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Abstract. Evaluating public health interventions during disease out-
breaks requires an understanding of the spatial patterns underlying epi-
demiological processes. In this study, we explore how Large Language
Models (LLMs) can leverage spatial understanding and contextual rea-
soning to support spatially-disaggregated epidemiological simulations.
We present an approach in which we query LLM to determine appro-
priate mitigation strategies, informed by local profiles and the current
outbreak status. Through a series of experiments with COVID-19 data
from San Diego County, we show how different LLMs perform in tasks re-
quiring spatial adaptation of mitigation strategies, and how incorporat-
ing connectivity information through Retrieval-Augmented Generation
(RAG) enhances the performance of these customizations. The results
reveal significant differences among LLMs in their ability to account for
spatial structure and optimize mitigation strategies accordingly. This
highlights the importance of selecting the right model and enhancing it
with relevant contextual information for effective public health interven-
tions.
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1 Introduction

Accurately modeling epidemiological processes is vital for predicting outbreak

dynamics, evaluating intervention strategies, and ultimately controlling the spread
of infectious disease. Metapopulation models implementing the SEIR (Suscep-

tible, Exposed, Infected, Recovered) framework and utilizing systems dynamics

methodology have been a common approach to simulating disease spread. The

SEIR model divides the population into compartments, simulating the move-

ment of individuals between these compartments over time, based on factors

such as disease transmission rates, incubation periods, and recovery rates [1].



2 Anuj Goenka et al.

Disease spread is often considered a spatial process, dependent on interactions
between individuals within specific geographic contexts. However, compartmen-
tal SEIR models, with their multiple stocks, flows, and feedback loops, typically
lack the granularity necessary to capture spatial disease patterns and local dy-
namics. The complexity of SEIR models, along with the vast amount of data
required to define compartments and interactions across different spatial units,
significantly impacts model performance and sensitivity. This complexity makes
spatially-disaggregated SEIR simulations relatively uncommon in the context
of System Dynamics (SD) modeling [2], though such simulations are more fre-
quently implemented using agent-based models.

As Large Language Models (LLMs) exhibit remarkable contextual knowledge
and reasoning capabilities, leveraging them as a source of local knowledge is
an appealing approach. Models like OpenAl’s GPT series have demonstrated
significant potential in responding to prompts that require locational knowledge
[3] [4] [5]. However, it remains unclear whether their local knowledge is sufficient
for spatially-disaggregated disease forecasting and whether they can adequately
capture spatial relationships to enable realistic simulations of disease spread
without the need for explicitly incorporating spatial data and relationships.

In this paper, we develop a series of experiments designed to answer these
questions. The next section describes the experimental setup and challenges as-
sociated with coupling LLMs and a simulation engine. We then compare public
health interventions for managing disease outbreaks, which are selected by dif-
ferent LLMs for different areas, and show how these selections are influenced
by adding spatial neighborhood information. A discussion of the observed re-
sults is followed by conclusions and future work. Ultimately, our findings aim to
highlight the strengths and limitations of LLMs in how they use spatial informa-
tion for public health applications. We also propose directions for refining these
models to better integrate spatial dynamics in future simulations.

2 Methodology

2.1 Modeling context

The initial system dynamics model used in this experiment was developed to
support the evaluation of public health interventions within the context of a
serious game. Several teams consisting of San Diego public health professionals,
county health officials, and researchers were presented with disease outbreak sce-
narios. Their task was to respond by prioritizing various mitigation measures.
The scenarios were primarily based on the COVID-19 pandemic, and the mit-
igation strategies were generally aligned with recommendations documented in
the National COVID-19 Preparedness Plan [6] and included such measures as
contact tracing, public health surveillance, public health messaging, medical in-
terventions, improvements in healthcare system preparedness, and investments
into scientific infrastructure. During each stage of the game, teams would allocate
resources ("game units") to their chosen strategies and submit their decisions
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to game judges. The judges would then simulate the effects of these strategies
using a model implemented in Stella [7].

