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Abstract—Differentiable 3D-Gaussian splatting (GS) is emerging as a prominent technique in computer vision and graphics for
reconstructing 3D scenes. GS represents a scene as a set of 3D Gaussians with varying opacities and employs a computationally
efficient splatting operation along with analytical derivatives to compute the 3D Gaussian parameters given scene images captured
from various viewpoints. Unfortunately, capturing surround view (360◦ viewpoint) images is impossible or impractical in many real-world
imaging scenarios, including underwater imaging, rooms inside a building, and autonomous navigation. In these restricted baseline
imaging scenarios, the GS algorithm suffers from a well-known ‘missing cone’ problem, which results in poor reconstruction along the
depth axis. In this paper, we demonstrate that using transient data (from sonars) allows us to address the missing cone problem by
sampling high-frequency data along the depth axis. We extend the Gaussian splatting algorithms for two commonly used sonars and
propose fusion algorithms that simultaneously utilize RGB camera data and sonar data. Through simulations, emulations, and
hardware experiments across various imaging scenarios, we show that the proposed fusion algorithms lead to significantly better novel
view synthesis (5 dB improvement in PSNR) and 3D geometry reconstruction (60% lower Chamfer distance).

Index Terms—Gaussian Splatting, Acoustic-Optic Vision, Sensor fusion.
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1 INTRODUCTION

D IFFERENTIABLE Gaussian spatting (GS) [1], a resur-
gence of elliptical weighted average (EWA) splat-

ting [2] from almost two decades back, has been emerging as
the dominant differentiable representation for scenes [3, 4].
GS represents the scene as a volume density map similar to
neural radiance fields (Nerf) [1, 5]. However, unlike Nerfs,
GS explicitly represents the scene as a sum of densities
of anisotropic 3D Gaussians. The explicit representation
facilitates easier geometric interpretation and manipulation
of the scene, leading to an explosion of GS-based techniques
for scene relighting [6], shading [7], novel view synthe-
sis [8], text-based manipulation [9], and non-rigid manipu-
lation [10]. Furthermore, the GS rendering algorithm is fast,
thanks to the splatting operator and analytical derivatives
which leads to extensions to dynamic scenes [11, 12], 4D
manipulation [13–15] and time-efficient editing [9, 16].

Unfortunately, when the training dataset has a lim-
ited baseline, optimizing through the GS algorithm causes
overfitting leading to poor novel-view rendering and 3D
reconstruction. In Section 3.4, we show that limited baseline
results in the well-known ‘missing cone’ problem [17, 18]
where the frequencies along the depth-axis are not captured
in the training data. To mitigate the problem of missing
depth information from the training images, Chung et
al. [19] proposed regularizing 3D Gaussian splatting with
monocular depth estimates. However, as this method hal-
lucinates depth, the scene reconstructions are no longer
physically based and suffer from training bias. In this paper,
we use sonar images to sample the missing cone region.

Recent progress in sonar technologies has resulted in
several low-cost sensors that augment 2D spatial data mea-
sured by RGB cameras. Examples include echosounder [20],
forward-looking sonar [21], synthetic aperture sonar [22]

which find applications in SLAM [23], navigation [24, 25],
underwater imaging [26], and imaging through scattering
media [27]. These sonars offer complementary information
compared to the standard RGB cameras.

In this paper, we extend Gaussian splatting for sonar
and build fusion techniques that reconstruct geometry using
the complementary information from both the cameras and
sonars. Our extension involves the development of splatting
operations along the z-axis tailored for these sensor types.
Through simulations, emulations, and hardware experi-
ments, we show that combining sonars and cameras results
in significantly better (60%) 3D geometry reconstruction.
We also show that the accuracy of novel view synthesis
improves by 5 dB by regularizing camera data with sonars.

The specific contributions of this paper include

1) A novel forward model to render the transient
of Gaussian point clouds for two types of sonars:
Echosounder and Forward-Looking Sonar (FLS).

2) Fusion algorithms for cameras and sonars.
3) Validation on synthetic, emulated hardware, and

real hardware datasets showing that fusion GS
splatting results in better geometric (60%) and
photometric (5 dB) reconstruction than standard
camera-only Gaussian splatting.

We release our source code and data to the larger
community [28]. We hope that our work inspires the use
of complementary sensor modalities to improve 3D scene
representation in the future.

2 RELATED WORK

Gaussian splatting: In computer graphics and rendering,
splatting algorithms were introduced over two decades
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ago [2] for texture filtering [29] and point cloud render-
ing [30, 31], where the scene is represented as a sum of
anisotropic Gaussian kernel that can be efficiently rendered
and without aliasing artifacts.

The Gaussian splatting paper [1] uses this scene rep-
resentation and fast differentiable rendering pipeline to
compute the scene parameters (density, color, mean, and
variance of the 3D Gaussians). Thanks to the decreased
computation on empty spaces, analytical derivatives, rich-
quality reconstructions, and explicit representations, Gaus-
sian splatting has seen an explosion of extensions, even
though it was introduced less than a year ago (see Fei et
al. [32] for a review of the state-of-the-art). Related to this
paper, Matsuki et al. [33], Keetha et al. [34], Yan et al. [35],
Sun et al. [36] have independently proposed similar SLAM
algorithms using RGB-D cameras. The key idea is to splat
depth similar to color values and minimize the weighted
sum of photometric and geometric loss functions. However,
this idea cannot be extended to sonar data as these tech-
niques require a single depth value per pixel, necessitating
the dataset to be a depth map with high spatial resolution
on the x-y plane. Instead, sonar data typically resembles a
transient histogram of time-of-flight returns.

