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Abstract—Self-supervised methods such as Contrastive predic-
tive Coding (CPC) have greatly improved the quality of the un-
supervised representations. These representations significantly re-
duce the amount of labeled data needed for downstream task
performance, such as automatic speech recognition. CPC learns
representations by learning to predict future frames given current
frames. Based on the observation that the acoustic information, e.g.,
phones, changes slower than the feature extraction rate in CPC, we
propose regularization techniques that impose slowness constraints
on the features. Here we propose two regularization techniques:
Self-expressing constraint and Left-or-Right regularization. We
evaluate the proposed model on ABX and linear phone classification
tasks, acoustic unit discovery, and automatic speech recognition.
The regularized CPC trained on 100 hours of unlabeled data
matches the performance of the baseline CPC trained on 360
hours of unlabeled data. We also show that our regularization tech-
niques are complementary to data augmentation and can further
boost the system’s performance. In monolingual, cross-lingual, or
multilingual settings, with/without data augmentation, regardless
of the amount of data used for training, our regularized models
outperformed the baseline CPC models on the ABX task.

Index Terms—Contrastive predictive coding, self-supervised
learning, unsupervised learning, zero resource speech processing.

I. INTRODUCTION

THE speech signal contains information about linguis-
tic units [1], speaker identity [2], the emotion of the

speaker [3], etc. In a supervised scenario, the manual labels guide
a strong classifier, such as a Deep Neural Network (DNN), to
extract task-specific features. For example, paired with phone
labels, a DNN learns to focus on extracting the acoustic in-
formation from speech and suppress the information about the
speaker’s identity. When paired with speaker labels, the DNN
learns to focus on speaker information and suppress the phone
information.
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In the unsupervised scenario, we do not have the guidance
of manual transcriptions to select the relevant features and
marginalize irrelevant information. A speech representation that
captures the underlying relevant information becomes crucial
for unsupervised systems’ good performance [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13]. Learning such representations
from unlabeled speech data could enable speech technologies in
low-resource languages where limited or no amounts of labeled
data are available [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13]. The goal of unsupervised representation learning is to
capture the phone information and disentangle the other sources
of information, such as the speaker or channel.

Self-supervised learning (SSL) methods have emerged as a
promising technique for representation learning from unlabeled
speech data [14], [15], [16], [17]. SSL has also been shown
to be effective for learning representations in natural language
processing [18], [19] and computer vision [20], [21]. SSL
methods learn representation by solving an auxiliary task for
which the labels can be generated from the unlabeled data.
For example, in Contrastive Predictive Coding (CPC) [14],
a popular self-supervised method, the auxiliary task is next
frame prediction. A CNN learns representations from the raw
waveform, which are then fed into a recurrent neural network
to generate contextual representations. The model is trained via
noise contrastive estimation to correctly identify the correct next
frame from a set of random frames given the contextual features.

Self-supervised techniques such as CPC have drastically im-
proved the quality of the representation learned from unlabeled
data [14], [22]. CPC extracts a feature vector every 10ms,
i.e., 100 features/second, whereas underlying information, e.g.,
phones, change much more slowly. There have been several so-
lutions to impose slow changes to the latent representations [23],
[24], [25], [26], [27]. In this work; we propose regularizing
constraints to impose slow changes in the latent representations.
Ideally, the representation would stay constant within a phone
and change abruptly at the phone boundaries.

Self-expressing autoencoders (SEA) [28] add an extra self-
expressing constraint as a regularization term to the autoencoder.
SEA tries to express the features extracted from the encoder
as a linear combination of other features, thus enforcing the
underlying information is shared among features. We modify
the self-expressing constraint and use it to regularize the CPC
training. We also propose Left-or-Right regularization (LorR) to
constrain the nearby frames to be similar. LorR assumes a given
frame shares a phone label with either the left or right frames.
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We add extra loss that minimizes the variance between the given
frame and adjacent frames.

We pretrained the baseline CPC model and our proposed reg-
ularized CPC on Librispeech 100 hours and 360 hours portions.
We evaluate the models on the ABX task of the Zerospeech
2017 benchmark, acoustic unit discovery, and the linear phone
classification task on Librispeech 100 hours. We carry out a
detailed hyper-parameter search to find the optimal weights for
adding the regularization loss with the CPC loss. Experiments
show that we outperform the baseline CPC on both the ABX
and the linear phone classification tasks.

We also train CPC models on English, French, and Mandarin
datasets from the Zerospeech 2017 challenge and evaluate the
performance in monolingual, cross-lingual, and multilingual
settings. We also evaluate the CPC models on ASR across ten
languages from the common voice dataset. Across all these con-
ditions, our regularization consistently improves the system’s
performance.