The model itself is substantial, comprising 32 stocks, 56 flows, and 209 con-
verters. Additionally, arrays were used to represent infection at four different
severity levels across three age groups, resulting in a total of 120 stocks, 254
flows, and 412 converters. While validated with COVID-19 data, the model
is flexible enough to simulate future outbreaks by adjusting pathogen charac-
teristics such as infectivity, contact rates, and the duration of asymptomatic
contagiousness. However, the model currently lacks spatial information, despite
notable variability across San Diego County in factors like population density
and socio-demographic and economic characteristics.

2.2 Experimental setup

The integration of LLMs with agent-based models has been discussed in the
literature [8] [9] [10] including within the context of epidemiological modeling
[11]. In contrast, the integration of LLMs with system dynamics models has
received considerably less attention. Several recent papers have demonstrated
how models like GPT-4 can assist with problem formulation, simulation design,
and analysis of system dynamics models [12] [13]. However, real-time connections
between LLMs and Stella-based simulations have yet to be fully explored. In
our experience, establishing such a connection poses significant implementation
challenges.

Our initial setup involved using an R-based wrapper around Stella, imple-
mented through R’s deSolve library and accessed via Python through the RPy2
interface. This approach was hindered by poor performance and limited flexibil-
ity in updating the model dynamically. We then explored two Python libraries
designed for importing and running system dynamics models: PySD [14] and
BPTK-Py [15]. Both attempts were unsuccessful due to the complexity of the
initial model and its reliance on Stella-specific features such as dimensions and
conveyors, which these libraries either do not support or implement differently.

To overcome these challenges, we re-implemented the model entirely in R
and accessed it via Python using the RPy2 wrapper. This new design facilitated
easier model updates and smoother communication between the SEIR model and
other components of the pipeline, such as the Retrieval-Augmented Generation
(RAG) system. The RAG system played a key role in delivering context-aware
prompts by accessing spatial and demographic data on demand, allowing the
LLMs to tailor their resource allocation recommendations for each specific ZIP
code.

Spatial data was retrieved using the GeoPandas library and fed into the RAG
system. Compared to the large volumes of data required by the initial SEIR
model to simulate each spatial object, the data provided via RAG was consid-
erably smaller. It included ZIP code boundaries, key demographics, contiguity
graphs for ZIP codes, and healthcare facility locations.

The only major adjustment to the original system dynamics model was com-
puting it for each ZIP code based on that ZIP code’s population, rather than
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using the aggregate population of San Diego. All other parameters—including
infection rates, recovery rates, and transmission dynamics—remained consistent
across ZIP codes, based on the average for San Diego County. This approach
allowed for a controlled assessment of how resource allocation and mitigation
strategies varied based on population size and geographic location, while main-
taining epidemiological consistency.

We utilized two open-source LLMs—Meta Llama 3.1: 70B Instruct (referred
to as "Llama" henceforth) and Mixtral 8x7B 32k (referred to as "Mixtral" hence-
forth)—hosted on dedicated LLM infrastructure at the San Diego Supercom-
puter Center (SDSC). This infrastructure provided API access to the LLMs and
supported large token capacities (up to 32k tokens for Mixtral and up to 120k
tokens for Llama). In addition to token capacity, the two models differ in size,
internal structure (a single large model for Llama versus a mixture of 8 smaller
models in Mixtral), performance, and specialization. The integration between the
system dynamics model and the LLLMs was managed through a custom Python
orchestration module, ensuring seamless communication. Figurel illustrates the
main components of the experimental setup. Further, we compared performance
of these models with two closed-source LLMs, OpenAl’s GPT-4 and Anthropic’s
Claude 3.5, accessed via their web interfaces for a subset of prompts.

SEIR Model in R ZIP Code Boundaries, Healthcare Facility Locations Tabular Data (Census)

RPy2 Geopandas Pandas

Contiguity Graph & Healthcare Data /
SEIR Simulation Output

Demographic Data

Python Orchestration Layer — LLM Prompts
Run Simulation  esource allocations LM API Requests
LLMs (Meta-LLaMA, Mixtral)

Fig. 1. Main components and information flows in the LLM-SD experimental setup.

