

1 **Changing balance between dormancy and mortality**
2 **determines the trajectory of ectomycorrhizal fungal**
3 **spore longevity over a 15 year burial experiment**

4 ¹Hagai Shemesh, ²Thomas D. Bruns, ^{3,4}Kabir G. Peay, ⁵Peter G. Kennedy,

5 ⁶Nhu H. Nguyen

6 ¹ Department of Environmental Sciences, Tel-Hai College, Israel, 1220800,

7 [ORCID](#)

8 ² University and Jepson Herbarium, University of California, Berkeley, Berkeley,

9 CA 94720-2465, [ORCID](#)

10 ³ Department of Biology, Stanford University, Stanford CA 94305, USA, [ORCID](#)

11 ⁴ Department of Earth System Science, Stanford University, Stanford CA
12 94305, USA

13 ⁵ Department of Plant and Microbial Biology, University of Minnesota, St. Paul
14 MN 55108, USA, [ORCID](#)

15 ⁶ Department of Tropical Plant and Soil Sciences, University of Hawai'i at
16 Mānoa, Honolulu, HI 96822, USA, [ORCID](#)

17
18 **Corresponding Authors:**

19 Kabir Peay: kpeay@stanford.edu

20
21 Brief heading: Fungal spore retain viability after being buried in the soil for 15
22 years

23 Summary

24 Propagule longevity is an important ecological trait enabling organisms to
25 survive through long

26
27 Keywords: Dormancy, Ectomycorrhiza, Longevity, Long-term, *Rhizopogon*
28 Spores

29
30 **Introduction**

31 Temporal variability, ranging in scale from minutes to decades, imposes both
32 challenges (Roff, 2002) and opportunities (Hutchinson, 1961; Roy &

33 Chattopadhyay, 2007) for the survival of most organisms (Levin, 1992). In
34 response, organisms have developed a range of adaptations to cope with
35 temporal changes in their environment; these can be coarsely divided into two
36 non-mutually exclusive groups: those that enable them to cope with variability
37 and those that enable them to avoid the variability. Adaptations related to
38 avoidance usually involve the organism either moving in space (Bowler &
39 Benton, 2005) or having the ability to be inactive for long periods of time
40 (Siewert & Tielbörger, 2010; Tielbörger *et al.*, 2012). In many organisms, it is
41 the resistant propagules that can be inactive over long time scales. Examples
42 can be found in seeds of desert annuals, which are known to maintain viability
43 for decades (Guterman, 2012), as well as spores, sclerotia, or other quiescent
44 states of ferns (Smith & Robinson, 1975), bacteria (Seaward *et al.*, 1976; Ulrich
45 *et al.*, 2018) and fungi (Bruns *et al.*, 2009), some of which are thought to last
46 for centuries.

47 Propagule longevity (i.e. the ability to remain viable for long periods of
48 time), is often combined with some level of dormancy (i.e. the state of metabolic
49 inactivity). In fact, under this broad definition of dormancy, propagule
50 persistence and dormancy are essentially synonymous. However, in
51 physiological or seed bank studies the term dormancy is often restricted to
52 propagules that are self-inhibited from germination under otherwise favorable
53 conditions (Thompson *et al.*, 2003). This type of dormancy has been referred
54 to as constitutive, innate, primary, or endogenous dormancy (Sussman and
55 Douthit 1973) or simply “dormancy” (Thompson *et al.*, 2003). The concept is
56 useful because it is a property of a propagule rather than a missing feature of
57 the environment that stimulates germination. Here we will refer to it as
58 **constitutive dormancy** because it differs from the broader way dormancy is
59 sometimes defined (Lennon & Jones, 2011). Constitutive dormancy has an
60 important ecological role: it minimizes the chances of complete failure due to
61 extreme events (bet-hedging; Cohen, 1966; Seger & Brockmann, 1987; Sadeh
62 *et al.*, 2009), while longevity enables organisms to wait out long periods of
63 unfavorable conditions.

