

1 **Co-inoculations of bacteria and mycorrhizal fungi often drive additive**
2 **plant growth responses**

3 **Running title: Co-inoculations of bacteria and mycorrhizal fungi**

4 Louis Berrios^{✉1}, Andressa M. Venturini¹, T. Bertie Ansell^{1,2}, Esther Tok¹, William Johnson³, Claire
5 E. Willing⁴, Kabir G. Peay^{1,5,6}

6 ¹ Department of Biology, Stanford University, 327 Campus Drive, Stanford CA, 94305, USA

7 ² Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo
8 Park CA, USA

9 ³ Oceans Department, Hopkins Marine Station of Stanford University, 120 Ocean View Blvd.,
10 Pacific Grove, CA, 93950, USA

11 ⁴School of Environmental and Forest Sciences, University of Washington, Seattle WA, 98195,
12 USA

13 ⁵Department of Earth System Science, Stanford University, Stanford CA, 94305, USA

14 ⁶Woods Institute for the Environment, Stanford University, Stanford CA, 94305, USA

15 **✉ Lead Contact:** Louis Berrios; Email: berriosl@stanford.edu

16 **ORCID IDs**

17 Louis Berrios (0000-0003-3888-9928)
18 Andressa Monteiro Venturini (0000-0002-5901-1658)
19 T. Bertie Ansell (0000-0003-4870-5387)
20 Esther Tok (0009-0009-7283-1747)
21 William Johnson (0009-0003-5857-8091)
22 Claire E. Willing (0000-0002-7563-242X)
23 Kabir G Peay (0000-0002-7998-7412)

24
25

26

27 **Abstract**

28 Controlled greenhouse studies have shown the numerous ways that soil microbes can impact

29 plant growth and development. However, natural soil communities are highly complex, and

30 plants interact with many bacterial and fungal taxa simultaneously. Due to logistical challenges

31 associated with manipulating more complex microbiome communities, how microbial

32 communities impact emergent patterns of plant growth therefore remains poorly understood.

33 For instance, do the interactions between bacteria and fungi generally yield additive (i.e., sum

34 of their parts) or non-additive, higher-order plant growth responses? Without this information,

35 our ability to accurately predict plant responses to microbial inoculants is weakened. To

36 address these issues, we conducted a meta-analysis to determine the type (additive or higher-

37 order, non-additive interactions), frequency, direction (positive or negative), and strength that

38 bacteria and mycorrhizal fungi (arbuscular and ectomycorrhizal) have on six phenotypic plant

39 growth responses. Our results demonstrate that co-inoculations of bacteria and mycorrhizal

40 fungi tends to have positive, additive effects on many commonly reported plant responses.

41 However, ectomycorrhizal plant shoot height responds positively and non-additively to co-

42 inoculations of bacteria and ectomycorrhizal fungi, and the strength of additive effects also

43 differs between mycorrhizae type. These findings suggest that inferences from greenhouse

44 studies likely scale to more complex field settings and that inoculating plants with diverse,

45 beneficial microbes is a sound strategy to support plant growth.

46 **Keywords:** Bacteria-Mycorrhizal Fungi Interactions; Tripartite Interactions; Meta-Analysis;

47 Bioinoculants; Microbial Ecology

48

49

50 **Introduction**

51 Bacteria and mycorrhizal fungi colonize the roots of nearly all land plants [1,2], and their impact
52 on plant growth and health can range from deleterious to beneficial [3,4]. Though several
53 studies have used them as inoculants to assess plant responses such as changes to plant
54 biomass, mycorrhizal colonization, and shoot height [5,6,7], most studies often use single
55 inoculations (i.e., either bacteria or mycorrhizal fungi). Considering that other tripartite
56 investigations have revealed, for example, that some non-mycorrhizal fungi can suppress
57 phytopathogenic microbes and thereby enhance plant growth, it is likely that the interactions
58 between soil bacteria and mycorrhizal fungi also interact in ways that shape plant growth
59 responses (see [8] for a comprehensive review). Greenhouse studies have indeed shown that
60 bacterial inoculations can increase mycorrhizal colonization, which tends to increase plant
61 growth and vigor [9,10], whereas others have shown that some soil bacteria deter the growth
62 of mycorrhizal fungi [11]. Evidence from field studies has likewise illustrated that soil bacteria
63 and mycorrhizal fungi often have strong, predictable interactions [12,13,14] and can benefit
64 plant growth by warding off pathogens, mobilizing nutrients, and producing phytohormones
65 [15,16]. It is therefore clear that bacteria and mycorrhizal fungi interact and consequently
66 shape various plant growth responses, but their individual and combined effects on plant
67 growth responses remain less clear [17]. As such, a comprehensive framework for assessing
68 these tripartite interactions would benefit the field of plant-microbe interactions, particularly
69 when trying to bridge the gap between greenhouse and field studies.

70 To accurately predict how belowground bacterial-fungal interactions affect plant growth
71 and health, it is first critical to determine the type of effects that these organisms generate. We

72 know that biotic interactions can yield both additive and non-additive effects (i.e., higher-order
73 interactions – HOIs). Additive effects are defined as those that equal the sum of their parts. The
74 addition, for example, of either ‘Microbe A’ *or* ‘Microbe B’ to ‘Plant 1’ may increase or decrease
75 plant biomass by two-fold (relative to an uninoculated plant). An additive response would,
76 therefore, result if the addition of both ‘Microbe A’ *and* ‘Microbe B’ increases or decreases
77 plant biomass by the sum of responses to individual inoculations (e.g., four-fold). In contrast, a
78 non-additive effect or HOI would result if the addition of ‘Microbe A’ *and* ‘Microbe B’ caused
79 plant biomass to change by a factor either significantly more or less than four (i.e., by a factor
80 that is unequal to the sum of responses to individual inoculations). Identifying and parsing
81 these two divergent effects also has large-scale implications. Several reports, for instance, have
82 shown that including additive and higher-order effects in statistical models clarifies our
83 understanding of tropical tree growth [18], ecosystem responses to global change [19], and
84 stressor effects in freshwater ecosystems [20]. Likewise, HOIs have been shown to impact
85 species removal, species diversity, and community responses to multiple stressors in natural
86 ecosystems [21,22], indicating that non-additivity plays a crucial role in both the selection of
87 organisms and organismal stability in natural environments [23,24,25,26]. Yet, microscale
88 ecological processes both drive and respond to macroecological processes, and the high degree
89 of spatial overlap between mycorrhizal fungi and rhizosphere bacteria suggests that there
90 should be strong interactions between them that could play a major role in determining
91 observed plant growth responses. A quantitative evaluation of these interactions and their
92 degree of additivity has, however, not been carried out yet.

