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Abstract. Sequence memory is an essential attribute of natural and artificial
intelligence that enables agents to encode, store, and retrieve complex sequences
of stimuli and actions. Computational models of sequence memory have been
proposed where recurrent Hopfield-like neural networks are trained with tem-
porally asymmetric Hebbian rules. However, these networks suffer from limited
sequence capacity (maximal length of the stored sequence) due to interference
between the memories. Inspired by recent work on Dense Associative Memories,
we expand the sequence capacity of these models by introducing a nonlinear inter-
action term, enhancing separation between the patterns. We derive novel scaling
laws for sequence capacity with respect to network size, significantly outperform-
ing existing scaling laws for models based on traditional Hopfield networks, and
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verify these theoretical results with numerical simulation. Moreover, we intro-
duce a generalized pseudoinverse rule to recall sequences of highly correlated
patterns. Finally, we extend this model to store sequences with variable timing
between states’ transitions and describe a biologically-plausible implementation,
with connections to motor neuroscience.

Keywords: machine learning

Supplementary material for this article is available online
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1. Introduction

Memory is an essential ability of intelligent agents that allows them to encode, store,
and retrieve information and behaviors they have learned throughout their lives. In
particular, the ability to recall sequences of memories is necessary for a large number of
cognitive tasks with temporal or causal structure, including navigation, reasoning, and
motor control [1–9].

Computational models with varying degrees of biological plausibility have been pro-
posed for how neural networks can encode sequence memory [1–3, 10–22]. Many of these
are based on the concept of associative memory, also known as content-addressable
memory, which refers to the ability of a system to recall a set of objects or ideas when
prompted by a distortion or subset of them. Modeling associative memory has been an

https://doi.org/10.1088/1742-5468/ad6427 2

https://doi.org/10.1088/1742-5468/ad6427
https://doi.org/10.1088/1742-5468/ad6427


Long sequence Hopfield memory

J.S
tat.

M
ech.(2024)

104024

extremely active area of research in computational neuroscience and deep learning for
many years, with the Hopfield network becoming the canonical model [23–25].

Unfortunately, a major limitation of the traditional Hopfield Network and related
associative memory models is its capacity: the number of memories it can store and
reliably retrieve scales linearly with the number of neurons in the network. This lim-
itation is due to interference between different memories during recall, also known as
crosstalk, which decreases the signal-to-noise ratio. Large amounts of crosstalk results
in the recall of undesired attractor states of the network [26–29].

Recent modifications of the Hopfield Network, known as Dense Associative Memories
or Modern Hopfield Networks (MHNs), overcome this limitation by introducing a strong
nonlinearity when computing the overlap between the state of the network and memory
patterns stored in the network [30, 31]. This leads to greater separation between partially
overlapping memories, thereby reducing crosstalk, increasing the signal-to-noise ratio,
and increasing the probability of successful recall [32].

Most models based on the Hopfield Network are autoassociative, meaning they are
designed for the robust storage and recall of individual memories. Thus, they are incap-
able of storing sequences of memories. In order to adapt these models to store sequences,
one must utilize asymmetric weights in order to drive the network from one activity pat-
tern to the next. Many such models use temporally asymmetric Hebbian learning rules
to strengthen synaptic connections between neural activity at one time state and the
next time state, thereby learning temporal association between patterns in a sequence
[1, 3, 10, 11, 16, 17, 22].

In this paper, we extend Dense Associative Memories to the setting of asymmetric
weights in order to store and recall long sequences of memories6. We work directly
with the update rule for the state of the network, allowing us to provide an analytical
derivation for the sequence capacity of our proposed network. We find a close match
between theoretical calculation and numerical simulation, and further establish the
ability of this model to store and recall sequences of correlated patterns. Additionally,
we examine the dynamics of a model containing both symmetric and asymmetric terms.
Finally, we describe applications of our network as a model of biological motor control.

2. DenseNets for sequence storage

Traditional Hopfield Networks and MHNs, as reviewed in the supplemental material,
are capable of storing individual memories. What about storing sequences? Assume that
we want to store a sequence of P patterns, ξ1 → ξ2 → · · ·→ ξP , where ξµj ∈ {±1} is the

j th neuron of the µth pattern and the network will transition from pattern ξµ to ξµ+1.
Let N be the number of neurons in the network and S(t) ∈ {−1,+1}N be the state of
the network at time t. We want to design a network with dynamics such that when the
network is initialized in pattern ξ1, it will traverse the entire sequence7. We define a

6 Code to reproduce all experiments is available on GitHub at https://github.com/Pehlevan-Group/LongSequenceHopfieldMemory.
7 We impose periodic boundary conditions and define ξP+1 ≡ ξ1. Boundary terms have a sub-leading contribution to the crosstalk,
so a model with open boundary conditions will have the same scaling of capacity.
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network, SeqNet, which follows a discrete-time synchronous update rule8:

TSN (S)i := sgn




∑

j "=i

JijSj



= sgn

[
P∑

µ=1

ξµ+1
i mµ

i

]
, mµ

i :=
1

(N − 1)

∑

j "=i

ξµj Sj, (1)

where S(t+1) = TSN(S) and Jij =
1
N

∑P
µ=1 ξ

µ+1
i ξµj is an asymmetric matrix connecting

pattern ξµ to ξµ+1. Note that we are excluding self-interaction terms i = j. We also
rewrote the dynamics in terms of mµ

i , the overlap of the network state S with pattern ξµ.
When the network is aligned most closely with pattern ξµ, the overlap mµ

i is the largest
contribution in the sum and pushes the network to pattern ξµ+1. When multiple patterns
have similar overlaps, meaning they are correlated, then there will be low signal-to-noise
ratio. This correlation between patterns limits the capacity of the network, limiting the
SeqNet’s capacity to scale linearly relative to network size.

To overcome the capacity limitations of the SeqNet, we use inspiration from Dense
Associative Memories [30] to define the DenseNet update rule:

TDN (S)i := sgn

[
P∑

µ=1

ξµ+1
i f (mµ

i )

]
(2)

where f is a nonlinear monotonically increasing interaction function. Similar to MHNs,
f reduces the crosstalk between patterns and, as we will analyze in detail, leads to
improved capacity. Figure 1 demonstrates this improvement for f(x) = x2.

2.1. Sequence capacity

To derive analytical results for the capacity, we must choose a distribution to generate
the patterns. As is standard in studies of the classic HN and MHNs [26–31, 33–36],
we choose this to be the Rademacher distribution, where ξµj ∈ {−1,+1} with equal
probability for all neurons j in all patterns µ, and calculate the capacity for different
update rules. If one is allowed to specially engineer the patterns, even the SeqNet can
store a sequence of length 2N [37], but this construction is not relevant to associative
recall of realistic sequences. Rademacher patterns are a more appropriate model for
generic patterns while remaining theoretically tractable.

We consider both the robustness of a single transition, and the robustness of propaga-
tion through the full sequence. For a fixed network size N ∈ {2,3, . . .} and an error
tolerance c ∈ [0,1), we define the single-transition and sequence capacities by

PT (N ,c) = max
{
P ∈

{
2, . . . ,2N

}
: P
[
TDN

(
ξ1
)
= ξ2

]
! 1− c

}
(3)

and

PS (N ,c) = max
{
P ∈

{
2, . . . ,2N

}
: P
[
∩P
µ=1

{
TDN (ξµ) = ξµ+1

}]
! 1− c

}
, (4)

8 One can also consider an asynchronous update rule in which one neuron is updated at a time [23, 26].
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Figure 1. SeqNet and Polynomial DenseNet (d =2) are simulated with N =300
neurons and P =100 patterns. One hundred curves are plotted as a function of time,
each representing the overlap of the network state at time t with one of the patterns,
mµ = (1/N)

∑N
i=1 ξ

µ
i Si. The curves are ordered using the color code described on

the right (patterns in the beginning and end of the sequence are shaded in yellow
and red respectively). (A). SeqNet quickly loses the correct sequence, indicated by
the lack of alignment of the network state with the correct pattern in the sequence
(mµ % 1). (B). The Polynomial DenseNet faithfully recalls the entire sequence and
maintains alignment with one of the patterns at any moment in time, mµ ≈ 1.

respectively, where the probability is taken over the random patterns. Note that for
the single-transition capacity we could focus on any pair of subsequent patterns due
to translation invariance arising from periodic boundary conditions. Also note that the
full sequence capacity is defined by demanding that all transitions are correct. For
perfect recall, we want to take the threshold c ↓ 0. In the thermodynamic limit in which
N ,P →∞, we expect for there to exist a sharp transition in the recall probabilities as a
function of P, with almost-surely perfect recall below the threshold value and vanishing
probability of recall above [26–29, 31, 33–36]. Thus, we expect the capacity to become
insensitive to the value of c in the thermodynamic limit; this is known rigorously for
the classic Hopfield network from the work of Bovier [34].

As we detail in the supplemental material, all of our theoretical results are
obtained under two approximations. We will validate the accuracy of the result-
ing capacity predictions through comparison with numerical experiments. First, fol-
lowing Petritis [33]’s analysis of the classic Hopfield network, we use union bounds
to control the single-transition and full-sequence capacities in terms of the single-
bitflip error probability P[TDN(ξ

1)1 )= ξ21]. Using the fact that the patterns are i.i.d.
this gives P[TDN(ξ

µ) = ξµ+1]! 1−NP[TDN(ξ
1)1 )= ξ12] and P[∩P

µ=1{TDN(ξ
µ) = ξµ+1}]!

1−NPP[TDN(ξ
1)1 )= ξ12], respectively, resulting in the lower bounds

PT (N ,c)!max
{
P ∈

{
2, . . . ,2N

}
:NP

[
TDN

(
ξ1
)
1
)= ξ12

]
" c
}
, (5)

PS (N ,c)!max
{
P ∈

{
2, . . . ,2N

}
:NPP

[
TDN

(
ξ1
)
1
)= ξ12

]
" c
}
. (6)

From studies of the classic Hopfield network, we expect for these bounds to be tight
in the thermodynamic limit (N →∞), but we will not attempt to prove that this is
so [33, 34]. Second, our theoretical results are obtained under the approximation of
P[THN(ξ

1)1 )= ξ21] in the regime N ,P * 1 by a Gaussian tail probability. Concretely, we
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write the single-bitflip probability as

P
[
TDN

(
ξ1
)
1
)= ξ21

]
= P [C <−f (1)] (7)

in terms of the crosstalk

C =
P∑

µ=2

ξ21ξ
µ+1
1 f



 1

N − 1

N∑

j=2

ξµj ξ
1
j



 , (8)

which represents interference between patterns that can lead to a bitflip. Then, as the
crosstalk is the sum of P − 1 i.i.d. random variables, we approximate its distribution as
Gaussian. We then extract the capacity by determining how P should scale with N such
that the error probability tends to zero as N →∞, corresponding to taking c ↓ 0 with
increasing N. Within the Gaussian approximation, we can also estimate the capacity at
fixed c by using the asymptotics of the inverse Gaussian tail distribution function to
determine how P should scale with N such that the error probability is asymptotically
bounded by c as N →∞. This predicts that the effect of non-negligible c should vanish
as N →∞.

For P large but finite, this Gaussian approximation amounts to retaining only the
leading term in the Edgeworth expansion of the tail distribution function [38–41]. We
will not endeavor to rigorously control the error of this approximation in the regime
of interest in which N is also large. To convert our heuristic results into fully rigorous
asymptotics, one would want to construct an Edgeworth-type series expansion for the
tail probability P[C <−f(1)] that is valid in the joint limit with rigorously-controlled
asymptotic error, accounting for the fact that the crosstalk is a sum of discrete random
variables [38–41]. As a simple probe of Gaussianity, we will consider the excess kurtosis
of the crosstalk distribution, which determines the leading correction to the Gaussian
approximation in the Edgeworth expansion, and describes whether its tails are heavier
or narrower than Gaussian [38–41].

2.2. Polynomial DenseNet

Consider the DenseNet with polynomial interaction function, f(x) = xd, which we will
call the Polynomial DenseNet. In the supplemental material, we argue that the leading
asymptotics of the transition and sequence capacities for perfect recall are given by

PT ∼ Nd

2(2d− 1)!! log(N)
, PS ∼ Nd

2(d+1)(2d− 1)!! log(N)
. (9)

Note that this polynomial scaling of the single-transition capacity with network size
coincides with the capacity scaling of the symmetric MHN [30]. Indeed, as we have
excluded self-interaction terms in the update rule, the single-bitflip probabilities for
these two models coincide exactly for unbiased Rademacher patterns (supplemental
material). This allows us to adapt arguments from Demircigil et al [31] to show that (9)
is in fact a rigorous asymptotic lower bound on the capacity (supplemental material).
We compare our results for the single-transition and sequence capacities to numerical

https://doi.org/10.1088/1742-5468/ad6427 6
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Figure 2. Testing the transition and sequence capacities of DenseNets with polyno-
mial and exponential nonlinearities. (A). Scaling of transition capacity (log10(PT ),
left) and sequence capacity (log10(PS), right) with network size. As network size
increases, the variance of the crosstalk decreases and the theoretical approxim-
ations become more accurate, resulting in a tight match between theory (solid
lines) and simulation (points with error bars). The theory curves are given by
equations (9) and (10). Error bars are computed across realizations of the random
patterns (see the supplemental material). There is significant deviation between
theory and simulation for the sequence capacity of the Exponential DenseNet. We
show that this is due to finite-size effects in section 2.3. (B). Transition capacity of
Polynomial DenseNets as a function of degree. For any finite network size N, there
is a degree d that maximizes the transition capacity. The same would be true for
the sequence capacity. (C). Crosstalk variance (left ) and excess kurtosis (right) for
the Exponential DenseNet as a function of P and N. Variance is proportional to P
and inversely proportional to N, while the opposite is true for excess kurtosis. See
the supplemental material for details of our numerical methods.

simulation in figure 2. The simulation matches theoretical prediction for large network
size N. For smaller N, there are finite-size effects that result in deviation from theoretical
prediction. The crosstalk has non-negligible kurtosis in finite size networks which leads
to deviation from the Gaussian approximation.

