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Abstract. In recent years, significant attention in deep learning theory has
been devoted to analyzing when models that interpolate their training data can
still generalize well to unseen examples. Many insights have been gained from
studying models with multiple layers of Gaussian random features, for which
one can compute precise generalization asymptotics. However, few works have
considered the effect of weight anisotropy; most assume that the random features
are generated using independent and identically distributed Gaussian weights,
and allow only for structure in the input data. Here, we use the replica trick
from statistical physics to derive learning curves for models with many layers of
structured Gaussian features. We show that allowing correlations between the
rows of the first layer of features can aid generalization, while structure in later
layers is generally detrimental. Our results shed light on how weight structure
affects generalization in a simple class of solvable models.
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1. Introduction

Characterizing how data structure and model architecture affect generalization perform-
ance is among the foremost goals of deep learning theory [1, 2]. A fruitful line of inquiry
has focused on the properties of a class of simplified models that are asymptotically
solvable: neural networks in which only the readout layer is trained and other weights
are random, which are known as random feature models (RFMs) [3–21]. Though RFMs
cannot capture the effects of representation learning on generalization in richly-trained
neural networks [13, 22, 23], they have substantially advanced our understanding of how
data structure and model architecture interact to give rise to a wide array of generaliz-
ation phenomena observed in deep learning [1–5, 7–19, 24, 25].

Of particular interest is the question of when models overfit benignly, that is, when
they generalize well despite having been trained to perfectly interpolate their train-
ing data. Here, much intuition has been gained by studying minimum-norm kernel
interpolation—that is, the ridgeless limit of kernel ridge regression—with RFM kernels,
for which precise generalization asymptotics can be computed using tools from random
matrix theory. These asymptotics lead to a precise picture of how the spectrum of the
random feature kernel and the structure of the task interact to determine generalization.
These analyses are facilitated by universality results, often termed Gaussian equivalence
theorems, that state that the generalization error of a nonlinear RFM is asymptotically
equal to that of a linear Gaussian model with an effective noise term resulting from
nonlinearity [3, 7, 10, 25, 26]. In the past few years, Gaussian equivalence theorems
for ever more general classes of RFMs have been established: within this year Schröder
et al [20] and Bosch et al [21] have established Gaussian equivalence theorems for deep
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nonlinear RFMs with unstructured feature weights, while Cui et al [27] have extended
some of these results to the setting of deep Bayesian neural networks when the target
is of the same architecture.

However, these analyses consider the effect only of correlations in the data, and do
not address the possibility of correlations between the random weights. It is standard
to assume that the elements of the weight matrices at each layer are independent and
identically distributed Gaussian random variables, and to our knowledge all existing
Gaussian equivalence theorems make use of this assumption [3–15, 19–21]. As a result,
how weight anisotropy affects generalization in deep RFMs—in particular, if it can affect
the asymptotic scaling of generalization error with dataset size and network width [16,
19, 28]—remains unclear.

In this note, we take the first step towards filling that gap in our theoretical under-
standing of RFMs by computing the asymptotic generalization error of the simplest class
of deep RFMs with anisotropic weight correlations: models with linear activations. Our
primary contributions are as follows:

• Using the replica method from statistical mechanics [29], we compute the asymptotic
generalization error of deep linear RFMs with weights drawn from general matrix
Gaussian distributions. This computation is closely related to prior replica approches
to product random matrix problems [13, 30].

• We show that, in the ridgeless limit, structure in the weights beyond the first layer
is detrimental for generalization.

• We next consider the special case of power-law spectra in the weights and in the data,
which was classically studied in kernel interpolation in the form of source-capacity
conditions [31], and has recently attracted substantial interest in deep learning due to
approximate power-law spectra present in real data [16, 19, 28, 32]. Using approxima-
tions for required spectral statistics derived in past works [19], we show that altering
the power laws of the weight covariance spectra do not affect the scaling laws of
generalization.

• We finally show how our results can be extended from the ridge regression estimator
to the Bayesian Gibbs estimator, an object of classic study in the statistical physics of
learning [13, 33, 34]. For sufficiently large prior variance, structure can be beneficial
for generalization with this estimator.

Taken together, these results are consistent with the intuition that representation
learning at only the first layer of a deep linear model is sufficient to recover a single
teacher weight vector [13, 35–37].

2. Preliminaries

We consider depth-L linear RFMs with input x ∈ Rn0 and scalar output given by

g (x;v,F) =
1

√
n0

(Fv)!x, (1)

where the feature matrix F ∈ Rn0×nL is fixed and the vector v ∈ RnL is trainable. If L=0,
corresponding to standard linear regression, the feature matrix is simply the identity:
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F= In0 . If L> 0, we take the feature matrix to be defined by a product of L factors
U! ∈ Rn!−1×n! :

F=
1

√
n1 · · ·nL

U1 · · ·UL. (2)

We draw the random feature matrices independently from matrix Gaussian distri-
butions

U! ∼MN n!−1×n! (0,Γ!,Σ!) (3)

for input covariance matrices Γ! ∈ Rn!−1×n!−1 and output covariance matrices Σ! ∈
Rn!×n! , such that E[(U!)ij(U! ′)i′j ′ ] = δ!! ′(Γ!)ii′(Σ!)jj′ . Subject to the constraints of
layer-wise independence and separability—which are required for the factors to be
matrix-Gaussian distributed—this is the most general covariance structure one could
consider. One might wish to relax this to include non-separable covariance tensors
E[(U!)ij(U! ′)i′j ′ ] = δ!! ′(χ!)ii′,jj ′ , but this would spoil the matrix-Gaussianity of the
factors, and to our knowledge does not appear to be addressable using standard methods
[30, 38]. We generate training datasets according to a structured Gaussian covariate
model, with p i.i.d. training examples (xµ,yµ) generated as

xµ ∼i.i.d. N (0,Σ0) , yµ =
1

√
n0

w!
* xµ+ ξµ, (4)

where the teacher weight vector w* is fixed and the label noise follows

ξµ ∼i.i.d. N
(
0,η2

)
. (5)

We collect the covariates into a matrix X ∈ Rp×n0 , and the targets into a vector y ∈ Rp.
As in most works on RFMs [3–5, 8–21, 25], our focus is on the ridge regression

estimator

v = arg min
v

L for L=
1

2

∥∥∥∥
1

√
n0

XFv−y

∥∥∥∥
2

+
λ

2
‖Γ−1/2

L+1 v‖
2
2, (6)

where the positive-definite matrix ΓL+1 ∈ RnL×nL controls the anisotropy of the norm and
the ridge parameter λ> 0 sets the regularization strength. This minimization problem
has the well-known closed form solution

v̂ =
1

√
n0

(
λΓ−1

L+1 +
1

n0
F!X!XF

)−1

F!X!y. (7)

As motivated in the Introduction, we are chiefly interested in the ridgeless limit λ ↓ 0,
in which the ridge regression solution gives the minimum !2 norm interpolant of the
training data. We measure performance of this estimator by the generalization error

εp,n0,...,nL = Ex (g (x; v̂,F)−Eξ [y (x)])2 =
1

n0
‖Σ1/2

0 (Fv̂−w*)‖2, (8)
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which is a random variable with distribution induced by the training data and feature
weights.

This leads us to a simple, but important observation: including structured input-
input covariances is equivalent to transforming the feature-feature covariances. We state
this formally as:

Lemma 2.1. Fix sets of matrices {Γ!}L+1
!=1 and {Σ!}L!=0, and a target vector w*. Let

εp,n0,...,nL be the resulting generalization error as defined in (8). Let

Γ̃! = In!−1
for != 1, . . . ,L+1, (9)

Σ̃! = Γ1/2
!+1Σ!Γ

1/2
!+1 for != 0, . . . ,L,and (10)

w̃* = Γ−1/2
1 w*. (11)

Let ε̃p,n0,...,nL be the generalization error for these transformed covariance matrices and

target. Then, for any λ> 0, we have the equality in distribution εp,n0,...,nL

d
= ε̃p,n0,...,nL.

Proof of lemma 2.1. As the features and data are Gaussian, we can write X
d
=

Σ1/2
0 Z0 and U!

d
= Γ1/2

! Z!Σ
1/2
! for unstructured Gaussian matrices (Z!)ij ∼i.i.d. N (0,1).

Substituting these representations into the ridge regression solution (7) and the gener-
alization error (8), the claim follows.

Therefore, we may take Γ! = In!−1
without loss of generality. Moreover, thanks to

the rotation-invariance of the isotropic Gaussian factors Z!, we may in fact take the
remaining covariance matrices Σ! to be diagonal without loss of generality, so long as
we then express w̃* in the basis of eigenvectors ofΣ0. An important qualitative takeaway
of this result is that changing the covariance matrix of the inputs of the first layer Γ1

is equivalent to modifying the data covariance matrix, which was in a simpler form
observed in the shallow setting (L=1) by Pandey et al [39].

3. Asymptotic learning curves

Having defined the setting of our problem, we can define our concrete objective and state
our main results, deferring their interpretation to the following section. We consider the
standard proportional asymptotic limit

p,n0, . . . ,nL →∞, with n!/p→ α! ∈ (0,∞) , (12)

which we will refer to as the thermodynamic limit. Our goal is to compute the limiting
generalization error:

ε= lim
p,n0,...,nL→∞

ED
1

n0
‖Σ1/2

0 (Fv−w*)‖2, (13)

where ED denotes expectation over all sources of quenched disorder in the problem,
i.e. the training data and the random feature weights. In the thermodynamic limit, we
expect the generalization error to concentrate, which is why we compute its average
in (13) [3–5, 8–21].
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To have a well-defined thermodynamic limit, the covariances Σ̃! and the teacher w̃!

must be in some sense sufficiently well-behaved. We consider the following conditions,
which are the generalization to our setting of those assumed in previous work [4–7,
16–18, 40]:

Assumption 3.1. We assume that we are given deterministic sequences of positive-
definite matrices Σ̃!(n!) and vectors w̃*(n0) indexed by the system size, such that the
limiting (weighted) spectral moment generating functions

MΣ̃!
(z) = lim

n!→∞

1

n!
tr

[
Σ̃!

