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Abstract. We analyze the dynamics of finite width effects in wide but finite
feature learning neural networks. Starting from a dynamical mean field theory
description of infinite width deep neural network kernel and prediction dynamics,
we provide a characterization of the O(1/v/width) fluctuations of the dynamical
mean field theory order parameters over random initializations of the network
weights. Our results, while perturbative in width, unlike prior analyses, are non-
perturbative in the strength of feature learning. We find that once the mean
field /P parameterization is adopted, the leading finite size effect on the dynam-
ics is to introduce initialization variance in the predictions and feature kernels
of the networks. In the lazy limit of network training, all kernels are random but
static in time and the prediction variance has a universal form. However, in the
rich, feature learning regime, the fluctuations of the kernels and predictions are
dynamically coupled with a variance that can be computed self-consistently. In
two layer networks, we show how feature learning can dynamically reduce the
variance of the final tangent kernel and final network predictions. We also show
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how initialization variance can slow down online learning in wide but finite net-
works. In deeper networks, kernel variance can dramatically accumulate through
subsequent layers at large feature learning strengths, but feature learning contin-
ues to improve the signal-to-noise ratio of the feature kernels. In discrete time, we
demonstrate that large learning rate phenomena such as edge of stability effects
can be well captured by infinite width dynamics and that initialization variance
can decrease dynamically. For convolutional neural networks trained on CIFAR-
10, we empirically find significant corrections to both the bias and variance of
network dynamics due to finite width.

Keywords: learning theory, machine learning
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1. Introduction

Learning dynamics of deep neural networks are challenging to analyze and understand
theoretically, but recent progress has been made by studying the idealization of infinite-
width networks. Two types of infinite-width limits have been especially fruitful. First,
the kernel or lazy infinite-width limit, which arises in the standard or neural tangent
kernel (NTK) parameterization, gives prediction dynamics which correspond to a linear
model [1-5]. This limit is theoretically tractable but fails to capture adaptation of
internal features in the neural network, which are thought to be crucial to the success
of deep learning in practice. Alternatively, the mean field or u-parameterization allows
feature learning at infinite width [6-9].

With a set of well-defined infinite-width limits, prior theoretical works have analyzed
finite networks in the NTK parameterization perturbatively, revealing that finite width
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both enhances the amount of feature evolution (which is still small in this limit) but also
introduces variance in the kernels and the predictions over random initializations [10—
15]. Because of these competing effects, in some situations wider networks are better,
and in others wider networks perform worse [16].

In this paper, we analyze finite-width network learning dynamics in the mean field
parameterization. In this parameterization, wide networks are empirically observed to
outperform narrow networks [7, 17, 18]. Our results and framework provide a method-
ology for reasoning about detrimental finite-size effects in such feature-learning neural
networks. We show that observable averages involving kernels and predictions obey a
well-defined power series in inverse width even in rich training regimes. We generally
observe that the leading finite-size corrections to both the bias and variance compon-
ents of the square loss are increased for narrower networks, and diminish performance.
Further, we show that richer networks are closer to their corresponding infinite-width
mean field limit. For simple tasks and architectures the leading O(1/width) correc-
tions to the error can be descriptive, while for large sample size or more realistic tasks,
higher order corrections appear to become relevant. Concretely, our contributions are
listed below:

(i) Starting from a dynamical mean field theory (DMFT) description of infinite-width
nonlinear deep neural network training dynamics, we provide a complete recipe for
computing fluctuation dynamics of DMF'T order parameters over random network
initializations during training. These include the variance of the training and test
predictions and the O(1/width) variance of feature and gradient kernels throughout
training.

(ii) We first solve these equations for the lazy limit, where no feature learning occurs,
recovering a simple differential equation which describes how prediction variance
evolves during learning.

(iii) We solve for variance in the rich feature learning regime in two-layer networks
and deep linear networks. We show richer nonlinear dynamics improve the signal-
to-noise ratio (SNR) of kernels and predictions, leading to closer agreement with
infinite-width mean field behavior.

(iv) We analyze in a two-layer model why larger training set sizes in the overparamet-
erized regime enhance finite-width effects and how richer training can reduce this
effect.

(v) We show that large learning rate effects such as edge-of-stability [19-21] dynamics
can be well captured by infinite width theory, with finite size variance accurately
predicted by our theory.

(vi) We test our predictions in convolutional neural networks (CNNs) trained on
CIFAR-10 [22]. We observe that wider networks and richly trained networks have
lower logit variance as predicted. However, the timescale of training dynamics is
significantly altered by finite width even after ensembling. We argue that this is
due to a detrimental correction to the mean dynamical NTK.

https://doi.org/10.1088 /1742-5468 /ad642b 4
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1.1. Related works

Infinite-width networks at initialization converge to a Gaussian process with a covari-
ance kernel that is computed with a layerwise recursion [13, 23-26]. In the large but
finite width limit, these kernels do not concentrate at each layer, but rather propagate
finite-size corrections forward through the network [14, 27-30]. During gradient-based
training with the NTK parameterization, a hierarchy of differential equations have been
utilized to compute small feature learning corrections to the kernel through training [10—
13]. However the higher order tensors required to compute the theory are initialization
dependent, and the theory breaks down for sufficiently rich feature learning dynamics.
Various works on Bayesian deep networks have also considered fluctuations and per-
turbations in the kernels at finite width during inference [31, 32]. Other relevant work
in this domain are [33-39].

An alternative to standard/NTK parameterization is the mean field or pP-limit
where features evolve even at infinite width [6-9, 40-42]. Recent studies on two-layer
mean field networks trained online with Gaussian data have revealed that finite networks
have larger sensitivity to SGD noise [43, 44]. Here, we examine how finite-width neural
networks are sensitive to initialization noise. Prior work has studied how the weight
space distribution and predictions converge to mean field dynamics with a dynamical
error O(1/+v/width) [40, 45], however in the deep case this requires a probability distri-
bution over couplings between adjacent layers. Our analysis, by contrast, focuses on a
function and kernel space picture which decouples interactions between layers at infinite
width. A starting point for our present analysis of finite-width effects was a previous
set of studies [9, 46] which identified the DMFT action corresponding to randomly ini-
tialized deep NNs which generates the distribution over kernel and network prediction
dynamics. These prior works discuss the possibility of using a finite-size perturbation
series but crucially failed to recognize the role of the network prediction fluctuations on
the kernel fluctuations which are necessary to close the self-consistent equations in the
rich regime. Using the mean field action to calculate a perturbation expansion around
DMFT is a long celebrated technique to obtain finite size corrections in physics [47—
50] and has been utilized for random untrained recurrent networks [51, 52|, and more
recently to calculate variance of feature kernels ®° at initialization ¢t =0 in deep MLPs
or RNNs [53]. We extend these prior studies to the dynamics of training and to probe
how feature learning alters finite size corrections.

2. Problem setup

We consider wide neural networks where the number of neurons (or channels for a CNN)
N in each layer is large. For a multi-layer perceptron (MLP), the network is defined as
a map from input x, € RP to hidden preactivations hﬁ € RY in layers £ € {1,...,L} and
finally output f,

1

fu:_wL'(b(hﬁ)’ hfﬁl:\/ﬁ

Wf¢(hﬁ>, hl=—W'z,, (1)

1
VD
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where 7 is a scale factor that controls feature learning strength, with large v leading
to rich feature learning dynamics and the limit of small v — 0 (or generally if ~ scales
as N~ for a>0 as N — oo, NTK parameterization corresponds to a = %) gives lazy
learning where no features are learned [4, 7, 9]. The parameters 8 = {W° W' ... w’}
are optimized with gradient descent or gradient flow (%0 = —N~2VgL where L=
Ez,ep £(f(,,0),y,) is a loss computed over dataset D = {(x1,41), (%2,92),..- (xp,yp)}.
This parameterization and learning rate scaling ensures that é—lt fu~On~(1) and é—ithﬁ =
On (7) at initialization. This is equivalent to maximal update parameterization (uP)
[8], which can be easily extended to other architectures including neural networks with
trainable bias parameters as well as convolutional, recurrent, and attention layers [8, 9].

3. Review of dynamical mean field theory

The infinite-width training dynamics of feature learning neural networks was described
by a DMFT in [9, 46]. We first review the DMFT’s key concepts, before extending
it to get insight into finite-widths. To arrive at the DMFT, one first notes that the
training dynamics of such networks can be rewritten in terms of a collection of dynamical
variables (or order parameters) q = Vec{fu(t),@ﬁy(t,s),Gﬁy(t,s), ...} 9], which include
feature and gradient kernels [9, 54]

2, (t5) = o (R () 6 (R(9)) . Gl ()= ab(0)-05(), ()

where gft(t) =vN 21{2((';)) are the back-propagated gradient signals. Further, for width-
N networks the distribution of these dynamical variables across weight initializations
(from a Gaussian distribution 8 ~ N (0,I)) is given by p(q) x exp(NS(q)), where the
action S(q) contains interactions between neuron activations and the kernels at each
layer [9)].

The DMFT introduced in [9] arises in the N — oo limit when p(q) is strongly peaked
around the saddle point q., where g_:j’qoo = 0. Analysis of the saddle point equations
reveal that the training dynamics of the neural network can be alternatively described
by a stochastic process. A key feature of this process is that it describes the training
time evolution of the distribution of neuron pre-activations in each layer (informally the
histogram of the elements of hi(t)) where each neuron’s pre-activation behaves as an
i.i.d. draw from this single-site stochastic process. We denote these random processes by
hﬁ(t). Kernels in (2) are now computed as averages over these infinite-width single site

processes @ﬂy(t,s) = <¢(hﬁ(t))¢(hﬁ(s))>, wa(t,s) = <g£(t)gf(s)>, where averages arise
from the N — oo limit of the dot products in (2). DMFT also provides a set of self-
consistent equations that describe the complete statistics of these random processes,
which depend on the kernels, as well as other quantities. To make our notation and
terminology clearer for a machine learning audience, we provide table 1 for a definition

of the physics terminology in machine learning language.
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Table 1. Relationship between the physics and ML terminology for the central
objects in this paper. The ¢ which concentrate at infinite width, but fluctuate at
finite width N. This paper is primarily interested in ¥, the asymptotic covariance
of the order parameters.

Order params. g Action S(q) Propagator X Single Site Density

Concentrating variables q’s log-density Asymptotic Covariance Neuron Marginals

4. Dynamical fluctuations around mean field theory

We are interested in going beyond the infinite-width limit to study more realistic finite-
width networks. In this regime, the order parameters q fluctuate in a O(1/y/N) neigh-
borhood of q, [46, 51, 53, 55]. Statistics of these fluctuations can be calculated from a
general cumulant expansion (see appendix D) [51, 55, 56]. We will focus on the leading-
order corrections to the infinite-width limit in this expansion.

Proposition 1. The finite-width N average of observable O(q) across initializations,
which we denote by (O(q))y, admits an expansion of the form whose leading terms
are

_ Jdgexp(NSlq))O(q) _

—(V(2) o (O (@))] + - (3)

where ()., denotes an average over the Gaussian distribution qN./\/'(qoo,—%

(V2Slg.)) ") and the function V(q)=S(q)— S(q.) — 3(q— a.) V2S(a..)(a - 4..)
contains cubic and higher terms in the Taylor expansion of S around q.,. The terms
shown include all the leading and sub-leading terms in the series in powers of 1/N. The
terms in ellipses are at least O(N~') suppressed compared to the terms provided.

The proof of this statement is given in appendix D. The central object to
characterize finite size effects is the unperturbed covariance (the propagator): ¥ =
— [VQS (qoo)} ! This object can be shown to capture leading order fluctuation statist-
ics (q—aq..)(@—q) v = +X + O(N~?) (appendix D.1), which can be used to reason
about, for example, expected square error over random initializations. Correction terms
at finite width may give a possible explanation of the superior performance of wide net-
works at fixed « [7, 17, 18]. To calculate such corrections, in appendix E, we provide a
complete description of Hessian V?IS (q) and its inverse (the propagator) for a depth-L
network. This description constitutes one of our main results. The resulting expres-
sions are lengthy and are left to appendix E. Here, we discuss them at a high level.
Conceptually there are two primary ingredients for obtaining the full propagator:

https://doi.org/10.1088 /1742-5468 /ad642b 7
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Order Parameters

Fields

¢ @ ®
- t
q)1,”+1. g
h{’+1

Figure 1. The directed causal graph between DMFT order parameters (blue) and
fields (green) defines the D tensors of our theory. Each arrow represents a causal
dependence. K denotes the NTK.

e Hessian sub-blocks x which describe the uncoupled variances of the kernels, such as

Fimas (15,57 = (& (R (1)) & (R, () & (e, () & (B (5)) = B (8,5) B (¢, 87)
(4)
Similar terms also appear in other studies on finite width Bayesian inference [13, 31,
32] and in studies on kernel variance at initialization [14, 27, 29, 53].

e Blocks which capture the sensitivity of field averages to pertubations of order para-
meters, such as

(pl—1 0 5 S ¢ 0 .
Dg’ugﬁ ( ,S,t 73) <¢(8q)€ﬁ1)(¢/’(§/)( ))> ’ D;Cjuc%(t"s’t)z <géAa( ) )>7 (5)

where A, (t) = 9 (g]’%:y“) |f.t) are error signal for each data point.

Abstractly, we can consider the uncoupled variances k as ‘sources’ of finite-width
noise for each order parameter and the D blocks as summarizing a directed causal graph
which captures how this noise propagates in the network (through layers and network
predictions). In figure 1, we illustrate this graph showing directed lines that represent
causal influences of order parameters on fields and vice versa. For instance, if ® were
perturbed, D*"®" would quantify the resulting perturbation to ®*! through the fields
h€+1.