The experiments involved running simulations for scenarios where an LLM
allocated a total of 10,000 game units across various strategies for each selected
ZIP code. LLM prompts were designed to include information about the pop-
ulation and SEIR model outputs such as infection counts, for each ZIP code.
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To assess the spatial capabilities of different LLMs, we ran experiments using
multiple models.

3 Results

Although the earlier setup (a Stella model wrapped in deSolve and accessed via
RPy2, integrated with GPT 3.5 and Claude 2) did not perform well overall, it
demonstrated that the LLMs were capable of generating meaningful spatially-
disaggregated scenarios. This setup revealed several interesting patterns, such
as prioritizing research efforts and vaccine distribution among students in ZIP
codes with universities, even though socio-demographic and economic profiles
were not included in the system dynamics simulations nor provided to the LLMs
via RAG. These initial findings highlight the potential of LLMs to recognize
spatial patterns with minimal input data. Building on these results, we present
findings for all ZIP codes within San Diego County (Fig. 2). However, for the
subsequent experiments, we focus on three specific ZIP codes as case studies. ZIP
code 92101, located in downtown San Diego, features a population with diverse
socio-demographic characteristics. ZIP code 92091 (Rancho Santa Fe) is char-
acterized by an older population with a higher median income. ZIP code 92093
(University of California, San Diego) is predominantly occupied by younger in-
dividuals, mainly students living in dormitories. By focusing on diverse ZIP
codes, the experiments evaluate the models’ ability to handle a range of demo-
graphic variables and spatial contexts, providing a comprehensive assessment of
the LLMs’ capabilities.

3.1 Comparing LLM Model Performance in Spatial Disaggregation
Tasks

The evaluation of LLMs, including GPT, Claude, Llama, and Mixtral, revealed
significant differences in making use of spatial information and generating strate-
gies for mitigating disease transmission across ZIP codes in San Diego County.
GPT-4 and Claude 3.5 demonstrated superior spatial awareness, accurately rec-
ognizing ZIP codes like 92093 as linked to the University of California, San Diego,
and tailoring their strategies to the demographic and infrastructural contexts of
university areas, such as prioritizing student interventions.

In contrast, Llama and Mixtral struggled with spatially-specific tasks, often
providing generic recommendations that overlooked the unique challenges of
particular ZIP codes. For example, while GPT-4 suggested targeted public health
strategies for university areas, Llama failed to account for their academic and
demographic uniqueness, resulting in less effective mitigation plans.

3.2 Limitations in Spatial Reasoning and Data Integration

During an experiment where the LLMs were tasked with allocating specific re-
source units across multiple stages based on dynamic SEIR model outputs, both
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Llama and Mixtral exhibited a tendency to hallucinate. Specifically, the models
frequently overshot the available resource units, failing to account for resources
allocated in earlier stages. This issue persisted despite detailed prompts, high-
lighting the models’ difficulty in managing cumulative resource allocation over
time while adhering to real-world constraints.

Another key limitation was the models’ inconsistent spatial reasoning, par-
ticularly in balancing complex data inputs. While they demonstrated basic com-
petence in considering single variables, such as recognizing the importance of
neighboring ZIP codes when limited local information was provided, they strug-
gled when more intricate spatial relationships were required. For example, when
balancing healthcare utilization and population demographics across regions, the
models often produced suboptimal allocations.

Prompt tuning was employed to mitigate this issue. By instructing the models
to review their initial recommendations and verify that all critical factors—SEIR
model outputs, healthcare facilities, neighboring ZIP codes, and spatial con-
text—had been adequately considered, the LLMs showed moderate improve-
ments. This additional layer of review encouraged a more balanced and com-
prehensive approach, yet the models still struggled to fully integrate complex
spatial data and maintain resource allocation constraints.