64 Successional shifts in community composition often result after long
65 periods of unfavorable conditions, particularly for ruderal species that are
66 usually outcompeted relatively quickly after initial colonization (Chapin *et al.*,

67 1994). Thus, for long-term survival within the site, these less competitive
68 species must be able to remain inactive over long time periods. While such life-
69 history trade-offs are well established in macroorganisms, adaptations to
70 temporal environmental variability in microorganisms are less studied (but see
71 Jones & Lennon, 2010; Shade *et al.*, 2012 for reviews on the topic).
72 Ectomycorrhizal fungi (EMF), a key group of symbionts on woody plant species
73 world-wide (Smith & Read, 2008), often have temporally variable communities,
74 with initial colonization by ruderal species in many cases being replaced by
75 more competitive EMF as trees mature (Visser, 1995; Twieg *et al.*, 2007).
76 However, the outcompeted EMF species are maintained by a long-lasting spore
77 bank in the soil (Bruns *et al.*, 2009; Nara, 2009; Huang *et al.*, 2015). The multi-
78 decade longevity of most forest trees and the relatively low disturbance return
79 interval in many forests suggests that selection should favor EMF ruderal
80 species with high spore longevity.

81 To date, most data regarding EMF spore longevity are anecdotal and
82 originate from uncontrolled observations (Pither & Pickles, 2017). In 2003, we
83 started a planned 99 year-long controlled experiment aimed at examining the
84 longevity and constitutive dormancy of spores of early successional EMF
85 species (Bruns *et al.* 2009). Spores of three *Rhizopogon* species that were
86 derived from multiple mature sporocarps were mixed into EMF-free soil, buried
87 in the field within semi-porous ceramic containers, and sampled once a year
88 during the first four years of the experiment. Within the first four years, the
89 inoculum potential of the soils increased (i.e. fewer spores required for
90 colonization), demonstrating that some of the spores that were initially dormant
91 were becoming active and that this break in constitutive dormancy was
92 happening at a higher rate than spore mortality (Bruns *et al.*, 2009). We present
93 here the results from years 10 and 15 of the experiment, a rare opportunity to
94 accurately measure spore longevity in fungi under field conditions.

95

96 **Methods**

97 Experimental methods are presented here in brief; for a detailed description
98 see Bruns et al (2009). Spore slurries were made in February 2003 for *R.*
99 *occidentalis*, *R. vulgaris* and *R. salebrosus*, using six mature collections of each