93 In addition to identifying the general type of interactions that often occur between
94 bacteria, mycorrhizal fungi, and plants, the strength, direction, and frequency of interactions
95 between microbial symbionts and plant hosts also have many important implications for
96 scalability. First, these features are necessary to scale findings from simple greenhouse
97 experiments to complex field environments [27]. The synergistic or antagonistic interactions
98 among symbiotic root microbes are seldom investigated, despite evidence suggesting that
99 microbial interactions have strong effects on soil microbial communities [28]. Secondly, these
100 features determine whether agriculture and conservation efforts can benefit from applying
101 multiple microbes (or removing specific microbes) to optimize plant responses [29]. Lastly, they
102 function as a metric to assess and reinforce lab-to-field translation. That is, if there are specific
103 microbes with strong, positive effects on plant performance in the lab [14,30], can these
104 microbes then be assumed to have similar effects in field environments that harbor different
105 bacteria and fungi?

106 While several studies have qualitatively reviewed bacterial-fungal interactions [6,31,32],
107 quantitative studies that address these interactions have not been reported. Since meta-
108 analyses are an effective approach for uncovering quantitative trends across many individual
109 studies with varying methodologies [33,34,35,36], we conducted a meta-analysis to address the
110 type, frequency, direction, and strength of plant responses (i.e., total plant biomass, shoot
111 biomass, root biomass, shoot height, root length, and mycorrhizal colonization) to either single
112 inoculations (bacteria or mycorrhizal fungi) or co-inoculations (bacteria and mycorrhizal fungi).
113 In addition, we investigated these plant responses within two dominant guilds of mycorrhizal
114 fungi – arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) fungi – to determine shared and

115 divergent features of bacterial-mycorrhizal fungi interactions. In total, our analyses included 82
116 studies that involve AM fungi and 22 studies that involve EcM fungi, which collectively include
117 more than 60 plant genera, more than 40 bacterial genera, and more than 20 genera of
118 mycorrhizal fungi. Together, our results suggest that bacteria and mycorrhizal fungi primarily
119 generate positive, additive effects on plant growth responses and that, as a result, scaling plant
120 performance predictions from simple to complex communities is feasible.

121 **Materials and Methods**

122 ***Study Selection***

123 To understand how bacteria and mycorrhizal fungi impact plant responses, we collected plant
124 response data from a total of 104 studies (see Table S1 and Fig. 1-2 for a full list of summary
125 statistics) and compared the plant response effect sizes across inoculation types (i.e., bacteria
126 alone, fungi alone, bacteria plus fungi). In February of 2023, articles with the following
127 keywords were downloaded from Web of Science: ‘bacteria AND ectomycorrhizal fungi AND
128 plant growth AND inoculation’ and ‘bacteria AND arbuscular mycorrhizal fungi AND plant
129 growth AND inoculation.’ This search generated a total of 930 studies (230 studies that included
130 ectomycorrhizal (EcM) fungi and 700 studies that included arbuscular mycorrhizal (AM) fungi).
131 To facilitate statistical tests, we filtered our dataset to include only experimental studies that
132 (1) had at least four conditions (i.e., plant alone, plant with mycorrhizal fungi, plant with
133 bacteria, and plant with mycorrhizal fungi and bacteria), (2) had at least three replicates per
134 condition, and report either (3) plant biomass, shoot height, root length, or (4) percent
135 mycorrhizal colonization. In many studies, we found either (3) and (4), but not both in a single
136 study. However, we report the number of studies used for each analysis in Table S1 and the

137 number of samples per analysis in Fig. 1-2. Note that these totals represent studies that satisfy
138 both (1) and (2) and either (3) or (4). A few studies observed mycorrhizal colonization in non-
139 mycorrhizal controls with only the addition of single bacterial inoculations, suggesting that
140 these studies may have had unintended mycorrhizal fungal spores in their bacterial single
141 inoculation condition(s) or perhaps some enhancement of ambient mycorrhizal contamination.
142 Since these studies were so few and had insignificant effects on mycorrhizal colonization status
143 compared to treatments intended to have mycorrhizal fungi inoculants, we left them in our
144 analyses as ecologically conservative controls. However, we removed studies that had a similar
145 percentage of mycorrhizal colonization in control conditions (i.e., plants not intentionally
146 inoculated with mycorrhizal fungi) compared to mycorrhizal inoculations, since high levels of
147 contamination make it difficult to accurately gauge treatment effects. Studies that reported
148 mycorrhizal status (i.e., EcM vs. AM) inaccurately (e.g., reporting non-EcM fungi as EcM fungi)
149 were likewise removed. After filtering our dataset, we retained a total of 22 studies with EcM
150 fungi and 82 studies with AM fungi (Table S1).

151 ***Data Analysis***

152 We organized and analyzed our dataset in R [37]. The means from all plant responses were
153 extracted either directly from tables or figures in published articles (Table S1). Plant weight data
154 were converted to grams, and plant or root length measurements were converted to
155 centimeters. The plant, bacterial, and fungal organisms used in each study were recorded and
156 are reported in Table S1. The organisms used in studies were grouped by genus and are
157 represented in Fig. 1-2. Taxonomy is reported according to the nomenclature conventions used
158 at the time of publication, and we did not attempt to resolve changes in nomenclature (e.g.,

159 *Funneliformis* vs. *Glomus*) in part to ease the tractability of articles for readers. Soil chemistry
160 data were not reported frequently enough to be included in our analyses.

161 To facilitate comparisons across conditions, we calculated the effect sizes for each plant
162 response (i.e., total plant weight, root weight, root length, shoot height, shoot length, and
163 colonization percentage) as previously described by [34]. Briefly, the log ratio of inoculated
164 plants (experimental condition) to the uninoculated plants was calculated as $\ln(X_i/X_n)$, where X_i
165 is the mean plant response in an inoculated treatment, and X_n is the mean plant response in an
166 uninoculated control. Therefore, the effect size is positive for beneficial interactions that
167 improved plant growth responses and negative for detrimental interactions that decreased
168 plant growth responses relative to controls. We used this log response ratio instead of other
169 effect size metrics because it yields a standardized and unitless measure of plant responses
170 across studies, which makes them the ideal choice for meta-analyses [38]. Since each of our
171 plant responses included one control and three experimental conditions, this approach yielded
172 three effect sizes (i.e., bacteria alone, fungi alone, bacteria plus fungi) that were relativized to
173 the control conditions. However, in cases where effect sizes would equal infinity (due to control
174 conditions yielding a value of zero, e.g., percent mycorrhizal colonization), we replaced control
175 values with a value of 1 to calculate responses.