Data augmentation has become an important part of both
supervised [29] and self-supervised systems [20], [21], [30].
It allows us to train larger models by reducing overfitting.
One major direction for SSL models is to learn augmentation
invariant representation where a model is presented with two
different augmented versions, and it must generate similar rep-
resentations [20], [21]. Data augmentation combined with CPC
significantly improves over baseline CPC [30]. In this approach,
the past and/or future audio signals are augmented with different
augmentations, and the model is trained to predict the correct
next frame. We show that our regularization techniques are
complementary to the data augmentation techniques and can
be used on top to improve the system performance further.

The contributions of this work are summarized below:! We propose Left-or-Right regularization and Self-
expression to enforce slowness constraints on the CPC
features! We show the proposed regularizations improve perfor-
mance on ABX, linear phone classifier, acoustic unit dis-
covery, and automatic speech recognition tasks! We show our proposed regularization’s work in monolin-
gual, cross-lingual, and multilingual conditions! We show that the proposed regularizations are complemen-
tary and can be used with augmentation to improve the
system’s performance further

II. RELATED WORK

In this work, we focus on unsupervised feature learning,
where we do not have any labels for the training data. The
ZeroSpeech challenges [31], [32], [33], [34], [35] have been
some of the significant drivers of progress in the unsupervised
feature learning area. Same-different or ABX tasks have con-
sistently been part of all the challenges that focus on evaluat-
ing the representations’ quality. Before the popularity of SSL
techniques, autoencoders [23], [28], [36], [37] were a dominant
paradigm for learning representations. Autoencoders consist of
two parts: an encoder which maps an input to a latent space, and
a decoder which tries to reconstruct the input. The autoencoders

are optimized to minimize the difference between the original
and reconstructed inputs. Variational autoencoders (VAE) [38]
proposed a different probabilistic interpretation of the feature
learning framework. Vector Quantized VAE [39] replaced the
continuous and stochastic latent vectors with deterministically
quantized vectors. Since the quantization is not differentiable,
a straight-through estimator is used to optimize the codebook
used for quantization. Chorowski et al. [23] proposed a wavenet-
autoencoder that encodes MFCC features into a latent space via
a VAE and uses a wavenet decoder to reconstruct the original
waveform.

Contrastive Predictive Coding (CPC) [14] and its vari-
ants [17], [24], [25], [26], [27], [40], [41] have emerged as
a popular choice for the representation learning task. Some
of the best-performing solutions to previous challenges are
CPC-based [25], [41]. Even though some autoencoder-based
methods tend to be more data efficient than CPC, given more
data, CPC outperforms them on the ABX task [17]. For the
recent zero speech challenge, CPC has been the choice of feature
extractor [35]. However, quantizing the representations from the
CPC degrades the performance on the ABX task [35]. We chose
the CPC as one of the baselines in the present work.

There have been several attempts to impose slow changes on
the unsupervised representations extracted from speech data.
Slow-feature analysis [42] imposed a penalty on the rate of
change of features to encourage slow changes in the features. A
time-jitter regularization [23] was proposed to reduce the vari-
ability between adjacent embeddings of VQ-VAE. Chorowski
et al. [43] added a penalty to divide the VQ-VAE features
into a given number of piecewise-constant pieces. Although,
this requires knowing the number of segments in advance.
Kamper et al. [44] proposed a dynamic programming-based
generalization of this approach to obtain phone segmentation
from VQ-VAE and VQ-CPC features. Kamper et al. [45] fur-
ther extended this idea to apply dynamic programming (DP)
iteratively to perform phone and word segmentation. The first
step performs bottom-up phone discovery using DP and then
performs symbolic word segmentation on top of the discovered
units. The two stages are trained separately, i.e., word segmen-
tation does not influence phone discovery.

Bhati et al. [24] proposed Segmental CPC (SCPC): a hier-
archical model which stacked two CPC modules operating at
different time scales. The lower CPC operates at the frame level,
and the higher CPC operates at the phone-like segment level.
A simple differentiable boundary detector generates phone-like
segments used for training the segment-level CPC. Both lower
and higher levels CPCs are optimized jointly. They demonstrated
that adding the second level CPC improves the phone boundary
detection but degrades the phone class information present in the
learned features [46]. Chorowski et al. [25] proposed Aligned
CPC (ACPC), in which the model outputs a sequence of K < M
predictions that are aligned to the M upcoming representations.
mACPC [26] proposed a hierarchical model similar to SCPC
where they used ACPC as the building blocks instead of CPC.
mACPC obtained better feature discrimination than CPC, SCPC,
and ACPC. mACPC further confirmed the tradeoff between
boundary detection and classification performance.
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Fig. 1. Overview of the CPC architecture. The solid line represents the
reference frame; the dashed line shows the positive, and the dotted line shows
the randomly sampled negative example.

