 1 depicts the experimental configuration for extracting
signal features and collecting samples. It comprises four circles
centered at the jamming source, each is with a unique radius (i.e.,
3, 10, 17, and 24 meters). Attacks are designed with GNURadio
software and are launched with a B-210 SDR from National
Instruments. Fig. 2 illustrates a simplified flow graph for
launching four jamming attack types; namely, barrage, single-
tone, successive-pulse, and protocol-aware. Barrage jamming is
concerned with launching an interference that spans a particular
bandwidth, and is especially useful when the transmission band is
unknown to the jammer. Single-tone is considered effective as
long as interference is launched at the same target communication

TABLE I
DIFFERENT GAIN LEVELS AS A FUNCTION OF EFFECTIVE JAMMING RANGE

Gain (dB) Attenuator (dB) Jamming Range (m)
45 10 5.5
50 10 13.5
55 10 15.0
60 10 27.0

The target UAV is an open-source drone from COEX,
featuring a u-blox M8 GPS receiver and a PX4 flight controller
that is capable of logging multiple GPS features during the flight.
The experimental setup is performed in two phases: Phase 1
entailed confining the jamming to a range where all types are
deemed ineffective in order to prevent interference with other
nearby electronic devices. To test this range, barrage jamming is
launched from an SDR at the lowest gain (i.e., specified in
GNURadio) considering fixed attenuation settings (i.e., obtained
with 50-ohm 10-dB attenuator). Here, barrage jamming is selected
for its highest severity in covering larger ranges compared to
the other types. Then, gain settings are varied such that GPS
reception (i.e., tested with a Garmin satellite receiver) is restored
at a jammer-receiver distance of 27 m. Table I shows the different
gain settings and the associated effective jamming range. In Phase
2, experiments are carried on by logging samples of authentic
features as well as others undergoing jamming attacks via the
aforementioned drone’s onboard GPS module. Each jamming
type is launched considering all circles, and for each circle, the
drone is placed at four locations, one at a time. These locations are
at the north, south, east, and west of the jammer position. To
collect samples leading to balanced datasets that account for the
diversity of satellite constellations and physical layer conditions,
data logging is performed over four days such that sets of
authentic and jammed samples are collected each day as
illustrated in Table II. A total of 14 features are logged in this
experiment with an overall 17,960 samples per feature. Tables 111
and IV summarize the logged features and the distribution of the
collected samples, suggesting a balanced set consisting of 9,904
and 8,056 attack and authentic samples, respectively.

TABLE II
FEATURE LOGGING ROUTINE OVER FOUR DAYS

frequency. Successive-pulse is created with launching a train of r r r3 ry
discrete pulses within the target transmission bandwidth. Lastly, Day1l  P-aware Single-tone  Succ.-pulse  Barrage
protocol-aware is focused on launching a low-power pulsating Day2  Single-tone  Succ.-pulse  Barrage P-aware
interference to minimize the probability of detection. Day 3 Succ.-pulse Barrage P-aware Single-tone
Day 4 Barrage P-aware Single-tone Succ.-pulse
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Fig. 2. Simplified GNURadio flow graph for launching the jamming attacks [15].



TABLE III
THE EXTRACTED GPS FEATURES

Extracted Feature Short Description Unit
s _var GPS speed accuracy estimate m/s
c var GPS course accuracy estimate Radians
eph GPS horizontal position accuracy Meters
epv GPS vertical position accuracy Meters
hdop Horizontal dilution of precision -
vdop Vertical dilution of precision -
noise GPS noise per millisecond dB
Jjam Indication of jamming occurrence -
vel_m_s GPS ground speed m/s
vel n GPS North velocity m/s
vel e GPS East velocity m/s
vel d GPS Down velocity m/s
CoG Course over ground Radians
sat Number of satellites —

III. CLASSIFIERS DEVELOPMENT AND TESTING

Feature samples are combined into a dataset and output Labels
1-3 are created, corresponding to circle radius at which samples are
collected, direction of the jammer w.r.t the drone, and jamming
type, respectively. Each output Label has the following five classes:

Label 1: <rj4, N>
Label 2: < south, north, east, west, N>,
Label 3: <barrage, single-tone, p-aware, success.-pulse, N>

where N refers to authentic reception (i.e., no jamming). It is
paramount to point out that Label 1 yields a separation distance
(in meters), with 7; being the jammer-receiver separation.
Dataset preprocessing is performed by analyzing the correlation
of features using Spearman algorithm, which assumes
nonlinearity among sample points. The resulting heatmap of this
analysis is shown in Fig. 3, suggesting (eph, epv), (eph, s_var),
and (sat, hdop) as strongly correlated feature pairs, based on a
threshold of |0.8] for high correlation.