176 Statistical analyses were performed in R [37]. To test for differences between groups,
177 we performed pairwise t-tests using the `stat_compare_means` function in the *ggpubr* package.
178 Because the purpose of this study was to compare the effects of bacterial and fungal single and
179 co-inoculations on plant growth responses, we do not include direct statistical tests between
180 control and experimental conditions. However, microbial inoculants tended to have a net

181 positive effect on measure plant growth responses (i.e., positive effect sizes). Linear regression
182 models were also generated using the *lm* function to estimate the impact that input predictor
183 variables (e.g., inoculation type: bacteria alone, fungi alone, and bacteria plus fungi) had on
184 plant responses (e.g., plant biomass and mycorrhizal colonization). If significant interaction
185 terms (i.e., $p < 0.05$ for the bacteria X fungi term) were observed between bacteria and fungi,
186 we classified these interactions as higher-order interactions (HOIs) or non-additive relationships
187 [22,25]. In contrast, if no significant interactions were observed between bacteria and fungi,
188 then their relationships were classified as additive. We are also aware that others [23,24,26]
189 have adopted slightly different definitions of non-additivity, but for the purposes of our
190 analyses this was the most operationally useful approach. In addition, we generated
191 standardized model residuals versus leverage plots (Fig. S1 and S2) to test for patterns of
192 publication bias. Influential data points that fell outside of Cook's distance (0.5) were then
193 removed to reduce possible biases in the results. All graphs were generated using either base R
194 or *ggplot* [37,39].

195 **Results**

196 ***Patterns in the taxonomic selection of bacteria, mycorrhizal fungi, and plants***

197 To understand the taxonomic distribution of organisms used in this field, we grouped bacterial,
198 fungal, and plant taxa by genus and calculated their frequency across studies (Fig. 1-2). In total,
199 31 bacterial genera were used in AM studies, and 11 bacterial genera were used in EcM studies
200 (Fig. 1A and Fig. 2A). A significant proportion of bacteria used in both AM and EcM studies were
201 in the genera *Bacillus* and *Pseudomonas*. However, AM studies often used known, mixed
202 bacterial consortia, whereas many EcM studies used unknown bacterial inoculants (i.e., not

203 taxonomically classified; Table S1). The fungal organisms used across studies were slightly less
204 diverse compared to their bacterial counterparts. A total of 14 AM fungal genera were used in
205 AM studies – *Glomus* being the most dominant, aside from a large number of mixed AM fungi
206 inoculants (Fig. 1B). In comparison, ECM studies were comprised of 11 ECM genera, and they
207 often used the genus *Pisolithus* (Fig. 2B). Regarding the plant genera that were used as hosts,
208 AM studies included a total of 52 plant genera, and *Acacia* and *Zea* were the most common
209 plant genera (Fig. 1C). In contrast, ECM studies included a total of 10 genera – with *Acacia* and
210 *Pinus* comprising ~50% of all the plant taxa (Fig. 2C). Together, these data demonstrate that the
211 literature on the interactions between bacteria, mycorrhizal fungi, and plants has used a
212 relatively diverse group of bacteria and plants but a more restricted group of mycorrhizal fungi.
213 As such, efforts to expand beyond common taxa (e.g., *Bacillus*, *Glomus*, and *Acacia*), detail the
214 exact bioinoculants used in experiments (i.e., avoid using unknown inoculants), and report the
215 identities of mixed inoculants (i.e., more than one bacterial or fungal strain) will help advance
216 our understanding of how these organisms interact.

217 ***The addition of bacteria usually boosts the positive effects that mycorrhizal fungi have on
218 several plant growth response measurements***

219 When we analyzed how microbial inoculations affected plant responses, we found that both
220 single and co-inoculations of bacteria and mycorrhizal fungi often had a positive and significant
221 effect. The effects, however, varied depending on the type of plant response and fungal guild
222 (AM or ECM). For example, though many responses to single inoculations were similar (Fig. 3-4),
223 co-inoculations of AM fungi and bacteria caused total plant biomass to increase significantly
224 compared to single inoculations (Fig. 3A). Studies using ECM plants, however, showed that co-

225 inoculations of bacteria and EcM fungi only significantly increased total plant weight more than
226 that of bacterial single inoculations – not single EcM fungi inoculations (Fig. 3B). When we
227 analyzed effects on plant shoot and root weight, we found that co-inoculations of bacteria and
228 mycorrhizal fungi (AM and EcM) increased shoot and root weight beyond that of single
229 inoculations (Fig. 3C-F). For plant shoot height and plant root length, co-inoculations of bacteria
230 and EcM fungi were the only inoculation type to have significant effects, and these were
231 considerably more responsive in EcM plants compared to AM plants (Fig. 4). Similarly, we
232 observed that co-inoculations caused mycorrhizal root colonization of EcM fungi – but not AM
233 fungi – to significantly increase relative to single fungal inoculations (Fig. 5). Together, these
234 results indicate that the aspects of plant growth that respond most to bacterial inoculation vary
235 between AM and EcM fungi, but in general plant growth is maximized when bacteria are used
236 in conjunction with mycorrhizal fungi.

237 ***Both additive and non-additive bacterial-mycorrhizal fungi interactions drive plant growth
238 responses***

239 Next, we constructed linear regression models to determine whether interactions between
240 bacteria and mycorrhizal fungi generate additive or non-additive effects (i.e., HOIs) on plant
241 responses. If we observed a significant interaction term between predictor variables (i.e.,
242 presence or absence of bacterial and fungal inoculants) on effect size response variables (e.g.,
243 total plant weight), then these were classified as HOIs. Otherwise, the relationships between
244 bacteria and fungi were classified as additive. Of the six plant responses we analyzed, we
245 observed additive effects for five responses and HOIs for one response (i.e., plant shoot height
246 in EcM plants). Though additivity dominated most of the responses that we measured, the

247 strength of the interaction terms for bacteria and AM fungi compared to bacteria and EcM
248 fungi differed substantially (Table 1; Table S2-S3). Moreover, all AM fungi models were weaker
249 in their predictive power compared to EcM fungi models. For example, the presence of bacteria
250 and fungi only explained 28% of the effect size variance for shoot height in AM plants, whereas
251 models predicting EcM shoot height explained 86% of input data. In addition, single
252 inoculations of AM fungi were significant predictors of shoot height, but single inoculations of
253 EcM fungi were not significant predictors of shoot height (Table 1). In sum, these analyses
254 demonstrate that non-additive effects (i.e., HOIs) are rare among commonly reported plant
255 phenotype responses to bacterial and mycorrhizal fungi co-inoculations, whereas additive or
256 'sum of their parts' responses predominate.

257 **Discussion**

258 Individually, plant-associated bacteria and mycorrhizal fungi play pivotal roles in helping plants
259 establish and survive across the globe [40,41,42,43]. However, a body of evidence has emerged
260 over the last decade, showing that strong patterns of co-occurrence exist between specific
261 bacterial taxa and mycorrhizal fungi – even across large environmental gradients [14,44], and
262 these microbial interactions can shape nutrient economies for each other and their plant hosts
263 [45]. Yet, we still lack a clear understanding of how their combined interactions shape plant
264 growth responses. This is a particularly important gap in the literature to address because most
265 studies explicitly investigate either bacteria-plant or fungi-plant interactions, which can lead to
266 incomplete predictions of how plants develop in complex environments. Determining whether
267 these microbial relationships generate additive or non-additive effects (i.e., higher-order
268 interactions – HOIs), for instance, can help clarify not only the rates that plants grow but also

269 the type of investment (e.g., more shoot or more root biomass) that plants are likely to
270 undergo in nature – all of which can lead to enhanced predictions of plant growth, biomass
271 allocation, abiotic and biotic stress responses, and the impact of climate-related stressors.
272 Therefore, studies that ask how bacteria and mycorrhizal fungi both singularly and concertedly
273 shape plant responses promote balance between mechanistic insight and ecological realism. To
274 this end, we collected plant response data from studies that used single and co-microbial
275 inoculations and conducted a meta-analysis to identify the general interaction types between
276 bacteria and mycorrhizal fungi and determine their impact on common plant responses. Our
277 results demonstrate that interactions between bacteria and mycorrhizal fungi often drive
278 positive and additive plant responses, but the interactions between bacteria and EcM fungi
279 generate non-additive effects on the height of EcM plants. The implications of our work,
280 therefore, recalibrate our understanding of how underground biotic interactions shape
281 aboveground processes for two of the most prevalent mycorrhizal plant groups on Earth.