Camera and sonar fusion techniques: There has been pre-
vious research on fusing complementary information from
sonars and cameras in the literature [37–39]. For example,
optical cameras suffer from hazing and scattering problems,
especially in turbid waters [37]. Sonars do not suffer from
scattering, though they have poor spatial resolution. To
address this, Raaj et al. [38] combined FLS and optical
cameras for 3D object localization via particle filter in scat-
tering environments. Williams and Mahon [39] combined
an echosounder (also known as depth sounder) and a vi-
sion camera to develop a SLAM algorithm for underwater
robotic navigation on the Great Barrier Reef. This paper
focuses on the complementary geometric information that
sonars and cameras provide and analyzes how the missing
cone present in camera-based 3D reconstruction can be
resolved via our Gaussian splatting algorithms for transient
histograms to reconstruct better geometry and photometry.

Most related to our work, Babaee and Negah-
daripour [40] reconstructed 3D objects from RGB and imag-
ing sonars. However, their technique requires matching
occluding contours across RGB and imaging sonar, which
restricts its applicability to small baseline scenarios. Qadri et
al. [21] recently propose combining FLS sonar and cameras
using implicit neural representations (INR). Unlike ours,
Qadri et al.’s technique cannot easily extend to echosounder
and reconstructs only scene geometry, not photometry.

Other fusion techniques: In addition to sonar, researchers
have proposed fusing radar measurements with radar for
better object detection [41], imaging of cluttered environ-
ment [42], and estimating pose and motion of vehicles
for autonomous navigation. Fusing Lidars or other optical
time-of-flight cameras is similar to our problem and has
been targeted at imaging through scattering media [43],
densification of lidar point scans [44], and improved depth
estimation [45–47]. The proposed Gaussian splatting algo-
rithm could be extended to fusion with Radars and Lidars.
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(a) volumetric scene and the splatted camera 
and sonar measurements

(c) complementary information 
helps few-shot problem

(b) camera only measurements 
make the problem ill-posed

Fig. 1. Sonar measurements provide complementary information.
(a) Volumetric scene captured with three pairs of cameras and sonars
(echosounder). We assume the sensors are in the far field (i.e., the affine
approximation to the projective transform in Gaussian splatting research
is valid). For the center camera-sonar pair, camera measurements are
obtained by projecting the volumetric data along the vertical axis, and
sonar measurements are obtained by projecting the volumetric data
along the horizontal axis. (b) If only camera measurements are consid-
ered, then using the Fourier-slice theorem, we are capturing only a few
slices of the Fourier transform of the volume and missing information
on a large cone. (c) Sonar (time-resolved data) captures orthogonal
slices in the Fourier space, and hence, 3D reconstruction of the scene
is better conditioned if we do the camera-sensor fusion instead of using
only camera data.

3 TECHNICAL BACKGROUND

In this section, we will briefly review the scene representa-
tion, rendering equation, and splatting operation associated
with the Gaussian splatting algorithm. We will show that
traditional GS algorithms do not appropriately capture the
z-related scene parameters, resulting in the missing cone
problem. This problem motivates our camera and sonar
fusion solution to recover this lost information.

3.1 Scene representation
In Gaussian splatting, the scene is represented as a vol-
umetric density map. This density (σ ∈ R+) at a point
(x̄ ∈ R3) is given as the sum of densities contributed by
several Gaussians located as positions (µ̄n ∈ R3) and 3 × 3
anisotropic variance (Σn). Analytically,

σ(x̄) =
N∑

n=1

σnN (x̄; µ̄n, Σn), (1)

where σn is a scaling factor representing the density of each
Gaussian. The color at each 3D point is similarly defined as

c̄(x̄) =
N∑

n=1

c̄nN (x̄; µ̄n, Σn), (2)

where c̄n is the color of each Gaussian kernel, which is
encoded using spherical harmonics [1].

The covariance of a 3D Gaussian is represented using the
scaling matrix Sn and a rotation matrix Rn to maintain the
positive definiteness as:

Σn = RnSnS
T
nR

T
n . (3)
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The rotation matrix Rn is calculated from a normalized
quaternion qn. For brevity, we will drop the index n wher-
ever the index is implied.