In appendix E, we calculate x and D tensors, and show how to use them to calculate
the propagator. As an example of our results:

Proposition 2. Partition q into pmmal variables q; = Vec{fu() ( s)...} and
conjugate variables qy = Vec{f,(t),® f(ts)...}. Let K= 5e5aT aq S[ql,qQ] and D =

aqf—anS[ql,qQ], then the propagator for q has the form X, =D~ ! [D I}T

https://doi.org/10.1088/1742-5468 /ad642b 8
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(appendiz E). The variables q are related to network observables, while conjugates qo
arise as Lagrange multipliers in the DMFT' calculation. From the propagator %4, we
can read off the variance of network observables such as N Var(f,) ~3j,.

The necessary order parameters for calculating the fluctuations are obtained by
solving the DMFT using numerical methods introduced in [9]. We provide a pseudocode
for this procedure in appendix F. We proceed to solve the equations defining 3 in special
cases which are illuminating and numerically feasible including lazy training, two layer
networks and deep linear NNs.

5. Lazy training limit

To gain some initial intuition about why kernel fluctuations alter learning dynam-
ics, we first analyze the static kernel limit v— 0 where features are frozen. To pre-
vent divergence of the network in this limit, we use a background subtracted func-
tion f(x,0) = f(x,0) — f(x,0y) which is identically zero at initialization [4]. For mean
square error, the N — oo and v — 0 limit is governed by %(f) =Ez pA(x')K(x,x’)
with A(z) =y(x) — f(x) (for MSE) and K is the static (finite width and random)
NTK. The finite-N initial covariance of the NTK has been analyzed in prior works
[13, 14, 27], which reveal a dependence on depth and nonlinearity. Since the NTK
is static in the y— 0 limit, it has constant initialization variance through training.
Further, all sensitivity blocks of the Hessian involving the kernels and the predic-
tion errors A (such as the D‘I’[’A) vanish. We represent the covariance of the NTK as
K(x1, @2, @2, x3) = NCov(K (21,22), K(x3,24)). To identify the dynamics of the error A
covariance, we relate K, the finite width NTK, to K., which is the deterministic infin-
ite width NTK K. We consider the eigendecomposition of the infinite-width NTK
Koo(z,x") = >, Mhr () () with respect to the training distribution D, and decom-
pose £ in this basis.

Ektmn = (K (21,22, T3, T4) Y (1) Yo (22) Yu (23) Vi (X4)) ) 0y a0y 4D 5 (6)
where averages are computed over the training distribution D.

Proposition 3. For MSE loss, the prediction error covariance X2(t,s)=
N Couy(A(t), A(s)) satisfies a differential equation (appendiz H)

0 0 A>®
(m +/\k) <£+/\(> Ekf t 8 Zﬁkmfﬂ m ( ) <7)

where A (t) = exp (—Mit) (Yi(x)y(x)), are the errors at infinite width for
etgenmode k.

An example verifying these dynamics is provided in figure 2. In the case where

the target is an eigenfunction y =1+, the covariance has the form ZkAe(t,s):

Kok 1 w. If the kernel is rank one with eigenvalue A, then the dynamics

https://doi.org/10.1088 /1742-5468 /ad642b 9
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—— Ensemble (V=100) =
- DMFT

0 50 100 150 200
t

(a) Average Prediction Errors  (b) Top Eigenmodes Variance (c) Total Train Variance

Figure 2. We show the accuracy of the lazy-limit ODE in equation (where) coma-
pared to a two-layer finite width N =100 ReLU network trained with v=0.05 on
P =10 random training data points. (a) The average dynamics over an ensemble of
E =500 networks (solid colors) compared to the infinite width predictions (dashed
black). (b) The predicted finite size variance for each eigenmode of the error
Ak(t) = A(t) - ¢;. These are not ordered simply by magnitude of eigenvalues or
the target projections y, =y - ¢, but rather depend on all eigenvalue gaps A\ — Ay
for k # ¢ and also the Kgp,, tensor. (¢) The total variance for all training points
N3, VarA,(t) = N3, VarAg(t) is also well predicted by the DMFT propagator
equations.

have the simple form Y2(¢,s) = ky?> t s e X+ We note that similar terms appear in

the prediction dynamics obtained by truncating the Neural Tangent Hierarchy [10, 11],
however those dynamics concerned small feature learning corrections rather than from
initialization variance (appendix H.1). Corrections to the mean (A) are analyzed in
appendix H.2. We find that the variance and mean correction dynamics involves non-
trivial coupling across eigendirections with a mixture of exponentials with timescales

'

6. Rich regime in two-layer networks

In this section, we analyze how feature learning alters the variance through training. We
show a denoising effect where the signal to noise ratios of the order parameters improve
with feature learning.

6.1. Kernel and error coupled fluctuations on single training example

In the rich regime, the kernel evolves over time but inherits fluctuations from the training
errors A. To gain insight, we first study a simplified setting where the data distribution
is a single training example & and single test point «, in a two layer network. We will
track A(t) =y — f(a,t) and the test prediction f,(t) = f(@y,t). To identify the dynamics
of these predictions we need the NTK K (¢) on the train point, as well as the train-test
NTK K,(t). In this case, all order parameters can be viewed as scalar functions of a
single time index (unlike the deep network case, see appendix E).

https://doi.org/10.1088/1742-5468 /ad642b 10
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0.6
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y=1.00 0.5
— y=200
30 oo __ o4

o3

N
o2

([q(t) — g=(0)]?)

0.1

0.0

10t 10? N 10° 0 50 100 150 200 250 0 50 100 150 200 250
t t

(a) Deviation from DMFT vs N (b) Average NTK vs DMFT (c) Average test prediction

0.150 2.25

0.125 2.00

- =

+ 0.100 = 1.75
= o
& 0075 © 1.50

>
= 0050 =125

0.025
1.00

0.000

0 50 100 150 200 250 0 50 100 150 200 250
t t

(d) Train error variance (e) Test Prediction Variance (f) Kernel Variance Dynamics

Figure 3. An ensemble of £ =1000 two layer N =256 tanh networks trained on
a single training point. Dashed black lines are DMFT predictions. (a) The square
deviation from the infinite width DMFT scales as O(1/N) for all order parameters.
(b) The ensemble average NTK (K (t)) (solid colors) and (c¢) ensemble average test
point predictions f,(t) for a point with #5* = 0.5 closely follow the infinite width
predictions (dashed black). (d) The variance (estimated over the ensemble) of the
train error A(t) =y — f(¢) initially increases and then decreases as the training
point is fit. (e) The variance of f, increases with time but decreases with ~. (f)
The variance of the NTK during feature learning experiences a transient increase
before decreasing to a lower value.

Proposition 4. Computing the Hessian of the DMFT action and inverting (appendiz 1),
we obtain the following covariance for q, = Vec{A(t), f(t), K(t), Ki(t) }ier,

I+05; 0 ®x 0 17'fo0 0 o0][1+©5 0 ®84 o0 17"
s _|-©x T 0 —es] 00 0 0||-©c T 0 -0
a D 0 I 0 00 w k|| -D 0 1 0 )
D, 0 0 I 00 ke k|| =D, 0 0 I

(8)
where [Ok](t,s) = O(t —s)K(s), [Oal(t,s) = O(t — s)A(s) are Heaviside step functions
and D(t,s) = (gar (S(h(£))* +9(1))) and Di(t,s) = (5a; (6(h(1)$(ha(t)) + g(t)g.(1)))
quantify sensitivity of the kernel to perturbations in the error signal A(s). Lastly k and

Ky are the uncoupled variances of K(t) and K. (t) and ky is the uncoupled covariance
of K(t), K.(t).

In figure 3, we plot the resulting theory (diagonal blocks of 34 from equation (8))
for two layer neural networks. As predicted by theory, all average squared deviations
from the infinite width DMFT scale as O(N~!). Similarly, the average kernels (K)
and test predictions (f,) change by a larger amount for larger v (equation (I.2)). The
experimental variances also match the theory quite accurately. The variance of the train
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error A(t) peaks earlier and at a lower value for richer training, but all variances go
to zero at late time as the model approaches the interpolation condition A =0. As
v—0 the curve approaches N Var(A(t)) ~k y* t? e7?', where & is the initial NTK
variance (see section 5). While the train prediction variance goes to zero, the test point
prediction does not, with richer networks reaching a lower asymptotic variance. We
suspect this dynamical effect could explain lower variance observed in feature learning
networks compared to lazy networks [7, 18]. In figure A.1, we show that the reduction
in variance is not due to a reduction in the uncoupled variance x(t,s), which increases
in . Rather the reduction in variance is driven by the coupling of perturbations across
time.

6.2. Offline training with multiple samples or online training in high dimension

In this section we go beyond the single sample equations of the prior section and explore
training with multiple P examples. In this case, we have training errors {A,(t)}/_; and

multiple kernel entries K, (t) (appendix E). Each of the errors A ,(¢) receives a O(N~1/2)
fluctuation, the training error 3, <A2> has an additional variance on the order of O(%).

In the case of two-layer linear netvvorks trained on whitened data ( T, T, = 5W) the
equations for the propagator simplify and one can separately solve for the variance
of A(t) € RT along signal direction y € R¥ and along each of the P —1 orthogonal
directions (appendix J). At infinite width, the task-orthogonal component A | vanishes
and only the signal dimension A, () evolves in time with differential equation [9, 46]

£)=2/1+72(y— A, (1)) Ay (1) , AL () =0. (9)

However, at finite width, both the A, (¢) and the P — 1 orthogonal variables A | inherit
1n1t1ahzat10n variance, which we represent as 2, (1, 3) and ¥, (t,s). In figures 4(a) and

(b) we show this approximate solution (|A(£)[?) ~ A, (£)2 + % AL(£) Ay () + a4, (1) +
(P )Z 1 (t,t) + O(N~2) across varying v and varying P (see appendix J for ¥4, and X

formulas) We see that variance of train point predictions f,(t) increases with the total
number of points despite the signal of the target vector Zu yi being fixed. In this

model, the bias correction £A}(t)A,(t) is always O(1/N) but the variance correction
is O(P/N). The fluctuations along the P —1 orthogonal directions begin to domin-
ate the variance at large P. Figure 4(b) shows that as P increases, the leading order
approximation breaks down as higher order terms become relevant. Analysis for online
training reveals identical fluctuation statistics, but with variance that scales as ~ D/N
(appendix K) as we verify in figures 4(e) and (f).

7. Deep networks

In networks deeper than two layers, the DMFT propagator has complicated dependence
on non-diagonal (in time) entries of the feature kernels (see appendix E) This leads
to Hessian blocks with four time and four sample indices such as Dwaﬁ(t,s,t’ ,s') =

https://doi.org/10.1088/1742-5468 /ad642b 12


https://doi.org/10.1088/1742-5468/ad642b

Dynamics of finite width Kernel and prediction fluctuations in mean field neural networks

P=100

5 s
o frr
S ,
IN= 10721 var. Along y L il
= P =10 Full Var. = = 10-4] ---- N=100 | DMFT
10-4| — P=100 Full Var. N=250
—— P=500 Full Var. 10-5] — N=1000
—eee N= DMFT \ .
0 100 200 t 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
t t
(a) Offline prediction Variance (b) Offline leading correction breaks down for large P
P=10 P =100

N=250,P=50

°

103 — v=10 \

--- y=1.0 | DMFT

--- N'= DMFT
y=20

Train Error

107%

— y=30

105 L . . . — 105 L . . . vl (e . . . i
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
t t t

(d) Large v well captured by DMFT First Order Correction

D=10 D=50 D=100

— N=100
10-4] === N=100| DMFT
N=250

10-5] — N=1000

- N=o DMFT

q
“
@
< Var. Along
- —— Var. Along B. ~.
l’;‘ D =10 Full var. =
—— D=100 Full Var.
—— D=500 Full Var.

Generalization Error

0 100 200 300 400 500

¢ 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
t t t

(e) Online function variance (f) Online leading correction breaks down for large D

Figure 4. Large input dimension or multiple samples amplify finite size effects in a
simple two layer model with unstructured data. Black dashed lines are theory. (a)
The variance of offline learning with P training examples in a two layer linear net-
work. (b) The leading perturbative approximation to the train error breaks down
when samples P becomes comparable to N. (¢)—(d) Richer training reduces vari-
ance. (e)—(f) Online learning in a depth 2 linear network has identical dynamics and
finite width fluctuations, but with predictor variance ~ D/N for input dimension
D (appendix K).

m (¢(hl,(t))¢(h(s))), rendering any numerical calculation challenging. However,

in deep linear networks trained on whitened data, we can exploit the symmetry in
sample space and the Gaussianity of preactivation features to exactly compute deriv-
atives without Monte Carlo sampling as we discuss in appendix L. An example set of
results for a depth 4 network is provided in figure 5. The variance for the feature ker-
nels H accumulate finite size variance by layer along the forward pass and the gradient
kernels G* accumulate variance on the backward pass. The SNR of the kernels %
improves with feature learning, suggesting that richer networks will be better modeled
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Figure 5. Depth 4 linear network with single training point. Black dashed lines are
theory. (a) The variance of the training error along the task relevant subspace. We
see that unlike the two layer model, more feature learning can lead to larger peaks in
the finite size variance. (b) The variance of the NTK in the task relevant subspace.
When properly normalized against the square of the mean (K (t)>2, the final NTK
variance decreases with feature learning. (¢) The gap in feature kernel variance
across different layers of the network is amplified by feature learning strength ~.

by their mean field limits. Examples of the off-diagonal correlations obtained from the
propagator are provided in App. Figure A.3.