Furthermore, we point out that for fixed N, the network capacity does not mono-
tonically increase in the degree d. Since the factorial function grows faster than the
exponential function, every finite network of size N has a polynomial degree dmax after
which the capacity will actually decrease. This is also true for the standard MHN.
We demonstrate this numerically in figure 2(B), again noting mild deviations between
theory and simulation due to finite-size effects.

https://doi.org/10.1088/1742-5468/ad6427 7
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2.3. Exponential DenseNet

We have shown the DenseNet ‘s capacity can scale polynomially with network size.
Can it scale exponentially? Consider the DenseNet with exponential interaction func-
tion, f(x) = e(N−1)(x−1), which we call the Exponential DenseNet. This function reduces
crosstalk dramatically: f(mµ(S)) = 1 whenmµ(S) = 1 and is otherwise sent to zero expo-
nentially fast. In the supplemental material, we show that under the abovementioned
approximations one has the leading asymptotics

PT ∼ βN−1

2 logN
and PS ∼ βN−1

2 log(β)N
, where β =

exp(2)

cosh(2)
, 1.964 . . . (10)

In figure 2, numerical simulations confirm this model scales significantly better than
the Polynomial DenseNet and enables one to store exponentially long sequences rel-
ative to network size. While the ratio between transition and sequence capacities
remains bounded for the Polynomial DenseNet, where PT/PS ∼ d+1, the gap for the
Exponential DenseNet diverges with network size.

However, we can see in figure 2(A) that the empirically measured capacity—
particularly the sequence capacity—of the Exponential DenseNet deviates substantially
from the predictions of our approximate Gaussian theory. Due to computational con-
straints, our numerical simulations are limited to small network sizes (supplemental
material). Computing the excess kurtosis of the crosstalk distribution with a number of
patterns comparable to the capacity predicted by the Gaussian theory reveals that, for
the range of system sizes we can simulate, the distribution should deviate strongly from
a Gaussian. In particular, if take P ∼ βN−1/(αN) for some constant factor α, then the
excess kurtosis increases with network size up to around N ≈ 56 (supplemental mater-
ial). Increasing the size of an Exponential DenseNet therefore has competing effects: for
a fixed sequence length P, increasing network size N decreases the crosstalk variance,
which should reduce the bitflip probability, but also increases the excess kurtosis, which
reflects a fattening of the crosstalk distribution tails that should increase the bitflip
probability. This is illustrated in figure 2(C).

The competition between increasing P and N for the Exponential DenseNet is
easy to understand intuitively. For a fixed N, increasing P means that the crosstalk
is equal in distribution to the sum of an increasingly large number of i.i.d. random
variables, and thus by the central limit theorem should become increasingly Gaussian.
Conversely, for a fixed P, increasing N means that each of the P − 1 contributions to
the crosstalk is equal in distribution to the product of an increasing number of i.i.d. ran-
dom variables—as f

(
1

N−1

∑N
j=2 ξ

µ
j ξ

1
j

)
=
∏N

j=2 exp(ξ
µ
j ξ

1
j )—and thus by the multiplicative

central limit theorem each term should tend to a lognormal distribution. In this regime,
then, the crosstalk is roughly a mixture of lognormals, which is decidedly non-Gaussian.
In contrast, for a Polynomial DenseNet, memorization is easy in the limit where N tends
to infinity for fixed P, as the crosstalk should tend almost surely to zero as each term
f
(

1
N−1

∑N
j=2 ξ

µ
j ξ

1
j

)
→ 0 almost surely.
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Figure 3. (A). Recall of a sequence of 200000 correlated images from the
MovingMNIST dataset using DenseNets of size N =784. We showcase a 10 image
subsequence. The top row depicts the true sequence, the second row depicts
SeqNet’s performance, the next rows depict the Polynomial DenseNets’ perform-
ance which increases with degree d, and the final row depicts the Exponential
DenseNet’s performance which yields perfect recall. (B). Transition capacity of
Polynomial DenseNets of size N =100 relative to pattern bias ε. Increasing ε mono-
tonically decreases capacity. Networks with stronger nonlinearities maintain high
capacity for large correlation strength. Implementing the generalized pseudoinverse
rule decorrelates these patterns and maintains high sequence capacity for much lar-
ger correlation. See the supplemental material for details of numerical methods.

2.4. Recalling sequences of correlated patterns

The full-sequence capacity scaling laws for these models were derived under the assump-
tion of i.i.d Rademacher random patterns. While theoretically convenient, this is unreal-
istic for real-world data. We therefore test these networks in more realistic settings by
storing correlated sequences of patterns, which will lead to greater crosstalk in each
transition and thus smaller single-transition and full-sequence capacities relative to net-
work size [26, 36]. However, the nonlinear interaction functions should still assist in
separating correlated patterns to enable successful sequence recall.

For demonstration, we store a sequence of 200000 highly-correlated images from
the MovingMNIST dataset and attempt to recall this sequence using DenseNets with
different nonlinearities [42]. The entire sequence is composed of 10 000 unique sub-
sequences concatenated together, where each subsequence is composed of 20 images of
two hand-written digits slowly moving through one another. This means there is signi-
ficant correlation between patterns which will result in large amounts of crosstalk. The
results of the DenseNets are shown in figure 3(A), where increasing the nonlinearity of
the Polynomial DenseNets slowly improves recall but not entirely, while the exponen-
tial network achieves perfect recall. The SeqNet and DenseNets, up until approximately
d =50, are entirely unable to recall any part of any image, despite the DenseNets being
well within the capacity limits predicted by theoretical calculations on uncorrelated
patterns.

https://doi.org/10.1088/1742-5468/ad6427 9
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2.5. Generalized pseudoinverse rule

Can we overcome the DenseNet ‘s limited ability to store correlated patterns? Drawing
inspiration from the pseudoinverse learning rule introduced by Kanter & Sompolinsky
[43] for the classic Hopfield network, we propose a generalized pseudoinverse (GPI)
transition rule

TGPI (S)i := sgn

[
P∑

µ=1

ξµ+1
i f

(
P∑

ν=1

(
O+
)µν

mν (S)

)]
, Oµν =

1

N

N∑

j=1

ξµj ξ
ν
j , (11)

where the overlap matrix Oµν is positive-semidefinite, so we can define its pseudoin-
verse O+ by inverting the non-zero eigenvalues. With f(x) = x, this reduces to the
pseudoinverse rule of [43].

If the patterns are linearly independent, such that O is full-rank, we can see that
this rule can perfectly recall the full sequence (supplemental material). This matches
the classic pseudoinverse rule’s ability to perfectly store any set of linearly independent
patterns; this is why we choose to sum over ν inside the separation function in (11).
For i.i.d. Rademacher patterns, linear independence holds almost surely in the thermo-
dynamic limit provided that P <N.

In figure 3(B), we demonstrate the effect of correlation on the Polynomial DenseNet
through studying the recall of biased patterns ξµi with P(ξµi =±1) = 1

2(1± ε) for ε ∈
[0,1)9. We see that the Polynomial DenseNet has better recall at all levels of bias ε as
degree d increases, although we still expect there to be a maximum degree as described
before. However, at large correlation values, they all have low recall, suggesting the need
for alternative methods to decorrelate these patterns. This failure is easy to understand
theoretically, following van Hemmen and Reimer [44]’s analysis of the classic Hopfield
model: for patterns with bias ε, the Polynomial DenseNet update rule expands as

TDN (ξµ)i = sgn
[
ξµ+1
i +(P − 1)ε2d+1 +O

(√
P/N

)]
. (12)

Therefore, even if N is large, for ε )=0 there must be some value of P for which the
constant bias overwhelms the signal. If N →∞ for any fixed P, then we must have
P < ε−(2d+1) + 1 for the signal to dominate. In figure 3(B), we show the generalized
pseudoinverse update rule is more robust to large correlations than the Polynomial
DenseNet. While this rule can also be applied to the Exponential DenseNet, simulations
fail due to numerical instability coming from small values in the pseudoinverse.

3. MixedNets for variable timing

Thus far, we have considered sequence recall in purely asymmetric networks. These
networks transition to the next pattern in the sequence at every timestep, preventing

9 At ε=1, the patterns will be deterministic with ξµi = +1.
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the network from storing sequences with longer timing between elements. In this section,
we aim to construct a model where the network stays in a pattern for τ steps. Our
starting model will be an associative memory model for storing sequences known as the
Temporal Association Network (TAN) [1, 10], defined as:

TTAN (S)i := sgn

[
P∑

µ=1

[
ξµi m

µ
i +λξµ+1

i m̄µ
i

]]
, m̄µ

i :=
1

N − 1

∑

j "=i

ξµj S̄j (13)

where m̄µ
i represents the normalized overlap of each pattern ξµ with a weighted time-

average of the network over the past τ timesteps, S̄i(t) =
∑τ

ρ=0w(ρ)Si(t− ρ). The weight
function, w(t), is generally taken to be a low-pass convolutional filter (e.g. Heaviside
step function, exponential decay).

This network combines a symmetric and asymmetric term for robust recall of mul-
tiple sequences. The symmetric term containing mµ

i (t), also referred to as a ‘fast’ syn-
apse, stabilizes the network in pattern ξµ for a desired amount of time. The asymmetric
term containing m̄µ

i (t), also referred to as a ‘slow’ synapse, drives the network transition
to pattern ξµ+1. The λ parameter controls the strength of the transition signal. If λ is
too small, no transitions will occur since the symmetric term will overpower it. If λ
is too large, transitions will occur too quickly for the network to stabilize in a desired
pattern and the sequence will quickly destabilize.

For TAN, Sompolinsky and Kanter [10] used numerical simulations to estimate the
capacity as approximately PTAN ∼ 0.1N , defining capacity as the ability to recall the
sequence in correct order with high overlap (meaning that a small proportion of incorrect
bits are allowed in each transition). Note that this model can fail in two ways: (i) it can
fail to recall the correct sequence of patterns, or (ii) it can fail to stay in each state for
the desired amount of time.

To address these issues, we consider the following dynamics:

TMN (S)i := sgn

[
P∑

µ=1

[
ξµi fS (m

µ
i )+λξµ+1

i fA (m̄
µ
i )
]]

. (14)

We call this model the MixedNet, and seek to analyze the relationship between the
symmetric and asymmetric terms in driving network dynamics and their impact on
sequence capacity. As before, the asymmetric term will try to push the network to the
next state at every timestep, while the symmetric term tries to maintain it in its current
state for τ timesteps. We will allow different nonlinearities for fS and fA, and analyze
their effect on transition and sequence capacity.

We demonstrate the effectiveness of the Polynomial MixedNet, where for simplicity
we set fS(x) = fA(x) = xd, in figure 4(A). While TAN fails completely, a polynomial
nonlinearity of d =2 enables recall of pattern order but the network does not stay in
each pattern for τ =5 timesteps. Further increasing the nonlinearity to d =10 recovers
the desired sequence with correct order and timing.
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Figure 4. Capacity of the Polynomial MixedNet. (A). We simulate MixedNets with
N =100, τ =5, and attempt to store P =40 patterns. The Temporal Association
Network (left), corresponding to a linear MixedNet with dS = 1 = dA, fails to
recover the sequence. Increasing the nonlinearities to dS = 2 = dA (center) recov-
ers the correct sequence order, but not the timing. Increasing the nonlinearities to
dS = 10 = dA (right) recovers the correct sequence order and timing. (B). Transition
capacity log10(PT ) of the Polynomial MixedNet as a function of network size. Each
panel has a fixed symmetric nonlinearity fS(x) = xdS indicated by the panel’s title.
As network size increases, crosstalk variance decreases and theoretical approxim-
ations in equation (15) become more accurate to tightly match the simulations.
Note that as expected, the capacity scales according to the minimum of dS and dA.
(C). As in (B), but for the sequence capacity log10(PS).

Theoretical analysis of the capacity of the MixedNet (14) for general memory length
τ is challenging due to the extended temporal interactions. We therefore consider single-
step memory (τ =1), and show that even in this relatively tractable special case new
complications arise relative to our analysis of the DenseNet. Alternatively, we can inter-
pret the MixedNet with τ =1 as an imperfectly-learned DenseNet. If one imagines the
network learns its weights through a temporally asymmetric Hebbian rule with an exten-
ded plasticity kernel, and its state is not perfectly clamped to the desired transition,
the coupling from ξµ to ξµ+1 could be corrupted by coupling ξµ to itself [22].