TABLE IV
DISTRIBUTION OF THE COLLECTED SAMPLES

r r r3 r4 Total Samples
Barrage 565 1,165 530 563 2,823
Single-tone 544 526 528 550 2,148
P-aware 528 617 584 547 2,276
Succ.-pulse 1,012 532 546 567 2,657
Clean 2,000 2,020 2,010 2,026 8,056

Such an analysis is followed by a feature importance study
utilizing the mean decrease in impurity method for determining
the features to be discarded. This study is carried out for each of
the three output labels as presented in Figs. 4(a)-(c). According
to the resulting correlated pairs and their relative importance
characterized in Fig. 4, the eph and sat features are removed from
the dataset. Finally, a standard scaling is applied to all the
samples, such that x;” = (x;j — w)/o;, where x; is the scaled i
sample of the j feature, and x; and o; are the mean and standard
deviation of the sample values within the j* feature, respectively.

The developed dataset is used for training and evaluating a
variety of ML models; namely, random forest (RF), k-nearest
neighbor (KNN), multi-layer perceptron (MLP), logistic
regression (LR), decision tree (DT), support vector machine
(SVM), and naive Bayes (NB). The training and evaluation
components are performed on a MacBook Air laptop with an
M1 CPU running at @ 3.2 GHz and 8 GB of DDR4-4266 MHz
memory. A 10-fold cross-validation process is performed with
70% and 30% of the dataset samples allocated for training and
testing, respectively. Random search is applied for optimizing
each model, yielding the hyperparameters presented in Table V.
The developed dataset used in this work can be found at [16].
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Fig. 3. Correlation heatmap of GPS features obtained with Spearman algorithm.
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Fig. 4. Relative importance of features with respect to (a) output Label 1, () output Label 2, and (¢) output Label 3.
TABLE V the positive samples predicted as positive, true negative (7N),
OPTIMIZED HYPERPARAMETERS FOR THE ADOPTED ML MODELS W.R TLABEL Iy hich corresponds to negative samples predicted as negative,
Category Classifier Quality oFspi P?”f““i" 1 false positive (F/P), which denotes negative samples predicted as
uality of split criterion: Log loss " . . . "
Max. free depth: 21 positive, anq false nega‘gve (FN), which indicates positive
Min. number of samples at a leaf node: 33 samples predicted as negative, and are expressed as:
Ensemble RF . . ;
Min. number of samples to split a node: 183 TP+ TN
Number of trees: 129 DetectionRate (DR) = (1.a)
Cost-complexity pruning parameter: 9.3E-3 TP+TN + FP+ FN
Leaf size: 48
Number of neighbors: 12 TP
Weight function: Distance Precision = ——— (1.6)
Instance KNN Nearest neighbor comp. algorithm: Brute TP + FP
Distance metric: Euclidean
Power parameter for distance metric: 4 P
Norm used in penalty: L2 Recall = (1.0)
Loss function: Squared Hinge TP + FN
Discriminative SVM Dual optimization algorithm: True
Max. number of iterations: 1117 2 x Precision x Recall
Regularization parameter: 9.59 F-score = — (1.d)
Optimization: Newton conjugate gradient Precision + Recall
Regularization LR Norm us_ed mn penalty: Néne
Regularization parameter: 1.773
Max. number of iterations: 119 FalseAlarmRate (FAR) = (l.e)
Quality of split criterion: Log loss FP+TN
Max. tree depth: 21
T DT Min. number of samples at a leafnode: 33 FN
ree Min. number of samples to split a node: 183 MisdetectionRate (MDR) = 1.H
Node split strategy: Best TP + FN
Cost-complexity pruning parameter: 9.3E-3
Optimization:Limited-memory Broyden— The scores for all evaluation metrics are given in Table VI.
E‘_e(;zherfoldfafhghamo 453207 MLP exhibited the optimum overall performance for accurately
aI: q 3672 avers and meurons: 93,200 capturing output Labels 1-3, averaging a DR, FS, FAR, and
Neural network MLP ) ctivation function: Relu MDR of 98.9%, 0.989, 0.28%, and 1.39%, respectively,
E’;ﬁx mim_ber_ofiterati(mi 9192 SEs followed by KNN, which averaged a DR 0f 97.8%, FS 0f 0.978,
tion t t 22, —
Batly stopping: Tras renet FAR of 0.61% and MDR of 2.78%. On the other hand, NB
Probabilistic  Gaussian NB_ Smoothing stability parameter: 1.11E~10 yielded the worst performance among all models.