8. Variance can be small near edge of stability (EOS)

In this section, we move beyond the gradient flow formalism and ask what large step
sizes do to finite size effects. Recent studies have identified that networks trained at large
learning rates can be qualitatively different than networks in the gradient flow regime,
including the catapult [57] and EOS phenomena [19-21]. In these settings, the kernel
undergoes an initial scale growth before exhibiting either a recovery or a clipping effect.
In this section, we explore whether these dynamics are highly sensitive to initialization
variance or if finite networks are well captured by mean field theory. Following [57], we
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(a) Mean Kernel Dynamics (b) Error Variance (c) Kernel Variance

Figure 6. Edge of stability effects do not imply deviations from infinite width
behavior. Black dashed lines are theory. (a) The average kernel over an ensemble
of several N =500 NNs (solid color). For small ~, the kernel reaches its asymp-
tote before hitting the edge of stability. For large ~, the kernel increases and then
oscillates around 2/7. (b) and (c) Remarkably variance due to finite size can reduce
during training (for v smaller and larger than the critical value ~ 1/n), showing that
infinite width DMFT can be predictive of finite NNs trained with large learning
rate.

consider two layer networks trained on a single example |z|> =D and y=1. We use
learning rate n and feature learning strength ~. The infinite width mean field equations
for the prediction f; and the kernel K; are (appendix M)

fro1 = fi + I A+ PP AAT ) Ko = K+ 472 fid + 0° AT K. (10)

For small 7, the equations are well approximated by the gradient flow limit and for
small v corresponds to a discrete time linear model. For large 7y > 1, the kernel K
progressively sharpens (increases in scale) until it reaches 2/n and then oscillates around
this value. It may be expected that near the EOS, the large oscillations in the kernels and
predictions could lead to amplified finite size effects, however, we show in figure 6 that
the leading order propagator elements decrease even after reaching the EOS threshold,
indicating reduced disagreement between finite and infinite width dynamics.

9. Finite width alters bias, training rate, and variance in realistic tasks

To analyze the effect of finite width on neural network dynamics during realistic learning
tasks, we studied a vanilla depth-6 ReLU CNN trained on CIFAR-10 (experimental
details in appendices B and G.2) In figure 7, we train an ensemble of £ =8 independently
initialized CNNs of each width N. Wider networks not only have better performance
for a single model (solid), but also have lower bias (dashed), measured with ensemble
averaging of the logits. Because of faster convergence of wide networks, we observe
wider networks have higher variance, but if we plot variance at fixed ensembled training
accuracy, wider networks have consistently lower variance (figure 7(d)).

We next seek an explanation for why wider networks after ensembling trains at a
faster rate. Theoretically, this can be rationalized by a finite-width alteration to the
ensemble averaged NTK, which governs the convergence timescale of the ensembled
predictions (appendix G.1). Our analysis in appendix G.1 suggests that the rate of con-
vergence receives a finite size correction with leading correction O(N 1) appendix G.2.
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Figure 7. Depth 6 CNN trained on CIFAR-10 for different widths N with richness
v=0.2, E=8 ensembles. (a)-(b) For this range of widths, we find that smaller
networks perform worse in train and test error, not only in terms of the single
models (solid) but also in terms of bias (dashed). The delayed training of ensembled
finite width models indicates that the correction to the mean order parameters
(appendix G) is non-negligible. (¢) Alignment of the average kernel to test labels is
also not conserved across width. (d) The ratio of the test MSE for a single model
to the ensembled logit MSE. (e) The fitted rate Ry of training width N models as
a function of N~!. We rescale the time axis by Ry to allow for a fair comparison of
prediction variance for networks at comparable performance levels. (f) In rescaled
time, ensembled network training losses (dashed) are coincident.

To test this hypothesis, we fit the ensemble training loss curve to exponential function
L ~ Cexp(—Ryt) where C is a constant. We plot the fit Ry as a function of N ! result
in figure 7(e). For large N, we see the leading behavior is linear in N~!, but begins to
deviate at small N as a quadratic function of N~!, suggesting that second order effects
become relevant around N < 100.

In appendix figure A.4, we train a smaller subset of CIFAR-~10 where we find that
Ry is well approximated by a O(N~!) correction, consistent with the idea that higher
sample size drives the dynamics out of the leading order picture. We also analyze the
effect of v on variance in this task. In appendix figure A.5, we train N =64 models
with varying ~. Increased v reduces variance of the logits and alters the representa-
tion (measured with kernel-task alignment), the training and test accuracy are roughly
insensitive to the richness « in the range we considered.

10. Discussion

We studied the leading order fluctuations of kernels and predictions in mean field neural
networks. Feature learning dynamics can reduce undesirable finite size variance, making
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finite networks order parameters closer to the infinite width limit. In several toy mod-
els, we revealed some interesting connections between the influence of feature learning,
depth, sample size, and large learning rate and the variance of various DMFT order
parameters. Lastly, in realistic tasks, we illustrated that bias corrections can be signi-
ficant as rates of learning can be modified by width. Though our full set of equations
for the leading finite size fluctuations are quite general in terms of network architecture
and data structure, they are only derived at the level of rigor of physics rather than a
formally rigorous proof which would need several additional assumptions to make the
perturbation expansion properly defined. Further, the leading terms in our perturbation
series involving only ¥ does not capture the complete finite size distribution defined in
equation (3), especially as the sample size becomes comparable to the width. It would
be interesting to see if proportional limits of the rich training regime where samples
and width scale linearly can be examined dynamically [58]. Future work could explore
in greater detail the higher order contributions from averages involving powers of V' (q)
by examining cubic and higher derivatives of S in equation (3). It could also be worth
examining in future work how finite size impacts other biologically plausible learning
rules, where the effective NTK can have asymmetric (over sample index) fluctuations
[46]. Also of interest would be computing the finite width effects in other types of archi-
tectures, including residual networks with various branch scalings [59, 60]. Further, even
though we expect our perturbative expressions to give a precise asymptotic description
of finite networks in mean field/uP, the resulting expressions are not realistically com-
putable in deep networks trained on large dataset size P for long times T since the
number of Hessian entries scales as O(T*P*) and a matrix of this size must be stored
in memory and inverted in the general case.

Since the first appearance of our work in a conference proceeding [61], we have
extended and tested the main results of this work in many settings. First, two recent
works established the infinite depth limit of training dynamics in residual networks
with scaled branches [60, 62]. We further showed that the techniques developed in this
work can be used to control the finite width distribution over DMFT order paramet-
ers in large width and infinite depth residual networks [60]. The propagator ¥ of a
depth L network converges to a well defined infinite depth limit ¥, that can be com-
puted from a differential equation in layer time T =1limy_, % Second, we empirically
stress tested the leading order perturbative picture for uP convolutional networks and
transformers trained on larger scale datasets [63] including CIFAR-5 M, ImageNet and
Wikitext-103. In this work, it was observed that after sufficiently long training times on
sufficiently large datasets, the rate of convergence to the (lowest) limiting loss occurs at
arate O(N~%) with an architecture and task-dependent exponent « < 1, consistent with
neural scaling laws literature [64, 65]. To explain this phenomenon we subsequently ana-
lyzed a tractable theoretical model of lazy training dynamics which treats finite width
NTK features as random projections of the infinite width features [66]. We found that
an alternative mean-field description which treats all kernels as random matrices with
deterministic resolvents predicts different convergence rates at early and late time with
late time task-dependent scaling laws O(N~%) in the under-parameterized regime [66].
While limited to a special case of lazy training, it indicates that finite size effects after
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long training timescales are non-perturbative in N and require relaxing the assump-
tion that kernels aproximately concentrate entry-wise. Future work on finite size errors
could explore exactly solveable special cases such as high dimensional limits such as a
proportional regime for deep linear networks.
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Appendix A. Additional figures
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Figure A.1. The x and D functions for varying v in figure 3. (a) The uncoupled
kernel variance k(t,t) increases monotonically with . This reveals that the dynam-
ical filtering of k is what is responsible for the late time decrease in variance during
feature learning. (b) The tensor D(t,s) measures sensitivity of kernel at time ¢ to
perturbation in A at time s. The D(¢,s) entries also increase with ~y. This suggests
that the reduction in variance of the training error and the kernel are not due to
reduction in &, but rather a dynamical filtering effect due to scale growth in K,
and rapid reduction in A.
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Figure A.2. A comparison of the bias and variance corrections in the toy model of
figure 4. At small D/N (or P/N for offline training) the leading variance and the
leading variance and leading bias both track the experiment. Both the bias and
the variance contribute positively towards the total generalization error since the
variance correction alone (orange) exceeds the DMFT limiting error (dashed) and
the variance and bias correction together (green) exceed variance alone (orange).
However, for large D/N (or P/N) the leading order picture fails to describe the
finite width experiment, indicating significant variance possibly at higher order
scales (like D?/N? D3/N3)).
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Figure A.3. The covariance of kernel entries across pairs of time points X (t,s) =
N Cov(H'(t,t), H'(s,s)) for depth 4 linear network trained on whitened data. The
variance becomes increasingly localized in time as feature learning ~ increases.
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Figure A.4. The ensemble averaged train loss for the same depth 6 CNN trained
on a random subsample of P =64 CIFAR-10 points. Training is full batch gradient
descent with v=0.05. (a) The ensemble train accuracy for this subset of CIFAR-10
is well modeled as an exponential in time L£(t) o< exp (—Ryt) with a rate Ry that
depends on width. (b) The projection of the errors A on the average NTK (K)
(which is related to the rate of decay of the training loss, see appendix G) reveals
that wider networks are more aligned with their instantaneous error signals. (c)
The rates Ry are indeed a linear functions of N1, with Ry = Roo + RWI, consistent
with the average NTK (K) receiving a N—! correction. Using ensembling to find
a scaling law like that above can thus allow one extrapolate the training rate of
infinite width mean field models.
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Figure A.5. Width N =64 depth 6 CNNs trained on the full CIFAR-10 with MSE.
An ensemble of size £ =10 randomly initialized networks are trained. (a) Training
MSE for varying 7. (b) Final layer kernel-task alignment does strongly depend
on 7, despite similar train dynamics. (¢) Top-1 classification test accuracy is only
slightly different across . A small benefit from ensembling is visible late in training.
(c) Initialization variance (measured by the ratio of single model to ensembled
MSE) for training and test losses. Richer networks have lower variance throughout
training. (b) Networks have distinct kernel dynamics when trained with different
v as evidenced by the alignment (cosine similarity) between the final layer feature
kernel ®* and the target test labels y.
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Appendix B. CIFAR-10 experimental details

We trained the following depth 6 CNN architecture in the mean field parameterization
using FLAX [67] on a single GPU. The bias parameters were zero in each hidden Conv
layer, but were used for the readout weights. The networks were trained with MSE loss
on centered 10 dimensional targets y, € R for u € [P]. Each convolution was followed
by an average pooling operation. To obtain mean field behavior, NTK parameterization
with a modified final layer is used [7, 9].

1 from flax import linen as nn
> import jax.numpy as jnp

. class CNN(nn.Module):
6 width: int

s def setup(self):
9 kif = nn.initializers.normal(stddev = 1.0) # 0_N(1)

entries

10 self.convl = nn.Conv(features = self.width, kernel_init
= kif, use_bias = False, kermnel_size = (3,3))

1 self.conv2 = nn.Conv(features = self.width, kernel_init
= kif, use_bias = False, kernel_size = (3,3))

12 self.conv3 = nn.Conv(features = self.width, kernel_init
= kif, use_bias = False, kernel_size = (3,3))

13 self.conv4d = nn.Conv(features = self.width, kernel_init
= kif, use_bias = False, kernel_size = (3,3))

14 self.convb = nn.Conv(features = self.width, kernel_init
= kif, use_bias = False, kernel_size = (3,3))

15 self .readout = nn.Dense(features = 10, use_bias = True,
kernel_init = kif)

16 return

17

18 def __call__(self, x, train = True):

19 N = self.width

20 D =3

21 x = self.convl(x) / jnp.sqrt(D * 9)

22 X = jnp.sqrt(2.0) * nn.relu(x)

2 X = nn.avg_pool(x, window_shape=(2,2), strides = (2,2))

# 32 x 32 -> 16 x 16
24 x = self.conv2(x) / jnp.sqrt(N*9) # explicit N~{-1/2}
25 x = jnp.sqrt(2.0) * nn.relu(x)
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26 X = nn.avg_pool(x, window_shape=(2,2), strides (2,2))
# 16 x 16 -> 8 x 8

x = self.conv3(x)/jnp.sqrt (N*9)

x = jnp.sqrt(2.0) * nn.relu(x)

x = nn.avg_pool(x, window_shape=(2,2), strides = (2,2))
# 8 x 8 -> 4 x 4
self.conv4(x) / jnp.sqrt(N*9)
jnp.sqrt(2.0) * nn.relu(x)

nn.avg_pool (x, window_shape=(2,2), strides = (2,2))
x 4 -> 2 x 2

self.conv5(x) / jnp.sqrt (Nx9)
jop.sqrt(2.0) * nn.relu(x)

nn.avg_pool(x, window_shape=(2,2), strides
x 2 -> 1 x 1

x.reshape ((x.shape[0], -1)) # flatten
self .readout(x) / N # for mean field scaling

H+
([ ]

(2,2))
#
X

N

Il

X
return x

All models were trained with standard SGD with a batch size of 256. Each element
in the ensemble of F networks is trained on identical batches presented in identical
order. For the figure 7 experiments, the raw learning rate is scaled as n =10V ,/y with
~v=0.2 (note that mean field theory requires scaling the raw learning rate linearly with
N since the raw NTK is O(N™') [9]). For figure A.5, the learning rate is n=5N,/7.
We find that choosing 1 oc /7 gives approximately conserved training times across -y
(though distinct representation dynamics). The figure A.4 shows the dynamics of fitting
P =64 training points with full batch gradient descent and v=0.1.