We first consider the setting where both interaction functions are polynomial,
fS(x) = xdS and fA(x) = xdA, and refer to this network as the Polynomial MixedNet.
This model is analyzed in detail in the supplemental material. Interestingly, this model’s
crosstalk variance forms a bimodal distribution. This complicates the analysis, but once
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bimodality is accounted for one can approximate the capacity using a similar argument
to that of the DenseNet. We find that

PT ∼ (λ− 1)2

2γdS ,dA

Nmin{dS ,dA}

logN
, PS ∼ (λ− 1)2

2(min{dS,dA}+1)γdS ,dA

Nmin{dS ,dA}

logN
, (15)

where γdS ,dA is a multiplicative factor defined as

γdS ,dA =






(2dS − 1)!! , if dS < dA(
λ2 + 1

)
(2dS − 1)!! + 2λ [(dS − 1)!!]2 1{dSeven} , if dS = dA

λ2 (2dA− 1)!! , if dS > dA.

(16)

In figures 4(B) and (C), we show that simulations match the theory curves well as
N increases. We demonstrate theoretical and simulations results for the Exponential
MixedNet in the supplemental material.

4. Biologically-plausible implementation

Since biological neural networks must store sequence memories [2, 5–8], one naturally
asks if these results can be generalized to biologically-plausible neural networks. A
straightforward biological interpretation of the DenseNet is problematic, as a network
with polynomial interaction function of degree d is equivalent to having a neural network
with many-body synapses between d +1 neurons. This can be seen by expanding the
Polynomial DenseNet in terms of a weight tensor of d +1 neurons:

Si (t+1) = sgn




∑

j1,...,jd

Jij1...jdSj1 (t) . . .Sjd (t)



 , Ji,j1,...,jd =
1

Nd

P∑

µ=1

ξµ+1
i ξµj1 · · ·ξ

µ
jd
. (17)

This is biologically unrealistic as synaptic connections usually occur between two
neurons [45]. In the case of the Exponential DenseNet, one can interpret its interaction
function via a Taylor series expansion, implying synaptic connections between infinitely
many neurons which is even more problematic. Similar difficulties arise in models with
sum of terms with different powers [46].

To address this issue, we again take inspiration from earlier work in MHNs. Krotov
and Hopfield [47] addressed this concern for symmetric MHNs by reformulating the
network using two-body synapses, where the network was partitioned into a bipartite
graph with visible and hidden neurons (see [48] for an extension of this idea to deeper
networks). The visible neurons correspond to the neurons in our network dynamics,
Sj , while the hidden neurons correspond to the individual memories stored within the
network. They are connected through a weight matrix. Since we are working with an
asymmetric network, we modify their approach and define two sets of synaptic weights:
W jµ connects visible neuron vj to hidden neuron hµ, M µ j connects hidden neuron hµ

to visible neuron vj. This yields the same dynamics exhibited in equation (2), absorbing
the nonlinearity into the hidden neurons’ dynamics, as demonstrated in figure 5.
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Figure 5. Biologically-plausible implementation of the DenseNet architecture with
two-body synapses.

For the DenseNet, we define the weights as Wjµ :=
1
N ξµj and Mµj := ξµ+1

j . For the

MixedNet, we redefine the weight matrix Mµj = ξµj +λξµ+1
j . The update rules for the

neurons are as follows:

hµ (t) := f




∑

j

Wjµvj (t)



 , vj (t+1) := sgn

[
∑

µ

Mµjhµ (t)

]
. (18)

Note that these networks’ transition and sequence capacities, PT and PS, now scale
linearly with respect to the total number of neurons in this model, N visible neurons and
P hidden neurons. However, the network capacity still scales nonlinearly with respect
to the number of visible neurons.

Finally, we remark that this network is reminiscent of recent computational mod-
els for motor action selection and control via the cortico-basal ganglia-thalamo-cortical
loop, in which the basal ganglia inhibits thalamic neurons that are bidirectionally con-
nected to a recurrent cortical network [5, 49, 50]. This relates to our model as follows:
the motor cortex (visible neurons) executes an action, each thalamic unit (hidden neur-
ons) encodes a motor motif, and the basal ganglia silences thalamic neurons (external
network modulating context). In particular, the role of the basal ganglia in this net-
work suggests a novel mechanism of context-dependent gating within Hopfield Networks
[51]. Rather than modulating synapses or feature neurons in a network, one can dir-
ectly inhibit (activate) memory neurons in order to decrease (increase) the likelihood of
transitioning to the associated state. Similarly, thalamocortical loops have been found
to be important to song generation in zebra finches [52]. Thus, the biological imple-
mentation of the DenseNet can provide insight into how biological agents reliably store
and generate complex sequences.

5. Discussion and future directions

We introduced the DenseNet for the reliable storage and recall of long sequences of
patterns, derived the scaling of its single-transition and full-sequence capacity, and
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verified these results in numerical simulation. We found that depending on the choice of
nonlinear interaction function, the DenseNet could scale polynomially or exponentially.
We tested the ability of these models to recall sequences of correlated patterns, by
comparing the recall of a sequence of MovingMNIST images with different nonlinearities.
As expected, the network’s reconstruction capabilities increased with the nonlinearity
power d, with perfect recall achieved by the exponential nonlinearity. To further increase
the capacity, we introduced the generalized pseudoinverse rule and demonstrated in
simulation its ability to maintain high capacity for highly correlated patterns. We also
introduced and analyzed the MixedNet to maintain patterns within sequences for longer
periods of time. Finally, we described a biologically plausible implementation of the
models with connections to motor control.

There has recently been a renewed interest in storing sequences of memories.
Steinberg and Sompolinsky [53] store sequences in Hopfield networks by using a vector-
symbolic architecture to bind each pattern to its temporal order in the sequence, thus
storing the entire sequence as a single attractor. However, this model suffers from the
same capacity limitations as the Hopfield Network. Whittington et al [54] suggest a
mechanism to control sequence retrieval via an external controller, analogous to the role
we ascribe to the basal ganglia for context-dependent gating. Herron et al [55] invest-
igate a mechanism for robust sequence recall within complex systems more broadly,
reducing crosstalk by directly modulating interactions between neurons rather than the
inputs into neurons. Tang et al [56] propose a model for sequential recall akin to SeqNet
with an implicit statistical whitening process. Karuvally et al [57] introduce a model
closely related to the biologically-plausible implementation of our MixedNet and analyze
it in the setting of continuous-time dynamics, allowing for intralayer synapses within
the hidden layer and different timescales between the hidden and feature layers.

In tandem, interest in recurrent neural networks for sequence modeling has been
revived by the advent of state space models (SSMs) and related architectures [58–
60]. These models have emerged as a general-purpose competitor to the transformer
architecture, replacing the attention mechanism with a linear RNN. This results in
significant improvements in computational efficiency while largely maintaining compar-
able performance to transformers [61]. However, these state space models struggle with
in-context learning, the ability to infer and perform tasks based on input examples
provided only during inference. Specifically, recent empirical work has demonstrated
clear discrepancy between SSMs and Transformers on the tasks of associative recall or
copying, where a sequence of tokens previously seen in-context must be recalled exactly
[62, 63]. This is exactly the problem addressed by the model introduced in this paper.
Thus, it would be interesting to investigate how ideas from our model could be used to
improve associative recall in SSMs.

While we have focused on a generalization of the fixed-point capacity for sequence
memory, this is not the only notion of capacity one could consider. In other studies of
MHNs, instead of considering stability as the probability of staying at a fixed point,
researchers quantify the probability that the network will reach a fixed point within a
single transition [31, 64, 65]. This approach allows one to quantify noise-robustness and
the size of each memory’s basin of attraction [35]. More broadly, one could consider
other definitions of associative memory capacity not addressed here, including those
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that depend only on network architecture and not on the assumption of a particular
learning rule [66, 67]. However, as compared to the relatively simple analysis that is
possible for the fixed-point capacity of a Hopfield network using a Hebbian learning
rule, analyzing these alternative notions of capacity in nonlinear networks can pose
significant technical challenges [67–69].

In this work, we limited ourselves to theoretical analysis of discrete-time networks
storing binary patterns. An important direction for future research would be to go bey-
ond the Gaussian theory in order to develop accurate predictions of the Exponential
DenseNet capacity. There are also many potential avenues for extending these models
and methods to continuous-time networks, continuous-valued patterns, computing capa-
city for correlated patterns, testing different weight functions, and examining different
network topologies. Finally, we hope to take inspiration from the recent resurgence of
RNNs in long sequence modeling to use this model in real world tasks.

Acknowledgments

We thank Matthew Farrell, Shanshan Qin, and Sabarish Sainathan for useful discus-
sions and comments on earlier versions of our manuscript. H C was supported by the
GFSD Fellowship, Harvard GSAS Prize Fellowship, and Harvard James Mills Peirce
Fellowship. JAZ-V and C P were supported by NSF Award DMS-2134157 and NSF
CAREER Award IIS-2239780. C P received additional support from a Sloan Research
Fellowship. This work has been made possible in part by a gift from the Chan Zuckerberg
Initiative Foundation to establish the Kempner Institute for the Study of Natural and
Artificial Intelligence. The computations in this paper were run on the FASRC Cannon
cluster supported by the FAS Division of Science Research Computing Group at Harvard
University.

References

[1] Kleinfeld D and Sompolinsky H 1988 Biophys. J. 54 1039–51
[2] Long M A, Jin D Z and Fee M S 2010 Nature 468 394–9
[3] Gillett M, Pereira U and Brunel N 2020 Proc. Natl Acad. Sci. 117 29948–58
[4] Recanatesi S, Pereira-Obilinovic U, Murakami M, Mainen Z and Mazzucato L 2022 Neuron 110 139–53
[5] Mazzucato L 2022 eLife 11 e76577
[6] Rolls E T and Mills P 2019 Cell Rep. 28 1649–58
[7] Wiltschko A, Johnson M, Iurilli G, Peterson R, Katon J, Pashkovski S, Abraira V, Adams R and Datta S 2015

Neuron 88 1121–35
[8] Markowitz J E et al 2023 Nature 614 108–17
[9] Pehlevan C, Ali F and Ölveczky B P 2018 Nat. Commun. 9 977
[10] Sompolinsky H and Kanter I 1986 Phys. Rev. Lett. 57 2861–4
[11] Jiang Z, Chen Z, Hou T and Huang H 2023 Phys. Rev. Res. 5 013090
[12] Pereira U and Brunel N 2020 Front. Comput. Neurosci. 13 97
[13] Leibold C and Kempter R 2006 Neural Comput. 18 904–41
[14] Hawkins J, George D and Niemasik J 2009 Philos. Trans. R. Soc. B 364 1203–9
[15] Hawkins J and Ahmad S 2016 Frontiers in neural circuits 10 23

https://doi.org/10.1088/1742-5468/ad6427 16

https://doi.org/10.1016/S0006-3495(88)83041-8
https://doi.org/10.1016/S0006-3495(88)83041-8
https://doi.org/10.1038/nature09514
https://doi.org/10.1038/nature09514
https://doi.org/10.1073/pnas.1918674117
https://doi.org/10.1073/pnas.1918674117
https://doi.org/10.1016/j.neuron.2021.10.011
https://doi.org/10.1016/j.neuron.2021.10.011
https://doi.org/10.7554/eLife.76577
https://doi.org/10.7554/eLife.76577
https://doi.org/10.1016/j.celrep.2019.07.042
https://doi.org/10.1016/j.celrep.2019.07.042
https://doi.org/10.1016/j.neuron.2015.11.031
https://doi.org/10.1016/j.neuron.2015.11.031
https://doi.org/10.1038/s41586-022-05611-2
https://doi.org/10.1038/s41586-022-05611-2
https://doi.org/10.1038/s41467-018-03261-5
https://doi.org/10.1038/s41467-018-03261-5
https://doi.org/10.1103/PhysRevLett.57.2861
https://doi.org/10.1103/PhysRevLett.57.2861
https://doi.org/10.1103/PhysRevResearch.5.013090
https://doi.org/10.1103/PhysRevResearch.5.013090
https://doi.org/10.3389/fncom.2019.00097
https://doi.org/10.3389/fncom.2019.00097
https://doi.org/10.1162/neco.2006.18.4.904
https://doi.org/10.1162/neco.2006.18.4.904
https://doi.org/10.1098/rstb.2008.0322
https://doi.org/10.1098/rstb.2008.0322
https://doi.org/10.3389/fncir.2016.00023
https://doi.org/10.3389/fncir.2016.00023
https://doi.org/10.1088/1742-5468/ad6427


Long sequence Hopfield memory

J.S
tat.

M
ech.(2024)

104024

[16] Amit D J 1988 Proc. Natl Acad. Sci. 85 2141–5
[17] Gutfreund H and Mezard M 1988 Phys. Rev. Lett. 61 235–8
[18] Rajan K, Harvey C and Tank D 2016 Neuron 90 128–42
[19] Diesmann M, Gewaltig M O and Aertsen A 1999 Nature 402 529–33
[20] Hardy N F and Buonomano D V 2016 Curr. Opin. Behav. 8 250–7
[21] Obeid D, Zavatone-Veth J A and Pehlevan C 2020 Phys. Rev. E 102 052406
[22] Farrell M and Pehlevan C 2023 bioRxiv https://doi.org/10.1101/2023.06.07.542926
[23] Hopfield J J 1982 Proc. Natl Acad. Sci. 79 2554–8
[24] Hopfield J J 1984 Proc. Natl Acad. Sci. 81 3088–92
[25] Amari S I 1972 IEEE Trans. Comput. 100 1197–206
[26] Hertz J, Krogh A and Palmer R G 2019 Introduction to the Theory of Neural Computation (CRC Press)

(https://doi.org/10.1201/9780429499661)
[27] Amit D J, Gutfreund H and Sompolinsky H 1985 Phys. Rev. A 32 1007
[28] Amit D J, Gutfreund H and Sompolinsky H 1985 Phys. Rev. Lett. 55 1530–3
[29] Amit D J, Gutfreund H and Sompolinsky H 1987 Ann. Phys., NY 173 30–67
[30] Krotov D and Hopfield J J 2016 Advances in Neural Information Processing Systems vol 29
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1. Review of Modern Hopfield Networks

Here we review the Hopfield network and its modern generalization as an auto-
associative memory model. These ideas will be helpful for storing sequences in network
dynamics.