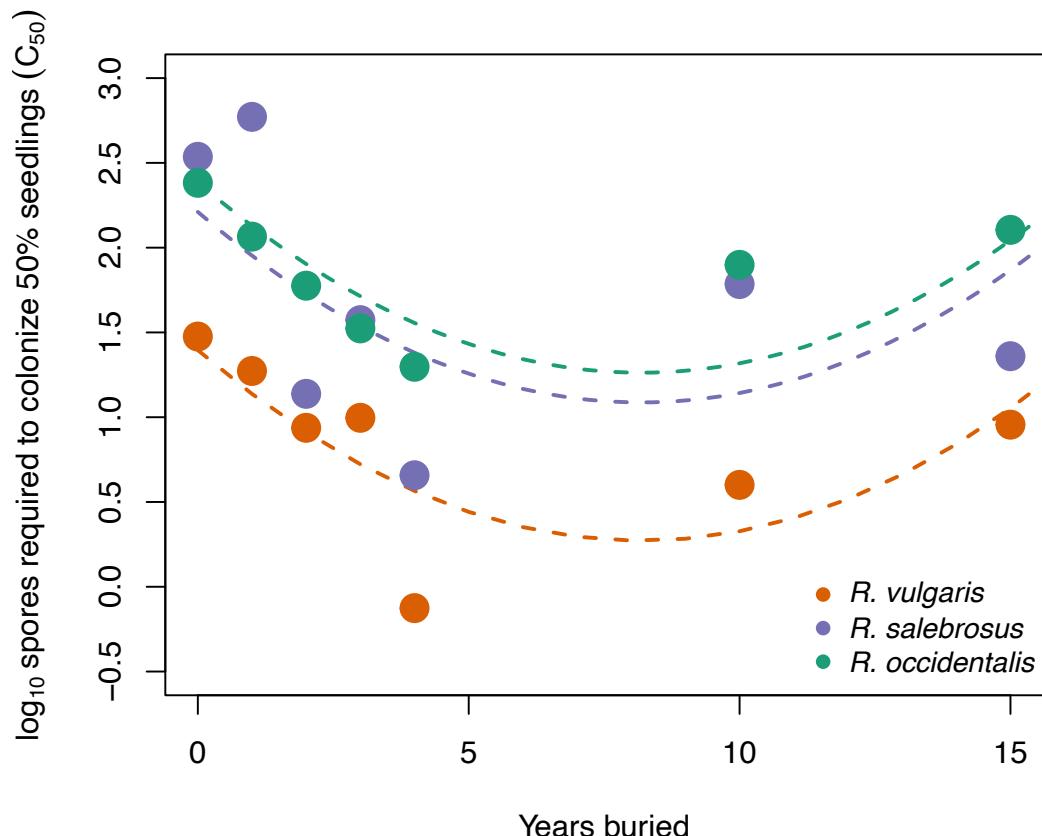
100 species. To assay spore longevity, a grassland site lacking *Rhizopogon* spores
101 (live field soil from Tomales Point, a peninsula in Point Reyes National
102 Seashore) was located and was used both as a soil source for the experiment,
103 and for the burial location for inoculated test samples. For each species of
104 *Rhizopogon*, 2.5×10^8 spores were sprayed onto 28 L of soil and thoroughly
105 mixed. Subsamples of 1.6 L of these single species mixtures were placed into
106 16 terracotta flowerpots, 16.5 cm in diameter. The drainage holes were covered
107 by a glass microscope slide and the tops of the pots were covered with 19 cm
108 terracotta saucers. The 64 pots containing the three single-species treatments
109 were buried to a depth of 15 cm at the top of the pot lids. The pots were then
110 buried at the Tomales Point grassland site. The semiporous nature of these
111 pots maintained a realistic soil environment and allowed for retrieval over the
112 decadal scale of this experiment while the gaps between the glass slide and
113 pot bottom should still allow for microarthropods to enter the pot.

114 Spore viability was assayed at each time point by inoculating *Pinus*
115 *muricata* seedlings with spores from buried soil pots and measuring the extent
116 of ectomycorrhizal formation. Two-fold soil dilutions were assayed for
117 *Rhizopogon* colonization with 12 pine seedlings planted in separate RCL4
118 cone-tainers (Steuwe & Sons, Tangent, OR, USA). A total of 20 two-fold
119 dilutions spanning the range of 8.9×10^4 to 1.7×10^{-1} spores ml⁻¹ were
120 conducted. In addition, 20 control seedlings were planted in the sterile soil mix
121 for each series for a total of 260 seedlings (20 dilutions × 12 replicates + 20
122 control seedlings) per time point per species. Of the 60 seedlings planted in
123 uninoculated soil as controls, 10 were colonized by airborne spores, but none
124 were colonized by *Rhizopogon*. Contamination within the dilution series was
125 only observed in the high dilutions in which *Rhizopogon* had been diluted to
126 near extinction.

127 Seedlings were grown in the glasshouse with watering but no
128 fertilization. After 6 months, seedlings were removed from the cone-tainers, soil
129 was washed from the roots, and the root systems were examined under a
130 dissecting microscope. Seedlings were scored as colonized or not by
131 *Rhizopogon*; this was easy to determine because root tips colonized by
132 *Rhizopogon* are white, often coraloid or densely branched, fluffy, and with
133 many rhizomorphs. Samples with questionable identities and up to 20 putative

134 *Rhizopogon* tips selected from each species series and preserved in CTAB
135 buffer. RFLP analysis was conducted on these samples (see Bruns *et al.* 2009
136 for additional information) and all were confirmed to be correctly identified.