Appendix C. Review of DMFT: deriving the action

In this section we derive the DMFT action which contains all of the necessary statistical
information about randomly initialized finite width N networks. From the action S the
DMF'T saddle point and the propagator can be computed. This derivation follows closely
the original derivation by Bordelon and Pehlevan [9]. We start by writing the gradient
flow dynamics on weight matrices

P T
%WE _ \/L_z_: €+1 ¢ (hﬂ ( )) (Cl)

where Au(t):—% are the error signals and gﬁ(t):Nvg}{‘i((?) are the back-

propagation signals. The prediction dynamics satisfy

f,b ZK,W A ( (C.2)
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where K, (t) is the instantaneous NTK. At finite width N all of the above quantities
depend on the precise initialization of the network. We transform the weight dynamics
into an integral equation and use the recurrence for h' to obtain the following

R (1) = 1 W (0>¢<h£ ) /dSZ‘PW gt (s)

2 () = —=W' (o)T L1 / dsZGeH t,s) ( <s)) (C.3)
where we introduced the feature and gradient kernels

2, (15) = 0 (AL (1) -0 (R (9)) Gl (h9) = 1gL (095 (). (CA)

Written this way, we see that the source of the disorder which depends on the initial
random weights W*(0) comes through the fields

1
VN

1

/ T ¢
=W O g0, (C.5)

X () = =W ()0 (RL(1)) , €7 (1) =

If we can characterize the distribution of the fields xﬁ(t) and 5ﬁ(t)» then we can con-

sequently characterize the distribution of hﬁ (t),gf; (t). We therefore choose to study the
moment generating functional

2[5 = (o0 3 > [ [0 xii0 +410x4 ) ) o
0o

Moments of these fields can be computed through differentiation with respect to the
sources j,v near zero-source (j =v =0)

(X ()X (t >5f1 (t1) - & (tn)
1)

o ) '
o mame e . e
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To average over the initial weights, we introduce a Fourier representation of the Dirac—
Delta function 1= [dz6(z) = [ %% exp(i£z). We perform this transformation for each
of the fields to enforce their definition

s(xt0- LW o) = [ e (x0 [vi- w004 0)] )

(60~ W 0Tg0)- | ‘zj;(}? e (&40 [€0 00— W 07 gl o))
(C.8)

We insert these Dirac delta functions so that we can directly average over the weights

By exp <—\/—NT1"W4 /dtz l ¢ ( ( (t)> +gft+1 (t)ﬁi (t)j)

=330 s[5 057 019000 + £, E 1G]
——Z [atas (3 0907 () (o (B0) - €,) (©9)

where we introduced the kernels ®¢, G*. We next introduce the order parameter

AL (5) = -6 (Rl (1) -€(s). (C.10)

To enforce the definitions of the new order parameters {®,G, A} we again introduce
Dirac-delta functions

6 (N, (t,5)— o (Rl (1) -0 (hl(5))
_ / wexp (cﬁfw (t,s) [Ncbfw (t,5) — 6 (hﬁ (t)> & (hﬁ(s))D . (C.11)

271

Analogous constraints for G and A are enforced with conjugate variables G, B. After
introducing these variables, we find that the moment generating functional has the
form
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/ H d(IDfW (t,s) d@é L (t,s) deW (t,s)deL (t,s)dGL, (t,s) deW (t,s)

pv

211 21
Luvts

pv

dA’ (t,s) dB
X

o[ >exp (vs[{o"d.c".cra'5)]) (©12)

271

where S is the O(1) DMFT action which defines the statistical distribution over the
dynamics. The action takes the form

s=Y" dtds[ (t,8)@L, (t,5) + Gl (t,5) — AL, (t,5) BL, (s,t)

luv

l L N
ZZ In 2, [{j{,v; }] (C.13)
g: i=1

where Z, is the single site stochastic process for layer ¢ which defines the marginal
distribution of x,&, with the following form

ol l 0 4
2[4 0. ()] = [ T e Bl

X exp ( / dtz G5 () X0, (8) + v, (1) € (t)])

cexp (—z fas [t + e 0]

%

X exp (—z Z/dtds Bfw t,s) f ()(;5( L (s ))+Afw1(t s)X (t)gﬁ(s)])

< exp ( > [at[ e +éf;<t>£ﬁ<t>}> (C.14)

where in the above, the {h,g} fields should be regarded as functionals of {x,&}. At
zero source j', v’ — 0 this function S can be regarded as the log density for the com-
plete collection of order parameters g = {(i>, P, é’, G, A, B} which collectively control the
dynamics. Concretely, we have that p(q) o< exp (NS(q)). In the next section we explore
an approximation scheme for averages over this distribution at large N.

Appendix D. Cumulant expansion of observables

We are interested in a principled power series expansion (in 1/N) of any observable aver-
age (O(q)) that depends on DMFT order parameters q. At any width N the observable
average takes the form

Jdgexp(NS(q))O(q)
Jdgexp(NS(q))

(O(g)y = (D.1)
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As discussed in the main text, the N — oo limit gives (O(q)) y ~ O(q,) where 85 lq.. =0
by a steepest descent argument [55]. We assume that S’s Hessian is negative semidefin-
ite so that ¥ = —[V?S(q)|q_] '~ 0 and Taylor expand S(q) around the saddle point
. giving S(q) = S(g.) +3(a—q..) "V2S(q) (g —q..) + V(g — g..). We note that the
remainder function V contains only cubic and higher powers of ¢ — g, =4/ V/N. The
variable § will be order O(1). This will allow us to verify that additional terms are sup-
pressed in powers of 1/N. Expanding both the numerator and denominator’s integrands
in powers of V, we find

[ dgexp (—% (@—a.) T (g—a.) + NV (g— qoo)> O(q)
[ dgexp <—% (@—a.) T (@a—q..) + NV (g - qoo))
[dsexp (—387=710) (14 NV + V24 ) O (g + NV20)
N [ ddexp (—laTz-la) (L+NV+ 5V )
{0), +N(VO),, N(V20) _+ 8 (VPO)_+.
N 1+N(V), + f;—f (V) +3r (V3>oo
L+ N(VO),./(O)y + 5 (V?O) [ (O)e + 57 (VP0) /(O
> L+ N (V) + 3V + (V3 +

(O(@))y =

(D.2)

where ()__ represents an average over the Gaussian fluctuation N'(q., —~ [VZS (@) h).
We see that the series in the denominator contalns terms of the form & y <Vk> while

the numerator depends on terms of the form £’ o <VkO>OO /(O) .- In either of these power
series, the k-th term can contribute at most

NE(VH0)
(0)

- O (N-+1/2)  k odd
, N <V >OO ~ {O (N_k/g) L even (D3)

since V contributes only cubic and higher terms. Thus each term in the numerator
and denominator’s series contains increasing powers of 1/N. Concretely, each of the
two series have terms of order {N°, N~} N=1 N=2 N=2 ..}, Thus any quantity of the

form <<O(; admits a ratio of power series in powers of 1 / N One could truncate each of

the series in the numerator and denominator to a desired order in N. Alternatively, the
denominator could be expanded giving a single series (the cumulant expansion [56]).
The first few terms in the cumulant expansion have the form

(O)y =(0) + N{OV) = (O) s (V)]
+—[<v2o> 2(VO), (Ve +2(V)% (0) = (V) (OO0 4. (D)

o

In this work, we mainly are interested in the leading order correction to (O) which
can always be obtained with the truncation after the terms linear in V for any
observable O.
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D.1. Square deviation from DMFT

We will now analyze the fluctuation statistics of our order parameters around the saddle
point ((¢ —q.,)(q—4q.,)"), which has the form

<(q_qoo) (q—qoo)T>oo+N<V (q—q.) (q—qoo)T>OO +...

<(q— d..)(q— qoo)T>N =

L+ N(V)_+...
Ly +0O (N2
= N1++(9(z(v—1))] ~%2+0(N2), (D.5)

as stated in the main text and verified empirically in figure 3(a). The reason that the
terms in the numerator involving V can be no larger than O(N~2) comes from vanishing
of odd moments for g — g, in the unperturbed distribution. Thus the leading expression
for <(q —q..)(g— qOO)T> only depends on X and not on V.

D.2. Mean deviation from DMFT

Although the square displacement from DMFT only depended on ¥ and not on V, we
note that the average order parameter displacement (q — q..) does receive a O(1/N)
correction that depends on the perturbed potential V'

(4= d)o TN (=2 ) V) + 5 (=) V) + -
1+ N(V)  + 22 +...

=(3%) +o(N?) oV B

~ T+ONT) ~2<8—q>00+(’)(N ). (D.6)

(q— qoo>N =

where in the last line we used Stein’s lemma (Gaussian integration by parts) for the
Gaussian distribution over q. Note that <%—Z> ~ O(%) since the derivative of the
o0

cubic term in V gives a quadratic function of g — q,, whose average must be O(N~1).
In this work, we focus primarily on the structure of the propagator, but outline a general
recipe for getting the leading mean correction in appendices G and H.2.

D.3. Covariance of order parameters

Lastly, we combine the previous two observations to reason about the scaling of the
order parameter covariance over initializations. We note that the leading covariance
of the order parameters over random initializations is also given by the propagator:
Cov(q) ~ %X+ O(N~?), since

Cov(q) = <(q —(@)y)(g— <Q>N)T>N
~((a-a.)(a- qoo)T>N ~ (@~ (@) (@~ (@)

1 )
~ N2+O(N ) (D.7)
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due to the arguments above which showed that ((¢ —q.)(q—q.)") ~ +X + O(N~?)
and that g., — (q)y ~ O(N'). Therefore, in the leading order picture, it is safe to
associate X with the covariance of order parameters over random initializations of the
network weights.

Appendix E. Propagator structure for the full DMFT action

In this section, we examine the propagator structure for the full DMFT action. This
action is modified from other prior works [9, 46] to include the evolution of the network
prediction errors A(t). Those prior works noted that A and the NTK K are determin-
istic functions of deterministic order parameters {®‘, G’} in the N — oo limit so those
authors did not explicitly include A or K in the action. At finite width N, including
A, K in the action is crucial as the fluctuation in prediction errors A has significant
consequences for dynamical fluctuations of kernels through the preactivation and pre-
gradient fields. In this section, we will mainly focus on gradient flow, but we describe
large step size in appendix M.

S=3" [ dtds &), (0.5)2), (0.5) + Gl (5 Gl (8.5) =774 (5,1) Bl (8.5)]

Luv

+Z/th#(t) A, (t)—
o

+Z/dtf(,uy (t /w ZGK+1 /w
puv

+3 Iz [A,é G ,@4—1,G4+1,Af—1,3ﬂ (E.1)
Y4

yﬂ—i—Z/ds@ (t—8) Ky () A, (s)

where the single site moment generating functionals Z, have the form

2= Epy, Zf@}exp( S [araso hf())czb(hfi(s))%(t,s)+gﬁ(t>g£(s)éﬁy<t,s)}>

uv

hﬁ(t) :uﬁ(t)+”y/ dsZ[‘I)f”,l (t,s) A, (s) + Afwl (t s] {u/, )} ~GP (0,<I>£*1)

0 v

Z,(t) =7, (t)+7/0/dsz (Gt (8:5) Ay (s) + By, (8,5)] 6(hy(s)) » {r(8)} ~ GP(0,G)
(E.2)

v

with gf;( )= qb(hg( )z ( ). The saddle point equations give the infinite width evolution
of our order parameters

s g .
55, 1)~ (o) =@ 0) 9 (i ())) =0
8—5_ C o) — (o £y —

8@,61, (t78) B G/W (t’ ) <g/t (t)gy( )> 0
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0B 2B, )+7<—8¢(h€())>:

o ()~ T A 0 ”<§i’5 6 >
% = K, (t) — ;G“l (t,1) !, (t,t) =
825@) = A, (1) =y, + / dsZK,W A,(s)=0. (E.3)

These equations exactly recover the mean field description obtained [9]. Note that ()
for field averages is an average defined by Z, and is distinct from the types averages
(), ()., we have been considering over the order parameters q. The complementary set
of equations for the primal variables, such as % 0, give that K=A=d=G=0
at the saddle point. We now set out to compute the Hessan VfIS . To simplify the set
of expressions, we will only explicitly write out the nonvanishing blocks. We will start
with second derivatives involving only pairs of dual variables {®,G, 4, B}

08
DL, (t,5) 0D, 5 (t',5")

= (¢ (hl, (1)) & (hi,(5)) & (RS () & (G (s"))) — L, (t,8) Bhs (t',5")

(t,s,t',s")

pyaﬁ

925 <Z(t) (() ((t/) K( /)> Gé (t )Gg (t/ ,)

8@5 (t s)c‘?é’gﬁ(t’ S/) " v\5) Ja 9p s AZEIACI AT
py AT « ’

Waﬁ(t s,t's")

825 o , ) .
8éﬁu(t,s)aég6(t/,s')_<¢(h“(t))¢<h()) 9a(t")gh(s")) — @1, (t,5)Ghs(t’,s")
= Fnas(tys,t'ss')
0*S ] 9s(h(t))
0dL,,(t,5)0A5 (s,t") ouly(s")

oI (s

B NAG)
v<¢(h )Gt ()
)

14
—v<¢<hi<t>><z><h’;<s gggg

))ga(t
)ga(t

/
/
t/
S/

VP, (15) By (t',5)

>>
)
)