3.2 Volume rendering equation

Gaussian splatting uses the same volume rendering equa-
tion as point-based α-blending [48] or NeRF-style [5] volu-
metric rendering. Therefore, if a ray (x̄(l) = ō + ld̄) is cast
along a pixel on the camera, the color C of the pixel will be

C =
M∑

m=1

Tmαmcm, (4)

where the index m represents the mth segment of the ray
with small length δl, and

αm = 1− e−σ(x̄)δl, Tm =
m−1∏
k=1

(1− αk), and

cm = c(x̄(mδl)). (5)

3.3 Splatting operation

Instead of expensive ray tracing similar to NeRF-style al-
gorithms, the GS algorithms [1, 2] use splatting, which is
similar to rasterization. For a camera viewing transform W ,
the 3D volume is transformed appropriately to the camera
view, but the GS algorithm approximates the projection
operation with an affine transformation so that any 3D
Gaussian remains a 3D Gaussian with covariance matrix:

Σ′ = JWΣWTJT , and meanµ′ = JWµ (6)

where J is the Jacobian for the local affine approximation
for each Gaussian kernel

J =


1
µz

0 −µx

µ2
z

0 1
µz

−µy

µ2
z

µx

l
µy

l
µz

l ,

 (7)

and where µ = [µx, µy, µz] and l = ∥µ∥2. The local affine
approximation preserves the Euclidean distance from the
camera to the object. Based on the equation (15) in the EWA
Splatting [2], the transformed domain is[

µ′
x µ′

y µ′
z

]T
=

[
µx/µz µy/µz ||(µx, µy, µz)

T ||
]T

.

Note that the distances between the camera and Gaussian
centers are still ||(µx, µy, µz)

T ||. The visual illustration is
shown in Figure 2 (a) and (b). This ensures the relative
accuracy of the sonar physical model.

The next step after the approximate projection operation
is orthographic projection. The 3D Gaussians are converted
to 2D Gaussians with covariance matrix Σ′

2D obtained by
dropping the last row and column, mathematically,

Σ′
2D =

[
1 0 0
0 1 0

]
Σ′

1 0
0 1
0 0

 (8)

The 2D Gaussians are α-blended using Equation (4) to
synthesize the camera image.

3.4 The Missing Cone
In small baseline imaging scenarios, information about the
covariances (σxz, σyz) and variance (σzz) associated with the
depth-axis and the mean (µz) along the depth-axis are not
captured by the camera images.

To illustrate this, consider a simple volumetric imaging
scenario in Figure 1. We consider 2D volume (the argu-
ments are extendable to 3D volume) and assume no inter-
reflections and far-field sensing modalities, i.e., volumetric
scene after the local affine approximation in the GS algo-
rithm. For these volumetric scenes, the rendered RGB image
will be the x-axis projection (splat) of the volume.

Using the Fourier-slice theorem, the Fourier transform of
the camera image is the same as the x-slice of the volume’s
Fourier transform. By taking several images from various
angles, we are capturing various slices of the volume’s
Fourier transform. Unfortunately, for the small baseline sce-
narios [21], we have the missing cone problem [17, 18, 49],
which refers to a cone in the Fourier space that was not
sensed by the camera images. This limits the fidelity of the
3D reconstructions due to missing frequency information.

Our approach to solving this problem is to utilize com-
plementary information present in time-resolved measure-
ments, particularly time-resolved measurements from sonar,
which can be obtained by taking the z-axis projection of
the volume as we will discuss next in (Section 4). From
the Fourier-slice theorem, this is equivalent to obtaining
a z-slice of the volume’s Fourier transform as shown in
Figure 1(c). Hence, sonars can help capture the missing
cone and augment camera data, particularly when camera
baselines are limited.

4 Z-AXIS GAUSSIAN SPLATTING FOR CAMERA-
SONAR FUSION

We will first extend the Gaussian splatting model to two
commonly used sonars, i.e. echosounder and FLS, by ex-
ploiting the physics of how the sonars operate. After that,
we will combine the camera and sonar Gaussian splatting
to build a fusion algorithm capable of reconstructing the
3D Gaussian parameters accurately even for small baseline
imaging scenarios.

4.1 Echosounder
A single-beam echosounder utilizes a single transducer
element to emit a sound pulse toward the target area and
captures the echo, a time-varying sound pulse that bounces
back from the scene. This echoed signal is a function of
acoustic reflectivity and depth of various scene points. For
simplicity, we assume the acoustic albedo is constant for all
the objects in the scene. Therefore, the echoed signal can also
be interpreted as a 1D histogram of scene depths computed
through acoustic time-of-flight.

In Figure 2, we illustrate the proposed splatting opera-
tion for echosounder. We splat the 3D Gaussians along the
z-axis, while computing the transmission and alpha values
similar to the camera splatting. The covariance of the 1D
projection of 3D Gaussians is:

Σ′
1D =

[
0 0 1

]
Σ′

00
1

 = σzz. (9)
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Algorithm 1 Echosounder rendering
Z[d] = 0;
for each point on the xy-plane do

for each visible Gaussian Kernel do
for each bin i within µz ± 3σzz do

z = center of the bin
Z[i]+ = T · α · exp(− (z−µz)

2

2σzz
)

end for
end for

end for

Algorithm 2 FLS rendering
Z[h, d] = 0;
for each point on the xy-plane do

for each visible Gaussian Kernel do
for each bin i within µ± 3 · σzz do

z = center of the bin
j = y-center of the Gaussian

Z[j, i]+ = T · α · exp(− (z−µz)
2

2σzz
)

end for
end for

end for

Therefore, the echosounder captures the information
about mean µz and variance σzz along the depth axis that
was missing in the camera data. The proposed splatting
operation computes the depth histogram of the volumetric
scene while accounting for the visibility term accurately.

