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Abstract Ground heat flux (G,) is a key component of the land-surface energy balance of high-latitude
regions. Despite its crucial role in controlling permafrost degradation due to global warming, G, is sparsely
measured and not well represented in the outputs of global scale model simulation. In this study, an analytical
heat transfer model is tested to reconstruct G, across seasons using soil temperature series from field
measurements, Global Climate Model, and climate reanalysis outputs. The probability density functions of
ground heat flux and of model parameters are inferred using available G, data (measured or modeled) for snow-
free period as a reference. When observed G, is not available, a numerical model is applied using estimates of
surface heat flux (dependent on parameters) as the top boundary condition. These estimates (and thus the
corresponding parameters) are verified by comparing the distributions of simulated and measured soil
temperature at several depths. Aided by state-of-the-art uncertainty quantification methods, the developed G,
reconstruction approach provides novel means for assessing the probabilistic structure of the ground heat flux
for regional permafrost change studies.

Plain Language Summary Ground heat flux is the energy that goes into or comes out from
belowground that controls the soil freeze-thaw process in high-latitude regions. Its changes under climate
warming will influence variations in the soil's seasonal thawing depth and permafrost thickness and spatial
extent. Available data on ground heat flux are very sparse from both direct field measurements and large-scale
model outputs in the Arctic. This study combines detailed modeling and uncertainty quantification methods to
accurately reconstruct the ground heat flux from shallow soil temperature observations and estimates from
predictive models, which are more readily available for the Arctic. Since the approach relies on several
assumptions, we also quantify the uncertainty of the estimated ground heat flux. The reconstructed ground heat
fluxes using the method developed in this study match well with the fluxes observed or derived from the
predictive model. The soil properties inferred from the developed process are also consistent with the values
observed for typical soils.

1. Introduction

Ground heat flux (G,) is defined as the diffusive heat flow across the boundary that separates the bottom of the
atmosphere and the ground. It is a crucial component of the land surface energy balance, especially in the high-
latitude regions as the driver of water phase change (El Sharif et al., 2019; Halliwell & Rouse, 1987; Lunar-
dini, 1981; Ochsner & Baker, 2008). G, controls the dynamics of freeze and thaw and permafrost degradation in
Arctic regions (Biskaborn et al., 2019). However, the quantification of G, has received less attention in the past
(Heusinkveld et al., 2004; Wu et al., 2020) and the impact of climate change on G, is not well understood (e.g.,
Nicolsky & Romanovsky, 2018).

Direct measurement of G, can be made using heat flux plates (e.g., HuksefluxUSA Inc. HFPO1 Heat Flux Sensor)
buried at shallow depths in the soil to ensure a tight contact between the plate surface and soil substrate (surficial
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deployment is impossible due to the disturbances by radiation and precipitation) and combined with soil tem-
perature measurements in the layer above the plate (El Sharif et al., 2019). However, such measurements are
extremely sparse in remote Arctic regions because they are costly and logistically challenging. Large-scale data
products from Global Climate Models (GCMs) are often used to project permafrost thermal states into the future
under different climate scenarios. However, they usually do not provide direct outputs of G, for either historical or
future periods. Instead, G, needs to be derived as the residual term of the surface energy balance equation when
the data on net radiation (R,), sensible (H), and latent (AE) heat flux are available. This approach is only
applicable to snow-free surfaces. For snow covered surfaces, the change in the internal energy of the snowpack
(heat associated with heating/cooling and water phase change) is required to derive G,. Yet, the internal energy
change of snowpack is usually not an explicit output of most GCMs. This situation also pertains for climate
reanalysis data products.

Several analytical methods have been developed to derive G. Traditional methods for modeling G, require multi-
depth data of soil temperature with soil properties such as bulk density, specific heat and thermal conductivity
(Cobos & Baker, 2003; Fuchs & Tanner, 1968a; Horton & Wierenga, 1983; Kimball et al., 1976; Ochsner &
Baker, 2008; Ochsner et al., 2006). For the case of homogeneous soils without water phase change, an analytical
solution of soil heat flux and temperature at any depth can be derived from a harmonic analysis using measured
soil temperature (Heusinkveld et al., 2004). However, its accuracy decreases with measurement depth. Under the
same assumptions of homogeneity and water state condition for a semi-infinite soil column, an analytical solution
of G, can be derived assuming sinusoidal surface temperature boundary condition (Gao et al., 2010). Analo-
gously, G can also be derived from the Green's function solution (Wang & Bou-Zeid, 2012) or from the soil heat
flux at a deeper depth through “damping depth” (Leuning et al., 2012). Wang and Bras (1999) developed an
analytical relationship between soil temperature and ground heat flux at the same depth through a half-order
derivative (HOD) method (see Sec. 2.1.1 for details). Using this analytical solution (referred to as the HOD
model hereafter), G, can then be derived from surface temperature time series given the thermal inertia of the bulk
soil. In general, all analytical solutions require surface soil temperature as input.