The performance of the developed models is evaluated using
the detection rate (DR), precision, recall, F-score (FS), false
alarm rate (FAR), and misdetection rate (MDR). The DR is
used to evaluate the percentage of samples that have been
accurately classified. Precision is a measure of the classifier’s
ability to correctly categorize negative samples (i.e., authentic)
as negatives and positive samples (i.e., attacks) as positives.
The recall, on the other hand, assesses the classifier’s in
accurately predicting all positive samples. The FAR estimates
the likelihood of detecting false positives, while the MDR
provides the likelihood of failing to detect an attack. These
metrics are obtained with the true positive (7P), which represents

The prediction time (PT) for each model is also calculated and
recorded in Table VI. DT, SVM, and LR models resulted in the
lowest PT of 1.26 ms, 2.23 ms and 2.33 ms, respectively, at the
expense of their DRs. Furthermore, it is noteworthy to point out
that the excellent detection quality of the KNN model is
associated with the highest PT (i.e., 2296 ms) due to its
characteristics in searching the entire training dataset to
determine the nearest neighbors during prediction. These PTs are
computed using all samples in the testing dataset (i.e., 5,388
samples), leading to 50 ps per sample, based on the PT of MLP
model. With such a high prediction accuracy and low PT, real-
time jamming detection, classification, and range localization can
be achieved without resorting to additional hardware resources.



TABLE VI
ML CLASSIFIERS DISTANCE EVALUATION SCORES (L;: OUTPUT LABEL 1, L,: OUTPUT LABEL 2, L;: OUTPUT LABEL 3)

Model DR (%) Precision (%) FS FAR (%) MDR (%) PT (ms)
L L, Ly L L, Ly L L, Ly L L, Ly L L, Ly

RF 94.71 89.79 95.38 94.83  90.03 95.44 0.946 0.895 0.953 1.63 287 1.39 7.92 156 6.6 1056
KNN 97.17 9791 98.32 97.18 9791 98.32 0.971 0979 0.983 0.76 0.60 0.49 385 2.6 1.9 2296
MLP 98.30 99.05 99.34 98.31 99.05 99.34 0.983 0.991 0.993 042 024 0.20 239 1.0 0.80 272

LR 70.04 63.14 74.91 68.38 60.75 7491 0.677 0.590 0.735 9.10 108 7.59 4343 5320 337 2.33
DT 90.08 75.92 91.94 90.21 7635 92.17 0.900 0.756 0.919 245 576  2.04 13.83 34.18 11.0 1.26
SVM 65.97 57.14 68.74 70.68 5578 70.82 0.604 0.494 0.630 11.8 1398 10.84 51.11 62.66 44.92 223
NB 59.56 51.78 61.62 6528 42.04 65.49 0.568 0.414 0.602 11.59 1543 11.06 65.10 70.07 52.47 6.35

1IV. CONCLUSION [9]1 Y. Chien, “Design of GPS anti-jamming systems using adaptive notch

To conclude, a real-time jamming detection, classification,
and location approximation solution with applications to UAVs is
proposed. Experimental scenarios were established for extracting
signal features with and without the presence of four types of
jamming attacks, resulting in a dataset of 17,960 samples. This
dataset was preprocessed for features correlation and importance
to reduce its dimensionality. Then, 70% of the overall samples
were used for training seven multi-class multi-output ML models,
whereas the remaining 30% were utilized for testing. The MLP
model had the optimum performance, characterized by an average
DR, FS, FAR, and MDR of 98.9%, 0.989, 0.28%, and 1.39%,
respectively, in conjunction with a PT of 50 ps/sample. For future
work, the MLP model will be integrated with a reinforcement
learning environment to address the mitigation of jamming via
flightpath rescheduling in considering static and mobile jammers.
Such an environment will exploit the direction of jamming in
efforts to navigate away from the jamming source.