Hierarchical CPC (HCPC) [27] stacked two CPC models and
used reinforcement learning to generate the segment boundaries.
They showed that it is possible to improve the classification
performance of the features extracted from multilevel CPC by
training the second-level CPC on segments extracted to optimize
the next segment prediction task directly. There still seems to
be some tradeoff between prediction quality and segmentation
performance. HCPC obtains better phone discrimination than
SCPC and mACPC but has lower phone segmentation perfor-
mance than SCPC and mACPC. HCPC achieves state-of-art
performance on the Zerospeech 2021 task.

ACPC [25], mACPC [26] and HCPC [27] all obtain better
performance on ABX task than the baseline CPC. We compare
our proposed regularization methods with all of them and show
that we outperform them on the ABX task.

III. REGULARIZED CONTRASTIVE PREDICTIVE CODING

A. Contrastive Predictive Coding

Contrastive Predictive Coding (CPC) [14] learns representa-
tions by predicting future feature frames from past frames. The
architecture is shown in Fig. 1. CPC can learn representations
directly from raw speech waveforms. A convolution encoder,
fenc : X → Z, maps the audio waveform, X to latent spec-
tral representations,Z(∈ Rd×L) = (z1, z2, . . ., zL). In the most
common setting, each d-dimensional vector zi corresponds to a
30ms audio frame extracted with a 10ms shift. A recurrent neu-
ral network, far : Z → C, extracts contextual representations
(c1, c2, . . ., cL) computed as ci = far(zi). Given a reference
context representation ct the model needs to identify the next
frame zt+m correctly from a set, Zt, of K + 1 representations,
which includes zt+m and K distractors. Wm is the linear trans-
formation used for predicting zt+m from ct. The overall loss is
given as follows:

LCPC = − 1

M

M∑

m=1

log
exp(zTt+mWmct)∑
z̃∈Zt

exp(z̃TWmct)
(1)

B. Self-Expressing Autoencoders

In an autoencoder, an encoder, enc maps the input X into a
latent space Z = enc(X) and the decoder dec takes the Z and
tries to reconstruct the input from it. The autoencoder is trained
to minimize the reconstruction loss: ∥X − dec(Z)∥22.

The self-expressing autoencoders (SEA) [28] introduce self-
expressing constraints to encourage autoencoders to learn repre-
sentations highlighting underlying phone information. The self-
expressing constraint tries to make the embeddings of frames
that belong to the same distribution to be as similar as possible
and frames that belong to different distributions as dissimilar as
possible.

In SEA, an encoder maps the input features into an embed-
ding space, and two decoders with shared parameters try to
reconstruct the input as well as possible. One decoder tries to
reconstruct the input from the embedding, and another tries to
reconstruct from their self-expressed version.

To compute the self-expressed version of the encoder outputs,
we first compute the affinity matrix A, which captures the
pair-wise cosine similarities between frames, Aij denotes the
cosine similarity between features zi and zj . The last layer of the
encoder is ReLU nonlinearly, and thus the z is non-negative, and
therefore A is non-negative. We then remove the contribution
of the diagonal entries from A and normalize each row, to sum
up, to 1. The self-expressed version, Z, is given as

Z = rownorm(A − I)Z (2)

where rownorm denotes the row normalization operation. The
SEA is trained to minimize the reconstruction loss

LSE = ∥X − dec(Z)∥22 + ∥X − dec(Z)∥22 (3)

For the ith input, xi, to minimize the reconstruction error,
the decoder needs to reconstruct xi from both zi and zi. zi is
a linear combination of features except for zi. Other features
should have the information present in zi. Thus the information
present in zi must be shared in other features.

C. CPC With Self-Expressive Constraint

In the original SEA [28], to ensure the self-similarity matrix,
A, is non-negative, the last layer in the encoder is ReLU non-
linearity which restricts z to non-negative values. In the CPC
architecture, the last layer of the encoder is ReLU as well. We
calculate Z using (2).

The CPC model does not use a decoder to learn represen-
tations. So, instead of minimizing the difference between input
and reconstructed input from the self-expressed embeddings, we
force the embeddings and their self-expressed versions to be as
close as possible. The total loss of the model is given as

LCPC+SE(ReLU) = LCPC + λ∥Z − Z∥22 , (4)

where λ is the regularization weight.