Surface temperature measurements using ground-based instruments are difficult to obtain and not commonly
available in the Arctic regions. For example, measurements using thermometers are subject to substantial sam-
pling errors caused by poor contact between the sensor and the surface and the disturbances from direct sunlight
and diffuse sky radiation (Fuchs & Tanner, 1968b). The measurements of contactless infrared temperature sensors
are affected by calibration errors and other technical problems such as optical path blocking by snowflakes or
vegetation elements (Apogee Instruments, 2018). For monitoring the subsurface conditions, temperature sensors
are usually placed at some depths below ground, for example, in narrow and deep boreholes, which provides long-
term time series of multi-level soil temperatures in the Arctic regions. However, existing analytical solutions such
as the HOD model cannot be used to directly derive surface ground heat flux from belowground borehole
temperature measurements. This is because the nonexistence of the inverse Laplace transform in the formula
derivation and the divergence of the inverse estimation.

Soil thermal properties such as thermal inertia and thermal diffusivity need to be specified in model formulation
(e.g., the HOD model). These model parameters can be a priori determined from a given soil composition, that is,
soil texture, soil organic material content, and soil water content (Farouki, 1981; Johansen, 1977; Lawrence &
Slater, 2007). The measurements of soil texture needed to derive such thermal properties are still lacking in the
Arctic, and due to the intrinsic environmental heterogeneity and small-scale nature of their sampling (e.g., “fist-
size” auger soil samples), they can be extremely noisy. Efforts have been made in previous studies to estimate soil
thermal properties from soil temperature series. For example, Nicolsky et al. (2009) have applied the Quasi-
Newton optimization algorithm to find the optimal parameters that minimize the mismatch between modeled
and measured soil temperature (or “cost function”). However, such an approach requires a proper initial guess of
the soil properties that make the cost function in the attraction basin of its global minimum to ensure efficient
convergence. Besides using optimization methods to calibrate model parameters for soil properties, parameter
uncertainties are usually characterized by using probabilistic methods. Garnello et al. (2021) and Harp
et al. (2016) have used the Markov Chain Monte Carlo (MCMC) and null-space Monte Carlo (NSMC) respec-
tively to estimate parameter posterior distribution. However, in both studies, forward model results are directly
used in the calibration process or in the likelihood function, which can be computationally costly for complex
models. Cleary et al. (2021) and Groenke et al. (2022) have applied the ensemble Kalman sampling (EKS) al-
gorithm to generate approximate samples from the parameter posterior. The EKS method requires a multivariate
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Gaussian prior distribution over parameters (which may not usually be the case) and will underestimate posterior
variance with finite algorithm iterations. This raises a question: can effective magnitudes of soil thermal prop-
erties be evaluated automatically and efficiently using only soil temperature measurements? Furthermore,
considering the close correlation between heat flux and temperature, if the effective soil properties can be
inversely inferred from observed physical states (such as soil temperature), can ground heat flux be reconstructed
with its uncertainty quantified?

The goal of this research is the development and demonstration of the efficacy and uncertainty-informed accuracy
of a novel methodological approach for estimating the surface ground heat flux over different seasons from soil
temperature and soil moisture series (if available) measured at a range of depths below the ground surface. Three
methodological “blocks” are used to achieve this goal. The analytical HOD model is used to derive ground heat
flux from soil temperature (and moisture if available). A physically based numerical model (Sheshukov &
Egorov, 2002) is used to simulate non-isothermal heat-moisture dynamics and the resultant temperature and water
phase series from the surface flux G. Finally, modern advancements in probabilistic learning and uncertainty
quantification (UQ) machinery (Dwelle et al., 2019; Ghanem et al., 2017; Sraj et al., 2014) are used to derive the
probabilistic description of soil thermal properties used in the analytical and numerical model. Specifically, the
more complex analytical and numerical models are first mimicked by a less complex surrogate model built from
polynomial chaos expansion to increase computation speed. Model parameters are then estimated using the
Bayesian inference framework. The Karhunen-Logve expansion, which is not yet widely used in geoscience and
cryosphere studies (e.g., Dong et al., 2006; Rundle et al., 2000; Tiampo et al., 2004), is applied to reduce
spatiotemporal dimensionality of model outputs and improve the parameter inference efficiency. Accurate field
measurements of G series or estimates obtained from global scale model outputs during snow-free seasons are
used as the “ground-truth” reference for parameter inference procedure. In the more typical case when G, data are
not available, temperature series at different depths of the soil column (such as in a borehole) are used to estimate
flux G, which is subsequently verified by comparing the simulations of soil temperature from a physically based
numerical model with temperature measurements.