ACKNOWLEDGMENT

This research is funded by the National Science Foundation,
Secure and Trustworthy Cyberspace under Award no. 2006662.

REFERENCES
(1]

S. Hayat, E. Yanmaz, and R. Muzaffar, “Survey on unmanned aerial
vehicle networks for civil applications: A communications viewpoint,”
IEEE Communications Surveys & Tutorials, vol.18, no.4 pp.2624—
2661, 2016.

P. Radoglou-Grammatikis, P. Sarigiannidis, T. Lagkas, and I
Moscholios, “A compilation of UAV applications for precision
agriculture, “Computer Networks, vol. 172, p.107148, 2020.

N. Mohamed, J. Al-Jaroodi, I. Jawhar, A. Idries, and F. Mohammed,
“Unmanned aerial vehicles applications in future smart cities,”
Technological Forecasting and Social Change, vol. 153, 2020.

BBC NEWS. [Online]. Available: Iran 'building copy of captured US
drone' RQ-170 Sentinel - BBC News.

E. Elezi, G. Cankaya, A. Boyac, and S. Yarkan, “A detection and
identification method based on signal power for different types of
electronic jamming attacks on GPS signals,” 2019 IEEE 30" Annual
International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), pp. 1-5, 2019.

G. O’Mahony, K. McCarthy, P. Harris, and C. Murphy, “Developing
novel low complexity models using received in-phase and quadrature-
phase samples for interference detection and classification in wireless
sensor network and GPS edge devices,” A4d Hoc Networks, vol. 120,
p-102562, 2021.

B. Van den Bergh and S. Pollin, “Keeping UAVs under control during GPS
jamming,” [EEE Systems Journal, vol. 13, no. 2, pp. 2010-2021, 2018.

A. Osman, M. Moussa, M. Tamazin, M. Korenberg, and A. Noureldin,
“DOA elevation and azimuth angles estimation of GPS jamming
signals using fast orthogonal search,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 56, no.5, pp.3812-3821, 2020.

(7]

[10]

[12

—

[13]

[14]

[15]

[16]

filters,” IEEE Systems Journal, vol. 9, no. 2, pp. 451-460, 2013.

W. Aldosari, M. Moinuddin, A. Aljohani, and U. Al-Saggaf,
“Distributed extended kalman filtering based techniques for 3-d uav
jamming localization,” Sensors, vol. 20, no. 22, pp. 6405, 2020.

Liu, H. Liu, W. Xu, and Y. Chen, “Error minimizing jammer
localization through smart estimation of ambient noise,” 2012 IEEE 9"
International Conference on Mobile Ad-Hoc and Sensor Systems
(MASS 2012), pp. 308-316, 2012.

T. Zhang, X. Ji, Z. Zhuang, and W. Xu, “JamCatcher: A mobile jammer
localization scheme for advanced metering infrastructure in smart
grid,” Sensors, vol. 19, no.4, pp. 909, 2019.

D. Borio, C. Gioia, A. Stern, F. Dimc and G. Baldini, “Jammer
localization: From crowdsourcing to synthetic detection,” The 29"
International Technical Meeting of The Satellite Division of the
Institute of Navigation (ION GNSS+ 2016), pp. 3107-3116, 2016.

H. Liu, X. Wenyuan, Y. Chen, and Z. Liu,” Localizing jammers in
wireless networks,” [EEE International Conference on Pervasive
Computing and Communications, pp. 1-6, 2009.

Y. Li, J. Pawlak, J. Price, K. Al Shamaileh, Q. Niyaz, S. Paheding, and
V. Devabhaktuni, “Jamming detection and classification in OFDM-
based UAVs via feature- and spectrogram-tailored machine learning,”
1IEEE Access, vol. 10, pp. 16859-16870, 2022.

Dataset. [Online]. Available: https://shorturl.at/nwGKS.



https://www.bbc.com/news/world-middle-east-17805201
https://www.bbc.com/news/world-middle-east-17805201
https://shorturl.at/nwGK8