137


138 Statistical analysis

139 A two-step approach was used to test for the effects of burial time and species
140 identity on spore viability. Multiple logistic regression was used to characterize
141 the relationship between spore concentration and seedling colonization and to
142 extract from this a single estimate of spore receptivity for each pot harvested
143 ($C_{50} \text{ (year } N\text{)}$). $C_{50} \text{ (year } N\text{)}$ is the estimate of the concentration of the spores initially
144 inoculated into each pot that is required to colonize 50% of the seedlings in the
145 experiment for a given year (see below for further discussion of this term). For
146 each *Rhizopogon* species, an independent logistic regression model was used
147 to predict the number of seedlings colonized at each level of the dilution series
148 and at each time point. The number of spores in the dilution series was included
149 as a quantitative predictor variable and the effect of years buried estimated as
150 a factor (no interaction was included in the model). Then for each species, the
151 estimated C_{50} for each year in the logistic regression was used as an integrated
152 measure of inoculum potential for each time point.

153 The second step of our analysis was to use multiple linear regression to
154 statistically test for trends in inoculum potential over time. A linear model was
155 used to predict changes in $C_{50} \text{ (year } N\text{)}$ due to burial time, species identity, and
156 their interaction. A quadratic term (burial time²) was also included to account
157 for non-monotonic changes in $C_{50} \text{ (year } N\text{)}$. Non-significant terms (starting with the
158 highest order terms) were eliminated until all terms in the model were
159 significant.

160 The logistic regression models were fitted with maximum-likelihood
161 techniques using the `glm` procedure in R, version 4.1.1 (R Core Development
162 Team, 2016), with a logit link function and binomial errors. Spore concentrations
163 were log-transformed to reduce model overdispersion. Multiple regression
164 models were fitted using the `lm` procedure in R. Effects were considered
165 significant at $p < 0.05$. R commands for this project are available on GitHub
166 (<https://github.com/nnguyenlab/rhizopogon-longevity>).

167

168 **Results and Discussion**

169
170 **Figure 1.** Spore concentration required to colonize 50% of seedlings (C₅₀) for
171 three *Rhizopogon* species over time. C₅₀ was estimated from logistic regression
172 for each species and burial time. Lines are from a generalized-linear model fit
173 of a polynomial regression (time $p = 0.004$; time² $p = 0.006$).

174
175 We found that spores of all three *Rhizopogon* species survived 15 years. After
176 an apparent increase in their viability during the first four years (Bruns et al
177 2009), they have now almost returned to levels of inoculum potential measured
178 at year zero (Fig. 1). This means that the full longevity of these spores is likely
179 to be much longer than 15 years. However, providing an accurate estimate for
180 how long they will survive involves understanding both the processes of spore
181 mortality and release from constitutive dormancy.

182 It is possible to define a simple model demonstrating how the processes
183 of spore mortality and release from constitutive dormancy explain the patterns

184 we observe. First, some fraction of the spore pool is currently living, or viable,
185 but some fraction of these may be constitutively dormant and unable to colonize
186 seedlings. Receptive spores are those that are currently capable of colonizing
187 seedling roots, and therefore must be both viable and not constitutively
188 dormant. Here we define $C_{50\text{-Actual}}$ as the true concentration of receptive spores
189 needed to colonize 50% of the test seedlings. This is an ideal concept and
190 cannot be measured directly since neither viability nor receptiveness are
191 independently measured in our system. In our analyses, $C_{50(\text{year N})}$ then is the
192 total concentration of buried spores from our dilution series that are observed
193 to cause colonization of 50% of the test seedlings in year N. Inoculum potential
194 then is the ability of the spore-laden soil to cause colonization of seedlings, with
195 greater inoculum potential yielding higher percentages of colonized
196 seedlings. In our model we compare changes in inoculum potential by
197 estimating $C_{50(\text{year N})}$ across years. However, inoculum potential and $C_{50(\text{year N})}$
198 are inversely correlated; a rise in $C_{50(\text{year N})}$ corresponds with a decrease in
199 inoculum potential because a greater concentration of spores was needed to
200 cause the same level of colonization.