2. Methods
2.1. HOD Solution of Ground Heat Flux and Soil Temperature
2.1.1. Analytical Model Formulation

The HOD model formulation is briefly described here and a full description is in Wang and Bras (1999). For a
one-dimensional semi-infinite soil column, the heat transfer process follows the classical thermal diffusion
equation with no phase change that assumes constant thermal diffusivity and a uniform initial temperature profile.
Ground heat flux at depth z, (G(z,, 1)) can be derived from soil temperature at depth z; (7(z;, 1)),

(22— )" ] dT(z,,7)

I t
G(z, 1) = ﬁfo exp D=0 \/: 1)

where [ is the soil thermal inertia (W2 s m~* K2), D is the soil thermal diffusivity (m®s™Y), tis time (s), and 7 is
the integration dummy variable. With positive direction for depth defined downward from the surface, this so-
lution requires 0 < z; < z,. The equality 7 = 0 in Equation 1 is set at the time when G, is as close to zero as
possible. Soil thermal inertia, /, is defined as

I = vke,, 2

and soil thermal diffusivity, D, is defined as

D=—, 3)

where k is the soil thermal conductivity (W m~' K™, and ¢, is the soil volumetric heat capacity (J m> K.
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2.1.2. Parameter Separation

Thermal properties of the soil are affected by its water content, in liquid or solid phase. In the original formulation
of the HOD model, thermal inertia is assumed to be time invariant. In practice, it varies with water content and
phase over seasonal scale. The top soil layer in the Arctic, known as the active layer, also undergoes seasonal
thawing and freezing cycles. The mineral soil in the active layer is usually near saturation for much of the year and
may become unsaturated during summer, while the shallow layer of well-drained and organic-rich soil at the top
of the active layer may be desiccated even in winter (Hinkel et al., 2001; Hinzman et al., 1991; Kane et al., 1989).
The effects of soil water content and phase change on the thermal inertia value are accounted for by separating the
parameters previously considered as time-invariant into time-dependent and temporally constant parts.

Following a linear mixing model, soil thermal conductivity k£ and volumetric heat capacity c, are computed using
the set of equations as in Lawrence and Slater (2007). For soil thermal conductivity:

k= Keksat + (1 - Ke) kdry’ (4)

logS,+1, T>T
k= " ! )
S,, T<T;

oy (1= % g
k. = kl—ﬁm, BligHtlice k Olig+Vice )5 6
sat — T liq ice 5 ( )

_ Hliq + aice ~ aliq + eice
(/) esat |

S, @)

For soil volumetric heat capacity:

Cy, =¢p+ eliqc + Hicecice’ (8)

lig
Names and units of the parameters in Equations 4-8 are listed in Table 1. The parameters k;;,, k;.,., ¢;;,» and ¢, are
treated as constants. The variable 6, is determined by finding the maximum value in the observed series of
0,4 + 0;c and assumed to be equal to porosity, thatis, ¢ ~ 0,,, = 8, + 0,.,. Three time-invariant parameters can be
identified from these equations: ¢, k,,, and k,. Other parameters are time-varying and dependent on the temporal
evolution of soil liquid water and ice content. After soil thermal properties are computed using available records
of soil water content and the time-invariant properties are determined in any appropriate fashion (e.g., literature
values, measurement of in situ sample, or model parameter inference), ground heat flux can then be calculated
using these derived soil thermal properties and the HOD model.