282 ***Magnified in the literature: easy to culture equals commonly used***

283 The organisms that have been used to assess bacteria-mycorrhizal fungi-plant interactions to
284 date have been phylogenetically diverse (Fig. 1-2), but a heavy reliance on a few taxa has likely
285 limited our understanding of these complex interactions. For instance, both AM and EcM
286 studies used mainly bacterial inoculants from the genus *Bacillus* and *Pseudomonas* (Fig. 1A and
287 2A), and close to 25% of all the bacterial inoculants used were either mixed cultures (many of
288 which belonged to Rhizobia groups; see Table S1) or unknown inoculants (Fig. 2A). The fungal
289 inoculants were likewise dominated by a few genera (i.e., *Glomus* for AM studies and *Pisolithus*
290 for EcM studies) or known, mixed cultures and unknown inoculants (Fig. 1B). The fact that these

291 bacterial and fungal taxa are often straightforward to isolate in pure culture and represent
292 common soil and plant root associates [46,47] explains their repeated use in studies. But their
293 impact on plant growth responses in complex, adaptive systems (e.g., forests and agricultural
294 lands) may be minimal compared to other taxa given that they represent only a small fraction
295 of the microbial diversity that persists in soils. Nevertheless, both rare and abundant taxa can
296 have significant impacts on soil and plant health, and it will be important moving forward to
297 understand how the addition of focal species impacts soil community composition [17].
298 Moreover, communicating the microbial taxa used (and their respective input concentration),
299 which were too often not reported in studies (Fig. 1 and Fig. 2), severely hinders our
300 understanding of how plants and microbes interact because it impedes scientific reproducibility
301 [40,48,49]. In contrast to the microbial inoculants used across studies, the plant genera used
302 were considerably more diverse, particularly in AM studies (Fig. 1C and Fig. 2C). A total of 52
303 plant genera were used in AM studies, and a total of 10 plant genera were used in EcM studies
304 – which highlights that our findings here are likely generalizable features of interactions among
305 bacteria, mycorrhizal fungi, and plants (at least in terms of how plants respond to these
306 microbes). However, studies on bacteria-EcM fungi interactions still only summed to about one-
307 fourth the amount of bacteria-AM fungi studies, suggesting that more EcM studies should be
308 conducted. This point becomes even more critical when considering that EcM fungi are
309 significantly more diverse than AM fungi at both local and global scales [50,51].

310 ***Why do we observe mycorrhizae-specific differences?***

311 Our results demonstrate that co-inoculations with bacteria and mycorrhizal fungi tend to
312 enhance many plant biomass parameters beyond that of single inoculations (Fig. 3-4). Yet,

313 differences between mycorrhizal type (i.e., AM vs. EcM) were observed. For instance, the effect
314 of bacteria on mycorrhizal colonization appears to be neutral for AM plants (though a
315 statistically insignificant increase was observed) and positive for EcM plants (Fig. 5). How
316 interactions occur between bacterial cells and fungal spores could explain these different
317 colonization responses. For instance, bacterial metabolites such as auxofuran have been shown
318 to enhance EcM fungal spore germination [52], whereas the volatile 2-methylisoborneol was
319 correlated with AM fungal spore germination [53]. However, plant-derived metabolites can also
320 enhance fungal spore germination [54,55], and how bacteria produce, consume, or modulate
321 these metabolites in the context of fungal spore germination and colonization remains unclear.

322 One of the most parsimonious explanations for the observed differences in mycorrhizal
323 root colonization – along with root length, shoot height, plant biomass, and shoot weight (Fig.
324 3-4) – are likely linked to ecophysiological differences between AM and EcM fungi. That is, EcM
325 fungi encapsulate plant roots, forming a hyphal sheath but do not penetrate plant cell walls,
326 whereas AM fungi penetrate plant cell walls and interact directly with plant cell membranes
327 [56]. The fact that AM fungi (but not EcM fungi) penetrate cell walls suggests that they may
328 select for different – both qualitatively and quantitatively – bacterial communities than EcM
329 fungi. This could result in changes to the rate and quality of bacterial-mediated nutrient
330 acquisition for both AM and EcM plants – a key feature of many bacterial-mycorrhizal fungi
331 interactions [5,12,57]. In line with this idea is the notion that host-microbe immune recognition
332 processes may differ between AM and EcM fungi, their bacterial communities, and their host
333 plant [17,58,59], which could prime plant hosts for symbioses in divergent ways and
334 subsequently change plant growth outcomes. The differences in host recognition and symbiosis

335 maintenance may be further increased given that EcM fungi occupy more physical space and
336 access more soil organic matter than AM fungi, which may create a larger habitat with greater
337 selection for bacterial specialization [60]. Efforts to therefore gauge the molecular crosstalk
338 between bacteria, mycorrhizal fungi, and plants across time would help clarify the different
339 responses that we observed.

340 Another explanation of mycorrhizae-specific differences that deserves attention is the
341 relatively small number of EcM plant species used across experiments compared to AM studies.
342 AM studies included about five times more plant species than EcM studies (Fig. 1 and Fig. 2). A
343 similar study to ours [34] nonetheless found that mycorrhizal responsiveness is relatively
344 conserved to the plant family level, which supports the notion that the small number of EcM
345 plants used in our analyzed studies likely imparted little bias to the overall effects that we
346 observed. Agricultural and economic incentives alongside shorter plant growing periods likely
347 explain this experimental bias between the number of AM and EcM plant species used to date,
348 but it cannot be ignored that species-specific interaction strengths may exist. For example, the
349 common use of *Acacia* species – known N-fixers – in EcM studies may change the types of
350 bacterial-fungal-plant relationships that occur underground, considering N-fixing plant hosts
351 tend to be less responsive to mycorrhizal inoculations [34]. As such, a subset of efforts should
352 focus on expanding the EcM species used in tripartite experiments (e.g., N-fixers and non-N-
353 fixing plants) and incorporating plants that form both AM and EcM symbioses. Together these
354 efforts will help uncover the general and specific mechanisms that explain interactions among
355 bacteria, mycorrhizal fungi, and plants.