(
zIn! − Σ̃!

)−1
]

and ψ (z) = lim
n0→∞

1

n0
w̃!

* Σ̃0

(
zIn0 + Σ̃0

)−1
w̃*

(14)

are well-defined, for all != 0, . . . ,L.

We can now state our results. As a preliminary step, we first give an expression for
the generalization error for a fixed teacher w̃* at finite ridge λ. Then, we pass to the
ridgeless limit, on which we focus for the remainder of the paper. At finite ridge, we
have the following:

Result 3.1. Assume assumption 3.1 holds. For λ> 0, let ζ solve the self-consistent
equation

λ=
1− ζ

ζ

L∏

!=0

−ζ
α!

M−1
Σ̃!

(
− ζ

α!

)
. (15)

In terms of ζ, let κ!(ζ) solve

Eσ̃!
[

σ̃!
κ! (ζ)+ σ̃!

]
=−MΣ̃!

(−κ! (ζ)) =
ζ

α!
(16)

for != 0, . . . ,L, where Eσ̃! [h(σ̃!)] = limn!→∞n−1
!

∑n!
j=1h(σ̃!,j) denotes expectation of a

function h with respect to the limiting spectral distribution of Σ̃!, for σ̃!,j its eigenvalues
at finite size, and let

µ! (ζ) =−α!
ζ
κ! (ζ)M

′
Σ̃!
(−κ! (ζ)) = 1− α!

ζ
Eσ̃!

[(
σ̃!

κ! (ζ)+ σ̃!

)2
]
. (17)

Then, the learning curve (13) at finite ridge for a fixed target is given by
[
1+

(∑L
!=0

1−µ!
µ!

)
(1− ζ)

]
ε=

(∑L
!=1

1−µ!
µ!

)
κ0ψ (κ0)− κ20

µ0
ψ ′ (κ0)+

(∑L
!=0

1−µ!
µ!

)
ζη2. (18)

Proof of result 3.1. We defer the derivation of (18) to the supplemental material. To
compute the disorder average in (13), we express the minimization problem in (6) as
the zero-temperature limit β→∞ of an auxiliary Gibbs distribution p(v)∝ e−βL, and
evaluate the average over the random data random feature weights using the non-
rigorous replica method from the statistical mechanics of disordered systems [29, 33].
This computation is lengthy but standard, and is closely related to the approach used in
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our previous works on deep linear models [13, 30]. All of our results are obtained under
a replica-symmetric Ansatz; as the ridge regression problem (6) is convex, we expect
replica symmetry to be unbroken [29, 41, 42].

From the self-consistent equation (15), we recognize that ζ is up to a sign the spectral
moment generating function of the feature Gram matrix K=XFF!X!/n0, which is a
product-Wishart random matrix [30]:

ζ (λ) =−MK (−λ) . (19)

This dependence falls out of the replica computation of the generalization error using an
auxiliary Gibbs distribution; we emphasize that one could take an alternative approach
in which the generalization error is first expressed in terms of MK—as, for instance, in
Gerace et al [25] or Hastie et al [5]—and then use results on the spectra of product-
Wishart matrices to conclude the claimed result [30]. This approach would potentially
have the advantage of giving a fully rigorous proof, rather than one that depends on the
replica trick. However, one would still then be faced with the task of solving the self-
consistent equation for the spectral moment generating function, and therefore would
end up in the same place insofar as quantitative predictions are concerned.

In principle, we could now directly proceed to study how weight structure affects (18)
for some fixed ridge λ. However, as long as there is structure in the weights and/or the
data, the self-consistent equation (15) must generally be solved numerically [14, 30].
To allow us to make analytical progress, we therefore focus on the ridgeless limit λ ↓ 0
for the remainder of the present paper, and leave careful analysis of the λ> 0 case to
future work. This follows the path of most recent studies of models with linear random
features, and also the fundamental interest in interpolating models [3–17, 19–21]. We
therefore emphasize that we state result 3.1 merely as a preliminary result.

Before giving our result for the generalization error in the ridgeless limit, we warn
the reader of an impending, somewhat severe abuse of notation: in result 3.2 and for
the remainder of the paper, we will re-define κ! to be given by its value for the solution
for ζ appropriate in the regime of interest. Moreover, we will simply write ε for limλ↓0 ε.

Result 3.2. Assume assumption 3.1 holds, and let αmin = min{α1, · · · ,αL}. For !=
0, . . . ,L, in the regime α! > 1, let κ! be given by the unique non-negative solution to the
implicit equation

1

α!
=−MΣ̃!

(−κ!) = Eσ̃!
[

σ̃!
κ!+ σ̃!

]
. (20)

In terms of κ!, let

µ! =−α!κ!M ′
Σ̃!
(−κ!) = 1−α!Eσ̃!

[(
σ̃!

κ!+ σ̃!

)2
]
. (21)

In the regime αmin < α0, let κmin be the unique non-negative solution to the implicit
equation

αmin

α0
=−MΣ̃0

(−κmin) = Eσ̃0
[

σ̃0
κmin + σ̃0

]
. (22)

https://doi.org/10.1088/1742-5468/ad642a 7
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Then, the learning curve (13) for a fixed target in the ridgeless limit λ ↓ 0 is given by

ε=






(∑L
!=1

1−µ!
µ!

)
κ0ψ (κ0)− κ20

µ0
ψ ′ (κ0)+

(∑L
!=0

1−µ!
µ!

)
η2, α0,αmin > 1

κminψ(κmin)
1−αmin

+ αmin
1−αmin

η2, αmin < 1,αmin < α0

α0
1−α0

η2, α0 < 1,α0 < αmin.

(23)

Proof of result 3.2. We derive (23) as the zero-ridge limit of result 3.1 in the supple-
mental material6.

Before we analyze the effect of weight anisotropy in detail in section 4, we note
several simplifying special cases of result 3.2 which recover the results of prior works.
To facilitate this comparison, we provide a notational dictionary in the supplemental
material. The first important special case is

Corollary 3.1. If L=0, we have

ε=

{
−κ20

µ0
ψ ′ (κ0)+

1−µ0

µ0
η2, α0 > 1

α0
1−α0

η2, α0 < 1.
(24)

This recovers the known, rigorously proved result for linear ridgeless regression [4–7,
16–18]. For larger depths, an important simplifying case of result 3.2 is that in which
the data and features are unstructured, in which case the generalization error is given
by

Corollary 3.2. If Σ̃! = In! for != 0, . . . ,L, we have, for any target satisfying ‖w̃*‖2 = n0,

ε=






(
1+

∑L
!=1

1
α!−1

)(
1− 1

α0

)
+
(∑L

!=0
1

α!−1

)
η2, α0,αmin > 1

1−αmin/α0

1−αmin
+ αmin

1−αmin
η2, αmin < 1,αmin < α0

α0
1−α0

η2, α0 < 1,α0 < αmin.

(25)

Proof of corollary 3.2. We have MIn!
(z) = 1/(z− 1), hence κ! = α!− 1, µ! = 1− 1/α!,

and κmin = α0/αmin− 1. Finally, for any fixed teacher vector satisfying ‖w̃*‖2 = n0, we
have ψ(z) = 1/(z+1) if Σ̃0 = In0 . Substituting these results into (23), we obtain (25).

This recovers the result obtained in our previous work [13], and in the single-layer
case L=1 recovers results obtained by Rocks and Mehta [14, 15], and by Hastie et al
[5] (see the supplemental material). In the slightly more general case of unstructured
weights but structured features, we have

6 In recent work with A. Atanasov, following the publication of the original version of the present paper [43], we have shown how
the same result may be obtained using free probability techniques [44].
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Corollary 3.3. If Σ̃! = In! for != 1, . . . ,L, but Σ̃0 *= In0, we have, for any target satisfying
‖w̃*‖2 = n0,

ε=






(∑L
!=1

1
α!−1

)
κ0ψ (κ0)− κ20

µ0
ψ ′ (κ0)+

(
1−µ0

µ0
+
∑L

!=1
1

α!−1

)
η2, α0,αmin > 1

κminψ(κmin)
1−αmin

+ αmin
1−αmin

η2, αmin < 1,αmin < α0

α0
1−α0

η2, α0 < 1,α0 < αmin.

(26)

Proof of corollary 3.3. (26) follows from substituting the results of corollary 3.2
into (23).

In the special case L=1, this recovers the result obtained using rigorous methods in
contemporaneous work by Bach [40], posted to the arXiv one day after the first version
of our work [45]. Here, as the data spectrum and target vector enter the generalization
error in nearly the same way as in the case of linear regression, all of the intuitions
developed in that case can be carried over [4–7, 16–18].

Another useful simplification can be obtained by further averaging over isotropically-
distributed teachers w̃* ∼N (0,In0), which gives

Corollary 3.4. Let ε̄= Ew̃*∼N (0,In0 )
[ε]. Then, we have

ε̄=






(
1+

∑L
!=1

1−µ!
µ!

)
κ0
α0

+
(∑L

!=0
1−µ!
µ!

)
η2, α0,αmin > 1

αminκmin/α0

1−αmin
+ αmin

1−αmin
η2, αmin < 1,αmin < α0

α0
1−α0

η2, α0 < 1,α0 < αmin.

(27)

Proof of corollary 3.4. Observing that Ew̃*
ψ(z) =−MΣ̃0

(−z), the claim follows
from (23).

In the special case of a single layer of unstructured feature weights (L=1, Σ̃1 = In1),
this recovers the result of recent work by Maloney et al [19], who used a planar diagram
method to the generalization error of single-hidden-layer linear RFMs with unstructured
weights (see the supplemental material).

Another important simplifying case of result 3.2 is the limit in which the hidden
layer widths are large, in which the generalization error of the deep RFM reduces to
that of a shallow model, as given by corollary 3.1. More precisely, we have a large-width
expansion given by:

Corollary 3.5. In the large-width regime α1, . . . ,αL + 1, assuming that the weight spectra
have finite moments, the generalization error (23) expands as

ε=−κ20
µ0
ψ ′ (κ0)+

1−µ0

µ0
η2 +

(∑L
!=1

Eσ̃! [σ̃2! ]
Eσ̃! [σ̃!]