We show the steps of the z-axis splatting for
echosounder in Algorithm 1. We splat Gaussians for each
xy-pixel during rasterization. Therefore, if the scene is rep-
resented as one large Gaussian or several small Gaussians,
the rasterized Z-splat result would be same.

4.2 Forward Looking Sonar (FLS):

FLS is similar to an echosounder, except it contains multi-
ple linear transducer elements. Through beamforming, FLS
recovers the range and azimuth information but not the
elevation. Therefore, in the orthographic view (Figure 2(b)),
FLS measures depth histograms for various y values.

To build a rendering algorithm for FLS, we splat the 3D
Gaussians on the y−z plane, resulting in 2D Gaussians with
covariance matrix:

Σ′
2D =

[
σyy σyz

σyz σzz

]
. (10)

We compute the transmission and alpha values similar to
camera splatting, as the visibility terms do not change for
FLS. We identify the steps in FLS rendering in Algorithm 2.

In practice, an RGB camera often has a higher spatial
resolution than a sonar, so the information on the y-axis
mainly comes from the RGB camera. Therefore, we expect
the reconstruction accuracy and quality of novel synthetic
views supervised by FLS to be slightly better than those
from echosounder, but not significantly better.

4.3 Fusion of cameras and sonars

We fuse the camera and sonar information by jointly mini-
mizing the error between the rendered and measured data

Gaussian
Kernel
Histogram
Ray

(a) camera view (b) orthographic view (c) splatting
xy plane

z

legend

Sonar pulse

Fig. 2. Ray View Transformation and Z-Axis Splatting (a) This illustra-
tion shows the camera view. The covariance of Gaussians in the camera
view is Σ = WTΣW , which transforms the Gaussians from the world
view to the camera view. (b) The Gaussians are transformed into the ray
view through an local affine approximation of the projection transform
using the Jacobian (J). The covariance matrix of the Gaussians will
be Σ′ = JTΣJ . (c) The transformed 3D Gaussian is then projected
(splat) onto the xy-plane for rendering camera and z-axis for rendering
echosounder (for collocated camera and echosounder). The gray Gaus-
sian is occluded by the Gaussian in the front, so the Transmission(T )
of that Gaussian is smaller than the others independent of whether we
are rendering camera or sonar. Based on Algorithm 1 and Algorithm 2,
each ray undergoes splatting independently, ensuring that if a Gaussian
is rasterized by multiple rays, it will be splatted multiple times.

for both sensors. We define the camera loss Lc as:

Lc = ∥I(x, y)− Igs(x, y)∥1, (11)

where I(x, y) represents the measured camera image and
Igs(x, y) is the rendered image from Gaussian splatting.

The sonar loss (Ls) is defined as

Ls =

{
∥S(z)− Sgs(z)∥2, for Echosounder
∥S(y, z)− Sgs(y, z)∥2, for FLS.

(12)

Here S(z) and S(y, z) are the measured echosounder and
FLS data; Sgs and Sgs(y, z) are the Gaussian splatted ren-
derings discussed in Section 4.1 and Section 4.2. Note that
Ls is a vector norm for echosounder and a Frobenius norm
for FLS.

We define the loss function as a weighted combination
of camera and sonar loss functions:

L = Lc + w · Ls. (13)

Empirically, we found that setting 0.1 ≤ w ≤ 3 is
suitable for most scenarios. We can tune w based on the
confidence between camera and sonar measurements. For
instance, in Figure 4, we choose w = 3 for the living room
scene because the scene does not have a lot of texture.
We can also choose adaptive weighing schemes similar to
Qadri et al. [21] where more importance is given to sonar
measurements in the beginning and camera measurements
in the later iterations, though we did not find that weighing
scheme useful in this case.

4.4 Implementation

We have implemented the proposed algorithms by extend-
ing the publicly available Gaussian splatting source code
shared by Kerbl et al. [1]. We computed the derivatives an-
alytically and wrote cuda kernels to improve the rendering
and training speed. The average training time for all the
simulated experiments in the paper is around 5 minutes on a
NVIDIA 4090 GPU, while real experiments took 20 minutes
for echosounder and 8 minutes for FLS.
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Fig. 3. Simulation and emulation training for both echosounder and FLS fusion techniques (a) Raw depth image captured with Time-of-Flight
(ToF) camera. (b) An RGB image captured with a camera. (c) Simulated echosounder intensity was generated using the depth histogram and
utilized as ground truth during training. (d) A 3D Gaussian scene. We use xy-splatting to render RGB images and z-splatting to render echosounder
depth intensity distribution. (e) Simulated FLS intensity generated by histogramming depth per row. (f) A 3D Gaussian scene, and we splat along
xy-direction to render RGB image and along yz-direction to render FLS image. We minimize the sum of RGB loss and corresponding depth loss to
train the camera-sonar fusion algorithms.

5 EXPERIMENTAL RESULTS

In this section, we systematically evaluate the proposed fu-
sion techniques using simulated, emulated, and hardware-
capture data. Novel view synthesis refers to generating
images from camera views not in the training data. Using
standard photometric metrics (PSNR, SSIM, and LPIPS), we
compare the novel views generated by traditional Gaussian
splatting and the proposed fusion techniques. We also com-
pare the reconstructed geometry as 3D point clouds using
Chamfer distance, F1 score, precision, and recall.