D. Left-or-Right (LorR) Regularization

Assuming a phone consists of at least two feature frames,
then any feature frame would have the same phone label as
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either the left or right frame. Most of the time, both left and
right frames would have the same phone label. Only at the
phone boundaries, which are much fewer than the total number
of frames, the phone labels for left and right frames would be
different. With the 30ms context size and 10ms shift for the
convolutional feature extractor, the minimum two frames phone
assumption works out to be 40ms. Let’s consider a sequence of
four feature frames zi−1, zi, zi+1, zi+2. We want to constrain
the features from the same phone to be as close as possible.
However, in unsupervised scenarios, we do not know the phone
labels. We minimize the minimum of variance between zi−1, zi
and zi, zi+1. At boundaries having a minimum allows the loss to
be flexible, and it can choose the side with minimum variance,
e.g., if there is a boundary at zi, then the model could pick and
minimize the variance between zi, zi+1 and vice-versa. In the
middle of a phone, when both the left and right sides belong to
the phone, the choice of side does not matter. We can extend this
idea and try to enforce w frames to be similar. The loss at ith
feature is given as:

Li = min

(
∑

d

Var(zi−w+1:i),
∑

d

Var(zi+1:i+w)

)
(5)

Where
∑

d denotes the sum of element-wise variance across d
dimensions. The total LorR loss is average across all the time
indexes

LLorR =
1

L

L∑

i=0

Li (6)

The regularized CPC is optimized to minimize both the CPC
loss and the LorR loss.

LCPC+LorR = LCPC + αLLorR (7)

where α is the regularization weight.

IV. EXPERIMENTS

A. Tasks and Datasets

We used LibriSpeech 100 hours, 360 hours, and the Ze-
rospeech 2017 datasets for pretraining the CPC and regularized
version of CPC. The Zerospeech 2017 train subset contains 45,
24, and 2.5 hours of data across English, French, and Mandarin,
respectively. One common task for evaluating the quality of the
representations is probing for the phone information by training
a linear phone classifier. For the supervised training of the linear
phone classifier, we used the train/test splits and force alignments
for Librispeech-100h from [17]. We also evaluated how well
these representations can be clustered and mapped into discrete
symbols.

Another common task is the ABX phone discrimination
task [47]. ABX task measures the phone separability of the
representations obtained from the feature extractor. Features
from two instances of the same phone should be closer than two
instances of different phones. For example, if phone instance a
and x belong to the same phone class A and phone instance b
belongs to phone class B, then d(a, x) < d(b, x)where d is some
distance metric. The ABX task was done in two modes: within

speaker–when a, b, x belong to the same speaker– and across
speaker–when a, b belong to the same speaker, but x belongs to
a different speaker. For the ABX and linear phone classification
task, we used the implementation provided by [17]. ABX task
does not require training any additional components to evaluate
the quality of the learned representations.

For the ABX task, we used the Zerospeech 2017 and Ze-
rospeech 2021 challenge datasets for evaluations. Zerospeech
2017 test set contains the same speakers from the train set and
an unknown number of new speakers appearing in 1-second,
10 seconds, and 120 seconds files. This allows us to measure
the speaker invariance of the feature extraction system and the
impact of utterance length on the learned representations. More
details about the dataset and the evaluation can be found in the
challenge paper [33]. The Zerospeech 2021 uses the standard
Librispeech validation and test splits as validation test splits.

For the ABX task, we also trained the baseline and the regu-
larized CPC models on English, French, and Mandarin datasets.
This allows us to evaluate our models across different lan-
guages with varying training sizes in a monolingual setting. We
also train multilingual systems with data pooled from all three
languages together. For the cross-lingual setting, we used the
CPC models trained on Librispeech. We evaluated the systems
across the three languages for the multilingual and cross-lingual
settings.

B. Architecture Details

We followed the improved CPC [17], which replaces the
batch-norm with channel-norm. This helps stabilize the model
training and prevents poor solutions. Each of the linear transfor-
mation, Wm, used for predicting zt+m from ct is now replaced
with a single-layer transformer [48]. This new modified layer can
access the entire past till time t to predict zt+k. Dropout is used
in the transformer layers to improve the system’s performance.
Gated recurrent unit (GRU) is replaced with LSTM as the
recurrent neural network for generating contextual representa-
tions. This modification improves the downstream performance
of the features extracted from the CPC. These modifications
allow us to reduce the number of channels in the convolutions
layer from 512 to 256 without impacting the performance while
significantly reducing the memory requirements.

In CPC, the encoder was a 5-layer convolutional network with
256 channels in each layer with kernel sizes: 10,8,4,4,4 and
strides 5,4,2,2,2. The encoder had a total downsampling factor
of 160, with a stride of about 10ms. For a 16 kHz input, each
feature encodes 10ms of audio and generates 100 features per
second. We used a single-layer LSTM with 256 hidden units
as the recurrent network. We predict 12 frames into the future,
i.e., M = 12, and use 128 negative examples. All the models are
trained with a batch size of 12 on a single GPU for 100 epochs.