2
1
α!

)(
κ0ψ (κ0)+ η2

)
+O

(
α−2
1 , . . . ,α−2

L

)
(28)

in the regime α0 > 1; if α0 < 1 the generalization error does not depend on the hidden
layer widths so long as they are greater than 1.

Proof of corollary 3.5. See the supplemental material.
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Figure 1. Phase diagram of generalization in deep linear RFMs. For simplicity, we
consider a model with a single hidden layer (L=1); the picture for deeper models
is identical if one considers the narrowest hidden layer [13]. (a). Generalization
error ε for unstructured data and features from (25) as a function of training data
density 1/α0 and hidden layer width α1/α0 in the absence of label noise (η=0;
left) and in the presence of label noise (η=0.5; right). (b). As in (a), but for power
law structured data and weights, with ω0 = ω1 = 1, and ε̄ given by (31). See the
supplemental material for numerical methods.

4. How does weight structure affect generalization?

The first salient feature of the learning curves given by result 3.2 is that the addition of
weight structure does not alter the phase diagram of generalization, which is illustrated
in figure 1. There are three qualitatively distinct phases present, depending on the
data density and minimum layer width: the overparameterized regime α0,αmin > 1, the
bottlenecked regime αmin < 1, αmin < α0, and the overdetermined regime α0 < 1, α0 <
αmin. This dependence on the narrowest hidden layer matches our previous work on
models with unstructured weights [13]7, and can be observed in the solutions to the
ridge regression problem for fixed data (see supplemental material). As α! ↓ 1, κ! ↓ 0
and µ! ↓ 0, and the generalization error diverges. Similarly, the generalization error
diverges as αmin ↑ 1, or α0 ↑ 1 in the presence of label noise. However, there are not
multiple descents in these deep linear models, consistent with the qualitative picture of
the effect of nonlinearity given by previous works [9, 10].

The second salient feature of result 3.2 is that the matrices Σ̃! enter the general-
ization error independently; there are no ‘interaction’ terms involving products of the
correlation matrices for different layers. This decoupling is expected given that the fea-
tures are Gaussian and independent across layers [30]. Moreover, under the rescaling
Σ̃ ′
! = τ!Σ̃! for τ! > 0, we have κ ′

! = τ!κ! and µ ′
! = µ! (we show this explicitly in the sup-

plemental material). Therefore, (23) is sensitive only to the overall scale of Σ̃0, not to
the scales of Σ̃1, . . . ,Σ̃L. This scale-invariance can be observed directly from the ridgeless
limit of the ridge regression estimator (7).

We can gain intuition for the effect of having Σ̃! *∝ In! for !! 1 through the following
argument:

7 Previous works on deep RFMs have used several different parameterizations of the thermodynamic limit [3–17, 19–21]. We detail
the conversion between these conventions in the supplemental material.
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Lemma 4.1. Under the conditions of result 3.2, in the regime α0,αmin > 1, we have

ε!
(∑L

!=1
1

α!−1

)
κ0ψ (κ0)− κ20

µ0
ψ ′ (κ0)+

(
1−µ0

µ0
+
∑L

!=1
1

α!−1

)
η2. (29)

That is, the generalization error for a given Σ̃1, · · · ,Σ̃L is bounded from below by the
generalization error for Σ̃! = In! for != 1, . . . ,L.

Proof of lemma 4.1. In the supplemental material, we show that µ! " 1− 1/α! for any
weight spectrum, which implies that (1−µ!)/µ! ! 1/(α!− 1). Substituting these bounds
in to the general expression for the generalization error in this regime from (23), the
claim follows.

Therefore, having Σ̃! *= In! for != 1, . . . ,L cannot improve generalization in the
α0,αmin > 1 regime. This is consistent with the large-width expansion in corollary 3.5,
where we can apply Jensen’s inequality to bound the weight-dependence of the correc-
tion as Eσ̃! [σ̃2

! ]/Eσ̃! [σ̃!]2 ! 1, with equality only when the weights are unstructured. In
other regimes, Σ̃1, · · · ,Σ̃L do not affect the generalization error. In contrast, a similar
argument shows that anisotropy in Σ̃0 can be beneficial in the target-averaged case, at
least in the absence of label noise. We formalize this as:

Lemma 4.2. Under the conditions of corollary 3.4, in the absence of label noise (η=0),
we have

ε̄"






(
1+

∑L
!=1

1−µ!
µ!

)(
1− 1

α0

)
E [σ̃0] , α0,αmin > 1

(1−αmin/α0)
1−αmin

E [σ̃0] , αmin < 1,αmin < α0

0, α0 < 1,α0 < αmin.

(30)

That is, ε̄ for a given Σ̃0 is bounded from above by the generalization error for a flat
spectrum Σ̃0 = E[σ̃0]In0.

Proof of lemma 4.2. In the supplemental material, we show that κ0 " (α0− 1)E[σ̃0].
As its defining equation (22) is of the same form as (20), the corresponding bound for
κmin follows immediately: κmin " (α0/αmin− 1)E[σ̃0]. Substituting these bounds into (27)
with η=0, the claim follows.

If E[σ̃0] is not finite, then this bound is entirely vacuous: ε̄"∞. If we do not average
over isotropically-distributed targets, then the effect of anisotropy in Σ̃0 is harder to
analyze. Previous works have, however, analyzed the interaction of data structure with
a fixed target in great detail for models with L=0 or L=1, showing that targets that
align with the top eigenvectors of Σ̃0 are easier to learn [5, 16, 17, 42, 46].

5. Power law spectra

We can gain further intuition for the effect of weight structure by considering an approx-
imately solvable model for anisotropic spectra: power laws [16, 19, 28]. Power law data
spectra have recently attracted considerable attention as a possible model for explain-
ing the scaling laws of generalization observed in large language models [16, 19, 28,
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32]. Maloney et al [19] proposed a single-hidden-layer (L=1) linear RFM with power-
law-structured data and unstructured weights as a model for neural scaling laws. Does
introducing power law structure into the weights affect the scaling laws predicted by
deep linear RFMs? We have the following result:

Corollary 5.1. At finite size, define each covariance matrix Σ̃! such that its j-th eigen-
value is σ̃!,j = ς̃!(n!/j)1+ω! for some fixed scale factor ς̃! > 0 and exponent ω! > 0. Then,
the limiting target-averaged generalization error is approximately

ε̄-






(
1+ΩL+

∑L
!=1

1
α!−1

)
χ(α0)+

(
ω0 +ΩL+

∑L
!=0

1
α!−1

)
η2, α0,αmin > 1

χ(α0/αmin)
1−αmin

+ αmin
1−αmin

η2, αmin < 1,αmin < α0

α0
1−α0

η2, α0 < 1,α0 < αmin,

(31)

where ΩL =
∑L

!=1ω! and for z> 1 we have χ(z)-−M−1
Σ̃0

(z)/z given by χ(z) =

ς̃0 {k(zω0 − 1)+ [2+ω0(1− k)] (1− 1/z)} for k = sinc[π/(1+ω0)]−(1+ω0).

Proof of corollary 5.1. Using the dictionary of notation in the supplemental material,
we can plug the approximate solutions for κ! and µ! derived by Maloney et al [19]
into (27) to obtain (31).

Therefore, the power law exponents ω1, · · · ,ωL of the weight covariances beyond the
first layer, which enter only through their sum ΩL, do not affect the scaling laws of
the generalization error with the dataset size and network widths. In particular, in the
absence of label noise (η=0) we can approximate the scaling of (31) in the regimes of
large or small hidden layer width by

ε̄∼
{
αω0
0 , αmin > 1,α0 + 1,

(α0/αmin)
ω0 , αmin < 1,α0/αmin + 1,

(32)

which recovers the results found by Maloney et al [19] for L=1 with unstructured
weights. This behavior, and the agreement of (31) with numerical experiments, is illus-
trated in figure 2. Consistent with lemma 4.1, generalization with power-law weight
structure is never better than with unstructured weights, as can be seen by compar-
ing (31) with (25)8.

6. Bayesian inference and the Gibbs estimator at large prior variance

Thus far, we have focused on ridge regression (6). Though this is the most commonly-
considered estimator in studies of RFMs [3–17, 19–21], one might ask whether our
qualitative findings—in particular, that feature weight structure beyond the first layer
is generally harmful for generalization—carry over to other estimators. Our approach to

8 In recent work with A. Atanasov, we have relaxed the assumptions of this analysis to include non-normalizable power law
spectra with exponents ω! !−1 and structured target vectors [44]. In some cases one can produce changes to the scaling laws of
generalization, but the overall conclusion that weight structure is generally unhelpful remains.
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Figure 2. Generalization for power-law spectra. (a). Target-averaged generalization
error ε̄ as a function of training data density 1/α0 for shallow models (L=1) of
varying hidden layer width α1/α0 in the absence of label noise (η=0). Here, the
data and weight spectra have identical power law decay ω0 = ω1 = 1. (b). As in (a),
but in the presence of label noise (η = 1/2). (c). As in (b), but for fixed hidden layer
width α1/α0 = 4, fixed data exponent ω0 = 1, and varying weight exponents ω1. In
all cases, solid lines show the predictions of (31), while dots with error bars show
the mean and standard error over 100 realizations of numerical experiments with
n0 = 1000. See the supplemental material for details of our numerical methods.

result 3.2 is easily extensible to the setting of zero-temperature Bayesian inference, which
has recently attracted substantial interest [13, 27, 34, 37, 47, 48], sparked by work from
Li & Sompolinsky [34]. In this case, we take seriously the Gibbs distribution p(v)∝ e−βL,
which in the ridge regression case was simply a convenient tool, and interpret it as the
Bayes posterior for a Gaussian likelihood of variance 1/β and a Gaussian prior with
covariance ΓL+1/(βλ). It is in this context conventional to fix λ= 1/β, such that the
prior variance does not scale with β. We can then study the average of the generalization
error (13) under this posterior in the zero-temperature limit β→∞, which we refer to as
the generalization error of the Gibbs estimator. We emphasize that this is not identical
to the Bayesian minimum mean squared error (MMSE) estimator given by the posterior
mean, which would coincide with the ridgeless estimator in the zero-temperature limit
(see the supplemental material).