1.1. The Hopfield Network

We first introduce the classic Hopfield Network [1]. Let N be the number of neurons
in the network and S(t) ∈ {−1,+1}N be the state of the network at time t. The task
is to store P patterns, {ξ1, . . . , ξµ}, where ξµj ∈ {±1} is the jth neuron of the µth

pattern. The goal is to design a network with dynamics such that when the network
is initialized with a pattern, it will converge to one of the stored memories.

The Hopfield Network [1] attempts this by following the discrete-time synchronous
update rule‡:

S(t+ 1) = THN (S(t)), (1.1)

‡ For the Hopfield network, one can also consider an asynchronous update rule in which only one
neuron is updated at each timestep [1, 2].
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where the transition operator THN (·)i for neuron i is defined in terms of symmetric
Hebbian weights:

THN (S)i = sgn




∑

j !=i

JijSj



 , Jij =
1

N

P∑

µ=1

ξµi ξ
µ
j . (1.2)

Note that we are excluding self-interaction terms (Jii) in Equation 1.2. To interpret
this dynamics from another useful point of view, we define the overlap, or Mattis
magnetization, mµ

i of the network state S with pattern ξµ. We can then rewrite the
update rule for the Hopfield Network as

THN (S)i := sgn

[
P∑

µ=1

ξµi m
µ
i

]
, mµ

i :=
1

(N − 1)

∑

j !=i

ξµj Sj (1.3)

We interpret this as at every time t, the network tries to identify the pattern ξµ it
is closest to and updates neuron i to the value for that pattern. A natural question
to ask about the associative memory networks is their capacity: how many patterns
can be stored and recalled with minimal error? This question has been the subject of
many studies [1, 3–9]. Intuitively, in recalling a pattern ξν , what limits the network’s
capacity is the overlap between the pattern ξν and other patterns, referred to as the
crosstalk [2, 6].

A precise answer to the storage capacity question can be given under the
assumption that the patterns {ξµ} are sampled from some probability distribution.
While different notions of capacity have been considered in the literature [1, 3–9],
we focus on the fixed-point capacity, which characterizes the probability that, when
initialized at a given pattern, the network dynamics do not move the state away from
that point. To render the problem analytically tractable, it is usually assumed that the
pattern components are i.i.d. Rademacher random variables, i.e., P(ξµj = ±1) = 1/2
for all j and µ. Then, at finite network size one can define the capacity as

PHN (N, c) = max
{
P ∈ {2, . . . , 2N} : P

[
∩P
µ=1{THN (ξµ) = ξµ}

]
≥ 1− c

}
, (1.4)

where c ∈ [0, 1) is a fixed error tolerance. As we review in detail in Appendix 2, one
finds an asymptotic capacity estimate PHN ∼ N

4 log(N) for c = 0, which can be shown
to be a sharp threshold [7–9].

1.2. Modern Hopfield Networks

Recent work from Krotov & Hopfield [10, 11] reinvigorated a line of research into
generalized Hopfield Networks with larger capacity [12–17], resulting in what are now
called Dense Associative Memories or Modern Hopfield Networks:

TMHN (S)i := sgn

[
P∑

µ=1

ξµi f (mµ
i )

]
(1.5)

where f , referred to as the interaction function, is a nonlinear monotonically increasing
function whose purpose is to separate the pattern overlaps for better signal to noise
ratio. Since mµ

i (t) has a maximum value of 1, this means contributions from patterns
with partial overlaps will be reduced by the interaction function. This diminishes the
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crosstalk and thereby increases the probability of transitioning to the correct pattern.
If the interaction function is chosen to be f(x) = xd, then the MHN’s capacity has
been shown to scale polynomially with network size as P ∼ βd

Nd

log(N) , where βd is a
numerical constant depending on the degree d [10, 18–20]. Using a different definition
of capacity, Demircigil et al. [21] have also shown that an exponential nonlinearity
can lead to exponential scaling of the capacity. See [22] for a recent review of these
results.

2. Review of Hopfield network fixed-point capacity

In this Appendix, we review the computation of the classical Hopfield network fixed-
point capacity. Our approach will follow—but not exactly match—that of Petritis
[8]. Though these results are standard, we review them in detail both because this
approach will inspire in part our approach to the DenseNet, and because several
important steps of the analysis are significantly simpler than the corresponding steps
for the DenseNet.

We begin by recalling that the Hopfield network update can be written as

THN (S)i := sgn




P∑

µ=1

ξµi



 1

N − 1

∑

j !=i

ξµj Sj







 , (2.1)

and that our goal is to determine

PHN (N, c) = max
{
P ∈ {2, . . . , 2N} : P

[
∩P
µ=1{THN (ξµ) = ξµ}

]
≥ 1− c

}
(2.2)

for some absolute constant 0 ≤ c < 1, at least in the regime where N,P ' 1 [6–9]. As
is standard in theoretical studies of Hopfield model capacity [2–9], we take in these
probabilities the pattern components ξµk to be independent and identically distributed
Rademacher random variables. We can expand the memorization probability as a
union of single-bitflip events:

P
[

P⋂

µ=1

{THN (ξµ) = ξµ}
]
= 1− P

[
P⋃

µ=1

N⋃

i=1

{THN (ξµ)i (= ξµi }
]
. (2.3)

This illustrates why analyzing the memorization probability is complicated: the single-
pattern events THN (ξµ) = ξµ are not independent across patterns µ, and each
single-pattern event is itself the intersection of non-independent single-neuron events
THN (ξµ)i = ξµi . However, as the single-bitflip probabilities P[THN (ξµ)j (= ξµj ] are
identical for all µ and j, we can obtain a straightforward union bound

P
[

P⋂

µ=1

{THN (ξµ) = ξµ}
]
= 1− P

[
P⋃

µ=1

N⋃

i=1

{THN (ξµ)i (= ξµi }
]

(2.4)

≥ 1−
P∑

µ=1

N∑

i=1

P [THN (ξµ)i (= ξµi ] (2.5)

= 1−NPP[THN (ξ1)1 (= ξ11 ], (2.6)
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where we focus without loss of generality on the first element of the first pattern.
Therefore, if we can control the single-bitflip probability P[THN (ξ1)1 != ξ11 ], we can
obtain a lower bound on the true capacity. In particular,

PHN (N, c) ≥ max
{
P ∈ {2, . . . , 2N} : NPP[THN (ξ1)1 != ξ11 ] ≤ c

}
(2.7)

From the definition of the Hopfield network update rule, we have

P[THN (ξ1)1 != ξ11 ] = P




sgn



 1

N − 1

P∑

µ=1

∑

j !=i

ξµ1 ξ
µ
j ξ

1
j



 != ξ11




 (2.8)

= P



 1

N − 1

P∑

µ=1

∑

j !=i

ξ11ξ
µ
1 ξ

1
j ξ

µ
j < 0



 (2.9)

= P [C > 1] , (2.10)
where we have defined

C =
1

N − 1

P∑

µ=2

∑

j !=i

ξ11ξ
µ
1 ξ

1
j ξ

µ
j (2.11)

and used the fact that the distribution of C is symmetric. C is referred to as the
crosstalk, because it represents the effect of interference between the first pattern and
the other P − 1 patterns on recall of the first pattern. We can simplify the crosstalk
using the fact that, since we have assumed i.i.d. Rademacher patterns, we have the
equality in distribution

ξ1j ξ
µ
j

d
= ξµj (2.12)

for all µ = 2, . . . , P and j = 1, . . . , N , yielding

C
d
=

1

N − 1

P∑

µ=2

∑

j !=i

ξµ1 ξ
µ
j . (2.13)

Similarly, we have

ξµ1 ξ
µ
j

d
= ξµj (2.14)

for all µ = 2, . . . , P and j = 2, . . . , N , which finally yields

C
d
=

1

N − 1

P∑

µ=2

∑

j !=i

ξµj . (2.15)

Therefore, for the classic Hopfield network the crosstalk is equal in distribution to the
sum of (P − 1)(N − 1) i.i.d. Rademacher random variables.

2.1. Approach 1: Hoeffding’s inequality

Now, we can immediately apply Hoeffding’s inequality [23], which implies that for any
t > 0

P
[

P∑

µ=2

N∑

k=2

ξµk > t

]
≤ exp

(
−1

2

t2

(P − 1)(N − 1)

)
. (2.16)
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We then have that

P
[

P∑

µ=2

N∑

k=2

ξµk > N − 1

]
≤ exp

(
−1

2

N − 1

P − 1

)
. (2.17)

We then have the bound

PHN (N, c) ≥ max

{
P ∈ {2, . . . , 2N} : NP exp

(
−1

2

N − 1

P − 1

)
≤ c

}
. (2.18)

We now want to consider the regime N % 1, and demand that the error probability
should tend to zero as we increase N . If we substitute in the Ansatz

P ∼ N

α logN
, (2.19)

the bound is easily seen to tend to zero for all α ≥ 4, yielding an estimated capacity
of

PHN ∼ N

4 logN
. (2.20)

As this estimates follows from a sequence of lower bounds on the memorization
probability, it is a lower bound on the true capacity of the model [8]. However,
via a more involved argument that accounts for the associations between the events
THN (ξµ) = ξµ, it was shown by Bovier [9] to be tight.

For the classical Hopfield network, the single bitflip probability P[C > 1] is easy
to control using elementary concentration inequalities because the crosstalk can be
expressed as a sum of (P − 1)(N − 1) i.i.d. random variables. Therefore, we expect
the crosstalk to concentrate whenever N or P or both together are large. However,
for the DenseNet, we will find in Appendix 3 that the crosstalk is given as the sum
of P − 1 i.i.d. random variables, each of which is a nonlinear function applied to the
sum of N − 1 i.i.d. Rademacher random variables. Naïve application of Hoeffding’s
inequality is then not particularly useful. We will therefore take a simpler, though
less rigorously controlled approach, which can also be applied to the classical Hopfield
network: we approximate the distribution of the crosstalk as Gaussian [2].

2.2. Approach 2: Gaussian approximation

For the classical Hopfield network, the fact that the crosstalk can be expressed as a
sum of (P − 1)(N − 1) i.i.d. Rademacher random variables means that the classical
central limit theorem implies that it tends in distribution to a Gaussian whenever
(P −1)(N −1) tends to infinity. By symmetry, the mean of the crosstalk is zero, while
its variance is easily seen to be

var(C) =
P − 1

N − 1
. (2.21)

If we approximate the distribution of the crosstalk for N and P large but finite by a
Gaussian, we therefore have

P[C > 1] ≈ H

(√
N − 1

P − 1

)
(2.22)
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where H(x) = erfc(x/
√
2)/2 is the Gaussian tail distribution function. We want to

have P[C > 1] → 0, so we must have (P − 1)/(N − 1) → 0. Then, we can use the
asymptotic expansion [2]

H(
√
z) =

1√
2πz

exp
(
−z

2

)[
1 +O

(
1

z

)]
as z → ∞ (2.23)

to obtain the heuristic Gaussian approximation

P[C > 1] ≈

√
(P − 1)

2π(N − 1)
exp

(
− (N − 1)

2(P − 1)

)
. (2.24)

If we use this Gaussian approximation instead of the Hoeffding bound applied above,
we can easily see that we will obtain identical estimates for the capacity with an
error tolerance tending to zero. However, we have given up the rigor of the bound
from Hoeffding’s inequality, since we have not controlled the rate of convergence to
the Gaussian tail probability. In particular, the Berry-Esseen theorem would give in
this case a uniform additive error bound of 1/

√
(P − 1)(N − 1), which in the regime

P ∼ N/[α logN ] cannot compete with the factors of N or NP which we want P[C > 1]
to overwhelm. We will not worry about this issue, as we are concerned more with
whether we can get accurate capacity estimates that match numerical experiment
than whether we can prove those estimates completely rigorously.

We can also use the Gaussian approximation to estimate the capacity for a non-
zero error threshold c at finite N . Concretely, if we demand that the union bound is
saturated, i.e.,

NP P[THN (ξ1)1 '= ξ11 ] = c, (2.25)

under the Gaussian approximation for the bitflip probability we have the self-consistent
equation

NPH

(√
N − 1

P − 1

)
= c (2.26)

for P , which we can re-write as

P − 1 =
N − 1

[H−1(c/NP )]2
. (2.27)

This is a transcendental self-consistent equation, which is not easy to solve analytically.
However, we can make some progress at small c/(NP ). Using the asymptotic
expansion of the inverse of the complementary error function [24], we have

[H−1(x)]2 = 2 inverfc(2x)2 (2.28)

∼ − log

[
4πx2 log

(
1

2x

)]
(2.29)

= −2 log(x)− log(4π)− log log

(
1

2x

)
(2.30)

∼ −2 log(x) (2.31)
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as x → 0. Then, assuming c is such that − log(c) is negligible relative to log(NP ), we
have

P ∼ N

2 log(NP )
, (2.32)

which we can solve for P as

P ∼ N

2W0(N2/2)
, (2.33)

where W0 is the principal branch of the Lambert-W function [24]. But, at large N ,
we can use the asymptotic W0(N) ∼ log(N) to obtain the approximate scaling

P ∼ N

4 log(N)
, (2.34)

which agrees with our earlier result. Conceptually, this intuition is consistent with
there being a sharp transition in the thermodynamic limit, as proved rigorously by
Bovier [9].