(pl—1
- _’7/{2)1/5/3 (t,S)
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928
0®!,, (t,s)0BY, (s

9’8 B
0G!, (t,5)0AG (s, 1)

028
OGﬁy(t,s)aBga(s

/,t/)

oS B
OAL,(t,5)0BS, (s',t')
%S
(s, t)@Bé

(s,t)

aAZl

v

a 2
7< e e >>>
7<¢ t;)¢<h£<t'>>>
0 (g1
oot ensnt(sn 22D age a6
3?“5(3)
—JYHEﬁﬁﬂ(t s)
ag(t) , 0g)
—7<8U%(S,)gﬁ(8)g§(t )> — <gﬁ(t)aug(s,)g§(t )>
—7<9M( )9y (s )giggs,))>—v2Gf (t,s)BL5'(t',s)
VG5 ()
99,(t) {( Coamy \ ¢y 99, (1) gt
7<arﬁ( )g L(8)d(hg (2 ))> 7<g“(t)arg(s/)¢(h“(t ))>

0¢(hy ("))

o 2G€ ¢ AE t/ /
aré(sl) > g uv(vs) aﬁ( ,8")

— <gﬁ(t)gf(5)

-k uua,@’ (t S)

~26,00,56(t —t)5(s — s")

2 o 4 -1
g - Y B,
duf(s)orf(s") !
(t,s,t',s").

s')

(E.4)

[gﬁ(t)¢(hf§(t’))]> (t,5) Ap(t',

Bé lAﬂ
Ruvap

Next, we consider the second derivatives involving only primal variables {®‘, G¢, K,A}

which all vanish

0*S

o0P!,

(t,s) 8<I>§/3 (t',s")
%S

dG!,, (t,s) OG5 (1,

028

s

O, (t,5) OGL, (1,

%S

s’)_
=0

0!, (t,5) 0K oap(s')
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0%S
G, (t,5) OKas(s")
0?8
oL, (t,5) 00 (s")
028
G, (t,5) 0A, (')
028
0K, (t) 0K a5 (s)
028
0K, (1) 9, (5)
9?8
DA, (t) 0D, (s)

=0

=0

=0

=0

=0

~0. (E.5)

Now we consider all derivatives which involve one of the dual variables {(ff Gl A B! }
and the primal variable A

0928 P - . /
OB, (t,5) 00 () <M [¢ (hy, (1)) ¢ (y, (s))]> = D2 (t,5,1)
s (0 gt ()] ) = — DA (154"
0C, (t.)9Aa (1) (e 6L 00)) =D w0)

825 < a /! Béfl A
” ! =7 / 9 (t)> E’YD va (t,S,t/)
QAL (5,t) 00, (1) A, (") Oul (s)7" n
i = 60 (0) ) =Dt 1)
alei,u (Sat) aAa (t/) 8Aa (t/) 87“?/ (S) M pra \Yr 9

Now, we consider the second derivatives involving one derivative on a dual variable
{®*,G*, A, B} and one of the primal variables {®‘, G},

08
oo, (t,s) 8@&'5 (t',s")

= 5g7gl5ﬂy(5 (t — t’) ) (S — S/)

0

Sy p——— A (A (1)) o (B
-1, 8®£B1(t,,8/) <¢( u())¢( V(S))>
= 6000 (t—t") (s —s') — 56_11,03232” (t,s,t',s")

0%S 0
= - = 0000 l,5(t—t’)5(8—8/) — Op41,00
dG", (t,5) G, (t',s") g

l /
N, t
SGT (,) (9, (1) a,(s))
= 00000 (t—t')0 (s —8") — 81,0 DG, (L5, s")
S o

= = — hg t hﬁ s E—Dq)l’Gé-H t’s7t,’8/
09!, (t,5) 0G5 (t',s") OGNt s") (B, (1)) (i (5)) e )
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o: (4 (5)) = D (st
0GR, (17s) 00 (ps) W = s T
%8 9 agﬁ(t) Bi-1 g1 ;o
— :fy — EF)/D 1/047 t787t78
DAL (s,1)0®L 5 (', 5") 8¢£ﬁ1(t’,s’)<8rﬁ(s) was )
o528 _ 0 6¢(hﬁ(t>) _ DA£7(1)£71(t st ')
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628 6 8¢(hﬁ (t)) Al Gt
= =~D > ', s"). E.
OB, (5, )0GL ) (1',5) ”8G£§1<txs'>< dul(s) | = P (5050 (D)

We note that terms such as ﬁ(t,,) <¢(hﬁ(t))¢(hf(s))> can be further decomposed
aff S
since the average over the {u!,(t)} ~ GP(0, ®“~1) and h'’s explicit dynamics both depend

on 1

9
3@@1 (t',s")

(& (h,(0) & (s (5))) = % < Fut ( t/?aug ¢ ®)o( (s))>

+ <W¢ (hﬁ (t)) ¢ (hy, (5))> (E.7)

where the first term comes from differentiating the Gaussian probability density for u’
(e.g. Price’s theorem) and the second term is an explicit derivative of the preactivation
fields with u’ treated as constant. Next we consider the nonvanishing terms which
involve {A,K A, K} which give

0’5 =000 (t—5)+0O(t—5)Kun(s)
A, (1) 0N, (s) -
82
A (1) 0K (5) 0ua© (t —s) Ag(s)
928
K (1) DK s (')
928
0K, (t) 0L, (¢, ")
929
0K, (t)0GL; (', s")

= 80056 (t — ')

= 0uabusGlg (t',8) 6 (t—t") 6 (t—s')

= 0l @i (") 6 (t—t") 6 (t—s"). (E.8)
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This enumerates all possible non-vanishing terms in the Hessian. We can now construct
a block matrix of these Hessians by partitioning our order parameters q = [q,,q,]"
where

A~

q, = Vec {cpfw (t,5), Gl (t,8), Ku (£), 0, (t), @0, (t,5), G, (8,5) , K (t), A, (t)}

uv

(E.9)
qy = Vec{Al,(t,s),B),(t.s)}. (E.10)
This choice will become apparent shortly,
v:is v2_S
VoS = { “ o } (B.11)
1 V¢212q15 V‘ZIQS

To calculate the full propagator 3 = — [VgSTl, we will assume invertibility of the
-1
upper block X% = — [V?IlS} and use this in the Schur complement
- i X
S - [V2S L_|&n 12
V] {221 D)
-1
_ 30 0 [2 2 2 0 (2 2 0
211 =3 - |:VQ1QQS] <VQQS+ <VQQQ1S) % (v‘h‘hS)) |:VQ2‘11S:| %

S = 5] = -5 [V2,.] (V3,54 (v3,,8) 2 (V3,5))

914> 919>
-1
2 2 0 (2
S = — (V2,5 + (V2,4,9) 2 (v2,,5)) (E.12)
-1
We now need to solve for X0=— [V;S] . To perform this inverse, we

again partition q; into two sets of order parameters q; =[q},q?] where ql =

~

Vec{q)fw(tu8)7Gﬁu(t73)7KNV(t)7AN(t)} and q% = Vec{(ﬁ,ﬁy(t"g)?éE (t7s)7KNV(t)7AH(t)}

uv

T
3 lljﬂ',:| 5 K',EVZ%S, UEV22 18. (E]_S)

2 g_
Vql S o |: q1q1
We seek a physically sensible inverse where the variance of g% is vanishing [51, 53]. This
leads to the following sub-propagator X°

T

20:—[V318]_1: [Uj’&%ﬂ _lg_l . (E.14)

Thus given k,U, we can solve for =" and ultimately for the full propagator X. The
relevant entries in kK and U are given by those second derivatives calculated above. We
note that each of the field derivatives needed for U can be computed implicitly from
the field dynamics. For example, for the A, (t) derivatives we have
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RSt COTA G
/dsz (AL (t,8) + @I (t,5) A, (s)] —8%"”(())
SR O =18 (=) Gl (016 (1L (1)

¢ S
/dsz ,(t,8) + Gt (ts) A, (s )}%. (E.15)

These can then be used in the averages such as < AT )gb(hf( N (hl (s))> Similarly,

Oy, (t)

14
atboﬁ t!s!)

we can compute terms such as through the following closed equations

oh, (t)

W =70 (t - tl) 5;m@ (t - S/) Aﬂ (5/>

t ¢ S
+7/0 dsY (AL (ts) + A, () @0 (2, )ia@aygy—é/)s,)

¢ (hy, (s))
3@5;‘51 (t',s")

v

Zf t
07, (1) —7/ dsZ[Bﬁy(t,s)—kA (s)Gobt (t,5)] (E.16)

oL (¢!, s") '

v

These terms can then be used to compute quantities like DY

Appendix F. Solving for the propagator
In this section we sketch out the required steps to obtain the propagator 3.

e Step 1: solve the infinite width DMFT equations for ¢., which include the prediction
error dynamics A,(t), the feature kernels (I>fw( s), gradient kernels Gﬁy(t,s). This
step corresponds to algorithm in Bordelon and Pehlevan ‘22 and defines the dynamics

one would expect at infinite width [9]. See below for more detail.

e Step 2: compute the entries of the Hessian of § evaluated at the ¢,, computed in
the first step. Some of these entries look like fourth cumulants of features like kK =
<q§ > <<]§ >2 and some of them measure sensitivity of one order parameter to a
perturbation in another order parameter D = 8@ T < B(h’) > The averages () used to
calculate £ and D?' should be performed over the infinite width stochastic processes
for preactivations h’ which are defined in equation (19).

e Step 3: after populating the entries of the block matrix for the Hesssian V2S5, we then
calculate the propagator ¥ with a matrix inversion. Since we discretized time, this is
a finite dimensional matrix.

The step 1 above demands a solution to the infinite width DMFT equations (solving
for the saddle point q. ). We will now give a detailed set of instructions about how the
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infinite width limit for ¢, is solved (step 1 above). This corresponds to the algorithm
of Bordelon and Pehlevan 2022 to solve the saddle point equations 8%5 (@)lq.. =0 [9].

e Step 1: start with a guess for the kernels ®° (t,5),G’,(t,s) and for the predictions

0% nv
through time f, (). We usually use the lazy limit (e.g. ®!,(¢,s) = ®/,(0,0)) as an
initial guess.

L

e Step 2: sample Gaussian sources u,

and G*.
e Step 3: for each sample, solve integral equations for h(t) and z(t),

(t) and rﬁ (t) based on the current covariances ®*

ne(t) =, /dsz [AL (£, 5) + @4 (¢, 5)] [¢ (hf;(s))zf(s)]

zﬁ (t) = rﬁ () + 'y/ dsz [Bfw (t,s)+ Gf;l (t, s)} ) (hf], (s)) )

0 v

These will be samples from the single site distribution for h,z

e Step 4: average over the Monte Carlo samples to produce a new estimate of the
kernels: ®(t,s) = (¢(h'(t))¢(h'(s))). A similar procedure is performed for G* and the
response functions A’, BE.

e Step 5: compute the NTK estimate K(t)=)_, G“l(t t)®‘(t,t) and then integrate
prediction dynamics from the dynamics of the NTK & f,(t) =3 K, () A, (¢).

e Repeat steps 2-5 until the order parameters converge.

Below we provide a pseudocode algorithm to solve for the propagator elements.

Algorithm 1. Propagator Solver.

Data: K”,y, Initial Guesses {CI)[’,G[}ZLZI, {AE,BZ}ZLZ_II, Sample count S, Update Speed 3
Result: Propagator Matrix X
1 Solve DMFT equations Wlth algorithm 2 for order parameters fu(t), W(t 8),..

2 Draw S samples {uu,n( ) n=1 ng( (I)Z 1) {ru,n( ) n=1"’ gP( GE—H)

3 Integrate dynamics for each sample to get {hﬁm(t),zﬁ’n(t) S,

4 Estimate k functions with Monte Carlo integration, for instance

5 /{/waﬁ (t7 S, tlv S,) = % Z?LE[S] ¢(h/€n (t))gb(hlél,n(s))gb(hfx n( ,))QS(}ZZ ,n(S/)) q)fw( )q)fyﬁ (t,’ S,)

[
6 For each sample, compute field sensitivities to error signals, such as %}Z‘U"g)), and kernels

8]7“ A (1)
9oL (175")
7 Use(these sen81t1v1tles to compute the necessary D tensors such as
Dg)l/ﬁ S Zne [S] 0A, (t’) [qs(hi,n(t))(b(hﬁ,n(s))}
8 Invert U matrix and compute ¥ in equation (E.14)
9 Compute the Schur-complement in equation (E.12) to handle the response functions

implicitly using equations (E.15) (E.16)
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The above propagator solver builds on the solution to the DMFT equations which
is provided below.

Algorithm 2. Alternating Monte Carlo solution to saddle point equations.