For a deep RFM, this simply has the effect of adding a ‘thermal’ variance term to
the generalization error of the ridgeless estimator, which we describe in detail in the
supplemental material. We have:

Result 6.1. With the same setup as in result 3.2, the generalization error of the Gibbs
estimator for a RFM is

εBRF = εridgeless +

{ ∏L
!=0

κ!
α!
, α0,αmin > 1

0, otherwise,
(33)

where εridgeless is given by result 3.2, and κ! is defined as in (20).

Proof of result 6.1. We derive (33) alongside result 3.2 in the supplemental material.
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The Gibbs estimator is sensitive to the scale of the random feature weight distri-
butions through κ!, while as noted above the ridgeless estimator is not sensitive to
their overall scale. This direct dependence on κ! means that the simple argument of
lemma 4.1 cannot be applied. Indeed, in the limit of large prior variance, where the
thermal variance term dominates, structure can improve the performance of the Gibbs
estimator. We make this result precise in the following lemma:

Lemma 6.1. In the setting of result 6.1, consider Bayesian RFMs with weight covari-
ances scaled as τ!Σ̃! for != 1, . . . ,L. Then, in the non-trivial regime α0,αmin > 1 where
the thermal variance is non-vanishing, we have

lim
τ1,...,τL→∞

εBRF∏L
!=1 τ!

=
L∏

!=0

κ!
α!

" κ0
α0
ς2

L∏

!=1

(
1− 1

α!

)
, (34)

where the scalars κ! are defined in terms of the un-scaled covariances Σ̃! as in (20) and
ς2 ≡

∏L
!=1Eσ̃! [σ̃!]. Therefore, in the limit of large prior variance, including structure in

the weight priors is generically advantageous for generalization. If Eσ̃! [σ̃!] is not finite,
then the bound is vacuous.

Proof of lemma 6.1. The first part of (34) follows from (33) using the scaling properties
of κ!, while the bound follows from the bounds on κ! derived as part of lemma 4.2.

In contrast, weight structure is generally harmful for the Bayesian RFM in the limit
of small prior variance, as its performance then coincides with the ridgeless RFM, as can
be seen from the scaling of κ!. This example illustrates that there are cases in which,
depending on the estimator used, weight structure in deeper layers can sometimes be
helpful for generalization. However, whereas the ridgeless estimator is commonly used
in practice, the Gibbs estimator is less standard, and the limit of large prior variance
is certainly artificial9. Therefore, we emphasize that we give this example to show that
the behavior of the ridgeless estimator is not entirely general, not to show that weight
structure can be helpful in practical settings.

7. Discussion

We have computed learning curves for models with many layers of structured Gaussian
random features learning a linear target function, showing that structure beyond the
first layer is generally detrimental for generalization. This result is consistent with the
intuition that in deep linear models learning a single target direction it is sufficient
to modify the representation only at the first layer [13, 36]. It will be interesting to
investigate whether this intuition carries over to nonlinear networks learning complex
tasks, particularly including multi-index targets [35, 50]. Moreover, we have considered

9 In the doctoral thesis of the first author [49], these results are extended to the somewhat more interesting case of a deep linear
neural network, in which the hidden layer weights are also learned. The main outcome of this analysis is that weight structure does
not alter the primary conclusions of our past work in [13]: the generalization error of a deep linear network at zero temperature is
given by that of shallow linear regression plus a thermal variance term, and to O(1/α2

! ) coincides with that of the RFM.

https://doi.org/10.1088/1742-5468/ad642a 14

https://doi.org/10.1088/1742-5468/ad642a


Learning curves for deep structured Gaussian feature models

J.S
tat.

M
ech.(2024)

104022

only linear, Gaussian models. As mentioned in the Introduction, past works have estab-
lished Gaussian equivalence theorems for nonlinear RFMs with unstructured Gaussian
feature weights. It will be important to investigate the effect of feature weight structure
on Gaussian equivalence in future work, and determine whether our qualitative results
carry over to nonlinear RFMs in the proportional limit10.

Though our results are obtained using the replica trick, and we do not address the
possibility of replica symmetry breaking, they should be rigorously justifiable given the
convexity of the ridge regression problem [29, 33, 41]. We note that the replica approach
makes it straightforward to handle models of any finite depth [30]. The relevant aver-
ages could of course be computed with alternative random matrix theory techniques,
which could allow for a fully rigorous proof [5, 19–21]. Another more challenging setting
to study with either the replica trick or rigorous techniques would be that in which
one allows for correlations between weights in different layers. This setting could qual-
itatively capture aspects of feature learning in deep networks, which induces couplings
across depth [47].

In closing, we note that RFMs with structured weights may also have relevance
for biological neural networks. A recent study by Pandey et al [39] considered RFMs
with a single layer of random features (L=1) with correlated rows (Γ1 *= In0). In several
biologically-inspired settings, they showed that introducing this structure could improve
generalization, consistent with our results. More broadly, biological neural networks are
imbued with rich priors [52]; investigating what insights deep structured models can
afford for neuroscience will be an interesting subject for further study.
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A. Derivation of Results 3.1 and 3.2

In this Appendix, we sketch our replica-theory approach to computing the learning
curves, which leads Results 3.1 and 3.2. Many of the steps of this calculation are all
but identical to our previous works on replica approaches to the spectra of product
Wishart random matrices [1], and on unstructured deep Gaussian random feature
models [2], so we will sketch the major steps rather than spelling out all the details of
the algebra.

A.1. Gibbs distribution and replica free energy

We start by introducing a Gibbs distribution at fictitious inverse temperature �

associated with the ridge regression loss

L =
1

2

����
1

p
n0

XFv � y

����
2

+
�

2
k��1/2

L+1 vk22, (A.1)

with partition function

Z(�,D) /

Z
dv e

��L(v,D)
, (A.2)
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where we denote by D all randomness in the problem. For any � > 0, in the zero-
temperature limit � ! 1, this Gibbs distribution concentrates around the unique
minimum of the loss E [3, 4].

For the purpose of the replica computation, it is convenient to consider instead the
partition function of the posterior of a related Bayesian model, which corresponds to
absorbing �� into a redefinition of �L+1, and treating the ridge penalty as a Gaussian
prior

v ⇠prior N (0,�L+1). (A.3)

We can then recover the partition function of the ridge regression model by undoing
the rescaling: �L+1  �L+1/(��). Without this re-scaling—i.e., in the case in which
the prior variance is held fixed as the temperature goes to zero—this is the Gibbs
estimator in the zero-temperature limit, i.e., a Bayesian model with Gaussian likelihood
of vanishing variance [2, 5–8].

This gives us the partition function

Z = Ev⇠N (0,�L+1) exp

"
�
�

2

pX

µ=1

[g(xµ;v,F)� yµ]
2

#
, (A.4)

which is the extension to structured priors of the Gibbs estimator partition function
considered in [2]. By standard arguments, we expect the quenched free energy

f = � lim
p,n0,...,nL!1

1

p
logZ, (A.5)

to be self-averaging in the thermodynamic limit, i.e., f = EDf almost surely [3, 4]. To
compute the limiting quenched average, we use the replica trick, and write

f = � lim
m!0

lim
p,n0,...,nL!1

1

pm
logEDZ

m
, (A.6)

where we evaluate the moments EDZ
m for positive integer m, and assume that they

can be analytically continued to m! 0.
Following previous work [1, 2], we can compute the quenched averages and integrate

out the weights by introducing order parameters

(C0)
ab =

1

n0
(Fva

�w⇤)
>⌃0(Fv

b
�w⇤), (A.7)

for ` = 0,

(C`)
ab =

1

n` · · ·nL
(va)>U>

L · · ·U>
`+1⌃`U`+1 · · ·ULv

b (A.8)

for ` = 1, . . . , L� 1 and

(CL)
ab =

1

nL
(va)>⌃Lv

b
, (A.9)

along with corresponding Lagrange multipliers Ĉ`, which yields

EDZ
m =

Z
dC0 dĈ0

(4⇡i/n0)m(m+1)/2

Z
dC1 dĈ1

(4⇡i/n1)m(m+1)/2
· · ·

Z
dCL dĈL

(4⇡i/nL)m(m+1)/2
exp

h
�
pm

2
S

i

(A.10)
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for

mS = log det(Im + �C0 + �⌘
21m1>

m)

� ↵0
1

n0
v(w̃⇤1

>
m)>[Ĉ0 ⌦ ⌃̃0][Imn0 �C1Ĉ0 ⌦ ⌃̃0]

�1 v(w̃⇤1
>
m)

+
LX

`=0

↵`


tr(C`Ĉ`) +

1

n`
log det(Imn` �C`+1Ĉ` ⌦ ⌃̃`)

�
, (A.11)

where we let CL+1 = Im and

⌃̃` = �1/2
`+1⌃`�

1/2
` (A.12)

for ` = 0, . . . , L. We note that ⌦ here denotes the Kronecker product, and we use the
convention that the standard matrix product has higher precedence than the Kronecker
product, i.e., AB ⌦ C = (AB) ⌦ C. Importantly, the quantity of interest—the
generalization error—is simply given by the diagonal elements of C0, i.e., ✏ = (C0)aa.
Therefore, if we can solve for the order parameters at zero temperature, we will obtain
the generalization error.