356

357 **Why do bacteria and mycorrhizal fungi often generate additive plant growth responses?**

358 Why exactly additive effects prevail over non-additive effects remains an outstanding question.

359 The answer likely depends on the type of bacterial-fungal interaction (positive, neutral,

360 negative), the extent to which bacteria and mycorrhizal fungi provide the same vs. different

361 benefits, and the plant response curve (i.e. linear vs. non-linear) to these benefits. It could be

362 that bacteria and mycorrhizal fungi simply operate under independent yet complementary

363 mechanisms (i.e., positive additivity) or that the benefits of one microbe are cancelled out by

364 the costs of another microbe (i.e., neutral additivity) [61]. In interactions between AM fungi and

365 root herbivores, for example, the increased nutrient uptake that AM fungi provide grassland

366 plants was cancelled out by the negative effect of root herbivores – an observation that the

367 authors attribute to functional dissimilarity between soil groups [62]. In our study, however,

368 most of the additivity was positive, suggesting that bacteria and mycorrhizal fungi support plant

369 growth through complementary mechanisms, such as access to distinct forms of the same

370 nutrient (e.g., organic vs. mineral N). In contrast to additive responses, non-additive or non-

371 linear plant responses may be the result of competitive, antagonistic processes, where

372 microbes normally help the host but limit each other's ability to provide benefits to the host

373 when together, such as through antibiotic production or competition for host space. Positive

374 interactions between bacteria and mycorrhizal fungi also arise through changes to plant

375 nutrients or hormones that inherently have non-additive responses to one another. For

376 example, a meta-analysis found synergistic effects in >50% of studies that applied simultaneous

377 N and P addition [63], which they suggest could result from nutrient co-limitation. Similarly,

378 bacteria and mycorrhizal fungi have been shown to modulate the plant hormones

379 brassinosteroid and gibberellin, which play key roles in shoot height development and exhibit a
380 molecular crosstalk dialogue that may promote non-additive plant responses [64,65,666]. Since
381 our study showed that bacteria and EcM fungi generated positive, non-additive effects on plant
382 shoot height, the product of these microbial interactions may therefore alter the expression of
383 genes or hormones that support shoot height and development [61,67]. Likewise, the products
384 of bacteria-EcM fungi interactions may also cause multi-level changes to mechanisms involved
385 in xylem-specific conductivity, leaf size, leaf area, wood density and modulus of elasticity –
386 which all affect plant energy investments to shoot development [68]. However, it remains
387 unclear how active or abundant these soil microbes are throughout plant development and
388 how their interactions impact plant gene expression or hormonal regulation in the context of
389 plant health. The mechanisms that undergird both additive and non-additive processes will
390 become clearer from efforts that assess both plant and microbial responses in tandem. Much
391 research is therefore still required to fully understand how these emergent properties manifest
392 and why different mycorrhizal plants (i.e., AM vs EcM) and different plant growth traits have
393 varied responses to bacterial and mycorrhizal fungi co-inoculations.

394 ***From basic ecology to commercialization: could the answer lie in the ‘right’ combination?***

395 Efforts to commercialize bioinoculants have remained constant over the last few decades
396 [69,70]. While these efforts have gained moderate success [71], many bioinoculants fail to work
397 in complex environments such as agricultural fields and forest soils [72]. Our analyses show that
398 (as opposed to single microbial inoculations) co-inoculations of bacteria and mycorrhizal fungi
399 may improve the efficacy of existing bioinoculants. Given that the experiments we analyzed
400 included only a single plant host, it is possible that the observed effects of co-inoculations may

401 not hold up in complex plant communities (i.e., outside of monoculture agriculture or forestry),
402 but our results align well with the fact that microbial diversity tends to have positive effects on
403 terrestrial ecosystems and that bacterial-fungal interactions can determine soil health and
404 benefit plant growth [14,73,74]. Efforts that investigate how bacteria and mycorrhizal fungi
405 interact within mixed mycorrhizal communities (i.e., harboring both AM and EcM fungi hosts at
406 varying densities) and how the strength of mycorrhizal fungi plant host dependence may alter
407 bacterial-fungal interactions would help test the notion that above- and belowground
408 complexity may alter simple tripartite interactions. In line with this, investigations in diverse
409 forest types (e.g., temperate versus tropical or old growth versus young forests) and differing
410 agricultural lands (e.g., soil chemistry, hydrological, and cropland differences) will be critical
411 moving forward. Similarly, effectively implementing bacteria and mycorrhizal fungi co-
412 inoculations for land management purposes will require detailed analyses that identify the
413 mechanisms of these tripartite relationships in the context of priority effects and their
414 evolutionary history [75].

415 Although our analyses begin to shed light on ways to improve current formulations of
416 bioinoculants [76,77], each experiment that we analyzed was conducted in ambient or ideal
417 conditions with little or no fertilizer added, which does not address how climate change will
418 impact the effectiveness of applied microbial inoculants nor how differing land management
419 factors may impact tripartite symbioses. The diversity and abundance of mycorrhizal fungi, for
420 example, are predicted to decline in some regions of the globe, with evidence suggesting that
421 soil phosphorus limitation may influence responses of mycorrhizal fungi to climate change. This
422 coupled with the fact that fertilizer amendments (which vary in composition and usage) are

423 known to affect plant-microbe interactions [78,79,80,81,82] calls into question how these
424 factors then affect bacterial-fungal interactions and their relationships with plant communities
425 in field settings. A key step toward enhancing the effectiveness of bioinoculants will be to
426 therefore identify which pairings of microbes, or which communities, can be effectively applied
427 across various environmental contexts and global change factors. Likewise, developing our
428 understanding in the context of current agricultural (e.g., till vs. no-till or heavy pesticide vs.
429 organic farming) and forestry practices (e.g., burn practices) will also be critical for the success
430 of bioinoculants, and applying large-scale field experiments in these contexts will be imperative
431 to both our fundamental and applied knowledge in this field [83].

432 **Conclusion**

433 Soils are the most microbially diverse habitat on Earth [30], but until now it has been difficult to
434 generalize the interaction type, strength, and direction of bacterial-fungal interactions and how
435 they relate to plant growth responses. Our analyses demonstrate that bacteria and mycorrhizal
436 fungi often generate additive plant responses, though microbial HOIs do occur. This information
437 will not only strengthen predictions of large-scale processes from small-scale experiments, but
438 it can also be used to help guide land management and conservation practices. Likewise, this
439 information provides a framework for understanding how these interactions and the species
440 that generate them might be impacted in the face of climate change.

441 **Acknowledgements**

442 This work was funded, in part, by a National Science Foundation PRFB grant 2109481 awarded
443 to LB, an NSF CAREER Award DEB 1845544 to KGP, and a Stanford Doerr Discovery grant
444 awarded to LB and KGP. TBA is supported by Schmidt Science Fellows, in partnership with the

445 Rhodes Trust. The funders did not contribute to the design of the experiments, data collection,
446 analyses, decision to publish, or the preparation of the manuscript.