Data: K”,y, Initial Guesses {(DZ,GZ}KL:D {AE,BZ}ZL;f, Sample count S, Update Speed 3
Result: Final Kernels {®', G} |, {A’, B'}."!, Network predictions through training
fu(®)
1 (I)O K*® 11T GL+1 1T
2 while Kernels Not Converged do

3 ?rom {®',G"} compute K" (¢,t) and solve L f,(t) =3, An () KT (1)
4 =1
5 while / < L +1 do
6 Draw S samples {u, ,(t)}5_; ~ GP(0 , B, ()} NQP( .G
7 Integrate dynamics for each sample to get {hﬂ n( ),zﬁ NGO
8 Qompute new &' G' estimates:
9 (I)E ( ) S ZnG[S] ¢( 14 n( )) ( ( ) ﬁa([ ) ZHE[S] gft,n(t)gg,n(s)
10 Solve for Jacobians on each Sample d(flT) , aézﬂ
11 Compute new Ag Bg ! estlmates
12 =52 neis) a,ﬂ B =3 Zne[S] aurr
13 E — 141
14 end
15 (=1
16 while ¢/ < L +1 do
17 Update feature kernels: ®° « (1 — 8)®° + B@[, G'— (1-B)G" + BCNJ[
18 if ¢/ < L then
19 Update A’ « (1— B)A‘+BA", B!+ (1—B)B' + 8B
20 end
21 C—0+1
22 end
23 end

24 return {®' G} | {A, B f.0))

pn=1

Appendix G. Leading correction to the mean order parameters

In this section we use the propagator structure derived in the last section to reason
about the leading finite size correction to (q) at width N. Letting the indices i, j,k,n
enumerate all entries of the order parameters in g (technically this is a sum over samples
and an integral over time for gradient flow), we find the leading Pade Approximant for
the mean has the form (appendix D)
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o NUa—a)V) o+ 5 (0 — @) V2>oo

O T TN W RV
1 93S
51 8;0k01)_+ O G.1
6’%6%6’6]1( os (N7 (G-1)
038
=) ——_».% N2 2

where §; = v/ N(q; — ¢;°) and the derivatives are computed at the saddle point. In the
last hne we utilized Wick’s theorem and the permutation symmetry of the third deriv-
ative %gw to evaluate the four point averages in terms of the propagator ¥;;, which
was provided in the preceding appendix E. In practice computing even the full set of
second derivatives for the DMFT action to get X is quite challenging. Despite the chal-
lenge of computing the mean order parameter correction, these corrections are relevant
in practice and crucially distinguish the training timescales of deep networks at different

widths as we show in figures 7 and A.4.

G.1. Correction to mean predictions and full MSE correction

Supposing that we solved for the propagator 32, using the formalism in the preceeding
section, we can compute the O(N 1) correction to the average network prediction error
due to finite size. We let (A(t)) represent the average of errors over an ensemble of
width N networks,

T BB == (Ku()A,(#)
== (K () (A, (1) - Z Cov (K, (), Ay (1))

=S (K () (A (1) ; SEA LT O(NTY)  (G3)

where foy%(t,t) is the leading covariance (propagator element) between the kernel
K,,(t) and prediction error A,(t). We see that the average kernel (K, (t)) (which
depends on the finite width N) plays an important role in characterizing the timescales
of the average prediction dynamics. Once this equation is solved for (A, (t)), the square
loss at width N and time ¢ has the form

S (8ur)~ (1o 3 ) S AT 0 + 3 S 800, AF ()

I Jz I

TN ZEIW (1) +O(N77). (G.4)
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We will now comment on the structure of the cross term in this above solution. First,
if (K) > K> and X%4 is negligible then the average errors at finite width will decay
more rapidly than the infinite width model. However, we suspect that in general, (K) —
K contains many negative eigenvalues since signal propagation at finite width tends
to reduce the scale of feature kernels [14]. We suspect that this is the cause of the
slower dynamics of ensembled predictors for narrower networks in figures 7 and A.4.
Additionally, the term involving X4 will generically increase the cross term since the
dynamics of A cause its fluctuations to become anti-correlated with the fluctuations in
K. In general, it is challenging to make strong definitive statements about the relative
scale of these competing effects on the cross term. However, we can say more about this
solution in the lazy limit, where we find that the cross term will generically be positive,
leading to larger MSE (appendix H.2).

G.2. Perturbation theory in rates rather than predictions

In experiments on deep CNNs trained on CIFAR-10 in figures 7 and A.4, we find that
the loss curves for the ensemble averaged predictors are effectively time rescaled by a
function of network width. In this section, we argue that a proper way to account for
this is to compute a perturbation expansion in the exponent which defines the rate of
decay of the training errors. To illustrate the point, we first consider the case of a single
training example before describing larger datasets. In this case, we consider the change
of variables A(t) = e "®y. We now treat r as an order parameter of the theory with
dynamics

%r(t) —K(t). (G.5)

Note that this equation is now a linear relation between two order parameters
(r(t),K(t)), whereas the relation was previously quadratic. In the lazy limit, if K —
K — ¢ then r — r —et, giving an effective rescaling of training time by 1 — &.

For multiple training examples, we introduce the notion of a transition matrix T'(t) €

RP”*P which has dynamics

Sri)= KO, TO)=T (G.6)

The solution to the training prediction errors can be obtained at any time ¢ by mul-
tiplying the initial condition A(0) =y with the transition matrix A(t) =T (t)y, where
y are the training targets. In this case, the relevant rate matriz, which would be an
alternative order parameter is

R(t)=—1logT (t) (G.7)

where log is the matrix logarithm function. Note that in general T'(t) admits a Peano-
Baker series solution [68-70]. In the special case where K (t) commutes with K(t) =

% fot dsK (s), we obtain the following simplified formula for the rate matrix R

R(t) = /O ds K (s). (G.8)

https://doi.org/10.1088/1742-5468 /ad642b 39


https://doi.org/10.1088/1742-5468/ad642b

Dynamics of finite width Kernel and prediction fluctuations in mean field neural networks

The benefit of this representation is the elimination of coupled order parameter dynam-
ics which are quadratic in fluctuations (in A and K) into a linear dynamical relation
between order parameters R and K. An expansion in R will thus give better predictions
at long times ¢ than a direct expansion in A. In the lazy v — 0 limit, the constancy of
K (t) = K gives the further simplification R = Kt. Working with this representation,
we have the following finite width expression for the training loss

(JA@) ) =y (exp(—2R(1)))y

~y'exp (—2 (Roo (t) + %Rl (t))) y

82
+3 Zzuyaﬁ my "exp(—2R)Y|p_pr. 1)+ LRt \+O(N7?)

;Luaﬁ

(G.9)

where (R) ~ Ro+ +R'+O(N7?) is the leading correction to the mean R. In this
representation, it is clear that finite width can alter the timescale of the dynamics
through a correction to the mean of R, as well as contribute an additive correction from

fluctuations. This justifies the study perturbation analysis of rates Ry as a function of
1/N in figures 7 and A.4.

Appendix H. Variance in the lazy limit

We can simplify the propagator equations in the lazy v — 0 limit. To demonstrate how
to use our formalism, we go through the complete process of inverting the Hessian,
however, for this case, this procedure is a bit cumbersome. A simplified derivation for
the lazy limit can be found below in appendix H.1 which relies only on linearizing the
dynamics around the infinite width solution. In the v — 0 limit, all of the D tensors
vanish and the x tensors are constant in time. Thus, it suffices to analyze the kernels
restricted to ¢t =0 and study the evolution of the prediction variance A(t),

:/dtZAﬂ () (AM (t)—yﬂ~|—/dsZ@(t—s)KwAy(s)>
7 14
YN 8L+ GG D K | Ko ZGM@‘ +3 Iz
{  pv l

Hv
Ze=Bry (o exp (— > @0 (ul) ¢ Z Guygﬂgy> , g =140 (u),) (H.1)
uv

where {u} ~N (0,8 "), {rl} ~N(0,G"™"). Taking two derivatives with respect to
{®!,G'} give terms of the form
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K8 = (6 (ul) & (ul) 6 (ul) & (u)) — @, 20,
’%;Guiaﬁ = <g£959£92> - G,{quw
i,y = (o (ul) o (ul) ghal) — ®0, Gl (1.2)

Given these we also have the relevant non-vanishing sensitivity tensors

+1pl 82 (A1 8
DI = gar (0o (™) . PG = s (hal)

Glo'—1 _ 9 ‘0
D,u,ya[)’ - 6(136_1 <g;1,gzx> (H3)
ap

DK(I){ - 5;La51/ﬁG€+1 DKG[ - 5#(15;/5@6_1

nvaf 7728 pvafs pv

DAE (1) = / A5 (1 — 5) 6,0 (5). (H.4)

As before we let g; = Vec{A, (1), @ﬁy, wa, K, }and g, = Vec{Aﬂ(t),@ﬁw wa, K,,}. The
propagator has the form

1+0Ox 0 0 DAK 0 0 0 0

_ w2 o 0 I1- D*® 0 0 ) o k0P LG

U=Vaa5=1 _po* 1-pi¢ g | Veu®T |0 k0 k60 g
(H.5)

The propagator of interest is X4 = U! [ng S} U~'". We can exploit the block struc-
ture of U to find an inverse
Uan Uxe Uise Usk
0 Uzgp O 0
-1 -1
0 Uy Uge 1

(H.6)

where each sub-block can be computed with the Schur-complement formula. Altogether,
we multiply through to get the propagator

0 UZEPK’@(I) I‘_ [(I])-éIGRG(D UZ%DK'@G 1_|_ I(I{ébﬁ./GG
0 U-.-k U-.-k
3= 0 Ufl Kjégi Ufl ’{Glb Ufl K‘fbg‘i Ufl K‘,GG
Go GG G GG
0 Uppk®?+ULkC? Ugyr®® +Uw©C
Uxi 0 0 0
11T 1 17T 11T
[UA?} . Usop [UG<I>1} [UK{I)] -
Uxe] . 0 Use  |Ukel
vl 0 o0 1

=R e R e B )

> (H.7)

https://doi.org/10.1088/1742-5468 /ad642b 41


https://doi.org/10.1088/1742-5468/ad642b

Dynamics of finite width Kernel and prediction fluctuations in mean field neural networks
Two of these blocks corresponding to K, A are especially important for characterizing
the fluctuations of network predictions. The covariance structure for K has the form
_ _ _ 1T
Yk = UK<I>’("’<D<D [UK1<I>] +UKG KO [UKE] +UK<I> K¢ [UKlG] +Uch:"3GG [UKIG} :
(H.8)
Next we use the fact that U g}b = UE(U [}1@ and that U gle =U ﬁ(U}lG, which follows
from the block structure of U. Consequently we arrive at the identity

Sa = Uxhk® [Ush] 7+ UK [ULL] T+ URLRC? [URL] T + Usbw®e [ULL]

_ 11T
=U xZk [Ugy] - (H1.9)
Lastly, we note that, by the Schur-complement formula that U} = — (I1+ © k) ' DAE,

Thus, writing (I+Ox) XA (I+ @K)T = DAKEK[DAK]T as an integral equation, we
find

Do, (ts) + /dt ZKWEW( s)+ /ds ZKyﬁzpﬂ(ts)

0
/dt / SELNY O [ ol (2 Z/ /ds’Aﬁ( NSk s (H.10)
af ap

Differentiation with respect to ¢t and s gives a simple differential equation

Ly A )

TR0+ 52 ts+zf<yﬁat 0

+) K555 (t,5) ZA SK s (H.11)
o

Let {1} be the eigenvectors of the kernel matrix K. Projecting these dynamics on the
eigenspace Yp(t,s) = ] 3(t, s)2p, recovers the equation in the main text

0 0
(at + )\k;) <£ -+ )\g) Zkﬁ t S ;Ak/ Agl Zkk/wl (H12)

Replacing X = k recovers the equation (7) in the main text.

H.1. Perturbed linear system

In this section, we provide a simpler derivation of the lazy limit training error vari-
ance dynamics. In this case, we merely perturb the dynamics around its infinite width
value A(t) = A (t) +€2(t) and K = K., + €, and keep terms only linear in these
perturbations. The perturbation € is fixed in time and the dynamics of €2(t) are

d

€ ()= —Kxe® (1) — " As (1) (H.13)
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Projecting this equation on the eigenspace of K, gives

d
dtekA(t):—)\kek(t)— B LAY (t). (H.14)

1%

This immediately recovers the final result of the last section

N(gﬁA’f) (gt—{-)\k) (e (t) >—(§t‘|‘)\k) (;Jr)\k)ilﬁe(w)
=) SR AY (AT (s).  (H.15)

ke’

Qualitatively, the process of computing this linear correction (in €X) to the dynamics of
A is identical to the argument utilized in prior work on perturbative feature learning
corrections [11]. In that context, the perturbation is caused by small amounts of feature
learning, rather than initialization fluctuations.

H.2. Mean prediction error correction in the lazy limit

Using a similar heuristic as in the preceeding section, we now consider the correction
to the mean predictor (A, (¢)) in the lazy limit. Taylor expanding (A(t)) in powers of
1/N, we find

d d . 1d
E<A()>_EA ()JFNEA()
=—(K-K*+ K>)(A—-A*+ A%))
“KCA® — K® (A — A®)
—((K-=K¥))A” — (K — K%) (A - A%))
1

B 72 7 l_i 1 oo_i K _A —2
K¥A% - SK*A = ZK'A N<e ) +O(N?). (H.16)

From the previous section we have that

d t
EGA —K®e® — A — £ (t) = —/ dsexp(—K> (t —s)) e exp (—K>s)y
0
(H.17)
Projecting these dynamics onto the eigenspace of the kernel gives
it o=t
_ H.18
ZE VDY Ye ( )

where ¢ = k should be seen as the limit where A\, — Ay of the above. Thus we find that
the leading mean correction to the error solves the following differential equation
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d )\é/t _ e—)\gt
— At
— + A\ E Kpyee " + E Emw—yé’-
dt Ao — At
e
)\[/t e—/\gt

20 :

We see that at late sufficiently large ¢, that the terms involving % will dominate. We
can gain more intuition by considering the special case of a single training data point
where the mean error correction has the form

((i + )\) A't)=ye M [-K'+t2F] = Al(t)=y {—tK1 + %tQEK} e M
— <A (t)2> ~ A®(t)? + % [2y2tez’\t {—Kl + %tzK] + x4 (t,t)} +0O(N7?)
+ Ey te M [—K'+ 55 + O (N 7?). (H.20)

~ AT ()4

While the term involving X/ is positive for all ¢, K! could be positive or negative for
a given archltecture If K! is positive, then MSE is initially improved at early times
but after ¢ > 21\ the MSE is worse than the infinite width. On the other hand, if K is
negative (as we suspect is typically the case), then the MSE will strictly decrease with
network width for any time ¢.