5.1 Simulation results

We use Mitsuba [50] to generate the simulated datasets. For
each camera and sonar view, we render the image from the
camera view and the depth map from the sonar view. We
simulate echosounder intensity by histogramming the depth
values of the entire scene, resulting in an intensity distribu-
tion across depth that mimics the transient sonar measure-
ments. This histogram serves as the ground truth either for
training or for testing. The left part of Figure 3 illustrates
the process of generating the ground truth echosounder
intensity and the predicted echosounder intensity using the
proposed method.

To simulate FLS data, we histogram the depth values per
row rather than the whole image. Each row represents one
azimuth angle θ in the FLS. The resolution of the histogram
along the z-axis is determined by the range r that the
FLS can resolve. The right part of Figure 3 illustrates the
process of generating ground-truth FLS scans. To initialize
Gaussians, we found that random initialization to be more
reliable than COLMAP initialization, as the latter sometimes
suffered due to small baselines in our datasets.

We provide two different types of scenes in the simu-
lation process: (i) Room-sized scenes from Mitsuba Gallery
(Figure 4) and (ii) Single-object scenes from Mitsuba Gallery,

Stanford 3D Scanning Repository and online free resources.
In the room-sized scenes shown in Figure 4, we cannot freely
maneuver the camera around the scene or object and obtain
a full 360-degree scan due to the geometric constraints,
and hence, we are in a restricted baseline scenario. Further,
the scenes contain saturated regions due to windows and
little texture. For these imaging scenarios, the camera-based
reconstruction is ill-posed, and the addition of depth infor-
mation better constrains the reconstruction problem.

We present the novel view synthesis comparisons (pho-
tometric comparisons) in Table 2 and geometry reconstruc-
tion comparisons in Table 1. For novel view synthesis, we
outperform the RGB-only method on PSNR, SSIM, and
LPIPS metrics. Specifically, we observe an average 5 dB
improvement in PSNR compared to camera-only GS algo-
rithms and a 10 dB increase on challenging scenes that
contain little texture (living room scene).

The reconstructed 3D Gaussians typically have a small
variance (of a couple of pixels) and, hence, can act as
reconstructed point clouds. We tessellated the ground truth
mesh and considered the mesh vertices as the ground truth
point cloud. This tessellation allows us to compute vari-
ous metrics (Chamfer distance, Recall, precision, F1-score)
between the reconstructed point cloud and the ground
truth. In Table 1, we show the comparisons across all the
methods. The proposed techniques consistently outperform
the traditional GS algorithms. we observe an average 50%
improvement in Chamfer distance and a tenfold increase in
the scenes with little texture (living room scene).

The primary reason for these improvements lies in our
method’s effective mitigation of the issue of floaters in
the scene, a common challenge encountered in volumet-
ric rendering methods. By reducing erroneous placement
of Gaussians and enhancing both geometry accuracy and
photometric details, we achieve significant advancements



6

RGB Only Echosounder (Ours) FLS (Ours)Ground Truth
Be

dr
oo

m
Li

vi
ng

 ro
om

Ba
th

ro
om

Fig. 4. Novel view synthesis comparison: The incorporation of depth information notably mitigates the presence of floaters in the reconstructed
scene. Moreover, depth information accurately positions the Gaussian kernels, particularly in scenes with uniform color or overexposure. The
average SSIM, PSNR, and LPIPS metrics for the entire test set comprising 263 novel views are presented in Table 1.

in overall performance. The results also indicate that FLS
outperforms echosounder, albeit with only a slight improve-
ment. This confirms our hypothesis from Section 4.2 that
FLS will provide little additional information in the y-axis,
as cameras also provide information along that dimension
and at a higher resolution.

In the second set of scenes, instead of complex scenes
with multiple objects, we created a series of scenes with
only one diffuse object without texture. Similar to Qadri et
al. [21], we restricted camera and sonar movement along
the x-axis within a small range (2.3 degree on the circle)
across these simplified scenes. We visualize the results in
Figure 5, showcasing the ground truth as a mesh and
the predicted Gaussian kernels as red points. In Table 3,
we quantify the accuracy of reconstructed geometry with
various metrics. We can observe that the proposed fusion
consistently performs better than camera-only techniques.

Comparison to ToRF [47]. We found that the camera-
only GS method outperforms ToRF. GS achieves a PSNR of
33.91 dB when trained solely on RGB images from the ToRF
bedroom dataset, and 36.42 dB with fusion, compared to
ToRF’s PSNR of 29.79 dB with fusion. Note that the PSNR
for ToRF is taken from its original paper.

5.2 Hardware emulation results

In addition to the simulation, we emulate the sonars using
the camera and Lidar on the Sony Xperia II smartphone. We
have built a Cornell box scene with multiple objects in our
lab. We translate the phone inch-by-inch on the xy-plane to
obtain training data. We capture RGB images and pixel-wise
depth measurements simultaneously, mirroring the process
employed during simulation in Section 5.1. We position
the phone in between the training samples to generate the
test dataset. We extract camera poses and Structure-from-
Motion (SFM) points using COLMAP and train the three
models of GS, Echosounder, and FLS.