3. DenseNet Capacity

In this Appendix, we analyze the capacity of the DenseNet. As introduced in the
main text, there are two notions of robustness to consider: the robustness of a single
transition and the robustness of the full sequence. For a fixed N ∈ {2, 3, . . .} and an
error tolerance c ∈ [0, 1), we define these two notions of capacity as

PT (N, c) = max
{
P ∈ {2, . . . , 2N} : P

[
TDN (ξ1) = ξ2

]
≥ 1− c

}
(3.1)

and

PS(N, c) = max
{
P ∈ {2, . . . , 2N} : P

[
∩P
µ=1{TDN (ξµ) = ξµ+1}

]
≥ 1− c

}
, (3.2)

respectively.
Our goal is to approximately compute the capacity in the regime in which N and

P are large. Following Petritis [8]’s approach to the HN, to make analytical progress,
we can use a union bound to control the single-step error probability in terms of the
probability of a single bitflip:

P
[
TDN (ξµ) = ξµ+1

]

= 1− P
[

N⋃

i=1

{TDN (ξµ)i '= ξµ+1
i }

]
(3.3)

≥ 1−
N∑

i=1

P
[
TDN (ξµ)i '= ξµ+1

i

]
(3.4)

= 1−NP[TDN (ξ1)1 '= ξ12 ]. (3.5)

where we use the fact that all elements of all patterns are i.i.d. by assumption. We use
a similar approach to control the sequence error probability in terms of the probability
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of a single bitflip:

P
[

P⋂

µ=1

{TDN (ξµ) = ξµ+1}
]

= 1− P
[

P⋃

µ=1

N⋃

i=1

{TDN (ξµ)i "= ξµ+1
i }

]
(3.6)

≥ 1−
P∑

µ=1

N∑

i=1

P
[
TDN (ξµ)i "= ξµ+1

i

]
(3.7)

= 1−NPP[TDN (ξ1)1 "= ξ12 ]. (3.8)

Thus, as claimed in the main text, we have the lower bounds

PT (N, c) ≥ max
{
P ∈ {2, . . . , 2N} : NP[TDN (ξ1)1 "= ξ12 ] ≤ c

}
(3.9)

and

PS(N, c) ≥ max
{
P ∈ {2, . . . , 2N} : NPP[TDN (ξ1)1 "= ξ12 ] ≤ c

}
. (3.10)

As introduced in the main text, for perfect recall, we want to take the threshold c
to be zero, or at least to tend to zero as N and P tend to infinity. The capacities
estimated through this argument are lower bounds on the true capacities, as they are
obtained from lower bounds on the true recall probability. However, we expect for
these bounds to in fact be tight in the thermodynamic limit [8, 9].

By the definition of the DenseNet update rule with interaction function f given
in the main text, we have

TDN (ξ1)1 = sgn




P∑

µ=1

ξµ+1
1 f



 1

N − 1

N∑

j=2

ξµj ξ
1
j







 (3.11)

and therefore the single-bitflip probability is

P[TDN (ξ1)1 "= ξ21 ] = P



sgn




P∑

µ=1

ξµ+1
1 f



 1

N − 1

N∑

j=2

ξµj ξ
1
j







 "= ξ21



 (3.12)

= P



ξ21
P∑

µ=1

ξµ+1
1 f



 1

N − 1

N∑

j=2

ξµj ξ
1
j



 < 0



 (3.13)

= P



f(1) + ξ21

P∑

µ=2

ξµ+1
1 f



 1

N − 1

N∑

j=2

ξµj ξ
1
j



 < 0



 (3.14)

For both the polynomial (f(x) = xd) and exponential (f(x) = e(N−1)(x−1)) interaction
functions, f(1) = 1, and so

P[TDN (ξ1)1 "= ξ21 ] = P




P∑

µ=2

ξ21ξ
µ+1
1 f



 1

N − 1

N∑

j=2

ξµj ξ
1
j



 < −1



 . (3.15)
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We refer to the random variable

C =
P∑

µ=2

ξ21ξ
µ+1
1 f



 1

N − 1

N∑

j=2

ξµj ξ
1
j



 (3.16)

on the left-hand-side of this inequality as the crosstalk, because it represents the effect
of interference between the first pattern and all other patterns [2, 6].

We now observe that, as we have excluded self-interactions (i.e., the sum over
neurons inside the interaction function does not include j = 1), we can use the periodic
boundary conditions to shift indices as ξµ1 ← ξµ+1

1 for all µ, yielding

C
d
=

P∑

µ=2

ξ11ξ
µ
1 f



 1

N − 1

N∑

j=2

ξµj ξ
1
j



 (3.17)

Thus, the single-bitflip probability for this DenseNet is identical to that for the
corresponding MHN with symmetric interactions. Then, we can use the fact that
ξµj ξ

1
j

d
= ξµj for all µ = 2, . . . , P to obtain

C
d
=

P∑

µ=2

ξµ1 f



 1

N − 1

N∑

j=2

ξµj



 . (3.18)

Now, define the P − 1 random variables

χµ = ξµ1 f



 1

N − 1

N∑

j=2

ξµj



 (3.19)

for µ = 2, . . . , P , such that the crosstalk is their sum,

C =
P∑

µ=2

χµ. (3.20)

As the patterns ξµj are i.i.d., χµ are i.i.d. random variables of mean

E[χµ] = E[ξµ1 ]E



f



 1

N − 1

N∑

j=2

ξµj







 = 0 (3.21)

and variance

var(χµ) = E



f



 1

N − 1

N∑

j=2

ξµj




2


 , (3.22)

which is bounded from above for any sensible interaction function. We observe
also that the distribution of each χµ is symmetric because of the symmetry of the
distribution of ξµ1 . We will therefore simply write χ for any given χµ.
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Then, the classical central limit theorem implies that the crosstalk tends in
distribution to a Gaussian of mean zero and variance (P − 1) var(χ) as P → ∞, at
lease for any fixed N . However, we are interested in the joint limit in which N,P → ∞
together. We will proceed by approximating the distribution of C as Gaussian, and
will not attempt to rigorously control its behavior in the joint limit.

Approximating the distribution of the crosstalk for N,P $ 1 by a Gaussian, we
then have

P[TDN (ξ1)1 %= ξ21 ] ≈ H

(
1√

(P − 1) var(χ)

)
(3.23)

where H(x) = erfc(x/
√
2)/2 is the Gaussian tail distribution function. We want to

have P[TDN (ξ1)1 %= ξ21 ] → 0, so we must have (P − 1) var(χ) → 0. Then, we can use
the asymptotic expansion [2]

H(
√
z) =

1√
2πz

exp
(
−z

2

)[
1 +O

(
1

z

)]
as z → ∞ (3.24)

to obtain

P[TDN (ξ1)1 %= ξ21 ] ≈
√

(P − 1) var(χ)

2π
exp

(
− 1

2(P − 1) var(χ)

)
. (3.25)

For each model, we can evaluate var(χ) and then determine the resulting predicted
capacity.

As we did for the classic Hopfield network in Appendix 2, we can estimate the
capacity at finite c within the Gaussian approximation by inverting the Gaussian
tail distribution function. Concretely, under the union bound, we can estimate the
transition capacity by solving

c = NH

(
1√

(PT − 1) var(χ)

)
, (3.26)

which yields

PT − 1 =
1

var(χ)[H−1(c/N)]2
, (3.27)

and the sequence capacity by solving the transcendental self-consistent equation

c = NPSH

(
1√

(PS − 1) var(χ)

)
, (3.28)

which we can re-write as

PS − 1 =
1

var(χ)[H−1(c/NPS)]2
. (3.29)

As in the classic Hopfield case, we can simplify these complicated equations somewhat
by assuming that c/N and c/(NPS) are small. Concretely, using the asymptotic

[H−1(x)]2 ∼ −2 log(x) (3.30)
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for x → 0, the transition capacity simplifies to

PT − 1 ∼ 1

2 var(χ) log(N)
(3.31)

under the assumption that − log(c) is negligible relative to log(N). For the sequence
capacity, we can follow an identical argument to that used for the classic Hopfield
network to simplify the self-consistent equation to

PS ∼ 1

2 var(χ) log(NPS)
(3.32)

under the assumption that − log(c) is negligible relative to log(NPS), which we can
solve to obtain

PS ∼ 1

2 var(χ)W0[N/2 var(χ)]
. (3.33)

Assuming that N/ var(χ) → ∞ as N → ∞, we can use the asymptotic W0(N) ∼
log(N) to obtain the asymptotic

PS ∼ 1

2 var(χ) log[N/ var(χ)]
. (3.34)

Our first check on the accuracy of the Gaussian approximation will be comparison
of the resulting predictions for capacity with numerical experiment. As another
diagnostic, we will consider the excess kurtosis κ = κ4(C)/κ2(C) for κn(C) the n-
th cumulant of C. If the distribution is indeed Gaussian, the excess kurtosis vanishes,
while large values of the excess kurtosis indicate deviations from Gaussianity. By the
additivity of cumulants, we have

κn(C) = (P − 1)κn(χ). (3.35)

By symmetry, all odd cumulants of χ—and therefore all odd cumulants of C—are
identically zero. As noted above, we have

var(χ) = κ2(χ) = E



f



 1

N − 1

N∑

j=2

ξµj




2


 . (3.36)

If C is indeed Gaussian, then all cumulants above the second should vanish. As the
third cumulant vanishes by symmetry, the leading possible correction to Gaussianity
is the fourth cumulant, which as χ has zero mean is given by

κ4(χ) = E[(χ)4]− 3E[(χ)2]2 (3.37)

= E



f



 1

N − 1

N∑

j=2

ξµj




4


− 3E



f



 1

N − 1

N∑

j=2

ξµj




2




2

. (3.38)

Rather than considering the fourth cumulant directly, we will consider the excess
kurtosis

κ =
κ4(C)

κ2(C)2
=

1

P − 1

κ4(χ)

κ2(χ)2
, (3.39)

which is a more useful metric because it is normalized.
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3.1. Polynomial DenseNet Capacity

We first consider the Polynomial DenseNet, with interaction function f(x) = xd for
d ∈ N>0. To compute the capacity, our goal is then to evaluate

var(χ) = E







 1

N − 1

N∑

j=2

ξ1j




2d


 (3.40)

at large N . From the central limit theorem, we expect

E







 1

N − 1

N∑

j=2

ξ1j




2d


 ∼ (2d− 1)!!

(N − 1)d
. (3.41)

We can make this quantitatively precise through the following straightforward
argument. Let

Ξ =
1√

N − 1

N∑

j=2

ξ2j . (3.42)

We then have immediately that the moment generating function of Ξ is

M(t) = E[etΞ] = cosh

(
t√

N − 1

)N−1

, (3.43)

hence the cumulant generating function is

K(t) = logM(t) = (N − 1) log cosh

(
t√

N − 1

)
. (3.44)

The function x %→ log cosh(x) is an even function of x, and is analytic near the origin,
with the first few orders of its MacLaurin series being

log cosh(x) =
x2

2
− x4

12
+O(x6). (3.45)

Then, the odd cumulants of Ξ vanish—as we expect from symmetry—while the even
cumulants obey

κ2k =
C2k

(N − 1)k−1
(3.46)

for combinatorial factors C2k that do not scale with N . We have, in particular, C2 = 1
and C4 = −2. By the moments-cumulants formula, we have

E[Ξ2k] = B2k(0,κ2, 0,κ4, · · · ,κ2k) (3.47)

for B2k the 2k-th complete exponential Bell polynomial. From this, it follows that

E[Ξ2k] = (2k − 1)!! +O(N−1), (3.48)
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as all cumulants other than κ2 = 1 are O(N−1). Therefore, neglecting subleading
terms, we have

var(χ) = E







 1

N − 1

N∑

j=2

ξ1j




2d


 =
(2d− 1)!!

Nd

[
1 +O

(
1

N

)]
. (3.49)

Following the general arguments above, we then approximate

P[TDN (ξ1)1 "= ξ21 ] ∼
√

P (2d− 1)!!

2πNd
exp

(
− Nd

2P (2d− 1)!!