201 To develop our model, we first assume that the number of receptive
202 spores needed to achieve a given inoculum potential is a constant for a given
203 species as long as environmental conditions are also constant. In the context
204 of the terms we outlined above, this assumption means that C_{50} , our ideal but
205 unmeasurable variable, is constant for each species (Fig. S1). This simply
206 means that if, for example, 100 receptive spores/ml of soil colonize 50% of the
207 seedlings today, then at any later date this same quantity of receptive spores
208 will colonize 50% of the seedlings as long as environmental conditions are
209 constant. However, our measured $C_{50(\text{year N})}$ are not expected to stay constant
210 because they are based on the measured spore concentration from year zero,
211 and the percentage of receptive spores will change with time due to two
212 processes: mortality and release from constitutive dormancy. If no dormancy
213 was present, and only spore mortality occurred, then the observed $C_{50(\text{year N})}$ will
214 necessarily increase over time because a larger concentration of spores added
215 at year zero are needed to achieve the same C_{50} of viable spores. In contrast,
216 if no spore mortality occurs, but a larger proportion of spores become receptive
217 over time through release from dormancy, then our observed $C_{50(\text{year N})}$ would

218 decrease over time. However, when both mortality and breaking of dormancy
219 occur simultaneously then the stronger of the two processes will dominate.

220 With this model in mind, the trend and interpretation of the $C_{50(\text{year } N)}$ over
221 time (Fig. 1) becomes clear. During the first four years of the experiment,
222 inoculum potential was increasing, as evidenced by the drop in $C_{50(\text{year } N)}$ in all
223 three species. This means that during these early years spores were released
224 from constitutive dormancy at a greater rate than they were dying (Bruns et al.
225 2009). However, sometime after year 4, mortality became the stronger process,
226 and the $C_{50(\text{year } N)}$ started to increase in all three species. At year 15, all three
227 species are just beginning to achieve the same inoculum potential seen in year
228 0. This means that these spores now colonize seedlings at the same
229 concentration that they did when they were first collected from mature fruit
230 bodies. It is also noteworthy that our statistical model indicates that all three
231 species share a similar quadratic curve, which we interpret to mean that the
232 rates at which they break constitutive dormancy and experience mortality is
233 likely to be quite similar. Given that we have a relatively small number of
234 temporal observations (7 per species), it is possible that this may change with
235 more data. While the shape of the C_{50} curve was not distinguishable among
236 species, the starting spore efficacy (variation in y-intercept in Fig. 1) did vary
237 significantly among species. Specifically, *Rhizopogon vulgaris* had a lower C_{50}
238 relative to the other two species ($t = -3.99$, $p = 0.001$). This means that fewer
239 spores were needed for this species to colonize seedlings across all measured
240 years compared to the two other congeneric species.

241 These results show that the spores of *Rhizopogon* have both constitutive
242 dormancy and high longevity. This is similar to results from plant seed banks
243 (Koornneef et al., 2002; Thompson et al., 2003; Finch-Savage & Leubner-
244 Metzger, 2006), and has some precedent in other fungal systems (Sussman &
245 Douthit, 1973). In EMF systems, Pither and Pickles (2017) assembled some
246 suggestive examples of much greater longevity, but the only experimentally
247 measured longevity were previously part of the same study we report here
248 (Bruns et al., 2009; Nguyen et al., 2012). While the spores and seeds of some
249 species of EMF and extreme desert annual plants have at least decadal levels
250 of longevity, they might differ in their need for dormancy for two reasons. First,
251 unlike annual plants that have only one chance to reproduce and are therefore

252 susceptible to total reproductive failure due to extreme events, EMF are not
253 annual organisms and can produce spores repeatedly (iteroparity). This
254 reduces their chances for complete offspring failure, therefore reducing their
255 need for a bet-hedging reproductive strategy such as dormancy (Cohen, 1967)
256 while not affecting their need for propagule longevity. While our data does not
257 allow us to make any inferences about what predisposes certain spores to enter
258 dormancy or be receptive at the time of burial, it is possible that spore
259 characteristics such as cell wall development (e.g. Nakano *et al.*, 2016) could
260 be used to make *a priori* predictions about the likely trajectory of a population
261 of spores.