2.2. 1-D Freeze-Thaw Numerical Model for Saturated Soil

The simulation of soil freezing and thawing processes is an active research topic for cold climate region due to
their important roles in climate change, active layer and permafrost depths, hydrologic regimes, and cold region
infrastructure sustainability (Hjort et al., 2022; Matzner & Borken, 2008; Painter et al., 2012, 2016; Walvoord &
Kurylyk, 2016). Various numerical models were developed to solve the coupled heat and moisture dynamics of
frozen soil (Harlan, 1973; Mu & Ladanyi, 1987; Painter & Karra, 2014; Sheshukov & Nieber, 2011; Taylor &
Luthin, 1978; Tubini et al., 2021; Westermann et al., 2016, 2023; Zhang et al., 2007). In this study, we adopt the
solution for the saturated frozen soil from Sheshukov and Egorov (2002).

The one-dimensional (1-D) equation of heat transfer in soils is:
0 d(, oT
—(¢, T —p,pLS;) = —| k— ),
at(cL pt¢ fSt) 6z< 6z) (9)

where the variables are defined in Table 1. The advective heat flux associated with bulk movement of water in the
soil in Sheshukov and Egorov's (2002) original formulation is neglected here considering that the heat transfer is
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Table 1
Nomenclature
Parameter Name Unit Model®
Kgpy Dry soil thermal conductivity Wm K™ A

st Saturated soil thermal conductivity Wm™ K™! A
K, Kersten number (the weight for &, in Equation 4 for soil thermal conductivity calculation) - A
S, Degree of saturation for total water content - A
T,=273.15 Freezing temperature of water K A, N
k, Soil solid thermal conductivity Wm™' K™ A
0.0 Saturated volumetric water content - A
O1iq Liquid water content — A
0. Ice content - A
ky, = 0.57 Thermal conductivity of liquid water Wm™ K™! A
ki, =23 thermal conductivity of ice Wm™ K™! A
cy Volumetric heat capacity of soil constituents excluding water and ice ITm? K™ A
Clig =42 X% 10° Volumetric heat capacity of liquid water Im3 K™ A
Ciee = 2.0 X 10° Volumetric heat capacity of ice Jm? K A
17 Porosity - AN
p; =918.0 Density of ice kgm™ N
2., = 1,000.0 Density of liquid water kgm™ N
L,=3.34X% 10° Latent heat of freezing for water Tkg™! N
S; Degree of saturation for ice - N
A Degree of saturation for liquid water - N
b Reciprocal of pore size distribution index in the B-C model - N
78 Air entry pressure head in the B-C model m N
g=938 Gravitational acceleration ms> N
Gy Approximate ground heat flux at the surface, scaled from HOD model results at shallow depth W2 A
Gg Y Measured ground heat flux at the surface including energy storage correction (Sec. 3.1) W2 -
GOGCM Ground heat flux derived by Equation 25, using GCM data product W2 -
GOERAS Ground heat flux derived by Equation 25, using ERA5-Land reanalysis data product W s> -
Z; The i-th observation depth m -

T; Measured temperature at the depth of z; °C =

#A: analytical model. N: numerical model.

dominated by conduction, and phase change as water in the soil is nearly immobile. Under the fully saturated
condition,

S, +8; =1 (10)

When soil temperature T is above the freezing point of water T, S,, = I and S; = 0.

The freezing-thawing phenomena is considered to be similar to the drying-wetting phenomena (Koopmans &
Miller, 1966) for which liquid water pressure head (y,,) and ice pressure head (y;) and relative saturation S,, are
described by a water retention function P.(S,,) adopted from the Brooks and Corey (B-C) model (Brooks &
Corey, 1966):

Yy — Vi = }/PC(SW) = yl//.ySw_b' (1 1)
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Assuming no frost heave presence, y; is set to be zero in this study. The coefficient y is the ratio of specific surface
energies at the ice-water interfaces (Koopmans & Miller, 1966) depending on soil saturation condition and soil
texture and set to 1.0 in this study. Assuming equilibrium at the ice-water interface, the generalized Clapeyron
equation (Miller, 1980) is:

. L,
Vo Vio X 7 (12)

v Pi Pu8Ty

Under specific boundary and initial condition, the temperature and moisture profile of the soil column can be
solved simultaneously from Equations 9-12. A detailed model setup example is presented in Supporting Infor-
mation S1 (Text S3). For the scope of this study, the frozen soil is considered as porous media without fracture, its
deformation and cryosection effects are currently not considered. Uncertainties arise with this adapted model
when the assumptions of restricted parameter settings (e.g., w; = 0, y = 1.0) and full saturation are applied.
However, using the parameter inference process with the embedded uncertainty quantification machinery, as
described below, these uncertainties are implicitly included in the inferred parameter distributions.