C. ABX and Linear Phone Classification

We evaluated the proposed algorithms on ABX and the phone
classification tasks. Table I shows the performance of features
extracted from baseline CPC and CPC models trained with
various regularization techniques on the Librispeech 100 hours
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TABLE I
ABX SCORES ON ZS17 ENGLISH DATASET

TABLE II
ABX PERFORMANCE ON ZS17 ENGLISH DATASET, THE CPC MODEL IS

PRETRAINED ON THE LIBRISPEECH 360 DATASET

portion. All the regularization techniques outperformed the
baseline CPC system. Among the different regularization tech-
niques, the LorR worked the best. On average, LorR reduced
the ABX error rates by 18% and 16% relative to the baseline
in Within and Across conditions, respectively. We also experi-
mented with increasing the number of layers in the autoregres-
sive network, far. To observe the impact of model size, we train a
LorR regularized CPC system with two LSTM layers. CPC-2L
denotes the results with two-layer LSTM as far. We observe that
with increased model size, the performance improves. In Table I,
comparing first row with second, third or fourth row shows the
impact of various regularizations and comparing fourth and fifth
rows shows the impact of model size.

Table II compares the CPC trained on Librispeech 360 dataset
with other existing systems on the Zerospeech 2017 English
dataset. We lowered the ABX scores by 15% and 13% relative
to the baseline in Within and Across testing conditions compared
to the CPC models. As seen in Table II, our regularized models
also outperformed the state-of-art feature extraction methods on
the ABX task. One key difference is the amount of data used,
we train on a larger amount of data, but the data is taken from a
different dataset. We also outperformed the supervised topline,
which uses posteriorgrams extracted from the supervised HMM-
GMM phone recognition system as features. The models trained
on 360 hours of data outperformed the models trained on 100
hours of data.

We also trained a linear phone classifier on top of the repre-
sentations extracted from the CPC models. CPC models were
only used as feature extractors and were not finetuned during the
phone classifier training. We compared the accuracies of various
regularization techniques using the CPC models trained on 100
hours of data. As seen in Table III, similar to the ABX results,

TABLE III
LINEAR PHONE CLASSIFICATION ACCURACY (%) ON LIBRISPEECH 100

TRAINED ON TOP OF FROZEN CPC FEATURES

TABLE IV
LINEAR PHONE CLASSIFICATION ACCURACY (%) ON LIBRISPEECH 100

TRAINED ON TOP OF FROZEN CPC FEATURES

TABLE V
IMPACT OF SE REGULARIZATION WEIGHT λ ON THE ABX SCORES

linear phone accuracies for the regularized models outperform
the baseline CPC model. The LorR regularization performed
best among different regularizations. For the regularized CPC
systems, we used the same optimal regularization weights dis-
covered on the ABX task. We compared our best regularized
CPC system with the best CPC baseline model in Table IV. We
outperformed the CPC model and moved towards matching the
topline performance.

D. Hyperparameter Tuning

For CPC + SE(ReLU) experiments, we varied the regulariza-
tion weight λ from 0.2 to 1 with a step size of 0.2. Table V shows
the ABX scores with different weights. For the SE(ReLU), the
optimal weight was 0.4.

For the LorR regularization, we have two hyperparameters,
the window size w and the regularization weight α. We varied
the regularization weight α from 0.2 to 1 with a step size of
0.2 and trained CPC systems. Table VI shows the ABX scores
with different weights. LorR window size two and weight 1.0
performed the best. Please note that all the systems for both SE
and LorR, regardless of the choice of weight, outperformed the
baseline CPC system.
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TABLE VI
IMPACT OF WINDOW SIZE AND LORR LOSS WEIGHT

E. Mono, Cross and Multilingual Performance

We want to evaluate the performance of the proposed reg-
ularization in mono, cross, and multilingual setting. We used
Zerospeech 2017 dataset, which contains three languages: En-
glish, French, and Mandarin. These three include 45, 24, and 2.5
hours of data, respectively.

We trained the baseline CPC and CPC for each language
with LorR regularization. As seen in Tables VII, VIII, and IX,
we see consistent improvements in both within-speaker and
across-speaker conditions across all the languages on average.
For Mandarin (Table VII), we see the slightest improvement in
the within-speaker condition. In 1s evaluation, the CPC baseline
performed slightly better (11.3) than the CPC + LorR system
(11.4). The scores before rounding are 11.34 and 11.36, respec-
tively. In the across-speaker condition, we observe consistent
improvements similar to other languages.

For the multilingual setting, we pooled the data from all
three languages and trained the baseline CPC and CPC + LorR
system on 71.5 (45 + 24 + 2.5) hours of data. The CPC + LorR
outperformed the baseline CPC in all three languages in the
multilingual setting. We observed that the Multilingual system
outperformed the monolingual system for Mandarin (Table VII).
We observed little to no performance improvement for French
(Table VIII). However, for English (Table IX), the multilingual
system performed worse than the monolingual system. We think
this is because Mandarin has the smallest amount of data. French
and English have a sufficiently large amount of data to train a
decent monolingual system.