262 The second difference between desert seeds and EMF spores with
263 respect to dormancy, originates from the spatial distribution of their germination
264 cues. Desert seeds germinate in response to rainfall, a cue that can be
265 homogenously distributed over large areas. Therefore, an erroneous cue (early
266 season rains followed by mid-season drought) might produce pseudo-suitable
267 germination conditions that initiate germination of the *entire* seed bank over
268 large areas and result in its exhaustion because of seedling death. Seed
269 dormancy prevents this from happening by restricting germination of some of
270 the seeds even under apparently favorable conditions. In contrast, EMF spores
271 germinate in response to specific host root exudates (Fries, 1990). The spatial
272 distribution of this cue is much patchier because host roots are heterogeneously
273 distributed in the soil and germination requires close proximity between the
274 spore and the roots (Fries, 1990). Therefore, even in the case of an erroneous
275 cue (e.g., host seedling germination and root exudates initiates spore
276 germination that is then terminated by seedling death), only a small fraction of
277 the spore bank will be exhausted.

278 Establishing seedlings must be colonized either from a persistent spore
279 bank or new dispersal from undisturbed areas. The density of EMF spores in
280 natural settings is poorly known relative to other fungi and microbes, but it has
281 been shown to vary considerably depending on the habitat (Galante *et al.*,
282 2011; Policelli *et al.*, 2019), the stage of forest development (Jumpponen *et al.*,
283 2002), depth of soil (Miller *et al.*, 1994) and distance from host trees (Smith *et*
284 *al.*, 2018). Nevertheless, EMF spore banks are widespread in mature pine

285 forests (Glassman *et al.*, 2015) and sufficient to colonize the majority of
286 seedlings after natural fire disturbance (Glassman *et al.*, 2016).

287 For *Rhizopogon*, Miller *et al.* (1994) found that spores could be
288 recovered at multiple soil depths (0-3, 3-6 cm) at densities ranging from 10^8 to
289 10^{10} spores per g of soil. However, these high estimates are likely high due to
290 seasonal sampling associated with the production of nearby fruiting bodies. The
291 starting spore densities in our experiment are within the range encountered in
292 field settings (Miller *et al.*, 1994; Jumpponen *et al.*, 2002; Bruns *et al.*, 2009),
293 but given the notably variable patterns of colonization in seedling bioassays
294 (Kjøller & Bruns, 2003; Rusca *et al.*, 2006), it is clear that EMF spores have a
295 more patchy distribution in natural soils.

296 The key question of this long-term experiment is how long will these
297 spores remain viable? As mentioned above, the interplay between spore
298 mortality and spore dormancy complicates our ability to estimate longevity. To
299 address this, we attempted to extrapolate the shape of these curves beyond
300 the 15 years of data using polynomial models. However, we had no confidence
301 in the estimates we obtained because they varied greatly depending on models
302 used. Nevertheless, as we accumulate more observations from the next time
303 points, the shape of these curves will better constrain the models and enable a
304 more accurate estimate for the spore longevity in these species. When
305 complete, the entire experiment will yield a 99-year record that is relevant on
306 the ecological timescales over which forest disturbance and recovery occur.

307

308 **Acknowledgments**

309 We thank Point Reyes National Seashore for their cooperation. H.S. wishes to thank Sivan
310 Margalit who assisted with the initial data analysis. Initial funding was provided by NSF grant
311 DEB 236096 to TDB and NSF GRFP to NHN. KGP's participation was supported by NSF DEB
312 1845544.

313

314 **Author Contributions**

315 TDB planned and designed the research. HS, PGK & NHN performed the experiments. HS,
316 TDB and KGP analyzed data. HS wrote the manuscript and all authors made significant
317 contributions to the writing process.

318

319 **Competing interests**

320 None declared

321

322 **Data Availability**

323 The data tables and R codes used in this study are available at

324 <https://github.com/nnguyenlab/rhizopogon-longevity> .

325

References

326

327 **Bowler DE, Benton TG. 2005.** Causes and consequences of animal dispersal strategies:
328 relating individual behaviour to spatial dynamics. *Biological reviews* **80**(2): 205-225.

329 **Bruns TD, Peay KG, Boynton PJ, Grubisha LC, Hynson NA, Nguyen NH, Rosenstock NP.**
330 2009. Inoculum potential of *Rhizopogon* spores increases with time over the first 4
331 yr of a 99-yr spore burial experiment. *New Phytologist* **181**(2): 463-470.