)
. (3.50)

To determine the single-transition capacity following the argument in the main text, we
must determine how large we can take P = P (N) such that NP[TDN (ξ1)1 "= ξ21 ] → 0.
Following the requirement that P var(χ) → 0, we make the Ansatz

P ∼ Nd

α(2d− 1)!! logN
(3.51)

for some α. We then have

NP[TDN (ξ1)1 "= ξ21 ] ∼
√

1

2πα logN
N1−α/2. (3.52)

This tends to zero if α ≥ 2, meaning that the predicted capacity in this case is

PT ∼ Nd

2(2d− 1)!! logN
. (3.53)

We now want to determine the sequence capacity, which requires the stronger
condition NPP[TDN (ξ1)1 "= ξ21 ] → 0. Again making the Ansatz

P ∼ Nd

α(2d− 1)!! logN
(3.54)

for some α, we then have

NPP[TDN (ξ1)1 "= ξ21 ] ∼
1√

2π(2d− 1)!! (α logN)3/2
Nd+1−α/2, (3.55)

which tends to zero if α ≥ 2d+ 2. Then, the predicted sequence capacity is

PS ∼ Nd

2(d+ 1)(2d− 1)!! logN
. (3.56)

If we consider the alternative asymptotic formulas obtained above from the finite-c
argument, we have

PT ∼ 1

2 var(χ) log(N)
∼ Nd

2(2d− 1)!! log(N)
(3.57)

and

PS ∼ 1

2 var(χ) log[N/ var(χ)]
∼ Nd

2(2d− 1)!! log[Nd+1/(2d− 1)!!]
∼ Nd

2(d+ 1)(2d− 1)!! log(N)
,

(3.58)
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Figure 3.1. The transition capacity of the polynomial DenseNet is demonstrated
for different values of error tolerance c. We see that even for c != 0, we get similar
scaling curves although the capacities slightly increase consistently as we increase
c, indicated by a transition from dark to light. We plot from c = 0.0 to c = 0.5
for each degree d, with the legend labeling curves up to c = 0.3 to demonstrate
the general trend.

which agree with these results. For evidence of the finite-c argument for the polynomial
DenseNet, observe Figure 3.1.

Using the Gaussian approximation for moments of χ given above, we can easily
work out that

κ4(χ) = E[(χ)4]− 3E[(χ)2] (3.59)

= E



f



 1

N − 1

N∑

j=2

ξµj




4


− 3E



f



 1

N − 1

N∑

j=2

ξµj




2




2

(3.60)

=
1

N2d
{(4d− 1)!!− 3[(2d− 1)!!]2}

[
1 +O

(
1

N

)]
. (3.61)

Then, the excess kurtosis of the Polynomial DenseNet’s crosstalk is

κ =
1

P − 1

[
(4d− 1)!!

[(2d− 1)!!]2
− 3

] [
1 +O

(
1

N

)]
. (3.62)

Thus, for the Polynomial DenseNet, we expect the excess kurtosis to be small for any
fixed d so long as P and N are both fairly large, without any particular requirement
on their relationship. In particular, under the Gaussian approximation we predicted
above that the transition and sequence capacities should both scale as

P ∼ Nd

αd logN
, (3.63)
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where αd depends on d but not on N . This gives an excess kurtosis of

κ =
αd logN

Nd

[
(4d− 1)!!

[(2d− 1)!!]2
− 3

] [
1 +O

(
1

N

)]
(3.64)

which for any fixed d rapidly tends to zero with increasing N . This suggests that
the Gaussian approximation should be reasonably accurate even at modest N , but
of course does not constitute a proof of its accuracy because we have not considered
higher cumulants. However, this matches the results of numerical simulations shown
in Figure 2.

3.2. Exponential DenseNet capacity

We now turn our attention to the Exponential DenseNet, with separation function
f(x) = e(N−1)(x−1). In this case, we have

var(χ) = exp[−2(N − 1)]E



exp



2
N∑

j=2

ξ2j







 (3.65)

= exp[−2(N − 1)]
N∏

j=2

E
[
exp

(
2ξ2j

)]
(3.66)

= exp[−2(N − 1)] cosh(2)N−1 (3.67)

=
1

βN−1
, (3.68)

where we have defined the constant

β =
exp(2)

cosh(2)
" 1.96403. (3.69)

Then, we have the Gaussian approximation

P[TDN (ξ1)1 #= ξ21 ] ∼

√
P

2πβN−1
exp

(
−βN−1

2P

)
. (3.70)

As in the polynomial case, we first determine the single-transition capacity by
demanding that NP[TDN (ξ1)1 #= ξ21 ] → 0. We plug in the Ansatz

P ∼ βN−1

α logN
(3.71)

for some α, which yields

NP[TDN (ξ1)1 #= ξ21 ] ∼
√

1

2πα logN
N1−α/2. (3.72)

This tends to zero if α ≥ 2, which gives a predicted capacity of

PT ∼ βN−1

2 logN
. (3.73)
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Considering the sequence capacity, which again requires that NPP[TDN (ξ1)1 != ξ21 ] →
0, we plug in the Ansatz

P ∼ βN−1

αN
, (3.74)

which yields

NPP[TDN (ξ1)1 != ξ21 ] ∼
1

αβ

√
1

2παN
exp

[(
log β − α

2

)
N
]
. (3.75)

This tends to zero for α ≥ 2 log β, meaning that the predicted capacity is in this case

PS ∼ βN−1

2 log(β)N
. (3.76)

Therefore, while the ratio of the predicted single-transition to sequence capacities is
finite for the Polynomial DenseNet—it is simply PS/PT ∼ d+1—for the Exponential
DenseNet it tends to zero as PS/PT ∼ logN/[log(β)N ].

Using the asymptotic formulas obtained above from the finite-c argument, we
have

PT ∼ 1

2 var(χ) log(N)
=

βN−1

2 log(N)
(3.77)

and

PS ∼ 1

2 var(χ) log[N/ var(χ)]
=

βN−1

2 log[NβN−1]
∼ βN−1

2 log(β)N
, (3.78)

which agree with these results. For evidence of the finite-c argument for the
exponential DenseNet, observe Figure 3.2.

Now considering the fourth cumulant, we can easily compute

κ4(χ) =

(
cosh(4)

exp(4)

)N−1

− 3

(
cosh(2)2

exp(4)

)N−1

, (3.79)

which yields an excess kurtosis of

κ =
1

P − 1

[(
cosh(4)

cosh(2)2

)N−1

− 3

]
. (3.80)

For this to be small, P must be exponentially large in N , which contrasts with the
situation for the Polynomial DenseNet, in which the excess kurtosis is small for any
reasonably large P . If we consider taking

P ∼ βN−1

α logN
, (3.81)

for a constant α, as the Gaussian theory predicts for the Exponential DenseNet
transition capacity, we have

κ ∼ α logN

βN−1

[(
cosh(4)

cosh(2)2

)N−1

− 3

]
(3.82)

∼ α logN

(
cosh(4)

exp(2) cosh(2)

)N−1

(3.83)

& α log(N)(0.9823)N−1. (3.84)
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Figure 3.2. The transition capacity of the exponential DenseNet is demonstrated
for different values of error tolerance c. We see that even for c != 0, we get similar
scaling curves although the capacities slightly increase consistently as we increase
c.

This tends to zero as N increases, but only very slowly. In particular,
log(N)(0.9823)N−1 increases with N up to around N ! 19, where it attains a
maximum value around 2, before decreasing towards zero. The situation is even worse
for the sequence capacity, for which the Gaussian theory predicts

P ∼ βN−1

αN
, (3.85)

yielding

κ ∼ αN

βN−1

[(
cosh(4)

cosh(2)2

)N−1

− 3

]
(3.86)

∼ αN

(
cosh(4)

exp(2) cosh(2)

)N−1

(3.87)

! αN(0.9823)N−1. (3.88)

N(0.9823)N−1 increases with N up to around N ! 56, where it attains a value of
approximately 21.

Taken together, these results suggest that we might expect substantial finite-size
corrections to the Gaussian theory’s prediction for the capacity. In particular, as the
excess kurtosis of the crosstalk is positive, the tails of the crosstalk distribution should
be heavier-than-Gaussian, suggesting that the Gaussian theory should overestimate
the true capacity. This holds provided that the lower bound on the memorization
probability resulting from the union bound is reasonably tight.

4. Bounding the polynomial DenseNet capacity

Here, we adapt Demircigil et al. [21]’s proof of a rigorous asymptotic lower bound on
the polynomial MHN’s capacity to obtain a rigorous asymptotic lower bound on the
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DenseNet capacity. This proof is a step-by-step adaptation of the proof of Theorem
1.2 of Demircigil et al. [21], which we spell out in detail for clarity.

Our objective is to obtain an upper bound on the single-bitflip probability

P[TDN (ξ1)1 != ξ12 ] (4.1)

which we have argued can be expressed in terms of the crosstalk C as

P[TDN (ξ1)1 != ξ12 ] = P[C < −1] (4.2)

for

C
d
=

P∑

µ=2

ξµ1



 1

N − 1

N∑

j=2

ξµj




d

. (4.3)

Our goal is to prove the following: First, letting α > 2(2d − 1)!! and P =
Nd/(α logN), we have

NP[TDN (ξ1)1 != ξ12 ] → 0 (4.4)

as N → ∞. Second, letting α > 2(d+ 1)(2d− 1)!! and P = Nd/(α logN), we have

NPP[TDN (ξ1)1 != ξ12 ] → 0 (4.5)

as N → ∞.
By Chernoff’s inequality (also known as the exponential Chebyschev inequality)

[23], we then have

P[TDN (ξ1)1 != ξ12 ] = P




P∑

µ=2

ξµ1




N∑

j=2

ξµj




d

< −(N − 1)d



 (4.6)

≤ e−t(N−1)dE exp



−t
P∑

µ=2

ξµ1




N∑

j=2

ξµj




d


 (4.7)

for any t > 0. Using the fact that the pattern elements are i.i.d., we have

E exp



−t
P∑

µ=2

ξµ1




N∑

j=2

ξµj




d


 =





E exp



−tξµ1




N∑

j=2

ξµj




d









P−1

(4.8)

=





E cosh



t




N∑

j=2

ξµj




d









P−1

. (4.9)

Now, let

M =
1√

N − 1

N∑

j=2

ξµj , (4.10)
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and expand the expectation as a sum over the possible values m ∈ {0,±(N −
1)−1/2, . . . ,±(N − 1)1/2} of M :

E cosh



t




N∑

j=2

ξµj




d


 =
∑

m

cosh
[
t(N − 1)d/2md

]
P[M = m]. (4.11)

For N # 1, the distribution of M is nearly Gaussian. We thus split the sum over m
to allow us to treat tail events separately. We fix β > 0, and split the sum at log(N)β :
∑

m

cosh
[
t(N − 1)d/2md

]
P[M = m] =

∑

|m|≤log(N)β

cosh
[
t(N − 1)d/2md

]
P[M = m]

+
∑

log(N)β<|m|≤
√
N

cosh
[
t(N − 1)d/2md

]
P[M = m],

(4.12)

where we have used the fact that M ≤
√
N − 1.

We first consider the tail sum over |m| > log(N)β . As cosh is even and non-
decreasing in the modulus of its argument, we have

∑

log(N)β<|m|≤
√
N

cosh
[
t(N − 1)d/2md

]
P[M = m] (4.13)

≤ 2 cosh
[
t(N − 1)d

]
P[M > log(N)β ] (4.14)

≤ 2 cosh
[
t(N − 1)d

]
exp

(
−1

2
log(N)2β

)
(4.15)

≤ 2 exp

[
t(N − 1)d − 1

2
log(N)2β

]
, (4.16)

where in the second line we have applied Hoeffding’s inequality to bound P[M >
log(N)β ] from above, and in the third line we have used the bound cosh(z) ≤ exp(z)
for any z > 0.

We now consider the sum over |m| ≤ log(N)β . Using the bound cosh(z) ≤
exp(z2/2), we have

∑

|m|≤log(N)β

cosh
[
t(N − 1)d/2md

]
P[M = m] ≤

∑

|m|≤log(N)β

exp

[
1

2
t2(N − 1)dm2d

]
P[M = m].

(4.17)
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Using the series expansion of the exponential, we have
∑

|m|≤log(N)β

exp

[
1

2
t2(N − 1)dm2d

]
P[M = m] (4.18)

=
∑

|m|≤log(N)β

{
1 +

1

2
t2(N − 1)dm2d +

∞∑

k=2

(t2(N − 1)dm2d)k

2kk!

}
P[M = m] (4.19)

= P[|M | ≤ log(N)β ] +
1

2
t2(N − 1)d

∑

|m|≤log(N)β

m2dP[M = m]

+
∑

|m|≤log(N)β

{ ∞∑

k=2

(t2(N − 1)dm2d)k

2kk!

}
P[M = m] (4.20)

where on the third line we have used the linearity of summation. We will now bound
each of the three contributions. The first term is trivially bounded from above by 1:

P[|M | ≤ log(N)β ] ≤ 1. (4.21)

To handle the second, we first observe that
∑

|m|≤log(N)β

m2dP[M = m] ≤ E[m2d]. (4.22)

Then, we observe that as m is the normalized sum of N − 1 Rademacher random
variables, its moments tend to those of a standard normal from below as N → ∞, and
are for any N strictly bounded from above by those of the standard normal. Therefore,
we have

E[m2d] ≤ (2d− 1)!!. (4.23)

To handle the third term, we first use the fact that for any |m| ≤ log(N)β we have
m2d ≤ log(N)2βd, which gives

∑

|m|≤log(N)β

{ ∞∑

k=2

(t2(N − 1)dm2d)k

2kk!

}
P[M = m]

≤
∑

|m|≤log(N)β

{ ∞∑

k=2

(t2(N − 1)d log(N)2βd)k

2kk!