447 **Competing Interests**

448 The authors declare no competing interests.

449 **Data Availability**

450 All data generated or analyzed during this study are included in this published article and its
451 supplementary information files.

452 **References**

- 453 1. Steidinger BS, Crowther TW, Liang J, Van Nuland ME, Werner GD, Reich PB et al. (2019)
454 Climatic controls of decomposition drive the global biogeography of forest-tree
455 symbioses. *Nature* 569(7756):404-8.
- 456 2. Banerjee S, van der Heijden MG (2023) Soil microbiomes and one health. *Nat Rev
457 Microbiol* 21(1):6-20.
- 458 3. Drew GC, Stevens EJ, King KC (2021) Microbial evolution and transitions along the
459 parasite–mutualist continuum. *Nature Reviews Microbiology* 19(10):623-38.
- 460 4. Berrios L, Ely B (2020) Plant growth enhancement is not a conserved feature in the
461 *Caulobacter* genus. *Plant and Soil* 449:81-95.
- 462 5. Frey-Klett P, Garbaye JA, Tarkka M (2007) The mycorrhiza helper bacteria revisited. *New
463 Phytologist* 176(1):22-36.
- 464 6. Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S et al. (2018)
465 Bacterial–fungal interactions: ecology, mechanisms and challenges. *FEMS Microbiol Rev*
466 42(3):335-52.

468 7. Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant–
469 microbe partnerships to improve biomass production and remediation. *Trends in*
470 *Biotechnology* 27(10):591-8.

471 8. Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of
472 interactions. *Annual Review of Microbiol* 13;63:363-83.

473 9. Duponnois R, Plenchette C (2003) A mycorrhiza helper bacterium enhances
474 ectomycorrhizal and endomycorrhizal symbiosis of Australian *Acacia* species. *Mycorrhiza*
475 13(2):85-91.

476 10. Mediavilla O, Olaizola J, Santos-del-Blanco L, Oria-de-Rueda JA, Martín-Pinto P (2016)
477 Mycorrhization between *Cistus ladanifer* L. and *Boletus edulis* Bull is enhanced by the
478 mycorrhiza helper bacteria *Pseudomonas fluorescens* Migula. *Mycorrhiza* 26:161-8.

479 11. Bowen GD, Theodorou C (1979) Interactions between bacteria and ectomycorrhizal
480 fungi. *Soil Biology and Biochemistry* 11(2):119-26.

481 12. Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal
482 fungi and bacteria and their potential for stimulating plant growth. *Environmental*
483 *Microbiol* 8(1):1-0.

484 13. Nguyen NH and Bruns TD (2015) The microbiome of *Pinus muricata* ectomycorrhizae:
485 community assemblages, fungal species effects, and *Burkholderia* as important bacteria
486 in multipartnered symbioses. *Microbial Ecology* 69:914-21.

487 14. Berrios L, Yeam J, Holm L, Robinson W, Pellitier PT, Chin ML et al. (2023) Positive
488 interactions between mycorrhizal fungi and bacteria are widespread and benefit plant
489 growth. *Current Biology* Jun 26.

490 15. Berg G (2009) Plant–microbe interactions promoting plant growth and health:
491 perspectives for controlled use of microorganisms in agriculture. *Applied Microbiology*
492 and *Biotechnology* 84:11-8.

493 16. Liu H, Li J, Carvalhais LC, Percy CD, Prakash Verma J, Schenk PM et al. (2021) Evidence for
494 the plant recruitment of beneficial microbes to suppress soil-borne pathogens. *New*
495 *Phytologist* 229(5):2873-85.

496 17. Berrios L, Rentsch JD (2022) Linking reactive oxygen species (ROS) to abiotic and biotic
497 feedbacks in plant microbiomes: The dose makes the poison. *International Journal of*
498 *Molecular Sciences* 23(8):4402.

499 18. Lai HR, Chong KY, Yee AT, Mayfield MM, Stouffer DB (2022) Non-additive biotic
500 interactions improve predictions of tropical tree growth and impact community size
501 structure. *Ecology* 103(2):e03588.

502 19. Norby RJ, Luo Y (2004) Evaluating ecosystem responses to rising atmospheric CO₂ and
503 global warming in a multi-factor world. *New Phytologist* 162(2):281-93.

504 20. Burgess BJ, Purves D, Mace G, Murrell DJ (2021) Classifying ecosystem stressor
505 interactions: Theory highlights the data limitations of the additive null model and the
506 difficulty in revealing ecological surprises. *Global Change Biology* 27(13):3052-65.

507 21. Bairey E, Kelsic ED, Kishony R (2016) High-order species interactions shape ecosystem
508 diversity. *Nature Communications* 7(1):12285.

509 22. Thompson PL, MacLennan MM, Vinebrooke RD (2018) Species interactions cause non-
510 additive effects of multiple environmental stressors on communities. *Ecosphere*
511 9(11):e02518.

512 23. Abrams PA (1983) Arguments in favor of higher order interactions. *The American*
513 *Naturalist* 121(6):887-91.

514 24. Billick I, Case TJ (1994) Higher order interactions in ecological communities: what are
515 they and how can they be detected?. *Ecology* 75(6):1529-43.

516 25. Hutchinson GE (1947) A note on the theory of competition between two social species.
517 *Ecology* 28(3):319-21.

518 26. Mayfield MM, Stouffer DB (2017) Higher-order interactions capture unexplained
519 complexity in diverse communities. *Nature Ecology and Evolution* 1(3):0062.

520 27. Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K et al. (2018) Core
521 microbiomes for sustainable agroecosystems. *Nature Plants* 4(5):247-57.

522 28. Bakker MG, Schlatter DC, Otto-Hanson L, Kinkel LL (2014) Diffuse symbioses: roles of
523 plant-plant, plant-microbe and microbe-microbe interactions in structuring the soil
524 microbiome. *Molecular Ecology* 23(6):1571-83.

525 29. Poppeliers SW, Sánchez-Gil JJ, de Jonge R (2023) Microbes to support plant health:
526 understanding bioinoculant success in complex conditions. *Current Opinion in*
527 *Microbiology* 1;73:102286.

528 30. Anthony MA, Bender SF, van der Heijden MG (2023) Enumerating soil biodiversity.
529 *Proceedings of the National Academy of Sciences* 120(33):e2304663120.

530 31. Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-
531 fungal interactions: hyphens between agricultural, clinical, environmental, and food
532 microbiologists. *Microbiology and Molecular Biology Reviews* 75(4):583-609.

533 32. Leveau JH, Preston GM (2008) Bacterial mycophagy: definition and diagnosis of a unique
534 bacterial–fungal interaction. *New Phytologist* 177(4):859-76.

535 33. Barton KE, Shiels AB (2020) Additive and non-additive responses of seedlings to
536 simulated herbivory and drought. *Biotropica* 52(6):1217-28.

537 34. Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT et al. (2010) A
538 meta-analysis of context-dependency in plant response to inoculation with mycorrhizal
539 fungi. *Ecology Letters* 13(3):394-407.