Appendix I. Two layer equations and time/time diagonal

In this section, we analyze two layer networks in greater detail. Unlike the deep network
case, two layer networks can be analyzed on the time-time diagonal: ie the dynamics
only depend on ®(t,t) and G(t,t) rather than on all possible off-diagonal pairs of time
points. Further, there are no response functions A¢, B which complicate the recipe for
calculating the propagator (appendix E).

I.1. A single training point

For a two layer network trained on a single training point with norm constraint |x|*> = D,
we have the following DMFT action

s{KW.K®.a0.A0}]
:/dt {K(t)[%(t)—f—ﬁ(t) (A(t) —y+/ds @(t—s)A(s)K(s))}
+InZ [Kf] , Z =T exp (—/dtf((t) [¢(h(t))2+g(t)2]). (L.1)

https://doi.org/10.1088/1742-5468 /ad642b 44


https://doi.org/10.1088/1742-5468/ad642b

Dynamics of finite width Kernel and prediction fluctuations in mean field neural networks

The saddle point equations are

62—%:K“)‘<[¢<h<t>>2+g<t>2}>=o
az—it):A(t)—er/ds@(t_S)A(S)K(S):O
afa{bgs):K(SHA(S)/dtA(t)@(t_s)zo

82‘?5) = A(s)+ K (s) / dt A(t)©(t—s)=0. (I.2)

From these equations, we can compute the entries in the Hessian of the DMFT action

S. Letting q(t) = {A(tq and (1) = [é(t)}

K(t) K(t)
’s
0q()oq(s)
929 B d(t—s)+O0((t—s)K(s) ©O(t—s)A(s)
04 (1)9q(s) —<af(8) (¢(h(t)>2+g(t)2)> 5(t—s)
%S o o0
dq (t)dq (s) {0 n(t,s)] (1.3)

where k(t,s) = ((¢(h(t))? + g(t)*)(¢(h(s))* + g(s)*)) — K(t)K(s) is the NTK’s fourth
cumulant. We now vectorize our order parameters over time q = Vec{q(t)}icr, and
q = Vec{q(t) }+er, and express the full Hessian

0 S ( %S )‘1 %S ( %S >_1 . ( 828 )_1
vQS _ [ 61]8[]T] s [vQS] -1 0qoq" 0q0q 8(]3?]"— 0qoq "
- 825' — .

528 -1
() :
(L.4)
The covariance matrix of interest (for q(t)) is thus
$ I1+O, Op - 0 0| |I+®x Oa - (I 5)
| =D I 0 k|| —D I ' '

where [@f]|(t,s) =0O(t—s)K(s) and [Oa](t,s) =O(t —s)A(s). The above equations
allow one to use the infinite width DMFT dynamics for K(t),A(t) to compute the
finite size fluctuation dynamics of the kernel K and the error signal A.

L1.1. Computing field sensitivities. In this section, we compute D(t,s) by solving for
the sensitivity of order parameters. We start with the DMFT field equations

h(t):u+7/0 dsA (s)g(s) | z(t):rﬂ/o dsA (s) 6 (h(2)). (L6)
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Now, differentiating both sides with respect to A(s’) gives

e —r0-s9(s) 7 [ a5 21
02 (1) P

a0t =)o)+ [ dsa o) . (L7

We can compute D Monte carlo by iteratively solving the above equations for each
sampled trajectory {h(t),z(t)} [46, 71]. Averaging the necessary fields over the Monte
Carlo samples will give us the final expressions for D(t,s),

D(t.5) = (5ars (40 OF +a0) ) 1

Similarly, the uncoupled kernel variance k(t,s) can be evaluated via Monte Carlo
sampling for nonlinear networks.

1.2. Test point fluctuation dynamics

We now are in a position to calculate the test/train kernel and test prediction fluctu-
ations. To do this systematically, we augment S with the test point prediction f, and
field h, and introduce the kernel K, (t) = (¢(h(t))d(hs(t)) 4+ g(t)g«(t)). The test predic-
tion f, and field h, have dynamics

() = s+ /0 AsA () (ha (5)) 2 () K¥ , {ugus) = K

0

ol =K (OAQR) , Ko (t) =(o(h(1) ¢ (ha(t)) +9(t) g4 (2)) - (L9)

The augmented action for this DMFT has the form

S:/dt X0 (f*(t)—/ds@(t—s)A(s)iQ(s)) +/dt R () K, (1)
+/dt A(t) (A(t)—y+/ds @(t—s)A(s)K(s)) +/dt K@) K (t)
Fiue (— [ R0 (600" +9(0) ~ [ K00 @000 ) +9(05.(0))
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We let q(t) = [A®1), £.(£), K (1), K.(£)]

00 0 O I+©x 0 ©p 0
2 A 0 O 0 0 2 A~ —91(* I 0 —@A
VaSlad =g o & KT VedSled =1 “p g 1 o
0 0 K, Ky -D, 0 0 I
0 2 2
D(t,s) =( 5~ h(t t I.11
(5= (s (6P +902) ) L)
0
D,(t,s) = h(t hy (T t)g.(t [.12
(5= ars @O ok () +9 (019 (0) (L12)
Our total covariance matrix / propagator is thus
—-1 —1T
I+Ox 0 Op 0 0O 0 O 0 I+Og 0 Op 0
> B, I 0 —-0Ojp 00 0 O B, I 0 —-0Ojp
| -D 0 1 0 00 kK K -D 0 1 0
-D, 0 0 I 0 0 K. Ku -D, 0 0 I

(L13)

This is the equation provided in the main text equation (8).

1.3. Two layer linear network closed form

For a linear network on a single data point, we can compute D(t,s) and k(t,s) analyt-
ically. We start from the field equations

PO _samzm . ED —amne (L14)

We can make a change of variables v, (t) = \/Li(h(t) +2(t)) and v_(t) = \/Lﬁ(h(t) —z(t)).
We note that v, (0) = \%(u#—r) and v_(0) = = (u—7) are independent Gaussians.
These functions v, (t),v_(t) satisfy dynamics

dvy dv_ (1)

SE =AW (1), T = A ()

= vy (t) =exp (7/Utd5A (5)> v (0) = A (

— u(£) = exp <—7/0'dsA (3)) 0 (0) = 5 (;) — v (O (t—s). (L15)

Now, we use the fact that v+(0):\/i§(u+r) and v_(0)= L (u—7) are inde-

pendent standard normal random variables to compute K(t)= (h(t)*+ z(t)*) =
(v () +v_(t)?)
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D(t,s) = Ma(s) <h(t)2 + z(t)2> — 2y [<v+ (t)2> - <v, (t)2>] O(t—s)

=2y [exp (27 /O dsA (5)) —exp (—27 /O dsA (s))] O(t—s). (L16)

This operator is causal (D(t,s) =0 for s >t) as expected and vanishes as t — 0. If we
take v — 0, we have D(t,s) — 0 which agrees with our reasoning that fields h,z only
depend on A in the feature learning regime. Since all fields are Gaussian in the linear
network case, we can use Wick’s theorem to obtain the exact uncoupled kernel variance
in the two layer case,

= (10 207) (9 +0)) - KK 0
=2
= (vt

()R (s))" +2(h(t)2(5))" +2(z(8) A ()" +2(z (1) 2 (s))’
(£) v+ (5) v () o= ()" + (vr () w4 (8) —v- (B)v-(s))".  (L17)

The vy (t) functions are those given above. Using the fact that (v, (0)?) = (v_(0)?) =
allows us to easily compute the single site average above.

Appendix J. Multiple samples with whitened data

In this section, we analyze the role that sample number plays in dynamics in a simplified
model of a two layer linear network trained on whitened data. Concretely, we assume
that #5% = d,,,,. The field equations for preactivations hy,(t) and pregradients z(t) obey

a0 = vBu02(1) . Sz =73 A, A1), (1)

p=1

We will assume the targets have unit norm |y|?> =1 and we define the projection of A
onto the target as Ay(t) =y - A(t). The other P — 1 orthogonal components are denoted
A (t) so that A=A, (t)y+ A (t) with A, (t)-y =0. At infinite width, A, =0 and
our field equations become

d

d
Shy(®)= 8, (0)2(0) . Z2(t) =8, Ok (£) , AL =0, hr~N(0,1). (1.2)

However, at finite width N, the off-target predictions A fluctuate over random ini-
tialization. To model all of the fluctuations simultaneously, we consider the following
action

S = v/dtZA —y,) +InEexp (/dtZAu (t)z(t) hy, (t)) (1.3)

which enforces the constraint that A,(t) :yu—%(z(t)hu(t» at infinite width. The
Hessian over order parameters g = Vec{A,(t),A,(t)} has the form

Vg = [7131) (vI+D)T} ,Duy(t,s):<%(s)z(t)hﬂ(t)>. (J.4)

K
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We thus get the following covariance for predictions ¥a = (yI+ D) 'k [(71+ D)™ !] "
We now compute the necessary components of the D tensor

Oh,(t) L 0z (t")
A, (5) —75,“,6(15—8)2(8)—}—7/ dt’'A, () 77—~ a8, ()
9z (t) 3 u(t')
aa,(s) 1Ot =9)h +7/ d’ ZA )94, (5)
=70 (t—s)h,(s)+ ’y/o dt’'A, (") SZ’V(;;; . (J.5)

In the last line, we used the fact that these equations are to be evaluated at the mean
field infinite width stochastic process where A (t) = 0. To compute the sensitivity tensor
D, we find the following equations for our correlators of interest:

(R0 =810t =5) () 2(0) « v

(Lt () =0t = 950 o £y

(5ai20) =109 =)+ [ ara,@) (5200)
(1) on,(t")

<3A (5)° z(t )> YO (t - )<hy(s)z(t)>+fy/0tdt”Ay(t”)<aAy( )z(t’)>. (J.6)

We therefore see that the components of D decouple over indices. In the y direction,
we have the following equations

D, (t,5) = <§Z@; ((’;))z (t)> + <;§T(2)hy (t)> (3.7)

where the correlators must be solved self-consistently. We will provide this solution in
one moment, but first, we will look at the orthogonal directions. For the P — 1 orthogonal
directions, we obtain the explicit formula for D in each of these directions

(el (2000
=10t —3) ((1) 2(5)) +7O (t — 5).. (1.8)

Now, we return to D,. To solve these equations we utilize the change of variables

employed in the single sample case v (t) = \/ii(hy (t) +2(t)),v_(t) = \%(hy (t) — z(t)) (see

appendix 1.3). This orthogonal transformation decouples the dynamics

d d

—vy (t) =74, (t) vy (1) , @

dt 20 (1) = =By (H)v-(#). (J.9)
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As a consequence, the field derivatives close

SZZ EZ)) =70t —s)vi(s)+ /0 dt'A, (t') ?Xy(gi
SZ; EZ)) S _/0 A, (t') 222(8. (3.10)

The correlator of interest is

(hy (12 (1)) = 5 [0+ () +0- (O] o+ () = v (O]) = 5 {vs (7 =0 (1)%) (7.11)

N —

So we get that

B <v+ " SZ; Ei))> - <U (®) gﬁy 8) > (J.12)

Similarly, we can derive the on-target and off-target uncoupled variances r,(t,s) and
K, (t,s), which satisfy

oy (8,8) = (vs (£ vs (5) + 0 (8) v (8))" + (0 (D) 01 (8) = 0= (H)v-(5))”

1
Ky (t,s)= 3 (v (t)vg(s) v (t)v_(s)). (J.13)
Using these functions, we arrive at the following variance for each of the P dimensions

¥a, = (I+D,) 'k, (3 1+D,) "
YA, =(I+D1) k(v I+ D) (J.14)

Using the fact that all A, variables are independent and identically distributed under
the leading order picture, the expected training loss has the form

(AP) = AF (0 + AL AT () + 1, (1) + LDy @ vo(v2).

(1.15)
where (A, — A%) = L AL(t) + O(N~?). We note that the bias correction if O(N~') while

the variance is O(P/N). We compare the above leading order theory with and without
the bias correction in appendix figure A.2.

Appendix K. Online learning

Our technology for computing finite size effects can easily be translated to a setting
where the neural network is trained in an online fashion, disregarding the effect of
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SGD noise. At each step, we compute the gradient over the full data distribution p(x).
Focusing on MSE loss, we study the following equation

%A(a},t) = —Epp@ K (z,2';t) A(x',1) (K.1)
where K(x,x';t) is the dynamic NTK and A(x,t) =y(x) — f(x,t) is the prediction
error. In general the distribution involves integration over an uncountable set of possible
inputs x. To remedy this, we utilize a countable orthonormal basis of functions for the
data distribution {y(x)}72,. For example, if p(x) were the isotropic Gaussian density
for N'(0,I), then v could be Hermite polynomials. We expand A and K in this basis
¥y, and arrive at the following differential equation

—Ak ZKM (K.2)

By orthonormality, the average turned into a sum over all possible orthonormal func-
tions {¢r}. We note that since K is evolving in time, there is not generally a fixed
basis of functions that diagonalize K, resulting in the couplings across eigenmodes in
equation (K.2). Since, in online learning, there is no distinction between the training
and test distribution, our error of interest is simply £(t) =, Ax(t)%. To obtain the
finite size corrections to this quantity, we compute the joint propagator for all variables
{Kke(t),Ax(t)}. If we wanted to pursue a perturbation theory in rates (appendix G.2),
we could again define a transition matrix T and rate matrix R(t) as

R(t)=—logT(t) , —Tk/ ZKkk’ JTwe(t) s The(0) =0k (K.3)

We can then obtain A =exp(—R(t))y, where y; = Eg¢oi(x)y(x). Since R has a finite
size mean correction and finite size fluctuations, so too does the error Ag(t) and the
loss £ (appendix G.2).