}
P[M = m] (4.24)

≤ P[|M | ≤ log(N)β ]
∞∑

k=2

(t2(N − 1)d log(N)2βd)k

2kk!
(4.25)

≤
∞∑

k=2

(t2(N − 1)d log(N)2βd)k

2kk!
(4.26)

At this point, [21] uses the bound
∞∑

k=2

(t2(N − 1)d log(N)2βd)k

2kk!
≤ 1

4
(e− 2)(t2(N − 1)d log(N)2βd)2 (4.27)
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which holds provided that we choose the arbitrary parameter t such that

t2(N − 1)d log(N)2βd ≤ 2. (4.28)

Assuming that condition is satisfied, we can then combine these results to obtain
∑

|m|≤log(N)β

cosh
[
t(N − 1)d/2md

]
P[M = m] (4.29)

≤ 1 +
1

2
t2(N − 1)d(2d− 1)!! +

1

4
(e− 2)(t2(N − 1)d log(N)2βd)2 (4.30)

≤ 1 +
1

2
t2(N − 1)d(2d− 1)!! +

1

4
(t2(N − 1)d log(N)2βd)2 (4.31)

≤ exp

[
1

2
t2(N − 1)d(2d− 1)!! +

1

4
(t2(N − 1)d log(N)2βd)2

]
, (4.32)

where on the the second line we have used the fact that e− 2 # 0.718 . . . < 1 and on
the third line we have used the bound 1 + x ≤ exp(x) for x ≥ 0.

Combining this result with the bound on the tail sum obtained previously, we
have that

E cosh



t




N∑

j=2

ξµj




d


 ≤ exp

[
1

2
t2(N − 1)d(2d− 1)!! +

1

4
(t2(N − 1)d log(N)2βd)2

]

+ 2 exp

[
t(N − 1)d − 1

2
log(N)2β

]
(4.33)

for any β > 1/2 and

0 < t ≤

√
2

(N − 1)d log(N)2βd
. (4.34)

Therefore, we have

P[TDN (ξ1)1 %= ξ12 ] ≤ e−t(N−1)d

{
exp

[
1

2
t2(N − 1)d(2d− 1)!! +

1

4
(t2(N − 1)d log(N)2βd)2

]

+ 2 exp

[
t(N − 1)d − 1

2
log(N)2β

]}P−1

(4.35)

subject to these conditions on β and t.
We now want to determine the single-transition and full-sequence capacities. To

do so, we fix α > 0, and let P = Nd/(α logN). As t is arbitrary, fix γ > 0, and let
t = γ/P . For our choice of P , this gives

t2(N − 1)d log(N)2βd = γ2α2 (N − 1)d

N2d
log(N)2(βd+1) (4.36)

which is clearly less than 2 for N sufficiently large. Therefore, we can apply the bound
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obtained above, which for this choice of t simplifies to

P[TDN (ξ1)1 != ξ12 ]

≤ e−t(N−1)d

{
exp

[
1

2
γ2α2(2d− 1)!!

log(N)2

Nd
+

1

4
γ4α4 log(N)4(βd−1)

N2d

]
[1 + o(1)]

+ 2 exp

[(
γα− 1

2
log(N)2β−1

)
log(N)

]
[1 + o(1)]

}P−1

.

(4.37)

We can see that the first term in the curly braces tends to 1 with increasing N—as
its exponent tends to zero—while the second term tends to zero as the term in the
round brackets within the exponent is negative for sufficiently large N provided that
β > 1/2. We may therefore neglect the second term, which gives the simplification

P[TDN (ξ1)1 != ξ12 ] ≤ exp

[
−αγ

(
1− 1

2
γ(2d− 1)!!

)
log(N)

]
[1 + o(1)]. (4.38)

To determine the single-transition capacity under the union bound, we want
NP[TDN (ξ1)1 != ξ12 ] to tend to zero. We have

NP[TDN (ξ1)1 != ξ12 ] ≤ exp

{[
1− αγ

(
1− 1

2
γ(2d− 1)!!

)]
log(N)

}
[1 + o(1)]. (4.39)

For this bound to tend to zero, we should have

1− αγ

(
1− 1

2
γ(2d− 1)!!

)
< 0. (4.40)

As γ is arbitrary, we may let γ = 1/(2d− 1)!!, hence the required condition is clearly
satisfied if

α > 2(2d− 1)!!, (4.41)

as predicted by the Gaussian approximation. Next, to determine the sequence capacity,
we want NPP[TDN (ξ1)1 != ξ12 ] to tend to zero. We have

NPP[TDN (ξ1)1 != ξ12 ] ≤
1

α logN
exp

{[
d+ 1− αγ

(
1− 1

2
γ(2d− 1)!!

)]
log(N)

}
[1 + o(1)],

(4.42)

hence an identical line of reasoning to that used for the single-transition capacity
shows that we must have

α ≥ 2(d+ 1)(2d− 1)!!. (4.43)

Again, this agrees with the Gaussian theory.

5. Generalized pseudoinverse rule capacity

Here, we show that the generalized pseudoinverse rule can perfectly recall any sequence
of linearly-independent patterns. We recall from the main text that the GPI update
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rule is

TGPI(S)i = sgn

[
P∑

µ=1

ξµ+1
i f

(
P∑

ν=1

(O+)µνmν(S)

)]
(5.1)

for

Oµν =
1

N

N∑

j=1

ξµj ξ
ν
j (5.2)

the Gram matrix of the patterns. If the patterns are linearly independent, then O is
full rank, and the pseudoinverse reduces to the ordinary inverse: O+ = O−1. Under
this assumption, we have

TGPI(ξ
µ)i = sgn

[
P∑

ν=1

ξν+1
i f(δµν)

]
(5.3)

= sgn



f(1)ξµ+1
i + f(0)

∑

ν "=µ

ξν+1
i



 , (5.4)

for all µ and i, hence for separation functions satisfying f(1) > 0 and |f(0)| <
f(1)/(P − 1) we are guaranteed to have TGPI(ξµ)i = ξµ+1

i as desired. For f(x) = xd,
this condition is always satisfied as f(0) = 0 and f(1) = 1. For f(x) = e(N−1)(x−1),
we have f(0) = e−(N−1) and f(1) = 1; the condition P − 1 < eN−1 must therefore
be satisfied. However, as P ≤ N is required for linear independence, this condition is
satisfied so long as N > 3.

6. MixedNet Capacity

In this Appendix, we compute the capacity of the mixed network, which from the
update rule defined in the main text has

TMN (ξ1)1 = sgn






P∑

µ=1



ξµ1 fS



 1

N − 1

N∑

j=2

ξµj ξ
1
j



+ λξµ+1
1 fA



 1

N − 1

N∑

j=2

ξµj ξ
1
j












 .

(6.1)
Then, assuming that fS(1) = fA(1) = 1 as is true for the interaction functions
considered here, we have
P[TMN (ξ1)1 #= ξ21 ] (6.2)

= P




ξ21




P∑

µ=1

ξµ1 fS



 1

N − 1

N∑

j=2

ξµj ξ
1
j



+ λ
P∑

µ=1

ξµ+1
1 fA



 1

N − 1

N∑

j=2

ξµj ξ
1
j







 < 0






(6.3)
= P {C < −λ} , (6.4)

where we have defined the crosstalk

C = ξ21ξ
1
1 +

P∑

µ=2

ξ21ξ
µ
1 fS



 1

N − 1

N∑

j=2

ξµj ξ
1
j



+ λ
P∑

µ=2

ξ21ξ
µ+1
1 fA



 1

N − 1

N∑

j=2

ξµj ξ
1
j



 .

(6.5)
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For j = 2, . . . , N and µ = 2, . . . , P , we have the equality in distribution ξµj ξ
1
j

d
= ξµj ,

hence

C
d
= ξ21ξ

1
1 +

P∑

µ=2

ξ21ξ
µ
1 fS(Ξ

µ) + λ
P∑

µ=2

ξ21ξ
µ+1
1 fA(Ξ

µ). (6.6)

where to lighten our notation we define

Ξµ =
1

N − 1

N∑

j=2

ξµj . (6.7)

However, unlike in the DenseNet, we cannot similarly simplify the terms outside the
separation functions. Recalling that we have assumed periodic boundary conditions,
we have

C = ξ21ξ
1
1 + λξ21ξ

1
1fA(Ξ

P ) + fS(Ξ
2) +

P∑

µ=3

ξ21ξ
µ
1 fS(Ξ

µ) + λ
P−1∑

µ=2

ξ21ξ
µ+1
1 fA(Ξ

µ) (6.8)

d
= ξ11 + C1 + C2 + C3 + C4, (6.9)

where we have defined

C1 = fS(Ξ
2) + λ ξ31fA(Ξ

2), (6.10)
C2 = ξP1 fS(Ξ

P ) + λξ11fA(Ξ
P ), (6.11)

C3 =
P−1∑

µ=3

ξµ1 fS(Ξ
µ), and (6.12)

C4 = λ
P−1∑

µ=3

ξµ+1
1 fA(Ξ

µ). (6.13)

Importantly, in this case the influence of ξ11 on the crosstalk is O(1), and the
distribution is not well-approximated by a single Gaussian. Instead, as shown in
Figure 6.1, it is bimodal. We will therefore approximate it by a mixture of two
Gaussians, one for each value of ξ11 . This approximation can be justified by noting
that the boundary terms in C1 and C2 should be negligible at large N and P , while C3

and C4 should give a Gaussian contribution at sufficiently large P . We now observe
that, for any fS and fA, the conditional means of each term are

E[C1 | ξ11 ] = E[fS(Ξ)] (6.14)
E[C2 | ξ11 ] = λξ11E[fA(Ξ)] (6.15)
E[C3 | ξ11 ] = 0 (6.16)
E[C4 | ξ11 ] = 0, (6.17)

where we note that all Ξµs are identically distributed, so we can simply write Ξ for
any one of them. Then, the conditional mean of the crosstalk is

E[C | ξ11 ] = ξ11 +
4∑

j=1

E[Cj | ξ11 ] (6.18)

= ξ11{1 + λE[fA(Ξ)]}+ E[fS(Ξ)]. (6.19)
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Figure 6.1. Crosstalk of Polynomial MixedNet where N = 100, λ = 2.5,
dS = dA = 3 and P = 1000 patterns are stored. Histograms are generated for
patterns drawn from 5000 randomly sequences and theoretical curves are plotted.
Green represents the full crosstalk for the MixedNet. Blue and red represent the
asymmetric and symmetric terms of the crosstalk, respectively. Observe that the
bimodality in the full model comes from bimodality in the symmetric term.

Considering the variance of C, the variances of the different contributions are

var[C1 | ξ11 ] = var[fS(Ξ)] + λ2E[fA(Ξ)2] (6.20)
var[C2 | ξ11 ] = E[fS(Ξ)2] + λ2 var[fA(Ξ)] (6.21)
var[C3 | ξ11 ] = (P − 3)E[fS(Ξ)2] (6.22)
var[C4 | ξ11 ] = λ2(P − 3)E[fA(Ξ)2], (6.23)

while the covariances are

cov[C1, C2 | ξ11 ] = 0 (6.24)
cov[C1, C3 | ξ11 ] = λE[fA(Ξ)]E[fS(Ξ)] (6.25)
cov[C1, C4 | ξ11 ] = 0, (6.26)

cov[C2, C3 | ξ11 ] = 0 (6.27)
cov[C2, C4 | ξ11 ] = λE[fS(Ξ)]E[fA(Ξ)], (6.28)



S26

and

cov[C3, C4 | ξ11 ] = λ
P−1∑

µ,ν=3

E[ξµ1Ξν+1
1 ]E[fS(Ξµ)fA(Ξ

ν)] (6.29)

= λ
P∑

µ=3

E[fS(Ξµ)]E[fA(Ξµ−1)] (6.30)

= λ(P − 3)E[fS(Ξ)]E[fA(Ξ)]. (6.31)

Therefore, the conditional variance of the crosstalk is

var[C | ξ11 ] =
4∑

j=1

var[Cj | ξ11 ] + 2
4∑

j=1

∑

k>j

cov[Cj , Ck | ξ1] (6.32)

= (P − 3){E[fS(Ξ)2] + 2λE[fS(Ξ)]E[fA(Ξ)] + λ2E[fA(Ξ)2]}
+ var[fS(Ξ)] + λ2E[fA(Ξ)2] + E[fS(Ξ)2] + λ2 var[fA(Ξ)] + 4λE[fA(Ξ)]E[fS(Ξ)]

(6.33)
= (P − 1){E[fS(Ξ)2] + 2λE[fS(Ξ)]E[fA(Ξ)] + λ2E[fA(Ξ)2]}
− E[fS(Ξ)]2 − λ2E[fA(Ξ)]2. (6.34)

For large P and N , the two terms on the second line of this result will be subleading,
as they do not scale with P and have identical or subleading scaling with N to the
terms that do scale with P . That is, we have

var[C | ξ11 ] ∼ P{E[fS(Ξ)2] + 2λE[fS(Ξ)]E[fA(Ξ)] + λ2E[fA(Ξ)2]}. (6.35)

Collecting these results, we have

E[C | ξ11 ] = ξ11{1 + λE[fA(Ξ)]}+ E[fS(Ξ)] (6.36)

and

var[C | ξ11 ] ∼ P{E[fS(Ξ)2] + 2λE[fS(Ξ)]E[fA(Ξ)] + λ2E[fA(Ξ)2]}. (6.37)

By the law of total probability, we have

P[TMN (ξ1)1 #= ξ21 ] = P[C < −λ] (6.38)

=
1

2
P[C < −λ | ξ11 = −1] +

1

2
P[C < −λ | ξ11 = +1] (6.39)

∼ 1

2
H

(
λ+ E[C | ξ11 = −1]√

var[C | ξ11 = −1]

)
+

1

2
H

(
λ+ E[C | ξ11 = +1]√

var[C | ξ11 = +1]

)
(6.40)

under the bimodal Gaussian approximation to the crosstalk distribution. To have
P[TMN (ξ1)1 #= ξ21 ], both of these conditional probabilities must tend to zero. By basic
concentration arguments, we expect to have

E[C | ξ11 ] ∼ ξ11 (6.41)

up to corrections that are small in an absolute sense. Moreover, we have

E[C | ξ11 = +1]− E[C | ξ11 = −1] = 2{1 + λE[fA(Ξ)]} (6.42)
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which for the separation functions considered here is strictly positive. As we keep λ
constant with N and P , we must have

E[C | ξ11 = −1] > −λ (6.43)

and var[C | ξ11 = −1] → 0 in order to have P[TMN (ξ1)1 #= ξ21 ] → 0. But, given the
formula above, var[C | ξ11 = −1] = var[C | ξ11 = +1], so this implies that the ξ11 = +1
contribution to the probability will be exponentially suppressed. hen, we can apply an
identical argument to that which we used for the DenseNet in Appendix 3 to obtain
the asymptotic behavior of P[C < −λ | ξ11 = −1], yielding

P[TMN (ξ1)1 #= ξ21 ] ∼
1

2
H

(
λ+ E[C | ξ11 = −1]√

var[C | ξ11 = −1]

)
(6.44)

∼ 1

2
√
2π

√
var[C | ξ11 = −1]

λ+ E[C | ξ11 = −1]
exp

(
−1

2

(λ+ E[C | ξ11 = −1])2

var[C | ξ11 = −1]

)
.