In the thermodynamic limit, the integral over these order parameters can be
evaluated using the method of steepest descent. We make a replica symmetric Ansatz,
and seek saddle points of the form

C` = q`Im + c`1m1>
m, (A.13)

Ĉ` = q̂`Im + ĉ`1m1>
m. (A.14)

Under this Ansatz, we have

S = log(1 + �q0) +
�(c0 + ⌘

2)

1 + �q0

� ↵0
1

n0
(w̃>

⇤ ⌃̃0(In0 � q1q̂0⌃̃0)
�1w̃⇤)q̂0

+
LX

`=0

↵`

✓
q`q̂` + q`ĉ` + c`q̂` + E�̃` log(1� q`+1q̂`�̃`)

� (q`+1ĉ` + c`+1q̂`)E�̃`


�̃`

1� q`+1q̂`�̃`

�◆

+O(m) (A.15)

to leading order in m, where we recall the boundary condition qL+1 = 1, cL+1 = 0 [1].
The resulting saddle point equations can be simplified to give a closed system for the
replica non-uniform components,

↵0q̂0 = �
�

1 + �q0
(A.16)

↵`q̂` = ↵`�1q̂`�1E�̃`�1


�̃`�1

1� q`q̂`�1�̃`�1

�
(` = 1, . . . , L) (A.17)

q` = q`+1E�̃`


�̃`

1� q`+1q̂`�̃`

�
(` = 0, . . . , L) (A.18)
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with the boundary condition qL+1 = 1, and a linear system for the replica uniform
components,

↵0ĉ0 =
�
2(c0 + ⌘

2)

(1 + �q0)2
(A.19)

↵1ĉ1 = ↵0
1

n0
(w̃>

⇤ ⌃̃
2
0(In0 � q1q̂0⌃̃0)

�2w̃⇤)q̂
2
0

+ ↵0

 
ĉ0E�̃0


�̃0

1� q1q̂0�̃0

�
+ (q1ĉ0 + c1q̂0)q̂0E�̃0

"✓
�̃0

1� q1q̂0�̃0

◆2
#!

(A.20)

↵`

↵`�1
ĉ` = ĉ`�1E�̃`�1


�̃`�1

1� q`q̂`�1�̃`�1

�

+ (q`ĉ`�1 + c`q̂`�1)q̂`�1E�̃`�1

"✓
�̃`�1

1� q`q̂`�1�̃`�1

◆2
#

(` = 2, . . . , L)

(A.21)

c0 =
1

n0
(w̃>

⇤ ⌃̃0(In0 � q1q̂0⌃̃0)
�2w̃⇤)

+

 
c1E�̃0


�̃0

1� q1q̂0�̃0

�
+ (q1ĉ0 + c1q̂0)q1E

"✓
�̃0

1� q1q̂0�̃0

◆2
#!

(A.22)

c` = c`+1E�̃`


�̃`

1� q`+1q̂`�̃`

�

+ (q`+1ĉ` + c`+1q̂`)q`+1E�̃`

"✓
�̃`

1� q`+1q̂`�̃`

◆2
#

(` = 1, . . . , L)

(A.23)

with the boundary condition cL+1 = 0.

A.2. Converting between the Gibbs and maximum-likelihood estimators

As our primary aim is to study ridge regression, we must now account for the fact that
the prior over the readout weights scales with the inverse temperature �. In particular,
we have a prior with scaled covariance �L+1/(��), where �L+1 does not scale with �.
If we perform this rescaling in (A.16) and (A.16), we can see that the re-scaled order
parameters

q̄` = ��q` (A.24)

¯̂q` =
1

��
q̂` (A.25)

c̄` = c` (A.26)

¯̂c` =
1

(��)2
ĉ` (A.27)

obey an identical system of equations to the original order parameters in the Bayesian
case at inverse temperature

� =
1

�
. (A.28)
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Therefore, if we can solve the saddle point equations for the Gibbs estimator in the
zero-temperature limit, we can simply read o↵ the corresponding result for the ridge
regression estimator in the ridgeless limit. The important di↵erence is that the replica
nonuniform component q0 of C0 is O(1/�) in the ridge regression case, hence only
the replica uniform component c0 contributes to the generalization error. We note
that this allows one to read o↵ the generalization error of a deep linear RFM with
unstructured features from the results of our previous work [2] simply by setting the
Bayesian prior variance �

2 to zero.

A.3. Solutions for the generalization error

The replica-symmetric saddle point equations in (A.16) and (A.19) are nearly identical
to those analyzed our computation of the maximum eigenvalue of a structured Wishart
product matrix [1], which in turn are related to those in our original paper on
unstructured deep linear RFMs [2] by the replacement of the spectral moment generating
function of the identity matrix with the appropriate spectral generating functions.
Given this similarity, and the fact that we have provided extensive exposition of how
to solve such systems in those previous works, we will merely state the results for the
order parameters relevant to the computation of the generalization error.

Let

M⌃̃`
(z) = lim

n`!1

1

n`
tr[⌃̃`(zIn` � ⌃̃`)

�1] (A.29)

be the moment generating function of ⌃̃`, with functional inverse M
�1
⌃̃`

(z). Then, at

finite temperature, after eliminating the Lagrange multipliers, the replica nonuniform
components of the order parameters are given by

q` =
LY

j=`

A

↵j
M

�1
⌃̃j

✓
A

↵j

◆
(A.30)

for ` = 0, . . . , L, where

A = q0q̂0 = �
�q0

1 + �q0
(A.31)

satisfies the closed equation

�
1

�
=

A+ 1

A

LY

`=0

A

↵`
M

�1
⌃̃`

✓
A

↵`

◆
. (A.32)

From [1], we recognize this as the self-consistent equation for the moment generating
function M = A of the feature kernel K = XFF>X>

/n0, evaluated at �1/�. Even in
the unstructured case, this equation must in general be solved numerically at finite
temperature [1].

Given a solution to this equation, we can solve the system of linear equations
(A.19) for c0, mirroring the computation of the extremal eigenvalues of structured
product Wishart matrices in [1]. After eliminating the Lagrange multipliers, this
calculation boils down to solving a three-term recurrence relation, which is detailed in



S6

previous works [1, 2]. We therefore simply state the result of this computation here.
Let ⇣ = �A, which then satisfies

� =
1� ⇣

⇣

LY

`=0

�⇣

↵`
M

�1
⌃̃`

✓
�
⇣

↵`

◆
. (A.33)

For ` = 0, . . . , L, let

` = �M
�1
⌃̃`

✓
�
⇣

↵`

◆
(A.34)

so that ` satisfies

⇣

↵`
= E�̃`


�̃`

` + �̃`

�
. (A.35)

Viewing ` as a function of ⇣, we may alternatively write the self-consistent equation
for ⇣ as

1

�
=

1� ⇣

⇣

LY

`=0

⇣

↵`
`(⇣) (A.36)

In terms of `, let

µ` = �
↵`

⇣
`M

0
⌃̃`

(�`) (A.37)

= 1�
↵`

⇣
E�̃`

"✓
�̃`

` + �̃`

◆2
#

(A.38)

We then finally have

"
1 +

 
LX

`=0

1� µ`

µ`

!
(1� ⇣)

#
c0 =

1

µ0

1

n0
(w̃>

⇤ ⌃̃0(0In0 + ⌃̃0)
�2w̃⇤)

2
0

+

 
LX

`=1

1� µ`

µ`

!
1

n0
(w̃>

⇤ ⌃̃0(0In0 + ⌃̃0)
�1w̃⇤)0

+

✓ LX

`=0

1� µ`

µ`

◆
⇣⌘

2
. (A.39)

Using the mapping of Appendix A.2 and again defining the weighted generating function

 (z) = lim
n0!1

1

n0
w̃>

⇤ ⌃̃0(zIn0 + ⌃̃0)
�1w̃⇤. (A.40)

this yields Result 3.1.
We now want to extract the zero-temperature/ridgeless limit. As � ! 1, the

self-consistent equation for ⇣ admits the solution

⇣ = 1, (A.41)
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valid for ↵` > 1 for all `, which gives q0 ⇠ O(1), the solution

⇣ = ↵0, (A.42)

valid for ↵0 < 1, ↵0 < ↵1, . . . ,↵L, which gives q0 ⇠ O(1/�), and, for `⇤ = 0, . . . , L, the
solutions

⇣ = ↵`⇤ , (A.43)

valid for ↵`⇤ < 1, ↵`⇤ < ↵0, ↵`⇤ < ↵` for all ` 6= `⇤, which also give q0 ⇠ O(1/�).
These solutions mirror those found in the unstructured setting [2]. We remark that, as
in [2], we can determine the regimes in which each solution is physical by demanding
that the order parameters q` are non-negative.

For the ⇣ ! 1 solution, we immediately have

c0 =
1

µ0

1

n0
(w̃>

⇤ ⌃̃0(0In0 + ⌃̃0)
�2w̃⇤)

2
0

+

 
LX

`=1

1� µ`

µ`

!
1

n0
(w̃>

⇤ ⌃̃0(0In0 + ⌃̃0)
�1w̃⇤)0

+

✓ LX

`=0

1� µ`

µ`

◆
⇣⌘

2
, (A.44)

where by a minor abuse of notation we simply write ` and µ` for the corresponding
quantities evaluated at ⇣ = 1.

If ⇣ ! ↵`, then ` # 0 and µ` # 0. We can then apply L’Hôpital’s rule to evaluate
the limit in A.39, which corresponds to extracting the most divergent terms on each
side of A.39. For the ⇣ = ↵0 solution, one finds that

c0 =
↵0

1� ↵0
⌘
2
. (A.45)

Finally, for the solutions with ⇣ = ↵`⇤ for `⇤ = 1, . . . , L, one finds that

c0 =
1

1� ↵`⇤

1

n0
(w̃>

⇤ ⌃̃0(0In0 + ⌃̃0)
�1w̃⇤)0

+
↵`⇤

1� ↵`⇤

⌘
2
, (A.46)

where we must be careful to recall that 0 now satisfies

↵`⇤

↵0
= E�̃0


�̃0

0 + �̃0

�
. (A.47)

But, we recognize that ↵`⇤ = ↵min = min{↵1, . . . ,↵L}, so we will write

min = 0

����
⇣=↵min

(A.48)

to avoid clashing with our notation for the ⇣ = 1 solution.
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Therefore, recalling from Appendix A.2 that the generalization error for the ridge
regression estimator in the ridgeless limit is simply given by c0, we have

✏ridgeless =

8
><

>:

�PL
`=1

1�µ`

µ`

�
0 (0)�

2
0

µ0
 
0(0) +

�PL
`=0

1�µ`

µ`

�
⌘
2
, ↵0,↵min > 1

min (min)
1�↵min

+ ↵min
1�↵min

⌘
2
, ↵min < 1,↵min < ↵0

↵0
1�↵0

⌘
2
, ↵0 < 1,↵0 < ↵min,

(A.49)

as reported in Result 3.2, where we again define the weighted generating function

 (z) = lim
n0!1

1

n0
w̃>

⇤ ⌃̃0(zIn0 + ⌃̃0)
�1w̃⇤. (A.50)

To obtain the average generalization error for the Gibbs estimator in the zero-
temperature limit, we must account for the e↵ect of q0 in the regime ↵` > 1, as in all
other regimes it is q0 ⇠ O(1/�). But, we recognize that

q0 =
LY

j=0

�1

↵j
M

�1
⌃̃j

✓
�1

↵j

◆
=

LY

`=0

`

↵`
(A.51)

from the definition above, hence we conclude that

✏BRFM = ✏ridgeless +

8
><

>:

QL
`=0

`
↵`
, ↵0,↵min > 1

0, ↵min < 1,↵min < ↵0

0, ↵0 < 1,↵0 < ↵min.