For the cross-lingual setting, we used the CPC and CPC +
LorR system trained on 100 hours portion from the Librispeech
dataset. There is a mismatch in the training language and dataset
for Mandarin and French, i.e., training is done on Librispeech,
whereas testing is done on the Zerospeech 2017 dataset. For
English, the only mismatch is in the datasets. As observed in
Tables VII, VIII, and IX, the CPC + LorR system outperforms
the CPC system across all languages. The CPC/ CPC + LorR
trained on Librispeech 100 hours of data outperformed the
system trained on individual languages or in a multilingual
setting (Tables VII, VIII, and IX). We believe this is because
of the amount of data. The total data is less than 100 hours, even
in a multilingual setting.

To test our hypothesis, we train three systems on 2.5, 24,
and 45 hours subsets from Librispeech 100 hours dataset. For
Mandarin (Table VII), the CPC + LorR trained on monolin-
gual data, i.e., Mandarin, outperforms the cross-lingual system

trained on Librispeech with the same amounts of data. For
French (Table VIII), the monolingual and cross-lingual CPC
+ LorR systems perform similarly. Increasing the amount of
Librispeech data for both languages improves the performance.
For English(Table IX), we observe the CPC + LorR system
trained on Librispeech 45 hours subset outperforms the system
trained on Zerospeech English data (45 hours). Increasing the
amount of Librispeech data further improves the performance.

These experiments show the language invariance of the pro-
posed regularization. Across all the training conditions (mono-
lingual, cross-lingual, and multilingual) and various languages
(Mandarin, French, and English), CPC + LorR constantly out-
performed the baseline CPC.

F. Are SE and LorR Complementary?

We want to analyze whether the regularization techniques,
i.e., SE and LorR, are complementary and whether we can use
them simultaneously to improve performance further. We train a
CPC model which uses both SE(ReLU) and LorR regularization
techniques. The total loss of the model is given as

Ltotal = LCPC + 0.5(αLLorR + λLSE(ReLU)) (8)

The weightsα and λ forLLorR andLSE(ReLU) are the best weights
from the individual systems, 1 and 0.4 respectively.

We evaluated this system on ABX and linear phone classifi-
cation. As seen in Tables I and III, it performs better than CPC
+ SE system but worse than CPC + LorR system. Either the
regularization techniques do not have complementary informa-
tion, or the regularization weights used might not be the optimal
choice.

To find the optimal choice for weighing the SE and LorR
regularization, we need to train multiple systems. However, that
is computationally expensive. We, therefore, simply concatenate
the features extracted from different models and train a linear
phone classifier. Table X shows phone classification accuracy
on various system combinations. The phone classifier trained on
top of concatenated features from CPC + SE(ReLU) and CPC +
LorR performed the best among the two system combinations.
This suggests that complementary information is present in the
two features, improving the performance.

G. Clustering Analysis

Unsupervised features are often used for acoustic unit dis-
covery (AUD). In AUD, speech signals are segmented and
clustered into discrete phone-like units. We want to test how
the representation produced by the regularized CPC cluster
compared to baseline CPC. We ran K-means on top of the latent
representation extracted from the frozen CPC models trained on
Librispeech 100 hours subset. We trained the K-means algorithm
on the 100 hours of Librispeech data. We experimented with
varying numbers of clusters since the actual number of clusters
is unknown.

We use purity and Normalized mutual information (NMI), two
commonly used metrics for measuring the clustering quality. As
seen from Table XI, the results for CPC + LorR consistently out-
performed the baseline CPC. This means the clusters generated
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TABLE VII
ABX SCORES ON ZS17 MANDARIN DATASET

TABLE VIII
ABX SCORES ON ZS17 FRENCH DATASET

TABLE IX
ABX SCORES ON ZS17 ENGLISH DATASET

TABLE X
LINEAR PHONE CLASSIFICATION RESULTS ON LIBRISPEECH 100 TRAINED ON

TOP OF CONCATENATED FEATURES FROM FROZEN CPC MODELS

by CPC + LorR aligned better with the forced-aligned phone
labels than the baseline CPC.

H. Original CPC and Regularization

In the original CPC, a linear transformation Wm is used
for predicting zt+m from ct. In the modified implementation,
a single-layer transformer is used for predicting zt+m. Each
transformer layer introduces around 1.3 million new parameters,

TABLE XI
PURITY AND NMI (IN PARENTHESIS) ON THE LIBRISPEECH TEST SPLIT FOR A

DIFFERENT NUMBER OF CLUSTERS

and there are twelve one-layer transformers in total. The new
CPC variant improves the performance significantly but also
adds more parameters to the model. We want to see if our
regularization works with the old CPC variant.