K.1. Two layer networks

In the two layer case, instead of tracking kernels, we could instead deal with the distri-
bution over read-in vectors w € R” and readout scalars a € R as in the original works
on mean field networks [6, 72]. When training on the population risk equations for

x ~N(0,I)

p i aEzA (x) g (w-x)x =K, B ¢(w-z)+EA(x) ¢ (w-x)w
(‘;t = E,A(x) ¢ (w - x) (K.4)

The action has the form

S=r / dtdzA (t,2) (A (t,x) —y (x)) + InE, 4 exp ( / dtdeA (t,x)a(t) ¢ (w(t) - w)) :
(K.5)
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The Hessian over q = {Au(t),AM(t)} is

(K.6)

VQS:{ 0 I+DA}

I+ Da K

where Da(t,x;s,x’) = <Wgw,)a(t)¢(w(t) : a:)> We can use the following implicit rule

%:7@“‘S>p<w>¢<w<s>-w)ﬂEx/ 0 dt’A(tGw’)qB(w.m')muai“(’_%
a(ZLU(—s(Z):VG“—S)p(w)a(s)é(w(s)-m)m
B [arae) |2 b e +a)dw-a) g
(K.7)

The above equations could be solved and then used to compute Da(t,x;s,x’) which
must then be inverted to get the observed prediction variance.

K.2. Linear activations

Using the ideas in the preceding sections, we can make more progress in the case of
a two layer linear network in the online learning setting. The key idea is to track the
kernel and prediction error projections onto the space of linear functions. In this case
we get the following DMFT over the order parameter 3(t) = =W 'a € R”.

%a(t) =7(B,—B(t)) w(t)
%w (t) =ya (t) (/6* - /3 (t))
B(t) = % (a(t)w(t)). e

At infinite width, we see that the dynamics can be reduced to tracking the projection
of the weights w and 3 on the 3, direction. The D — 1 off-target dimensions vanish
B, (t) = 0. At infinite width, we arrive at the alignment dynamics studied in prior work
[9, 70]

d
SB() =M (1) (B, - B(1)

M) =280 (8. - B®) +128() (B, — B1)

dt
+29%(8, - B(1) - BH)L (K.9)
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We note that B(t) = 5(t)3, and that M has only one special eigenvector 3, with eigen-
value my(t). It thus suffices to track evolution in this single direction

d

SBO=m. ()B4 , G O=18O (B -F@).  (K10)

We note that this equation is identical to the differential equation for a single training
example in appendix J. Here 5, — 3(t) plays the role of A,(t) and m.(t) plays the role

of the kernel K,(t). A key observation is the conservation law 472% (t)? = %m*(t)Q,
from which it follows that m,(t)? —4 = 4+4?3(t) [9]

%5(t):2\/1+725(t)2 (Be = B(1))- (K.11)

This is identical to the differential equations for a single sample (producing prediction
f(t) and kernel K(t)) if the following substitutions are made

f@)<p(t), K(t)+ my(t). (K.12)
We now proceed to compute finite size corrections starting from the action
S = 'y/dtﬁ (t)-B(t) + InEexp <_ /dt[a (t)-w (t)a(t)) : (K.13)
The necessary ingredients are

k(t.s) = (a(t)a(s)wB)w(s)) =Bt B(s)

— (a(t)a(s)) <w (t)w (s)T> +(a(s)w (1)) <a(t) w (S)T> e RDXD, (K.14)
Similarly we have to compute the sensitivity tensor
D(t,s) = <aﬁ?s)Ta(t)w(t)> € RP*P, (K.15)
We start from the dynamics
S (1) = 5o () (8.~ B(1) . Salt)=(8.~B(1) w () (K.16)
Next, we have to calculate causal derivatives for fields
0 ot o, Da(t)
ST (=70 s)al )I+7/0 (8.~ B
0 L (s b oy Ow(
et =0t wl+y [ar(E-pw)-GEs.
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Following an identical argument as in appendix J, we see that D has block diagonal
structure with Dj, (¢, s) on the 3,3, direction and D (t,s) in any of the D — 1 remaining
directions

Dy (05 = g () Duto) = (557 salun (@) (<19

d )
9B (s)" 981 (s)

Similarly, k(t,s) has a similar decomposition

rp. (t,5) = {a(t)a(s)) (ws, (H)ws, (s)) + (a(s)ws, (£)) (a () ws, (s))

kL (t,s) ={a(t)a(s)) (we (t)wy(s)) +{a(s)wy (t)) (a(t)w(s)). (K.19)
The processes have the following equations at infinite width
S () =a () (5.~ B1) , Galt)=ws ()(B. - BW) i B)=0.  (K20)

As a consequence we note that (w(t)a(s)) =0 so that x,(t,s) = (a(t)a(s)). Letting
ve(t) = \/Lﬁ(wﬁ*(t) +a(t)) and v_(t) = \/li(w/g* (t)+a(t)), we find the same decoupled
stochastic processes as in appendix 1.3,

d d

0+ O =76 =B ) v+ (t) , Fo-(t) =7 (B~ B{t))v-(2). (K.21)

We can use these equations to perform the necessary averages for kg, and Dg,. Lastly,
we use

9
85L (8)

to evaluate D (t,s). The observed covariances are just

w, (t) =—0(t—s)a(s) (K.22)

S5, =(M=Ds) ks (1-Dp) ", S =(1-D1) ' ki(3I-D1)" . (K.23)

We note that these expressions are identical to those in appendix J under the substitu-
tion B, — B(t) = A(t) and D — P. Thus the expected test risk is

1B - B~ (B0 -8+ +5s 0+ Dy wnro). ke

This recovers the variance we obtained in the multiple-sample whitened data case
appendix J.

K.3. Connections to offline learning in linear model

Remark 1. The finite size variance of generalization error in an online learning setting
with linear target function y = B -z has an identical form as the model described
above. In this setting, we sample infinitely many fresh data points x ~ A (0,I) at each
step leading to the flow $w;(t) = va;(t)E;A(z)z and dtal(t) yw;(t) - EgxA(x)x. The

order parameter of interest in this setting is B(¢) = 7N ZZ Lw;i(t)a;(t). The precise
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Table K1. Summary of the equivalence between the leading 1/N correction in the
offline setting and the online setting for two layer linear networks. In the offline
training setting, the order parameters are the errors A =y — f € R” while in the
online case they are 3, — 3 € R”.

Setting  Order Params. Target Off-target Dims. Loss Variance Infinite Quantity

Offfine A=y—-f y pP-1 Train O(ﬁ) D
Online g3, -3 B, D—-1 Test O(%) P

correspondence between this setting and the offline setting is summarized in table K1.
We note that this argument could be extended to higher degree monomial activations
as well, at the cost of tracking higher degree tensors (eg for quadratic activations M =

N . .
% D oisg @ W, w, € RP*D i sufficient).

As in the offline case, in figures 4(c) and (d) we see that the variance contribution
to test loss |3 — 3, |? increases with input dimension D. We note that this perturbative
effect to the loss dynamics is reminiscent of the deviations from mean field behavior
studied in SGD [43, 44], though this present work concerns fluctuations driven by ini-
tialization variance rather than stochastic sampling of data. In figure 4(e) we show that
richer networks have lower variance at fixed N. Similarly, leading order theory for richer
networks more accurately captures their dynamics as D/N increases (figure 4(f)).

Appendix L. Deep linear networks

For deep linear networks, the fields hﬁ(t),gﬁ(t) are Gaussian and have the following
self-consistent equations

hﬁ(t) /dsz AE L(t,s)+A, (s )Hﬁ;l(t,s)] gl (s) , uﬁ(t)NQP(O,HZ_I)
(L.1)

gﬁ (t) = / dsz L(t,s)+ A, (s )Gf;l (t,s)] e (s) , rﬁ (t)~GP (O,G”l) :

where H(,(t,s) = (bt (1)1 (s)) and Gl (t,5) = (gl (t)g}(s)) and AL, (t,s) = (54 ) and

Bfw(t,s) = <gf“((sg> [9]. Therefore, we express the action as a differentiable function

of the order parameters by integrating over the Gaussian field distribution. For con-
creteness, we vectorize our fields over time and samples h' :VeC{hfL(t)}{ﬂE[P]7t€R+},

g' = Vec{gﬁ(t)}{ﬂe[ plter,} We consider the contribution of a single hidden layer.
. 1. . ~f 1 -
Z,= / i dgldhldg’ exp (—ﬁhéEuhé ik (hﬂ _ Cﬁg’f) _ 5h”HW)

1oarne . a 1 ot
X exp (—§g€2£g€+zg£- (gE—Dgh/) _ §g€TG gz)
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where Cﬁy(t, s) =~vO(t—s) [Afi;l(t, s) + Hﬁ;l(t, s)A,(s)] and D!, (t,s)=vO(t—

uv

s) [ B}, (t,s)+ G H(t,s)A(s)].  Performing the joint Gaussian integrals over
(h',g',h',g") we find

i o I _D'7

1 A0 0T

InZ;, = ——Indet 0 -G -C I
2 I -¢ 3, 0

D' 1 0 >

7

We can then automatically differentiate the DMFT action to get the propagator. For
example, for a three layer linear network, the full DMFT action has the form

1 R . . .
§ =5 HH {HH+GG + GQGQ] —*TrAB
_H 0 I D]
- 1lmdet 0 -G -c 1
2 I -c' 11’ 0
-D' 1 0 G* |
_H 0 1 D]
1 A2 2T
—slndet| 0 -G —C 1 (L.3)
2 I -C° H 0
-D* 1 0 117 |

where C' =705 and C* =70, © H' +vA and D' =vO, © G* +vB and D? = 70,
This above example can be extended to deeper networks. The total size of the block
matrices which we compute determinants over is 4PT x 4PT for a dataset of size P
trained for T steps.

Appendix M. Discrete time dynamics and edge of stability effects

Large step size effects can induce qualitatively different dynamics in neural network
training. For instance, if the step size exceeds that required for linear stability with
the initial kernel, the kernel can decrease in order to stabilize the dynamics [57].
Alternatively, during training the kernel may exhibit a ‘progressive sharpening’ phase
where its top eigenvalue grows before reaching a stability bound set by the learning rate
[19]. Tt is therefore well motivated to study how dynamics in this regime alter finite size
effects in neural networks. We will first solve a special model which was considered in
prior work [57]: a two layer linear network trained on a single training point. We will
then provide the full DMFT equations for the discrete time case and provide an outline
for how one could obtain finite size effects in that picture.
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M.1. Two layer linear equations

In a two layer linear network, the DMFT equations are
h(t+1)=ht)+nmyA#)z(t) , 2(t+1)=2(t) +nyA(t)h(t)
1
Fi)=~ (=R (). (M.1)

The NTK has the form K (t) = (h(t)? 4 z(t)?). We can easily show that the kernel and
error have coupled dynamics

Fl+1)=F @) +n(h(e) +2(0°) A +n*A @) (h(1)2 (1))

F)+ 0K () A () + 17220 (0 £ (1) (M.2)
K (t41) = K (1) + 4y A (1) (1 (1) 2 () + P22 A (0 (h(0)? + 2 (1))
= K (1) + 4P A (1) £ () + P2 A (0 K (). (\.3)

These equations define the infinite width evolution of A(¢) and K (t). Already at this
level of analysis, we can reason about the evolution of K (¢). In the small 7 limit, we could
disregard terms of order O(n?) and arrive at the following gradient flow approximation
for K(t) ~24/1+~2f(t)? [9]. This evolution will not reach the edge of stability provided
that n < \/1*17—21/2 For large v and y =1, this leads to the constraint ny < 1. However, if

71 exceeds this bound, the gradient flow approximation is no longer reasonable and the
system reaches an edge of stability effect as shown in figure 6.
To Calculate the finite size effects, we need to compute k and D(t,s)=
<h > To evaluate these quantities we utilize the same change of vari-

ables employed in appendix I.3. In discrete time, these decoupled equations are

vp (E+1) =vp () +yA (v (1), v (E+1) =0 () —yA (v (2). (M4)

Given A(t), these can be expressed as linear systems of equations. Now, we can easily
compute the uncoupled kernel variance

R (ts) = 2(h () h(s)" +2(z(8)2())" +2(h () 2(5))" +2(z () h(5))"
= (v Wy (s) +o- (Do (s )>2+<U+ (t)vs (s) —v- (B)v-(5))".  (M.5)
Similarly, we can calculate D(t,s) by using the fact (h(t)+ z(t)*) = (v4(t)* +v_(t)*)

D(t,s) =2 <v+ (t) 372((3 > +2 <v_ (t) ZUA—(Q) >
t

gvg((:)) =10 (t—s)vs (s)+ > _A(t) 881)& ES/))
aaUA_(g)) = =0 (t—s)v_(s)— Y At %UA EZ/)) ' o

These can be directly solved as a linear system of equations.
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Appendix N. Computing details

Experiments for figures 2, 3 and 6 were conducted on a Google Colab GPU with JAX.
Experiments for figures 5, 7 and A.3 were performed on a NVIDIA SMX4-A100-80GB
GPU. The total compute required for all figures in the paper took around 4 h. Jupyter
Notebooks to reproduce plots can be found at https://github.com/Pehlevan-Group/
dmft_fluctuations.
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