The test results are shown in Figure 6 and quantified
in Table 4. From Figure 6, it is evident that the RGB-only
reconstruction results in significantly more blur on the white
crane, box edges, and egg doll. This could be attributed to
COLMAP creating denser points on clear edges but not
on the background or white objects that share the same
color as the background. During optimization, the RGB-only
method would not produce more Gaussians because of the
similar color. However, our methods surpass the RGB-only
approach by producing clear and sharp edges with the aid
of z-axis information. The average PSNR of our methods is
5 dB higher than that of RGB-only, and our techniques also
have higher SSIM and lower LPIPS, as shown in Table 4.

During the experiments, we observed that the RGB-only
method exhibits high variability. To investigate further, we
conducted 10 training runs for each model using the same
training dataset, test dataset, and initialized SFM points, but
with random initial seeds. In Figure 7, we show the box and
whisker plot to visualize the variance between the runs.
The RGB-only method can perform poorly at times and
exhibits significant variance across each training process. In
contrast, both of our methods are robust and have consistent
performance. Furthermore, even our worst-performing run
outperforms the RGB-only method.

5.3 Hardware results - Echosounder
For our set of real hardware experiments, we first utilize our
proposed method for sensor fusion between RGB cameras
and a monostatic active sonar to capture acoustic ToF data.
Echo sounding is the technique of using an active sonar to
determine depth/range. Thus we have built a prototype of
an echosounder using a single speaker and microphone that
is attached to a DSLR camera for collecting real acoustic ToF
data along with RGB images. We describe our setup and
data processing procedures below.

Experimental setup and data capture: Our setup, vi-
sualized in Figure 8 and similar to other circular in-air
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TABLE 1
Simulation: Novel view synthesis comparisons (Room sized scenes)

RGB Only Echosounder (Ours) FLS (Ours)
Scene PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Bedroom 31.855 0.881 0.242 35.264 0.893 0.205 35.348 0.891 0.177
Living room 27.508 0.874 0.331 37.790 0.948 0.182 38.457 0.951 0.176

Bathroom 27.465 0.872 0.177 33.381 0.929 0.092 35.753 0.952 0.073

PSNR, SSIM, and LPIPS metrics. We use PSNR, SSIM, and LPIPS to evaluate the quality of the predicted novel view RGB images. The best
results are in green, while the worst are in red. We can see that our methods outperform the RGB-only method in all scenes. While the FLS
method has the best performance, as expected, the improvement compared to the echosounder is small.

TABLE 2
Simulation: Geometric comparisons (Room sized scenes)

RGB Only Echosounder (Ours) FLS (Ours)
Scene Chamfer↓ Precision↑ Recall↑ F1↑ Chamfer↓ Precision↑ Recall↑ F1↑ Chamfer↓ Precision↑ Recall↑ F1↑

Bedroom 0.374 0.893 0.549 0.680 0.163 0.997 0.667 0.799 0.198 0.998 0.622 0.767
Living Room 3.382 0.825 0.084 0.152 0.291 0.977 0.512 0.672 0.359 0.998 0.540 0.701

Bathroom 4.545 0.616 0.594 0.605 4.136 0.882 0.521 0.655 3.912 0.907 0.485 0.632

Chamfer, Precision, Recall, and F1 score metrics. We use Chamfer, Precision, Recall, and F1 score to evaluate the quality of the predicted 3D
Gaussian splatting.The best results are in green, while the worst are in red. The metrics are calculated by comparing the point cloud of the
predicted Gaussian splatting with the ground truth mesh vertices. Our methods outperform the RGB only method in most metrics, and the
FLS method has the best performance.

RGB Only Echosounder (Ours) FLS (Ours)Render View
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Fig. 5. Geometry comparison on one-object scenes. We captured the data by moving the camera only along the x-axis. We show ground truth
meshes and superimpose the reconstructed Gaussians as point clouds. In the highlighted regions, we can observe that camera-only methods
reconstruct the geometry inaccurately along the z-axis, whereas the proposed fusion techniques reconstruct the geometry accurately.

TABLE 3
Simulation: Geometric comparisons (One-object scenes)

RGB Only Echosounder (Ours) FLS (Ours)
Scene Chamfer↓ Precision↑ Recall↑ F1↑ Chamfer↓ Precision↑ Recall↑ F1↑ Chamfer↓ Precision↑ Recall↑ F1↑

Bauhaus 0.184 0.943 0.693 0.799 0.134 0.899 0.729 0.805 0.127 0.894 0.772 0.829
Loong 0.0184 0.8462 0.916 0.846 0.0093 0.8627 0.944 0.902 0.0086 0.8815 0.938 0.909
Titanic 0.164 0.949 0.808 0.873 0.103 0.997 0.887 0.939 0.069 0.984 0.932 0.957

Chamfer, Precision, Recall, and F1 score metrics. We use Chamfer, Precision, Recall, and F1 score to evaluate the quality of the predicted 3D
Gaussian splatting. The best results are in green, while the worst are in red. These metrics are computed by comparing the point cloud of the
predicted Gaussian splatting with the ground truth mesh vertices. Our methods consistently outperform the RGB-only approach across most
metrics, and FLS exhibits slightly better performance than echosounder.
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(a) Ground truth (b) RGB Only (worst) (c) RGB Only (d) Echosounder (Ours) (e) FLS (Ours)