540 35. Van Beijsterveldt CE, Van Baal GC (2002) Twin and family studies of the human
541 electroencephalogram: a review and a meta-analysis. *Biological Psychology* 61(1-2):111-
542 38.

543 36. Vonesh JR, Osenberg CW (2003) Multi-predator effects across life-history stages: non-
544 additivity of egg-and larval-stage predation in an African treefrog. *Ecology Letters*
545 6(6):503-8.

546 37. R Core Team R (2013) R: A language and environment for statistical computing.

547 38. Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in
548 experimental ecology. *Ecology* 80(4):1150-6.

549 39. Wickham and Wickham (2007) The ggplot package. <https://cran.r-project.org/web/packages/ggplot2/index.html>.

550 40. de Menezes AB, Richardson AE, Thrall PH (2017) Linking fungal–bacterial co-occurrences
552 to soil ecosystem function. *Current Opinion in Microbiology* 37:135-41.

553 41. Hall EK, Bernhardt ES, Bier RL, Bradford MA, Boot CM, Cotner JB et al. (2018)

554 Understanding how microbiomes influence the systems they inhabit. *Nature*

555 *Microbiology* 3(9):977-82.

556 42. Powell JR, Rillig MC (2018) Biodiversity of arbuscular mycorrhizal fungi and ecosystem

557 function. *New Phytologist* (4):1059-75.

558 43. Schreiner RP, Mihara KL, McDaniel H, Bethlenfalvay GJ (1997) Mycorrhizal fungi influence

559 plant and soil functions and interactions. *Plant and Soil* 188:199-209.

560 44. Emmett BD, Lévesque-Tremblay V, Harrison MJ (2021) Conserved and reproducible

561 bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal

562 fungi. *The ISME journal* 15(8):2276-88.

563 45. Nuccio EE, Hodge A, Pett-Ridge J, Herman DJ, Weber PK, Firestone MK (2013) An

564 arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and

565 nitrogen cycling during litter decomposition. *Environmental Microbiology* 15(6):1870-81.

566 46. Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD (2006) Attachment of different

567 soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by

568 hyphal vitality and fungal species. *FEMS Microbiology Letters* 254(1):34-40.

569 47. Lladó S, López-Mondéjar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement

570 in ecosystem processes, and response to global change. *Microbiology and Molecular*

571 *Biology Reviews* (2):e00063-16.

572 48. Calvaruso C, Turpault MP, Leclerc E, Frey-Klett P (2007) Impact of ectomycorrhizosphere

573 on the functional diversity of soil bacterial and fungal communities from a forest stand in

574 relation to nutrient mobilization processes. *Microbial Ecology* 54:567-77.

575 49. Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MG (2019) Fungal-
576 bacterial diversity and microbiome complexity predict ecosystem functioning. *Nature*
577 *Communications* 10(1):4841.

578 50. Tedersoo L, Bahram M, Toots M, Diedhiou AG, Henkel TW, Kjøller R et al. (2012) Towards
579 global patterns in the diversity and community structure of ectomycorrhizal fungi.
580 *Molecular Ecology* 21(17):4160-70.

581 51. van der Linde S, Suz LM, Orme CD, Cox F, Andreae H, Asi E et al. (2018) Environment and
582 host as large-scale controls of ectomycorrhizal fungi. *Nature* 558(7709):243-8.

583 52. Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler HP (2006) Auxofuran, a
584 novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza
585 helper bacterium *Streptomyces* strain AcH 505. *Applied and Environmental Microbiology*
586 72(5):3550-7.

587 53. Carpenter-Boggs L, Loynachan TE, Stahl PD (1995) Spore germination of *Gigaspora*
588 *margarita* stimulated by volatiles of soil-isolated actinomycetes. *Soil Biology and*
589 *Biochemistry* 27(11):1445-51.

590 54. Fries N, Serck-Hanssen K, Dimberg LH, Theander O (1987) Abietic acid, and activator of
591 basidiospore germination in ectomycorrhizal species of the genus *Suillus* (Boletaceae).
592 *Experimental Mycology* 11(4):360-3.

593 55. Nara K (2009) Spores of ectomycorrhizal fungi: ecological strategies for germination and
594 dormancy. *New Phytologist* 245-8.

595 56. Smith SE, Read DJ (2010) *Mycorrhizal symbiosis*. Academic press; Jul 26.

596 57. Sangwan S, Prasanna R (2022) Mycorrhizae helper bacteria: unlocking their potential as
597 bioenhancers of plant–arbuscular mycorrhizal fungal associations. *Microbial Ecology*
598 84(1):1-0.

599 58. Kang H, Chen X, Kemppainen M, Pardo AG, Veneault-Fourrey C, Kohler A et al. (2020)
600 The small secreted effector protein MiSSP7. 6 of *Laccaria bicolor* is required for the
601 establishment of ectomycorrhizal symbiosis. *Environmental Microbiology* (4):1435-46.

602 59. Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K et al. (2008)
603 Strigolactones, host recognition signals for root parasitic plants and arbuscular
604 mycorrhizal fungi, from Fabaceae plants. *New Phytologist* 179(2):484-94.

605 60. See CR, Keller AB, Hobbie SE, Kennedy PG, Weber PK, Pett-Ridge J (2022) Hyphae move
606 matter and microbes to mineral microsites: Integrating the hyphosphere into conceptual
607 models of soil organic matter stabilization. *Global Change Biology* 28(8):2527-40.

608 61. Garay-Arroyo A, De La Paz Sánchez M, García-Ponce B, Azpeitia E, Álvarez-Buylla ER
609 (2012) Hormone symphony during root growth and development. *Developmental
610 Dynamics* 241(12):1867-85.

611 62. Ladygina N, Henry F, Kant MR, Koller R, Reidinger S, Rodriguez A et al. (2010) Additive
612 and interactive effects of functionally dissimilar soil organisms on a grassland plant
613 community. *Soil Biology and Biochemistry* 42(12):2266-75.

614 63. Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken ME et al. (2011)
615 Nutrient co-limitation of primary producer communities. *Ecology Letters* 14(9):852-62.

616 64. Li J (2005) Brassinosteroid signaling: from receptor kinases to transcription factors.
617 *Current Opinion in Plant Biology* 8(5):526-31.

618 65. Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K et al. (2004) An
619 overview of gibberellin metabolism enzyme genes and their related mutants in rice.
620 Plant Physiology 134(4):1642-53.

621 66. Li QF, He JX (2013) Mechanisms of signaling crosstalk between brassinosteroids and
622 gibberellins. Plant Signaling & Behavior 8(7):e24686.

623 67. Wang Y, Li J (2006) Genes controlling plant architecture. Current Opinion in
624 Biotechnology 17(2):123-9.

625 68. Gleason SM, Stephens AE, Tozer WC, Blackman CJ, Butler DW, Chang Y et al. (2018)
626 Shoot growth of woody trees and shrubs is predicted by maximum plant height and
627 associated traits. Functional Ecology 32(2):247-59.