3.3 Performance Comparison: Explicit vs. Inferred Neighborhood
Data

This experiment compared the performance of Llama and Mixtral under two
conditions: one where a contiguity graph for ZIP codes was explicitly provided
and another where the models were required to infer neighboring ZIP codes
using their internal spatial reasoning capabilities. The objective was to assess
how effectively the models could integrate spatial context into their resource
allocation strategies.

The analysis of percent similarity across resource allocation vectors revealed
that Mixtral struggled to utilize the contiguity graph effectively. Its allocations
for all three ZIP codes fell within a narrow similarity range (88-90%). In con-
trast, Llama’s performance was more affected by the contiguity information,
showing lower similarity (70-75%) for two ZIP codes (92101 and 92091). In-
terestingly, when explicit contiguity information was provided, the similarity
between Llama’s and Mixtral’s allocations dropped to as low as 40% for ZIP
code 92091, suggesting that Llama adjusted its allocations more significantly in
response to the added spatial data.

When the models were not provided with a contiguity graph, both Llama and
Mixtral generated more similar allocations, with around 80% similarity across all
ZIP codes. This suggests that, without explicit guidance, both models defaulted
to simpler spatial reasoning, resulting in less variation in their decisions.

An additional observation is that the explicit inclusion of the contiguity graph
led Llama to favor interventions that addressed cross-boundary needs, such as
Widespread Testing Initiatives, Comprehensive Contact Tracing Programs, and
Expansion of Healthcare Capacity. In contrast, omitting the contiguity graph



LLMs’ Capabilities for Epidemiological Modeling 7

resulted in a focus on more localized strategies, such as Mental Health Support
Services and Telehealth Services Expansion, which are easier to confine to specific
ZIP codes.

While there were observed advantages to including the contiguity graph,
both Llama and Mixtral still struggled to fully leverage this spatial data. For
example, in ZIP code 92093 (UCSD), which lacks long-term healthcare facilities,
we expected the models to recognize the availability of prominent UCSD Health
resources in neighboring ZIP code 92037. However, the models continued to
recommend significant investments in expanding healthcare facilities in 92093,
overlooking the proximity of resources in 92037. This misallocation indicates
that the models had difficulty accounting for healthcare access across ZIP code
boundaries, even with explicit spatial guidance.

Overall, the inclusion of contiguity information enabled better coordination
of resources across ZIP code boundaries, though this capability remained lim-
ited. Without explicit spatial data, the models frequently failed to consider the
healthcare capacity and demographic characteristics of neighboring areas. Ad-
ditionally, response times were nearly three times longer when contiguity data
was omitted, underscoring the models’ difficulty in inferring spatial relationships
without explicit guidance.

3.4 Resource Allocation Across Multiple Runs

Table 1. Averages and relative range percentages(Avg, % Range) generated by Llama
and Mixtral for commonly preferred strategies, for three test zip codes

Strategy 92091 92093 92101
Llama Mixtral [Llama Mixtral [Llama Mixtral
Widespread Testing 2006, 100 |1500, 67 |2120, 94 |1505, 33 |2084, 96 |1505, 33
Public Health Campaigns |1685, 148 1011, 49 |1608, 199 [1000, 0O 1499, 100 {998, 20
Social Distancing 1225, 163 (1011, 49 1170, 103 {1000, O 1229, 98 1000, 0
Quarantine Facilities 1162, 112 |1885, 27 |1450, 103 (1900, 26 {1000, 200 |1474, 102
Healthcare Capacity 1813, 138 [2214, 45 |1857, 124 {2000, O 1869, 118 (2021, 25
Home Isolation 1067, 187 (928, 54 977, 154 (974, 51 618, 162 |712, 70
Telehealth Expansion 1064, 235 |536, 93 1095, 110 |500, O 917, 120 {500, 0
Vaccination Research 1250, 120 |- 1389, 72 |- 1317, 228 |-
Contact Tracing 1430, 175 (1415, 71 |1509, 99 [1368, 73 |1304, 192 |1135, 88