PSNR:30.21 | SSIM:0.966 | LPIPS:0.153 PSNR:39.58 | SSIM:0.983 | LPIPS:0.090 PSNR:43.35 | SSIM:0.990 | LPIPS:0.036 PSNR:43.65 | SSIM:0.990 | LPIPS:0.035

Fig. 6. Novel view synthesis comparison on emulated hardware. We set up a Cornell box in the lab, captured both RGB and depth images, and
emulated the echosounder and FLS data. In the reconstructed scene, all methods work well on the objects with high-contrast textures. However, the
RGB-only technique fails to reconstruct the white object with the same color as the background and also suffers from color bleeding. Our methods,
on the other hand, successfully reconstruct the white object and do not suffer from color bleeding. For different random seeds, RGB-only techniques
have high variance in the reconstructed results and have poor reconstructions (b), while our methods have consistent performance. We plot the
variance across different runs in Figure 7, and we can observe that our techniques are robust to random initial seeds.

TABLE 4
Emulation Performance: Cornell Box

PSNR↑ SSIM↑ LPIPS↓

RGB Only 37.499 0.977 0.093
Echosounder (Ours) 42.089 0.987 0.037

FLS (Ours) 42.142 0.988 0.036

Fig. 7. Variance comparison for emulations. We ran the GS algo-
rithms 10 times with the same training and test datasets but with different
random seeds. We can see that the variance of our methods is much
lower than the RGB-only method. This indicates that our methods have
consistent performance, while the RGB-only method can sometimes
result in poor results. Note that even the best results with RGB-only are
worse than the proposed techniques.

systems [51–53], consists of (1) acoustic transducer array
consisting of loudspeaker tweeter (Peerless by Tymphany
OX20SC02-04) and a microphone (GRAS 46AM); (2) a Nikon
D5600 DSLR camera; and (3) a motorized circular platform
(Rotary Table RTLA-90-200M) to rotate targets. As seen in
the figure, white paper and a white board was used to
cover the turntable and background, otherwise parts of
the scene would be static while the objects moved, not
reflecting the experimental scenario of a moving sonar. The
tweeter transmits a linear frequency modulated chirp with
peak voltage of 3V for a duration of 1 ms waveform from
starting frequency 10kHz to stopping frequency 30kHz
with a sampling frequency of 100kHz.

For data capture, we rotate the target scene at 1-degree
increments from 0 to 40 degrees while simultaneously cap-
turing RGB video frames and the acoustic signal from the

DSLR

Microphone

Speaker

Echosounder 
Prototype

Scene

Turntable

Fig. 8. Hardware prototype consists of a DSLR camera with speaker
and microphone. It is used to image a scene on the motorized turntable.

RGB only Echosounder (Ours)Ground Truth

Fig. 9. Qualitative comparison of echosounder real-data results.
The comparison presents two scenes captured using a DSLR camera
and echo-sonar with a turntable setup. Our method demonstrates a
noticeable improvement in performance over the baseline RGB-only
method, both quantitatively and qualitatively.

microphone. We first use COLMAP to perform SfM to obtain
an initial point cloud and camera pose. We perform model
alignment for SFM points using the information from the
experimental setup (radius of the turn table and incremental
angle) to roughly align the SFM points in 3D space with the
transient histogram to be computed. For the audio signal,
we perform similar processing for matched filtering by Reed
et al. [22, 53]: (1) we implement group delay correction in
the frequency domain; (2) we subtract background measure-
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TABLE 5
Echo-Sonar Performance

RGB Only Echosounder (Ours)
Scene PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Rabbit 25.882 0.874 0.282 30.785 0.940 0.237
Teapot 39.664 0.982 0.138 39.717 0.985 0.114

ment of the scene with no object; (3) we convert the signal
into the analytic domain using the Hilbert Transform; (3)
we perform matched filtering in the frequency domain, and
then (4) take the magnitude of the complex signal to form a
transient histogram.

For initialization of the Gaussians, we utilize the ini-
tal SfM point cloud generated from COLMAP as well as
include additional 3D Gaussians (N = 10, 000 for our
experiments) who are placed at (x, y, z) locations corre-
sponding to maximum energy in the transient histogram.
This greatly improved the performance of the method in
practice compared to the baseline Gaussian splatting.

Main experimental results: In Fig. 9, we show a qualita-
tive comparison of our method compared to an RGB only 3D
reconstruction. This scene is a difficult scene as COLMAP
SfM points are noisy and inaccurate, which contributes to
errors in the RGB only Gaussian-splatting reconstruction.
In contrast, our method better resolves the objects in the
scene as well as the background, leveraging the transient
information from the echosounder. In Tab. 5, we see an
improvement in PSNR/SSIM/LPIPS for test views.

Effect of baseline: We designed the technique for small
baselines (small shifts in the camera positions) where sonar
provides the most information in the missing cone (Sec-
tion 3.4) and showed that the proposed technique results
in higher 3D reconstruction accuracy compared to RGB
case. As the baseline increases, the missing cone becomes
narrower; hence, we will only have diminishing gains from
the sonar. Here, we quantify the effect of the baseline on the
reconstruction performance. For this, we rotate the circular
table by various ranges of angles and compare the geometric
reconstructions between RGB only and the proposed fusion
techniques. We show the visual reconstruction comparisons
in Figure 10 and quantify them in Table 6. We observe
that fusion techniques have a significant advantage at small
baselines (20◦), achieving a 24.5% lower Chamfer distance,
but a relatively lower advantage at large baselines (180◦),
with only a 7.9% decrease in Chamfer distance.