628 69. Owen D, Williams AP, Griffith GW, Withers PJ (2015) Use of commercial bio-inoculants to
629 increase agricultural production through improved phosphorous acquisition. Applied Soil
630 Ecology 86:41-54.

631 70. Chaudhary T, Shukla P (2023) Bioinoculants development for sustainable agriculture by
632 innovative optimization processes: a future roadmap to commercialization. InMicrobial
633 Bioprocesses 107-119

634 71. Deng S, Wipf HM, Pierroz G, Raab TK, Khanna R, Coleman-Derr D (2019) A plant growth-
635 promoting microbial soil amendment dynamically alters the strawberry root bacterial
636 microbiome. Scientific Reports 9(1):17677.

637 72. Berrios L (2022) The genus *Caulobacter* and its role in plant microbiomes. World Journal
638 of Microbiology and Biotechnology 38(3):43.

639 73. Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D et al. (2016)
640 Microbial diversity drives multifunctionality in terrestrial ecosystems. *Nature Communications* 7(1):10541.

642 74. Berrios L, Bogar GD, Bogar LM, Venturini AM, Willing CE, Del Rio A et al. (2024)
643 Ectomycorrhizal fungi alter soil food webs and the functional potential of bacterial
644 communities. *Msystems* e00369-24.

645 75. Fukami T (2015) Historical contingency in community assembly: integrating niches,
646 species pools, and priority effects. *Annual Review of Ecology, Evolution, and Systematics*
647 46:1-23.

648 76. Chaudhary T, Dixit M, Gera R, Shukla AK, Prakash A, Gupta G et al. (2020) Techniques for
649 improving formulations of bioinoculants. *3 Biotech* 10:1-9.

650 77. Sarma MV, Kumar V, Saharan K, Srivastava R, Sharma AK, Prakash A et al. (2011)
651 Application of inorganic carrier-based formulations of fluorescent pseudomonads and
652 *Piriformospora indica* on tomato plants and evaluation of their efficacy. *Journal of
653 Applied Microbiology* 111(2):456-66.

654 78. Ma X, Xu X, Geng Q, Luo Y, Ju C, Li Q et al. (2023) Global arbuscular mycorrhizal fungal
655 diversity and abundance decreases with soil available phosphorus. *Global Ecology and
656 Biogeography* 32(8):1423-34.

657 79. Steidinger BS, Bhatnagar JM, Vilgalys R, Taylor JW, Qin C, Zhu K et al. (2020)
658 Ectomycorrhizal fungal diversity predicted to substantially decline due to climate
659 changes in North American Pinaceae forests. *Journal of Biogeography* 47(3):772-82.

660 80. Arnolds EE (1991) Decline of ectomycorrhizal fungi in Europe. *Agriculture, Ecosystems &*
661 *Environment* 35(2-3):209-44.

662 81. Delgado-Baquerizo M, Guerra CA, Cano-Díaz C, Egidi E, Wang JT, Eisenhauer N et al.
663 (2020) The proportion of soil-borne pathogens increases with warming at the global
664 scale. *Nature Climate Change* 10(6):550-4.

665 82. Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-
666 use efficiency. *Applied Microbiology and Biotechnology* 85(1):1-2.

667 83. Lutz S, Bodenhausen N, Hess J, Valzano-Held A, Waelchli J, Deslandes-Hérold G et al.
668 (2024) Soil microbiome indicators can predict crop growth response to large-scale
669 inoculation with arbuscular mycorrhizal fungi. *Nature Microbiology* 8(12):2277-89.

670

671 **Table and Figure Legends**

672 **Table 1. Linear regression model outputs of the effect that bacterial and mycorrhizal fungal**
673 **inoculants have on plant responses.** Statistically significant predictors and/or interaction terms
674 are denoted by * for $p < 0.05$ and *** for $p < 0.01$. Model output data were generated using the
675 `summary()` function on each constructed model in R. DF = Degrees of Freedom. See Table S2
676 and Table S3 for additional information about the model outputs.

677 **Fig. 1. Distribution of organisms used in AM studies.** The composition of bacterial (A), fungal
678 (B), and plant (C) genera of studies used in our meta-analysis are shown. The X-axis displays the
679 six plants responses that were analyzed in our study. The abbreviations are as follows: MC =
680 mycorrhizal fungi colonization percentage, RL = plant root length, RW = plant root weight, SH =
681 plant shoot height, SW = plant shoot weight, and TPW = total plant weight. The total number of

682 inoculants used in each analysis is denoted above each stacked bar. See Table S1 for additional
683 information about the selected studies. (D) Number of unique genera across studies.

684 **Fig. 2. Distribution of organisms used in EcM studies.** The composition of bacterial **(A)**, fungal
685 **(B)**, and plant **(C)** genera of studies used in our meta-analysis are shown. The X-axis displays the
686 six plants responses that were analyzed in our study. The abbreviations are as follows: MC =
687 mycorrhizal fungi colonization percentage, RL = plant root length, RW = plant root weight, SH =
688 plant shoot height, SW = plant shoot weight, and TPW = total plant weight. The total number of
689 inoculants used in each analysis is denoted above each stacked bar. See Table S1 for additional
690 information about the selected studies.

691 **Fig. 3. Biomass plant response effect sizes of single and co-inoculations of bacteria and**
692 **mycorrhizal fungi.** Changes in effect sizes (y-axis) for total plant weight **(A-B)**, plant shoot
693 weight **(C-D)**, and plant root weight **(E-F)** are shown for both arbuscular mycorrhizal (AM) fungi
694 and ectomycorrhizal (EcM) fungi across different inoculation types (x-axis). The p-values for
695 each comparison are provided, where $p < 0.05$ is considered a significant difference. Study
696 information can be found in Fig. 1-2 and Table S1. The linear regression model outputs are
697 listed in Table 1, Table S2, and Table S3.

698 **Fig. 4. Plant shoot height and root length effect size comparisons of single and co-inoculations**
699 **of bacteria and mycorrhizal fungi.** Changes in effect sizes (y-axis) for plant shoot height **(A-B)**
700 and plant root length **(C-D)** are shown for both arbuscular mycorrhizal (AM) fungi and
701 ectomycorrhizal (EcM) fungi across different inoculation types (x-axis). The p-values for each
702 comparison are provided, where $p < 0.05$ is considered a significant difference. Study

703 information can be found in Fig. 1-2 and Table S1. The linear regression model outputs are
704 listed in Table 1, Table S2, and Table S3.

705 **Fig. 5. Mycorrhizal fungi plant root colonization percentage effect size comparisons of single**
706 **and co-inoculations of bacteria and mycorrhizal fungi.** Changes in effect sizes (y-axis) for the
707 colonization of arbuscular mycorrhizal (AM) fungi (**A**) and ectomycorrhizal (EcM) fungi (**B**)
708 across different inoculation types (x-axis) are shown. The p-values for each comparison are
709 provided, where $p < 0.05$ is considered a significant difference. Study information can be found
710 in Fig. 1-2 and Table S1. The linear regression model outputs are listed in Table 1, Table S2, and
711 Table S3.

712