(A.52)

A.4. Physical interpretation of the order parameters and thermal bias-variance
decomposition

With these results in hand, we now comment on the interpretation of the replica
uniform and replica non-uniform contributions to

C0 = q0Im + c01m1>
m. (A.53)

At the saddle point, we have

(C0)
ab = ED

⌧
1

n0
(Fva

�w⇤)
>⌃0(Fv

b
�w⇤)

�

�

, (A.54)

where h·i� denotes the expectation with respect to the replicated Gibbs measure at
inverse temperature �. Under the replica-symmetric Ansatz, considering o↵-diagonal
elements a 6= b, we can use the fact that the replicas are initially uncoupled and
identical to write

c0 = C
ab
0 (A.55)

= ED
1

n0
(Fhva

i� �w⇤)
>⌃0(Fhv

b
i� �w⇤) (A.56)

= ED
1

n0
(Fhvi� �w⇤)

>⌃0(Fhvi� �w⇤) (A.57)

= ED
1

n0
k⌃1/2

0 (Fhvi� �w⇤)k
2
. (A.58)
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Similarly, we have

q0 = C
aa
0 � C

ab
0 (A.59)

= ED

⌧
1

n0
(Fva

�w⇤)
>⌃0(Fv

a
�w⇤)

�

�

� c0 (A.60)

= ED

⌧
1

n0
(F�v + Fhvi� �w⇤)

>⌃0(F�v + Fhvi� �w⇤)

�

�

� c0 (A.61)

= ED

⌧
1

n0
(F�v)>⌃0(F�v)

�

�

+ ED
1

n0
(Fhvi� �w⇤)

>⌃0(Fhvi� �w⇤)� c0

(A.62)

= ED

⌧
1

n0
(F�v)>⌃0(F�v)

�

�

(A.63)

= ED

⌧
1

n0
k⌃1/2

0 F�vk2
�

�

, (A.64)

where we write �v = v � hvi� . Therefore, at the saddle point, c0 and q0 correspond
exactly to the bias and variance terms in the thermal bias-variance decomposition of
the generalization error:

ED

⌧
1

n0
k⌃1/2

0 (Fv �w⇤)k
2

�

�

= ED
1

n0
k⌃1/2

0 (Fhvi� �w⇤)k
2 + ED

⌧
1

n0
k⌃1/2

0 F�vk2
�

�

.

(A.65)

This makes concrete an argument which was presented only intuitively in [2]. As a
result, if one considered the Bayesian MMSE estimator v̂ = hvi� , the zero-temperature
generalization error would simply coincide with that for the ridgeless estimator.

B. Properties of the inverse generating functions

Here, we record a few useful properties of the inverse spectral generating functions

1

↵`
= �M⌃̃`

(�`) = E�̃`


�̃`

` + �̃`

�
(B.1)

and their relatives

µ` = �↵``M
0
⌃̃`

(�`) = 1� ↵`E�̃`

"✓
�̃`

` + �̃`

◆2
#
. (B.2)

These results are used in the proofs of Lemmas

B.1. Dependence on width

Implicitly di↵erentiating the self-consistent equation defining `, we have

d`

d(1/↵`)
= �

1

E�̃`

h
�̃`

(`+�̃`)2

i , (B.3)

showing that ` is a decreasing function of 1/↵`. As 1/↵` # 0, we should have ` " 1,
while as 1/↵` " 1, we should have ` # 0.
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B.2. Behavior under rescaling

Consider the re-scaling ⌃̃0
` = ⌧`⌃̃` for ⌧` > 0. Then, we have ` and ̃

0
` given by

1

↵`
= �M⌃̃`

(�`) = E�̃`


�̃`

` + �̃`

�
(B.4)

and

1

↵`
= �M⌃̃0

`
(�

0
`) = E�̃`


⌧`�̃`


0
` + ⌧`�̃`

�
(B.5)

respectively. We can then see that we should have


0
` = ⌧``. (B.6)

B.3. Bound on ` in terms of isotropic spectrum

We now prove that

`  (↵` � 1)E[�̃`] (B.7)

in the relevant regime ↵` > 1. For any z > 0,

�̃` 7!
�̃`

(z + �̃`)
(B.8)

is a concave function of �̃` � 0, hence Jensen’s inequality implies that

E�̃`


�̃`

(z + �̃`)

�


E[�̃`]

z + E[�̃`]
. (B.9)

Then, note that

z 7! E�̃`


�̃`

z + �̃`

�
(B.10)

and

z 7!
E[�̃`]

z + E[�̃`]
(B.11)

are both decreasing functions of z � 0, and both are equal to 1 when z = 0. Thus, if
` > 0 solves

1

↵`
= E�̃`


�̃`

` + �̃`

�
(B.12)

as specified by its definition and ̄` > 0 solves

1

↵`
=

E[�̃`]

̄` + E[�̃`]
, (B.13)

we must have

`  ̄`. (B.14)

But, we can easily see that ̄` = (↵` � 1)E[�̃`], hence the claim follows.
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B.4. Bound on µ` terms of isotropic spectrum

We next prove that

µ`  1�
1

↵`
(B.15)

in the relevant regime ↵` > 1. By definition, we have

µ` = 1� ↵`E�̃`

"✓
�̃`

` + �̃`

◆2
#
. (B.16)

By Jensen’s inequality and the definition of `, we have

E�̃`

"✓
�̃`

` + �̃`

◆2
#
� E�̃`


�̃`

` + �̃`

�2
(B.17)

=
1

↵
2
`

. (B.18)

As ↵` > 1 by assumption, this bound is always positive. Therefore, we conclude the
desired claim.

C. Simplifying the generalization error for fixed data

In this appendix, we show how the ridgeless generalization error can be simplified in
each regime for fixed data. Using the solution to the ridge regression problem,

v̂ =
1

p
n0

✓
���1

L+1 +
1

n0
F>X>XF

◆�1

F>X>y, (C.1)

we have

✏ = lim
�#0

lim
p,n0,...,nL!1

ED
1

n0
k⌃1/2

0 (Fv̂ �w⇤)k
2 (C.2)

= lim
�#0

lim
p,n0,...,nL!1

ED
1

n0

�����
1

p
n0

⌃1/2
0 F

✓
���1

L+1 +
1

n0
F>X>XF

◆�1

F>X>y �⌃1/2
0 w⇤

�����

2

.

(C.3)

Following our discussion in the main text, we may set �L+1 = InL without loss of
generality, as otherwise we may re-define ⌃L. Then, we have

✏ = lim
�#0

lim
p,n0,...,nL!1

ED
1

n0

�����
1

p
n0

⌃1/2
0 F

✓
�InL +

1

n0
F>X>XF

◆�1

F>X>y �⌃1/2
0 w⇤

�����

2

.

(C.4)

In the subsequent sections, we will simplify this expression in each regime.
For the Gibbs estimator, we must account for the additional contribution to the

generalization error from thermal variance. Following our previous work [2], we may
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compute the bias and variance terms directly from the posterior moment generating
function of the readout weight vector,

Z(j) /

Z
dv exp

✓
�
�

2
kn

�1/2
0 XFv � yk2 �

1

2
k��1/2

L+1 vk2 + j>v

◆
(C.5)

/ exp

✓
�n

�1/2
0 y>XF(��1

L+1 + �n
�1
0 F>X>XF)�1j

+
1

2
j>(��1

L+1 + �n
�1
0 F>X>XF)�1j

◆
, (C.6)

yielding

hvi� =
1

p
n0

✓
1

�
��1
L+1 +

1

n0
F>X>XF

◆�1

F>X>y (C.7)

and

hvv>
i� � hvi�hvi

>
� =

✓
��1
L+1 +

�

n0
F>X>XF

◆�1

. (C.8)

We then can see that

hvi� = v̂

����
�=1/�

, (C.9)

which is precisely in agreement with the conversion in Appendix A.2. Considering the
thermal bias-variance decomposition of the generalization error for the Gibbs estimator,

ED

⌧
1

n0
k⌃1/2

0 (Fv �w⇤)k
2

�

�

= ED
1

n0
k⌃1/2

0 (Fhvi� �w⇤)k
2 + ED

⌧
1

n0
k⌃1/2

0 F�vk2
�

�

,

(C.10)

we can then see that the bias term at zero temperature coincides exactly with the
generalization error of the ridgeless estimator, as we found in Appendix A. The variance
term is

lim
�!1

ED

⌧
1

n0
k⌃1/2

0 F�vk2
�

�

= lim
�!1

ED
1

n0
tr

"
⌃0F

✓
��1
L+1 +

�

n0
F>X>XF

◆�1

F>

#
.

(C.11)

In both the bias and variance terms, we can see that we may set �L+1 = InL without
loss of generality, as otherwise we may simply re-scale ⌃L as discussed in Lemma 2.1.
Then, we need only consider the thermal variance term

lim
�!1

ED

⌧
1

n0
k⌃1/2

0 F�vk2
�

�

= lim
�!1

ED
1

n0
tr

"
⌃0F

✓
InL +

�

n0
F>X>XF

◆�1

F>

#
.

(C.12)

Here, we leave the thermodynamic limit implicit to allow the expression to fit on a
single line.
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C.1. The overparameterized regime