332 **Chapin FS, Walker LR, Fastie CL, Sharman LC. 1994.** Mechanisms of primary succession
333 following deglaciation at Glacier Bay, Alaska. *Ecological Monographs* **64**(2): 149-175.

334 **Cohen D. 1966.** Optimizing Reproduction in a Randomly Varying Environment. *Journal of*
335 *Theoretical Biology* **12**(1): 119-129.

336 **Cohen D. 1967.** Optimizing Reproduction in a Randomly Varying Environment When a
337 Correlation May Exist between Conditions at Time a Choice Has to Be Made and
338 Subsequent Outcome. *Journal of Theoretical Biology* **16**(1): 1-14.

339 **Finch-Savage WE, Leubner-Metzger G. 2006.** Seed dormancy and the control of
340 germination. *New Phytologist* **171**(3): 501-523.

341 **Fries N. 1990.** The influence of tree roots on spore germination of ectomycorrhizal fungi.
342 *Agr. Ecosystems Environ.* **20**: 139-144.

343 **Galante TE, Horton TR, Swaney DP. 2011.** 95% of basidiospores fall within 1 m of the cap: a
344 field-and modeling-based study. *Mycologia* **103**(6): 1175-1183.

345 **Glassman SI, Levine CR, DiRocco AM, Battles JJ, Bruns TD. 2016.** Ectomycorrhizal fungal
346 spore bank recovery after a severe forest fire: some like it hot. *The ISME journal*
347 **10**(5): 1228-1239.

348 **Glassman SI, Peay KG, Talbot JM, Smith DP, Chung JA, Taylor JW, Vilgalys R, Bruns TD.**
349 2015. A continental view of pine-associated ectomycorrhizal fungal spore banks: a
350 quiescent functional guild with a strong biogeographic pattern. *New Phytologist*
351 **205**(4): 1619-1631.

352 **Gutterman Y. 2012.** *Seed germination in desert plants*: Springer Science & Business Media.

353 **Huang J, Nara K, Zong K, Lian C. 2015.** Soil propagule banks of ectomycorrhizal fungi along
354 forest development stages after mining. *Microbial Ecology* **69**(4): 768-777.

355 **Hutchinson GE. 1961.** The paradox of the plankton. *The American Naturalist* **95**(882): 137-
356 145.

357 **Jones SE, Lennon JT. 2010.** Dormancy contributes to the maintenance of microbial diversity.
358 *Proceedings of the National Academy of Sciences* **107**(13): 5881-5886.

359 **Jumpponen A, Trappe JM, Cazares E. 2002.** Occurrence of ectomycorrhizal fungi on the
360 forefront of retreating Lyman Glacier (Washington, USA) in relation to time since
361 deglaciation. *Mycorrhiza* **12**(1): 43-49.

362 **Kjøller R, Bruns TD. 2003.** *Rhizopogon* spore bank communities: within and among
363 Californian pine forests. *Mycologia* **95**: 603-613.

364 **Koornneef M, Bentsink L, Hilhorst H. 2002.** Seed dormancy and germination. *Current*
365 *opinion in plant biology* **5**(1): 33-36.

366 **Lennon JT, Jones SE. 2011.** Microbial seed banks: the ecological and evolutionary
367 implications of dormancy. *Nature reviews microbiology* **9**(2): 119-130.

368 **Levin AS. 1992.** The problem of pattern and scale in ecology. *Ecology* **73**(6): 1943-1967.

369 **Miller SL, Torres P, McClean TM. 1994.** Persistence of basidiospores and sclerotia of
370 ectomycorrhizal fungi and *Morchella* in soil. *Mycologia* **86**(1): 89-95.

371 **Nakano S, Gao Q, Aimi T, Shimomura N. 2016.** Rhizopogon roseolus basidiospore
372 germination decreases as the fruiting bodies mature and the spore wall becomes
373 more complex. *Botany* **94**(4): 311-320.

374 **Nara K. 2009.** Spores of ectomycorrhizal fungi: ecological strategies for germination and
375 dormancy. *New Phytologist*: 245-248.

376 **Nguyen NH, Hynson NA, Bruns TD. 2012.** Stayin'alive: survival of mycorrhizal fungal
377 propagules from 6-yr-old forest soil. *Fungal Ecology* **5**(6): 741-746.