The regression weights are not used during inference but
only during training. The inference model is the same size for
the original and the modified variant. The models are trained
on Librispeech 100 hours dataset and evaluated on Zerospeech
2017 dataset. As observed in Table XII, our regularized CPC
outperformed the original variant. However, the performance
was still worse than the modified version of CPC, the original
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TABLE XII
PERFORMANCE COMPARISON FOR THE ORIGINAL AND THE MODIFIED

IMPLEMENTATION OF THE CPC

TABLE XIII
SPEAKER CLASSIFICATION PERFORMANCE ON LIBRISPEECH 100

TABLE XIV
PROBABILITY OF USING UNAUGMENTED DATA

TABLE XV
ABX SCORES ON ZEROSPEECH 2017 CHALLENGE

version contained around 10% parameters, which shows the
usefulness of the extra parameters.

I. Probing for Speaker Information

As seen from the ABX results in Table I, the performance
across-speaker testing conditions are much worse than within-
speaker conditions. This implies the features still contain speaker
information. Here, we want to analyze how much speaker in-
formation is present in the representations. We followed [50]
and trained a linear classifier that tries to predict the identity of
the speaker from a single frame. We used the last frame from
the GRU as the input. It summarizes all the information in the
sequence. The speaker classifier was trained for 50 epochs and
evaluated on the same train test split used for the linear phone
classifier on Librispeech 100.

As seen from Table XIII, the speaker classification perfor-
mance for CPC + LorR is much lower than the baseline CPC.

TABLE XVI
ABX PERFORMANCE ON ZEROSPEECH 21 ENGLISH DEV SET

That implies the features extracted from CPC + LorR sup-
pressed speaker information. Even on Mandarin monolingual
training Table VII where we get a small improvement (0.1)
in the within speaker condition, in the across speaker testing
condition, we see good improvement (1.3). We believe this is
due to regularization removing some speaker information from
the features.

J. Data Augmentation for CPC

Data augmentation techniques greatly improve the perfor-
mance of the model in supervised scenarios, especially in limited
labeled data scenarios. Data augmentation has also become a
significant part of SSL systems. Typically, a signal is augmented
to generate two views, and the feature extractor is trained to
generate the same representation regardless of the augmentation.

The idea is that the underlying class information remains
the same regardless of the augmentation. The goal is to learn
augmentation invariant representation. By doing so, the repre-
sentations would capture the underlying class information.

CPC + Aug [30] proposed augmentation of the speech signal
in the time domain to improve the CPC performance. At a given
point t, the past audio signal, i.e., audio from the beginning till
the time t, is fed into the convolutional encoder and then into the
autoregressive network to generate the context ct. The context
ct is then used to predict future feature frames zt+k.

In the augmented CPC, the past audio signal is corrupted with
a noise used for generating the context. This context is then used
to predict the feature frames generated by future audio signals
corrupted with a different augmentation. This forces the encoder
to denoise the data and generate a similar representation regard-
less of the augmentation. They showed consistent improvements
over the baseline CPC. They experimented with augmenting
both past and future while training the CPC. Experimentally
only augmenting the future while using the unaugmented speech
data for the past performed best. The final architecture is shown
in Fig. 2.

CPC + Aug experimented extensively with different types
of augmentation, their relative order of application, and which
portion of the audio signal should be augmented. We followed
the experiments in [30] and used pitch shift, noise addition, and
reverberation to augment the audio signal. For pitch: we changed
the pitch by an integer uniformly sampled between -300 and
300(the change value is measured by 1/100 of a tone). For the
additive noise, we used the MUSAN dataset. The additive noise
was filtered through a bandpass filter in the [80, 240] Hz range.
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TABLE XVII
CROSS LINGUAL TRANSFER OF PRETRAINED FEATURES IN TERMS OF PHONE ERROR RATES

Training: 1 h data/language from common voice. The languages are: dutch (du), spanish (es), french (fr), italian (it), kyrgyz (ky), russian (ru), 
sweedish (sv), turkish (tr), tatar (tt) and mandarin (zh).

Fig. 2. Overview of the CPC architecture. The solid line represents the
reference frame; the dashed line shows the positive, and the dotted line shows
the randomly sampled negative example.

For reverb, the room scale was randomly sampled between 0
and 100, and all other parameters were fixed to defaults. We
only augment the future audio signal, i.e., both positive and
negative samples were generated from the augmented signal. We
used WavAugment provided by [30] for the data augmentation
experiments.

They also modified the architecture of the CPC: the Ws, in-
stead of being modeled by one layer transformer independently,
were all now modeled with a single transformer with M(= 12)
classification heads. This improved the training time without
significant reductions in performance. For the recurrent context
network, a two-layer LSTM is used. For the data augmentation
experiments, we follow the same architecture for a fair compar-
ison.

To avoid reading the MUSAN noises in every batch, we
preloaded random three seconds noise samples from each noise
utterance in MUSAN. In an ideal case, we should load all the
utterances from the MUSAN dataset, but that is very memory
intensive. While augmenting the speech signal, we randomly
sampled a 1.28 seconds signal from the three seconds noise
samples and added it to the speech signal. We reload the three
seconds noise samples from MUSAN every 100k update steps.