First, consider the regime p < min{n0, . . . , nL}. Here, we expect the kernel

K =
1

n0
XFF>X> (C.13)

to be invertible with probability one in the thermodynamic limit, and with overwhelming
probability at large but finite size [9]. Applying the push-through identity and passing
to the ridgeless limit, we have

✏ = lim
�#0

lim
p,n0,...,nL!1

ED
1

n0

�����
1

p
n0

⌃1/2
0 FF>X>

✓
�Ip +

1

n0
XFF>X>

◆�1

y �⌃1/2
0 w⇤

�����

2

(C.14)

= lim
p,n0,...,nL!1

ED
1

n0

���
p
n0⌃

1/2
0 FF>X> �

XFF>X>��1
y �⌃1/2

0 w⇤

���
2
. (C.15)

Averaging over label noise, we have

✏ = lim
p,n0,...,nL!1

ED
1

n0

���⌃1/2
0 FF>X> �

XFF>X>��1
Xw⇤ �⌃1/2

0 w⇤

���
2

+ ⌘
2 lim
p,n0,...,nL!1

ED

���⌃1/2
0 FF>X> �

XFF>X>��1
���
2
. (C.16)

Turning our attention to the Gibbs estimator, we can use the Woodbury identity
to write the thermal variance term as

ED

⌧
1

n0
k⌃1/2

0 F�vk2
�

�

= ED
1

n0
tr

"
⌃0F

✓
InL +

�

n0
F>X>XF

◆�1

F>

#
(C.17)

= ED
1

n0
tr
⇥
⌃0FF

>⇤
� ED

1

n0
tr

"
⌃0FF

>X>
✓
�
�1InL +

1

n0
XFF>X>

◆�1

XFF>

#

(C.18)

= ED
1

n0
tr
⇥
⌃0FF

>⇤
� ED

1

n0
tr

"
⌃0FF

>X>
✓

1

n0
XFF>X>

◆�1

XFF>

#
+O(��1),

(C.19)

where the thermodynamic limit is implied [2]. Therefore, in this regime we do not
expect the thermal variance term to vanish, consistent with Result 6.1.

C.2. The bottlenecked regime

If min{n1, . . . , nL} < min{n0, p}, then the situation is slightly more complicated. Let

`min = argmin
`

n` (C.20)

be the index of the narrowest hidden layer. Then, let

F1 =
1

p
n1 · · ·n`min

U1 · · ·U`min 2 Rn0⇥nmin (C.21)
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and

F2 =
1

p
n`min+1 · · ·nL

U`min+1 · · ·UL 2 Rnmin⇥nL (C.22)

such that

F = F1F2. (C.23)

Then, the matrices F>
1 X

>XF1 and F2F>
2 are invertible with probability one, and

upon passing to the ridgeless limit we have

✏ = lim
p,n0,...,nL!1

ED
1

n0
k
p
n0⌃

1/2
0 F1(F

>
1 X

>XF1)
�1F>

1 X
>y �⌃1/2

0 w⇤k
2
. (C.24)

Averaging over the label noise,

✏ = lim
p,n0,...,nL!1

ED
1

n0
k⌃1/2

0 F1(F
>
1 X

>XF1)
�1F>

1 X
>Xw⇤ �⌃1/2

0 w⇤k
2

+ ⌘
2 lim
p,n0,...,nL!1

EDk⌃
1/2
0 F1(F

>
1 X

>XF1)
�1F>

1 X
>
k
2 (C.25)

Focusing on the label noise term, we have

EDk⌃
1/2
0 F1(F

>
1 X

>XF1)
�1F>

1 X
>
k
2 = ED tr[F>

1 ⌃0F1(F
>
1 X

>XF1)
�1]. (C.26)

Then, using the fact that

X>X ⇠ Wn0(⌃0, p), (C.27)

we have

F>
1 X

>XF1 ⇠ Wnmin(F
>
1 ⌃0F1, p). (C.28)

Then, as we expect the matrix F>
1 ⌃0F1 to be invertible with overwhelming probability,

the standard formula for the mean of an inverse-Wishart distribution [9] gives

ED(F
>
1 X

>XF1)
�1 =

1

p� nmin � 1
(F>

1 ⌃0F1)
�1

, (C.29)

so

lim
p,n0,...,nL!1

ED tr[F>
1 ⌃0F1(F

>
1 X

>XF1)
�1] = lim

p,n0,...,nL!1

nmin

p� nmin � 1
(C.30)

=
↵min

1� ↵min
. (C.31)

This proves that, in this regime, the label noise term does not depend on data structure,
matching the result of our replica computation.

Considering the Gibbs estimator, we can see immediately that the thermal variance
term is O(��1) because of the fact that F>

1 X
>XF1 and F2F>

2 are invertible with
probability one. This is consistent with Result 6.1.



S15

C.3. The overdetermined regime

Finally, consider the regime in which n0 < min{p, n1, . . . , nL}. Then, both X>X and
FF> are invertible with probability one, and we can easily compute

✏ = lim
p,n0,...,nL!1

lim
�#0

ED
1

n0
k⌃1/2

0 (�InL +
1

n0
FF>X>X)�1 1

p
n0

FF>X>y �w⇤k
2

(C.32)

= lim
p,n0,...,nL!1

EDk⌃
1/2
0 (X>X)�1X>⇠k2 (C.33)

= ⌘
2 lim
p,n0,...,nL!1

ED tr[⌃0(X
>X)�1]. (C.34)

Then,

(X>X)�1
⇠ W

�1
n0

(⌃�1
0 , p), (C.35)

so using the formula for the mean of the inverse-Wishart [9] we have

✏ = ⌘
2 lim
p,n0,...,nL!1

ED tr[⌃0(X
>X)�1] (C.36)

= ⌘
2 lim
p,n0,...,nL!1

n0

p� n0 � 1
(C.37)

=
↵0

1� ↵0
⌘
2
, (C.38)

as we found using replicas.
Here, again, we can see that the thermal variance term for the Gibbs estimator is

O(��1), matching Result 6.1.

D. A notational dictionary

In this appendix, we show that special cases of our general result recover the results
reported in previous works. This is largely a matter of translating notation, as the
conventions used in di↵erent communities are often at odds with each other.

D.1. Shallow ridgeless regression

In the shallow case L = 0, our general result for a fixed target (Result 3.2) reduces to

✏ =

8
>><

>>:

�

2
0

µ0
 
0(0) +

1� µ0

µ0
⌘
2
, ↵0 > 1

↵0

1� ↵0
⌘
2
, ↵0 < 1

(D.1)

where, writing expectation with respect to the limiting spectral distribution of ⌃0 as
E�0 , we recall that 0 is determined by the implicit equation

1

↵0
= �M⌃0(�0) = E�0


�0

0 + �0

�
, (D.2)

in terms of which we have

µ0 = 1� ↵0E�0

"✓
�0

0 + �0

◆2
#
, (D.3)
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and that

 (z) = lim
n0!1

1

n0
w>

⇤ ⌃0(zIn0 +⌃0)
�1w⇤. (D.4)

Working in the eigenbasis of ⌃0 and assuming that kw⇤k
2 = n0, we introduce the

weighted density

⇢(�0) = lim
n0!1

1

n0

n0X

j=1

(w⇤)
2
j�(�0 � �j) (D.5)

in terms of which we have

 (z) = E�0⇠⇢


�0

z + �0

�
(D.6)

and

� 
0(z) = E�0⇠⇢


�0

(z + �0)2

�
. (D.7)

We can now make contact with the result of Hastie et al. [10]. We note that those
authors use an opposite definition for p and n: following the convention in the statistics
literature, they use p for the dimensionality and n for the number of examples, while
we follow the convention in the physics literature of using n0 for the dimensionality
and p for the number of examples. Then, Hastie et al. [10]’s �, defined such that,
in our terms, n0/p ! �, is precisely our ↵0. Moreover, they use H(z) to denote the
limiting spectral law of ⌃0, and G(z) to denote the law corresponding to the weighted
density we define above as ⇢. We note also that their �2 is our ⌘2. In these terms, their
Theorem 2 gives the generalization error in the overparameterized regime ↵0 > 1 as

✏ =

8
<

:1 + ↵0c0

E�0 [
�2
0

(1+c0↵0�0)2
]

E�0 [
�0

(1+c0↵0�0)2
]

9
=

;E�0⇠⇢


�0

(1 + c0↵0�0)2

�
+ ⌘

2
↵0c0

E�0 [
�2
0

(1+c0↵0�0)2
]

E�0 [
�0

(1+c0↵0�0)2
]

(D.8)

where c0 is defined by the implicit equation

1�
1

↵0
= E�0


1

1 + c0↵0�0

�
. (D.9)

Subtracting one from both sides, the implicit equation for c0 gives

1

↵0
= E�0


c0↵0�0

1 + c0↵0�0

�
(D.10)

from which we can see that

c0↵0 =
1

0
. (D.11)

Then, we have

E�0⇠⇢


�0

(1 + c0↵0�0)2

�
= 

2
0E�0⇠⇢


�0

(0 + �0)2

�
(D.12)

= �
2
0 

0(0) (D.13)
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and

↵0c0

E�0 [
�2
0

(1+c0↵0�0)2
]

E�0 [
�0

(1+c0↵0�0)2
]
=

E�0 [
(↵0c0�0)

2

(1+c0↵0�0)2
]

E�0 [
↵0c0�0

(1+c0↵0�0)2
]

(D.14)

=
E�0 [

�2
0

(0+�0)2
]

E�0 [
0�0

(0+�0)2
]

(D.15)

=
1� µ0

↵0E�0 [
0�0

(0+�0)2
]

(D.16)

=
1� µ0

↵0E�0 [
�0

0+�0
]� ↵0E�0 [

�2
0

(0+�0)2
]

(D.17)

=
1� µ0

µ0
, (D.18)

which proves the equivalence of our results. This also shows that we recover the
results of other works on ridgeless kernel interpolation [11–15] that are in this setting
equivalent to the results of Hastie et al. [10].