378 **Pither J, Pickles BJ. 2017.** The paleosymbiosis hypothesis: host plants can be colonised by
379 root symbionts that have been inactive for centuries to millenia. *FEMS Microbiology
380 Ecology* **93**(6): fix061.

381 **Policelli N, Bruns TD, Vilgalys R, Nuñez MA. 2019.** Suilloid fungi as global drivers of pine
382 invasions. *New Phytologist* **222**(2): 714-725.

383 **R Core Development Team. 2016.** *R: A language and environment for statistical computing.*
384 Vienna, Austria: R Foundation for Statistical Computing.

385 **Roff DA. 2002.** *Life history evolution*: Sinauer Associates, Inc., Sunderland, Massachusetts.

386 **Roy S, Chattopadhyay J. 2007.** Towards a resolution of 'the paradox of the plankton': A brief
387 overview of the proposed mechanisms. *Ecological complexity* **4**(1-2): 26-33.

388 **Rusca T, Kennedy P, Bruns T. 2006.** The effect of different pine hosts on the sampling of
389 Rhizopogon spore banks in five Eastern Sierra Nevada forests. *New Phytologist*
390 **170**(3): 551-560.

391 **Sadeh A, Guterman H, Gersani M, Ovadia O. 2009.** Plastic bet-hedging in an amphicarpic
392 annual: an integrated strategy under variable conditions. *Evolutionary Ecology* **23**(3):
393 373-388.

394 **Seaward M, Cross T, Unsworth BA. 1976.** Viable bacterial spores recovered from an
395 archaeological excavation. *Nature* **261**(5559): 407-408.

396 **Seger J, Brockmann HJ. 1987.** What is bet-hedging? *Oxford Surveys in evolutionary biology* **4**:
397 182-211.

398 **Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, Huber DH, Langenheder S,
399 Lennon JT, Martiny JB. 2012.** Fundamentals of microbial community resistance and
400 resilience. *Frontiers in microbiology* **3**: 417.

401 **Siewert W, Tielborger K. 2010.** Dispersal-Dormancy Relationships in Annual Plants: Putting
402 Model Predictions to the Test. *American Naturalist* **176**(4): 490-500.

403 **Smith D, Robinson P. 1975.** The effects of spore age on germination and gametophyte
404 development in *Polypodium vulgare* L. *New Phytologist* **74**(1): 101-108.

405 **Smith GR, Steidinger BS, Bruns TD, Peay KG. 2018.** Competition–colonization tradeoffs
406 structure fungal diversity. *The ISME journal* **12**(7): 1758-1767.

407 **Smith SE, Read DJ. 2008.** *Mycorrhizal Symbiosis, 3rd Edition*: Elsevier, San Francisco, CA.

408 **Sussman A, Douthit H. 1973.** Dormancy in microbial spores. *Annual Review of Plant
409 Physiology* **24**(1): 311-352.

410 **Thompson K, Ceriani RM, Bakker JP, Bekker RM. 2003.** Are seed dormancy and persistence
411 in soil related? *Seed Science Research* **13**(2): 97-100.

412 **Tielbörger K, Petruš M, Lampej C. 2012.** Bet-hedging germination in annual plants: a sound
413 empirical test of the theoretical foundations. *Oikos* **121**(11): 1860-1868.

414 **Twieg BD, Durall DM, Simard SW. 2007.** Ectomycorrhizal fungal succession in mixed
415 temperate forests. *New Phytologist* **176**(2): 437-447.

416 **Ulrich N, Nagler K, Laue M, Cockell CS, Setlow P, Moeller R. 2018.** Experimental studies
417 addressing the longevity of *Bacillus subtilis* spores—The first data from a 500-year
418 experiment. *Plos One* **13**(12): e0208425.

419 **Visser S. 1995.** Ectomycorrhizal fungal succession in jack pine stands following wildfire. *New
420 Phytologist* **129**: 389-401.

421

422 Supporting information: Figure S1 shows the relationship between spore
423 concentration and proportion of pine seedlings colonized for three *Rhizopogon* species.

424