(6.45)

For this to work, we must clearly have λ > 1.
We could in principle compute the excess kurtosis of the crosstalk for the

MixedNet as we did for the DenseNet, but we will not do so here as the computation
would be tedious and would not yield substantial new insight beyond that for the
DenseNet.

6.1. Polynomial MixedNet

We first consider the polynomial mixed network, with fS(x) = xdS and fA(x) = xdA

for two possibly differing degrees dS , dA ∈ N>0. We can apply the same reasoning
as in Appendix 3.1 to obtain the required moments at large N , which yields the first
moments

E[fS(Ξ)] = E[ΞdS ] =






0 dS odd,
(dS − 1)!!

NdS/2

[
1 +O

(
1

N

)]
dS even

(6.46)

and

E[fA(Ξ)] = E[ΞdA ] =






0 dA odd,
(dA − 1)!!

NdA/2

[
1 +O

(
1

N

)]
dA even,

(6.47)

and the second moments

E[fS(Ξ)2] = E[Ξ2dS ] =
(2dS − 1)!!

NdS

[
1 +O

(
1

N

)]
(6.48)

and

E[fA(Ξ)2] = E[Ξ2dA ] =
(2dA − 1)!!

NdA

[
1 +O

(
1

N

)]
. (6.49)
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Then, the conditional mean of the crosstalk is given by

E[C | ξ11 ] ∼ ξ11 (6.50)

up to corrections which vanish in an absolute, not a relative, sense, while the
conditional variance is asymptotic to

var[C | ξ11 ] ∼ P

{
(2dS − 1)!!

NdS
+ 2λ

(dS − 1)!! (dA − 1)!!

N (dS+dA)/2
1{dS , dA even}+ λ2 (2dA − 1)!!

NdA

}
.

(6.51)

We must now determine the storage capacity. We recall that, in all case, we want
P to tend to infinity slowly enough that var[C | ξ11 ] tends to zero. Then, we can see
that what matters is which of the terms inside the curly brackets in the expression
for the conditional variance above tends to zero with N the slowest. This is of course
determined by min{dS , dA}, but the constant factor multiplying the leading term will
depend on which is smaller, or if they are equal. First, consider the case in which
dS = dA = d. Then, we have

var[C | ξ11 ] ∼
P

Nd

{
(2d− 1)!! + 2λ(d− 1)!! (d− 1)!!1{d even}+ λ2(2d− 1)!!

}
. (6.52)

Now, consider the case in which dS < dA. Then, (dS + dA)/2 > dS , hence the N−dS

term dominates and we have

var[C | ξ11 ] ∼
P

NdS
(2dS − 1)!!. (6.53)

Similarly, if dA > dS , the N−dA term dominates, and we have

var[C | ξ11 ] ∼
P

NdA
λ2(2dA − 1)!!. (6.54)

We can summarize these results as

var[C | ξ11 ] ∼ γdS ,dA

P

Nmin{dS ,dA} , (6.55)

where

γdS ,dA =






(2dS − 1)!! if dS < dA,

(λ2 + 1)(2dS − 1)!! + 2λ[(dS − 1)!!]21{dS even} if dS = dA,

λ2(2dA − 1)!! if dS > dA.

(6.56)

Using the general arguments presented above, we then have

P[TMN (ξ1)1 #= ξ21 ] ∼
1

2
√
2π

√
γdS ,dAP

(λ− 1)2Nmin{dS ,dA} exp

(
− (λ− 1)2

2

Nmin{dS ,dA}

γdS ,dAP

)
.

(6.57)

for any λ > 1. We must first determine the single-transition capacity, which requires
that NP[TMN (ξ1)1 #= ξ21 ] → 0. Recalling that our argument requires us to take
P → ∞ slowly enough that var[C | ξ11 ] → 0, we make the Ansatz that

P ∼ (λ− 1)2

αγdS ,dA

Nmin{dS ,dA}

logN
(6.58)
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for some α. This yields

NP[TMN (ξ1)1 != ξ21 ] ∼
1

2
√
2πα logN

N1−α/2, (6.59)

which tends to zero if α ≥ 2, yielding a predicted capacity of

PT ∼ (λ− 1)2

2γdS ,dA

Nmin{dS ,dA}

logN
. (6.60)

We now consider the sequence capacity, which requires that NPP[TMN (ξ1)1 != ξ21 ] → 0.
Then, making the same Ansatz for P as above, we have

NPP[TMN (ξ1)1 != ξ21 ] ∼
1

2
√
2π

(λ− 1)2

γdS ,dA

1

(α logN)3/2
Nmin{dS ,dA}+1−α/2, (6.61)

which tends to zero provided that α ≥ 2(min{dS , dA}+1), yielding a predicted capacity
of

PS ∼ (λ− 1)2

2(min{dS , dA}+ 1)γdS ,dA

Nmin{dS ,dA}

logN
. (6.62)

6.2. Exponential MixedNet

We now consider the Exponential MixedNet, with fS(x) = fA(x) = e(N−1)(x−1). With
this, we have the first moments

E[fS(Ξ)] = E[fA(Ξ)] = exp[−(N − 1)]E



exp




N∑

j=2

ξj







 (6.63)

= exp[−(N − 1)]
N∏

j=2

E[exp(ξj)] (6.64)

=

(
cosh(1)

exp(1)

)N−1

(6.65)

and the second moments

E[fS(Ξ)2] = E[fA(Ξ)2] =
(
cosh(2)

exp(2)

)N−1

=
1

βN−1
, (6.66)

where as in Appendix 3.2 we let

β =
exp(2)

cosh(2)
' 1.96403. (6.67)

Noting that

exp(1)

cosh(1)
' 1.76159, (6.68)

https://doi.org/10.1088/1742-5468/ad6427
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the conditional mean of the crosstalk is then

E[C | ξ11 ] = ξ11{1 + λE[fA(Ξ)]}+ E[fS(Ξ)] (6.69)

= ξ11

{
1 + λ

(
cosh(1)

exp(1)

)N−1
}

+

(
cosh(1)

exp(1)

)N−1

(6.70)

∼ ξ11 , (6.71)

where the corrections are exponentially small in an absolute sense. The leading part
of the conditional variance of the crosstalk is

var[C | ξ11 ] ∼ P{E[fS(Ξ)2] + 2λE[fS(Ξ)]E[fA(Ξ)] + λ2E[fA(Ξ)2]} (6.72)

∼ P

βN−1

{
1 + 2λ

(
cosh(1)2

cosh(2)

)N−1

+ λ2

}
(6.73)

∼ P

βN−1
(1 + λ2), (6.74)

where we note that

cosh(1)2

cosh(2)
" 0.632901 (6.75)

hence the other contribution is exponentially suppressed in a relative sense.
We thus have

E[C | ξ11 ] ∼ ξ11 (6.76)

var[C | ξ11 ] ∼
P

βN−1
(1 + λ2), (6.77)

hence from the general argument above we have

P[TMN (ξ1)1 #= ξ21 ] ∼
1

2
√
2π

√
(1 + λ2)

λ− 1

√
P

βN−1
exp

(
−1

2

(λ− 1)2

1 + λ2

βN−1

P

)
(6.78)

for λ > 1. We now want to determine the capacity, starting with the single-transition
capacity, for which we must have NP[TMN (ξ1)1 #= ξ21 ] → 0. Recalling that we want
to have var[C | ξ11 ] → 0, we make the Ansatz

P ∼ 1

α

(λ− 1)2

λ2 + 1

βN−1

logN
(6.79)

for some α, which yields

NP[TMN (ξ1)1 #= ξ21 ] ∼
1

2
√
2πα logN

N1−α/2. (6.80)

This tends to zero if α ≥ 2, hence we conclude that the Gaussian theory predicts

PT ∼ 1

2

(λ− 1)2

λ2 + 1

βN−1

logN
. (6.81)
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Figure 6.2. The capacities of Exponential MixedNets with λ = 2.5 are plotted as
a function of network size. (A) Transition capacity for the Exponential MixedNet,
which closely matches theoretical prediction. The predicted capacity is shown by
the solid line with dots, while square error bars show the results of numerical
experiment. (B) Sequence capacity for the Exponential MixedNet, which diverges
from theoretical prediction.

We now want to determine the sequence capacity, which requires that
NPP[TMN (ξ1)1 != ξ21 ] → 0. Following our analysis of the Exponential DenseNet
in Appendix 3.2, we make the Ansatz that

P ∼ 1

α

(λ− 1)2

λ2 + 1

βN−1

N
, (6.82)

which yields

NPP[TMN (ξ1)1 != ξ21 ] ∼
1

2
√
2παN

1

αβ

(λ− 1)2

λ2 + 1
exp

[(
log β − α

2

)
N
]
. (6.83)

This tends to zero if α ≥ 2 log β, giving a predicted sequence capacity of

PS =
1

2 log β

(λ− 1)2

λ2 + 1

βN−1

N
. (6.84)

Thus, for both definitions of capacity, the Gaussian theory’s prediction of the
capacity of the Exponential MixedNet is

(λ− 1)2

λ2 + 1
(6.85)

times the capacity of the Exponential DenseNet analyzed in Appendix 3.2. This factor
tends to zero from above as λ ↓ 1, and gradually increases to 1 as λ → ∞. Note that
even without explicitly computing the excess kurtosis, we expect the intuition from the
Exponential DenseNet to carry over to this setting. Indeed, the numerical simulations
in Figure 6.2 show that the transition capacity is well captured by the Gaussian theory
while the sequence capacity shows significant deviation for small MixedNets.

7. Numerical implementation

Source code is available on GitHub at https://github.com/Pehlevan-Group/
LongSequenceHopfieldMemory. Experiments were run on the Harvard University
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FAS RC Cannon HPC cluster (https://www.rc.fas.harvard.edu/), using Nvidia
A100 80GB GPUs. This limited the maximum number of patterns we could store in
memory simultaneously to approximately 106 patterns, restricting our experimental
evaluation of the Exponential DenseNet to approximately N = 25 neurons.

7.1. Transition capacity

Numerical simulations for transition capacity were conducted as follows: For a given
model of size N , start by initializing 100 sequences of Rademacher distributed patterns
of length P0, where P0 = 2P ∗ is well above the model’s predicted capacity P ∗. This
initialization for P0 was found through trial and error, where the method detects if
you start below capacity. The model’s update rule is applied in parallel across all
patterns and across all sequences. If errors are made for any pattern in any sequence,
100 new random sequences are generated with smaller length P1 = 0.99P0. This is
repeated, with the new sequence length being Pt+1 = 0.99Pt, until 100 sequences are
generated for which no error is made in any transition. This entire process is repeated
20 times starting from P0 in order to obtain error bars.

7.2. Sequence capacity

Numerical simulations for sequence capacity were conducted in a similar fashion. For
a given model of size N , start by initializing 100 sequences of Rademacher distributed
patterns of length P0, where P0 is well above the model’s capacity. Starting from
the first pattern of each sequence, the model’s update rule is applied serially for each
sequence. As soon as an error is obtained within any sequence, 100 new random
sequences are generated with smaller length P1 = 0.99P0. This is repeated, with the
new sequence length being Pt+1 = 0.99Pt, until 100 sequences are generated for which
no error is made. This entire process is repeated 20 times starting from P0 in order
to obtain error bars.

7.3. MovingMNIST

For the MovingMNIST experiments in Figure 3, the images were pre-processed to have
binarized pixel values. There were 10000 subsequences, each containing 2 handwritten
digits from the MNIST dataset moving through each other across 20 images, that
were concatenated to construct the entire sequence of 200000 images [25]. Then,
different models were run from initialization and their output for different time steps
was displayed in Figure 3.

7.4. Generalized pseudoinverse rule

For numerical simulations of the generalized pseudoinverse rule in Figure 3, the
transition capacity of the Polynomial DenseNet was simulated in a similar method
as described above. However, the Exponential DenseNet suffered from numerical
instability when calculating the pseudoinverse of the overlap matrix, resulting in
floating point error. Therefore, we showed results only for the Polynomial DenseNet.
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