D.2. Two-layer linear random feature models with unstructured weights and isotropic
targets

Another special case in which we can make contact with prior work is that of a single
hidden layer (L = 1) and with target averaging. In this case, our general result from
Corollary 3.4 reduces to

✏̄ =

8
>>>>>><

>>>>>>:

✓
1 +

1

↵1 � 1

◆
�(↵0) +

✓
1� µ0

µ0
+

1

↵0 � 1

◆
⌘
2

↵0,↵1 > 1

1

1� ↵1
�

✓
↵0

↵1

◆
+

↵1

1� ↵1
⌘
2

↵1 < 1,↵1 < ↵0

↵0

1� ↵0
⌘
2

↵0 < 1,↵0 < ↵1

(D.19)

where in this case we find it convenient to write 0/↵0 and ↵0min/↵min in terms of
�(z), which solves

1 = �zM⌃̃0
[�z�(z)] (D.20)

= E�̃0


�̃0

�(z) + z�1�̃0

�
. (D.21)

It is then easy to show that our result agrees with that of Maloney et al. [16]. Their
notation is:

M = n0 (D.22)

N = n1 (D.23)

T = p. (D.24)
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When M > N,T , their result is, in the absence of label noise,

✏̄ =
1

M

8
>><

>>:

1

1�N/T
��1(N,M), N < T

1

1� T/N
��1(T,M), N > T,

(D.25)

where ��1(N,M) solves

1 = tr[⌃0(��1(N,M)IM +N⌃0)
�1] (D.26)

and similarly for ��1(T,M). To map this to our results, let us re-define

�̄�1(N,M) ⌘
1

M
��1(N,M), (D.27)

which then satisfies

1 =
1

M
tr[⌃0(�̄�1(N,M)IM + (N/M)⌃0)

�1], (D.28)

or

N

M
= �M⌃0

✓
�
M

N
�̄�1(N,M)

◆
(D.29)

Then, we can see that, in our notation,

�̄�1(N,M) = �

✓
M

N

◆
= �

✓
↵0

↵1

◆
, (D.30)

while

�̄�1(T,M) = �

✓
M

T

◆
= �(↵0). (D.31)

Then, noting that

1

1� T/N
=

1

1� 1/↵1
=

↵1

↵1 � 1
= 1 +

1

↵1 � 1
, (D.32)

we can see that we recover their result in these regimes. We can also map their �0 to
our µ0. For T < M , they let

�0

1 +�0
=

MX

j=1

T�
2
j

(T�j +��1)2
(D.33)

=
1

T

MX

j=1

�
2
j

(�j +M/T �̄�1)2
, (D.34)

hence we can see that

�0

1 +�0
= 1� µ0. (D.35)
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This mapping also enables our application of their interpolating approximate
solutions for ��1 and �0 in the case of power law spectra. For a finite-size spectrum

�j =
�+

j1+!
(j = 1, . . . ,M), (D.36)

with

�+ = M
1+!

��, (D.37)

where we denote the exponent by ! rather than ↵ as Maloney et al. [16] do to avoid
clashing with our notation elsewhere, they obtain the approximate solution

1

M
��1(N,M) =

8
><

>:

��

⇢
k

✓
M

N

◆!

� 1

�
+ [2 + !(1� k)]

✓
1�

N

M

◆�
, N < M

0 N > M

(D.38)

for

k =

2

4
⇡

1+!

sin
⇣

⇡
1+!

⌘

3

5
1+!

=

2

4 1

sinc
⇣

⇡
1+!

⌘

3

5
1+!

, (D.39)

which leads to the expression

�(z) =

8
><

>:

��

⇢
k(z! � 1) + [2 + !(1� k)]

✓
1�

1

z

◆�
, z > 1

0 z < 1.

(D.40)

Moreover, for T < M , they give the approximate solution

�0(T,M) = ! +
1

M/T � 1
. (D.41)

By applying these results, we obtain the result claimed in the main text, Corollary
5.1. We note that we fix �� to be constant rather than �+ as Maloney et al. [16] do,
which ensures normalizability of the limiting eigenvalue distribution at the expense of
diverging moments.

D.3. Deep linear models with unstructured weights and data

In [2], we studied deep Bayesian linear models with unstructured features and data.‡
There, and in very recent work by Schröder et al. [17], a di↵erent parameterization for
the thermodynamic limit was used:

p, n0, . . . , nL ! 1, with
p

n0
! ↵̃,

n`

n0
! �̃` (` = 1, . . . , L), (D.42)

‡ In [2], we focused on the Gibbs estimator rather than on the ridgeless maximum-likelihood estimator

(MLE). However, given the average generalization error for the Gibbs estimator, it is easy to obtain

the generalization error for the MLE. We discuss this point in detail in Appendix A.
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Figure D.1. Phase diagrams in di↵erent parameterizations of the thermodynamic

limit. (a). Phase diagram in the (↵0,↵1) plane. Region 1 (orange) is the

overparameterized regime, Region 2 (yellow) is the bottlenecked regime, and

Region 3 (green) is the overdetermined regime. (b). As in (a), but in the

(1/↵0,↵1/↵0) plane, matching the parameterization used in our previous work

[2]. Note that the plane is divided identically, but the locations of the phases are

swapped.

where we decorate ↵̃ and �̃` with tildes to avoid confusion with parameters used
elsewhere in the present work. The conversion to the parameterization used in the
present work and in [1] is then given by

↵̃ =
1

↵0
, (D.43)

�̃` =
↵`

↵0
, (` = 1, . . . , L). (D.44)

Though these parameterizations are mathematically equivalent, it is important to
distinguish between them as they give phase diagrams that divide the plane identically
but swap the locations of the phases, as is shown in Figure D.1. Moreover, though the
parameterization used here is more convenient for the replica computation [1], that
given in (D.42) is conceptually useful, as it is closer to what one does in practical
machine learning settings: the input dimension n0 is fixed by the task, and one can
vary the dataset size p and the network widths n`. This is why we plot the phase
diagrams in Figure 1 in the (1/↵0,↵1/↵0) plane.

E. Large-width expansions

In this appendix, we consider the limit of large width, i.e., the limit in which
↵1, . . . ,↵L ! 1 for fixed ↵0. Our first task is to determine how the quantities
` behave in this limit, as it is through these inverse generating functions that the
hidden layer widths enter the generalization error.

Starting from the defining equation

1

↵`
= E�̃`


�̃`

` + �̃`

�
(E.1)

we can see that ` should tend to infinity linearly with ↵` as ↵` ! 1. In particular,
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we should have

`

↵`
! E�̃` [�̃`] (E.2)

at large widths. Then, µ` has limiting behavior

µ` = 1� ↵`E�̃`

"✓
�̃`

` + �̃`

◆2
#

(E.3)

! 1 (E.4)

From this, we can see that in the infinite-width limit the generalization error of the
random feature model in Result 3.2 reduces to that of shallow ridgeless regression as
in Corollary 3.1, as we would expect.

We now want to compute the leading correction to this result. In the unstructured
case, this is easy, because we have ` = (↵` � 1)�̃`, hence there is an O(1) correction
and nothing else. More generally, we assume Laurent series behavior of the form

` = ↵`
1
` + 

0
` +

1

↵`

�1
` + . . . . (E.5)

Expanding, we have

�̃`

` + �̃`
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�̃`

↵`
1
`

�
�̃`(�̃` + 

0
`)

↵
2
` (

1
`)

2
+O(↵�3

` ) (E.6)

hence, if we integrate term-by-term, we have

1

↵`
=

E�̃` [�̃`]

↵`
1
`

�
E�̃` [�̃`

2] + E�̃` [�̃`]0
`

↵
2
` (

1
`)

2
+O(↵�3

` ). (E.7)

If we solve order-by-order, we again find that


1
` = E�̃` [�̃`] (E.8)

while the coe�cients of all higher-order terms in 1/↵` must vanish. In particular, this
gives


0
` = �

E�̃` [�̃
2
` ]

E�̃` [�̃`]
. (E.9)

This computation assumes that the spectrum has finite moments, which is not the case
for the heavy-tailed power law spectra considered in Corollary 5.1.

Then, we have

µ` = 1� ↵`E�̃`

"✓
�̃`
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E�̃` [�̃

2
` ]

E�̃` [�̃`]2
1

↵`
+O(↵�2

` ). (E.12)
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Collecting our results, we have

` = E�̃` [�̃`]↵`

✓
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E�̃` [�̃
2
` ]
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and

µ` = 1�
E�̃` [�̃

2
` ]

E�̃` [�̃`]
2

1

↵`
+O(↵�2

` ). (E.14)

Each term in these expansions has the expected behavior under rescaling: if we let
⌃̃0

` = ⌧`⌃̃` for ⌧` > 0, we have 0` = ⌧`` and µ
0
` = µ`.

Then, substituting these expansions into Result 3.2, we find that the generalization
error of an RFM in the ridgeless limit expands at large widths as

✏ = �

2
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µ0
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2
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in the regime ↵0 > 1; if ↵0 < 1 the generalization error does not depend on the hidden
layer widths so long as they are greater than 1.

For an RFM trained using the Gibbs estimator, as considered in Result 6.1, we
find that

✏BRFM = �
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where we have defined

&
2
⌘
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E�̃` [�̃`], (E.17)

upon expanding the thermal variance term
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Here, we denote by O(w�2) all terms of O(↵�2
` ) for a given layer ` = 1, . . . , L or terms

of O(↵�1
` ↵

�1
`0 ) for two di↵erent layers `, `0.
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F. Numerical methods

In this appendix, we describe the numerical methods used to produce Figures 1 and
2 in the main text. All simulations were performed using Matlab 9.13 (R2022b;
The MathWorks, Natick MA, USA; https://www.mathworks.com/products/matlab.
html) on a desktop workstation (CPU: Intel Xeon W-2145, 64GB RAM). They
were not computationally intensive, and required less than an hour of compute
time in total. Code to reproduce the figures is archived as part of the online
supplemental material to our NeurIPS paper [18]. Numerical computation of the
solution to the ridgeless regression problem—the minimum-norm interpolant—was
performed using the lsqminnorm solver (https://www.mathworks.com/help/matlab/
ref/lsqminnorm.html), which uses an algorithm based on the complete orthogonal
decomposition of the design matrix.
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