The Llama and Mixtral models were each run 100 times to evaluate the

patterns of resource allocations they generated. Both models were run under
identical conditions, including the same temperature parameter—a key factor
influencing the randomness of generated outputs. While both models allocated
resources to similar strategies, Llama’s results showed notably higher variability
in allocations—measured as percent range—especially in strategies like Health-
care Capacity, Contact Tracing, and Public Health Campaigns. Conversely, Mix-
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tral exhibited relatively stable allocations, with narrower ranges across the same
strategies (Table 1). These differences can be attributed to the underlying archi-
tecture and training objectives of the two models. Llama, being a larger model
with 70 billion parameters, is designed to handle more complex reasoning and
can capture a broader range of potential outcomes, leading to more diverse out-
puts across multiple runs. In contrast, Mixtral, with fewer parameters, produced
less fluctuating results across simulations.

Widespread Testing Initiatives Targeted Public Health Campaigns Pr‘%rpotion of Home Isolation and Self-Quarantine Measures
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Fig. 2. Resource allocation of three pandemic response strategies preferred by Llama

Fig. 2 illustrates the spatial patterns of allocations for three selected strate-
gies preferred by Llama (as mentioned above, Mixtral simulations demonstrated
its limited spatial reasoning capabilities).While the allocations can generally be
explained by existing differences in vulnerable populations, average income, me-
dian age, population density, and proximity to healthcare facilities, in many cases
the patterns appear spurious and may be referred to as hallucinations, as they
result from the lack of contextual understanding and incomplete training data
about spatial relationships.

4 Discussion

Recent research has significantly advanced the understanding of LLMs’ spa-
tial knowledge and reasoning capabilities compared to earlier foundational work
with models like BERT and GPT-3, which primarily focused on natural language
processing tasks [16] [17]. Subsequent studies have explored various geospatial
tasks, providing benchmarks for LLMs’ performance in understanding mapping
concepts, spatial analysis, and location-based reasoning [18] [3] [5]. Other re-
search has focused on interpreting spatial predicates [4], navigation tasks [19],
qualitative spatial reasoning [20], exploring and categorizing geospatial embed-
dings [21] [22], and translating natural language into spatial SQL queries [23].
While these studies underline LLLMs’ potential for leveraging spatial knowledge
and understanding spatial relationships in a variety of applications, they also
highlight current limitations. In this paper, we extended this exploration by in-
tegrating LLMs with a system dynamics platform to simulate spatial patterns of
disease outbreaks. Our findings were consistent with previous research, showing
that while LLMs can process spatial data and leverage spatial relationships to a
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certain degree, the results varied significantly across regions. The LLMs demon-
strated their ability to integrate non-explicit spatial data into simulations, fa-
cilitating a geographically distributed analysis of disease spread and suggesting
meaningful and nuanced mitigation measures. At the same time, the models we
explored demonstrated different performance under different scenarios, with and
without spatial contiguity information explicitly incorporated.

5 Future Directions

In future work, we aim to integrate the system dynamics model more closely
with a Python orchestration layer to query LLMs at key decision points. This
will allow for dynamic scenario adjustments during multiple continuous runs of
the model, enabling more responsive and adaptive decision-making for mitigation
strategies.

To further enhance LLMs’ performance in spatial contexts, future work should
focus on incorporating more sophisticated spatial datasets and training models
specifically for spatial reasoning tasks. We are already exploring several im-
provements to our approach. For example, we are considering adjusting resource
allocations by population size or other relevant metrics to better reflect realis-
tic spatial relationships. Additionally, tuning LLM prompts to be more precise
and task-specific, rather than general geospatial context prompts, may improve
LLMs’ performance without relying on model fine-tuning.

Lastly, we are experimenting with additional measures of spatial connected-
ness beyond the contiguity graph used in our initial experiments. For instance,
we plan to leverage data from a local transportation model in San Diego County,
which forecasts travel demand between the 4,500 Master Geographic Reference
Areas (MGRAs), to enhance the representation of population movement in our
simulations. These advancements will help address the current limitations and
improve the effectiveness of LLM-assisted spatial simulations.
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