TABLE 6
Various Baselines Results

Baseline Metrics RGB only Ours echosounder
20◦ Chamfer ↓ 0.01455 0.01098

F1 ↑ 0.9534 0.9910
40◦ Chamfer ↓ 0.00845 0.00656

F1 ↑ 0.9903 0.9962
90◦ Chamfer ↓ 0.0042 0.0039

F1 ↑ 0.9985 0.9989
180◦ Chamfer ↓ 0.00366 0.00337

F1 ↑ 0.9994 0.9997

(a) 20º front view (b) 180º front view (c) 20º side view (d) 180º side view
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Fig. 10. Effect of baseline. We visualize two extreme baselines: 20◦
and 180◦. The ground truth meshes captured with LIDAR are gray, and
the reconstructed Gaussians are represented as black point clouds.
In both baselines, our method demonstrates better alignment to the
underlying geometry and less error in the z axis, resulting in fewer
Gaussians and clearer representations. As the baseline increases, our
method’s advantage over the RGB-only approach diminishes but still
remains positive.

5.4 Hardware results - FLS
We additionally use our algorithm to fuse measurements
from an optical camera and an imaging sonar (FLS) to re-
construct a real object submerged underwater in a water test
tank. Acoustic FLS images (example in fig.11a ) resolve both
the range and azimuth of the reflecting object but not the
elevation angle which remains ambiguous. In other words,
one can view each column of an imaging sonar image as
capturing the transient at a particular azimuth angle which
makes this data easily integrable with our method.

(a) (b)
Fig. 11. Underwater FLS data. (a) Example sonar measurement: the
range r and azimuth θ are resolved but the elevation angle ϕ remains
ambiguous. (b) Sample camera image of the submerged test structure.

We use an existing dataset containing both imaging
sonar measurements (with 14◦ elevation) captured using a
Didson imaging sonar mounted on a Bluefin Autonomous
Underwater Vehicle and optical camera images captured
using a FLIR camera. See papers [21, 54] for more detail
regarding the data and hardware setup. Note that for train-
ing, we use all available measurements in the dataset while
AONeuS [21] only uses specific subsamples.

Due to the scattering in water, GS is not suitable for
underwater photometric reconstruction, which could be ad-
dressed in future work. However, we compare geometric
reconstructions. For this, we first filter out all points outside
a bounding box around the object. Then, we align the result-
ing point cloud with the ground truth model of the target
object using the Iterative Closest Point (ICP) algorithm.

We observe from Table 7 that integrating FLS in-
formation with camera images results in higher recon-
struction accuracy, as showcased by the Chamfer dis-
tance/precision/recall/F1 metrics (threshold 0.05). This can
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TABLE 7
Hardware FLS: Geometric Metrics

Chamfer ↓ Precision↑ Recall↑ F1↑

RGB Only 0.205 0.414 0.670 0.512
FLS (Ours) 0.124 0.457 0.775 0.575

also be observed quantitatively in Figure 12, which shows
that when only using optical cameras, the resulting recon-
struction contains high errors along the depth axis. On
the other hand, integrating FLS information allows our
algorithm to better resolve depth using the additional range
information. We note that, although our result is slightly
worse compared to AONeuS [21] (although do expect better
performance with more thorough parameter tuning), the
runtime of our algorithm is ∼ 9.95× better.
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Fig. 12. Experimental reconstructions using RGB-only and RGB+FLS.
When using RGB-only measurements, we observe high error along
depth (red box). Integrating FLS measurements improves depth reso-
lution.

6 CONCLUSION

In this paper, we introduce a z-axis splatting pipeline for
Gaussian splatting, which enables the fusion of RGB camera
information with various types of depth-resolved acoustic
measurements, such as echo-sounders and FLS. Through
extensive validation on simulated, emulated, and real-world
hardware experimental data, we demonstrate superior per-
formance compared to RGB-only methods for both novel
view synthesis and geometric reconstruction. By leverag-
ing the depth information provided by acoustic sensors,
our method offers a promising approach to reconstructing
scenes with small baselines.

Our method currently does not account for scattering.
Modeling scattering may produce more accurate recon-
structions, particularly in the underwater setting. In the

fusion step, we used a simple linear model to combine
the losses of various imaging modalities. Non-linear models
and adaptive models that change the relative weights over
iterations, such as the ones that Qadri et al. [21] have used,
may result in better 3D reconstruction. Exploring various
combinations of loss functions could be another interesting
future direction.

While this work focused on z-axis splatting for sonar
fusion, an interesting future direction is to extend our ap-
proach to handle radar and lidar systems, which share a
similar acquisition model as sonars. Finally, generalizing our
method to dynamic scenes and to sensors that operate in this
space, such as Doppler cameras and frequency-modulated
continuous-wave time-of-flight cameras, could be another
interesting extension of our technique.
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