One important question for the augmentation is how much we
should augment. We carried out experiments to discover if it is a

good idea to augment all the time or augment some times and use
unaugmented data the rest of the time. We started by using only
unaugmented and increased the probability of using augmented
data in steps of 0.2 to using only augmented data. As observed
in Table XIV, augmenting all the time can be detrimental to
the system’s performance. We hypothesize that using clean data
allows the model to focus on just feature extraction instead of
feature extraction and denoise. Using augmented data all the
time still outperforms just using clean data.

The detailed experimental results of our proposed regulariza-
tion method and the augmented CPC baseline are in Table XV.
As evident from the table, regularization and augmentation can
be complementary, and we see consistent improvements over
the augmented CPC baseline across all three languages.

Our implementation of the augmented CPC performed better
than the reported number in the augmented CPC paper. We
believe this is due to the following differences: our strategy
for additive noise is different. We effectively sample from a
smaller pool of additive noises. There might also be differences
in the number of training epochs for the reported numbers for
the augmented CPC system vs. our implementation.

K. Comparison With Other CPC Variants

The 2021 version of the Zerospeech challenge [35] used
Librispeech for training and evaluation for the ABX task. We
compare our system with the small budget CPC baseline, which
was trained on Librispeech 100 hours subset. Another method
we compared is ACPC [25], which improves over the CPC
system. All the systems use two-layer LSTMs in the far.

Multilevel systems such as mACPC [26] and HCPC [27]
outperform CPC and ACPC but also introduce more parameters
and complexity to the model. For example, the architecture for
the lower CPC in HCPC is the same as our models, but it also has
additional layers for the higher level CPC, the boundary detector,
etc. It also requires finetuning the reinforcement learning-based
boundary detector and the quantization module.

Our method is more straightforward and does not intro-
duce more parameters to CPC. As seen in Table XVI, our
systems outperforms the existing single-level systems, such as
CPC [14], [17] and ACPC [25], and multilevel systems, such as
mACPC [26] and HCPC [27]. Adding augmentation further im-
proves the system performance, especially in the across-speaker
setting.
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L. Cross Lingual Phone Recognition

CPC models are commonly used as feature extractors for
downstream tasks such as automatic speech recognition. As
evident from the linear phone classification experiments, CPC
features capture the phone information quite well. We want to
analyze how well these features work in different languages. We
follow the experiments in [17] and consider the task of phone
classification on different languages from the common voice
dataset. Phone recognizers are trained with CTC objective.

To show the advantage of using pretrained feature extractors
in a low-resource setting, we used the model trained only on the
1-hour target dataset. Table XVII shows the phone error rates
on the CommonVoice dataset. The models trained from scratch
perform poorly. The models trained on top of the pretrained
feature extractor work significantly better across all languages.
In both 100 and 360 hours training settings, our regularized CPC
models outperformed the baseline CPC models. Our regularized
CPC systems trained with just 100 hours of unlabeled data
almost matched the performance of CPC trained with 360 hours
of data.

Unsupervised feature extractors typically require more data to
match the performance of supervised pre-trained feature extrac-
tors [15], [17]. While CPC needed 360 hours of unlabeled data
to match the quality of supervised pretraining, our regularized
CPC matched the performance with just 100 hours of data.
With 360 hours of data, our models outperformed the supervised
pretraining, which is significant as it is easier to collect unlabeled
data than labeled data.

V. CONCLUSION AND FUTURE WORK

SSL methods such as CPC have become the front end of
speech technologies. ASR systems trained on top of SSL features
require much less labeled data to achieve the same performance
as models trained from raw speech data. We can further lower the
labeled data requirements by improving the feature extraction
methods. In this work, we propose regularization techniques
that impose slowness constraints on the features learned by a
CPC model. We compared our proposed methods with the CPC
baseline on ABX, linear phone classification, clustering, and
phone recognition tasks. Our models outperformed the baseline
CPC models on all the tasks in monolingual, cross-lingual, and
multilingual settings. Left-or-Right regularization performs the
best among the proposed regularizations. We also compared our
methods with recent variants of CPC like ACPC and mACPC
and showed that our methods outperform them all.

In the future, we would like to apply these techniques on
a larger scale, i.e., training on all of Librispeech. We would
also like to use the proposed regularization techniques for other
feature extraction techniques, such as Wav2Vec2.0. Multistage
methods such as SCPC and mACPC apply segmental constraints
via a second-level CPC. We would also like to see if our reg-
ularization techniques can improve the multilevel systems dis-
crimination performance. Another interesting direction would
be to apply the proposed constraints in a semi-supervised or
supervised scenario.
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