2.3. UQ Machinery

Mechanistic models including the HOD model are developed based on physical principles with certain as-
sumptions and approximations to describe the behavior of physical systems. Both model inputs (spatial or
temporal fields of states) and the parameters (e.g., proxies or intrinsic medium properties) have uncertainties.
Probabilistic methods have been widely used to quantify the uncertainty and infer values for model parameters
(Dwelle et al., 2019; Ellison, 2004; Malinverno, 2002; Sargsyan et al., 2014, 2015; Sraj et al., 2014). In this
section, UQ methodological steps are briefly introduced and an overview of the workflow is described.

2.3.1. Bayesian Inference

We define a “forward problem” as the simulation of quantities of interest (Qols) using a mechanistic model M
with prescribed model parameter set k = (x|, k5, ..., K,,), Where m is the number of parameters in M. Similarly, an
“inverse problem” can be formulated as follows: given available observations on Qols and a set of modeled results
using the uncertain parameters k, can one infer the most likely values in the parameter set k, to achieve a minimum
discrepancy between the simulated Qols with observations?

Bayesian inference is a widely used approach to solve such inverse problems (e.g., Dwelle et al., 2019; Hou &
Rubin, 2005; Sargsyan et al., 2015; Sraj et al., 2014; Tarantola, 2005). In general, let Y = (Y}, ..., Y, Q) be a vector
of available Qol data, and k be the vector of uncertain model parameters. Then modeled outputs can be assumed to
represent the Qol data:

Y ~ M) (13)

The cornerstone of the Bayesian inference of model parameters is the Bayes' theorem which in this context
reads as:

H(x|Y) o L(YK) p(x), (14)

where p(k) is the prior distribution of the set k constructed from a priori information about the parameters (see
Text S1 in Supporting Information S1); L(Ylk) is the likelihood function quantifying the probability of producing
observations on the Qols by M given the set k. The likelihood function encapsulates the assumptions about the
distribution of discrepancy between model and data. Assuming that each component of the discrepancy between
observed data Y; and modeled results M (k), that is, ¢; = ¥; — M (x), adheres to a probability density function p,
and observational data are independent and identically distributed, one can write the likelihood as:

L(YIx) = [T2, (Y — M(x)). (15)
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Furthermore, we assume that the errors ¢; follow Gaussian distribution €; ~ N(O,a,-z), leading to a likelihood

function:
! (¥, — M(x))*
L(Ylx) = JT¢ exp——t i , 16
( |K) i=1 \/To'lz Xp( 20i2 ( )
where 6,2 is the variance of the Qol observational data noise.
Finally, assuming independent prior distributions, the final joint posterior distribution can be written as:
! (¥ = M®))*
M(x|Y) o« [TZ, == exp 7 | P PR2) .. ple). (17)
\2762 20,

Note that Equation 17 is the posterior distribution up to a constant factor. The full joint posterior distribution is
typically unavailable in closed form, and therefore we resort to Markov Chain Monte Carlo (MCMC) method
using the Metropolis—Hastings algorithm (Hastings, 1970) that produces samples of the posterior distribution. We
used adaptive MCMC (Haario et al., 2001) that efficiently explores the parameter space by adaptively updating
MCMC proposal covariance. Specifically, MCMC samples are filtered by removing the first 25% values of the
MCMC parameter sequence and choosing every fifth value in the remaining set to reduce correlations in the
chain. This reduced set of posterior parameter values is then used to evaluate full distribution or its marginals
using kernel density estimation (KDE).

2.3.2. Surrogate Modeling

The formulation above assumes a vector of Qols ¥ = (¥}, ..., Y,) and associated vector of model outputs M(k),
fori=1,2, ..., Q. The sampling process in Sec. 2.3.1 requires repeated simulations of the mechanistic model M
for computing the likelihood function, which is computationally expensive. A feasible technique to improve
computational efficiency is to replace the mechanistic model with a less complex, “reduced-order,” or “surrogate”
model. In this study, the polynomial chaos (PC) surrogate construction is applied and briefly introduced below
(Le Maitre & Knio, 2010). The surrogate model (M") is built by expressing the mechanistic model output as a
truncated polynomial expansion of uncertain model parameters which approximates all the associated Qols,
indexed by i, as:

M)~ M{“(k) = ZP: ¥ (), (18)
1=0

where c;, are polynomial coefficients, W, (k) are multivariate orthogonal polynomials, and P+ 1 = % is the
number of terms in the PC expansion, where m is the number of stochastic dimensions (equals to the number of
uncertain parameters), and g is the highest polynomial order of the expansion Equation 18 that includes all
polynomial bases up to a total order g. The coefficients c; are estimated from the multiple runs of the model M
using random samples of the parameter set k. The model outputs of Qol are used to compute the coefficients c; by
using Gaussian quadrature projection (Smolyak, 1963), regression (Berveiller et al., 2006; Blatman &
Sudret, 2008, 2011), or Bayesian approaches such as Bayesian Compressive Sensing method (Babacan
et al., 2009; Sargsyan et al., 2014). The latter is applied in this work as it allows an adaptive selection of poly-
nomial bases that are relevant for the surrogate. The efficacy of the surrogate modeling used for all types of data in
Sec. 3 is validated in Supporting Information S1 (Text S6). In the following, we will explicitly highlight the
spatio-temporal conditions (x, 7) that these outputs are computed at and denote the data and the model Y(x, 7) and
M(x, x, 1), respectively. Note that the surrogate construction described in this section assumes individual PC
approximations for each Qol, indexed asi =1, 2, ..., Q. A major challenge in this formulation is that Q may be too
large for spatio-temporal fields associated with conditions (x, 7), making the construction of Q surrogates
computationally expensive. For that reason, we will initially reduce the dimensionality of the model outputs using
Karhunen-Loe¢ve expansion, described next.

ZHOU ET AL.

7 of 21

QSU0DIT SUOWWO)) dA1EAI) d[qedrjdde oy £q pauIoA0S aie sa[dIIR YO ‘ash JO Sa[nI 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[ Im " ATeIqI[oul[uo//:sd)y) suonIpuo)) pue swld [ oyl 39S “[$707/£0/€0] uo Areiqry aurjuQ A9[IM ‘SEFE00VAET0T/6T01 01/10p/wod Kofim AreiqijaurjuosqndnSe//:sdyy woly papeojumo( ‘€ ‘4707 ‘v80SEEET



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Earth and Space Science 10.1029/2023EA003435

2.3.3. Karhunen-Loéve Expansion

A given Qol output of a mechanistic model M(k, x, ) can be considered to represent a stochastic process, given
the uncertainty associated with the parameter vector k. The size Q of the Qol output from the model M depends on
the characteristics of the conditions of interest (i.e., the physical dimensions of space and time duration of
simulation) and is often large, consisting of (10°~10°) spatial and temporal values. The efficiency of traditional
simulation-based inference methods such as approximate Bayesian computation with or without tractable like-
lihood highly relies on the dimension of data (Cranmer et al., 2020). According to the Karhunen-Loeve (KL)
expansion (Karhunen, 1947; Le Maitre & Knio, 2010; Loeve, 1948), a stochastic process (in this case, a Qol
output of M(k, x, 1)) can be represented by a sequence of zero-mean, unit-variance, uncorrelated variables ¢&; as:

M, x, 1) = M(x,0) + ). &9 (x. 1), (19)
j=1

where M(x, t) is the mean of model outputs, u;and @;(x, 1) are the eigenvalues and eigenfunctions of the unscaled
covariance matrix cov[M(x, x;, 1;), M(x, x;, ,)], respectively (the pairs (x;, ;) and (x;, ;) are points in the space and
time domain), and &,(x) are uncorrelated random variables called KL coefficients derived by solving the linear

system. In practice, the first J eigenvalues and their corresponding eigenfunctions are selected. That is, we select
the smallest J such that EJ; w/ i ;> 0.95, that s, at least 95% of variance contained in M(x, x, ) output of Qol is
=17 =

captured. If the spatio-temporal model outputs exhibit strong correlations, a relatively small number J as the upper
summation limit in Equation 19 can make the estimation of the right-hand-side part of Equation 19 sufficiently
close to M(k, x, t) as we have previously observed in Ivanov et al. (2021). Furthermore, if the mechanistic model is
believed to accurately simulate the behavior of a real system and therefore can perform well with respect to the
observations of Qols, the eigenvalues and eigenfunctions inferred from Equation 19 can be viewed as repre-
sentative of the process governing the variation of Qols as well. The impact of model discrepancy is discussed in
Supporting Information S1 (see Text S2). Therefore, observational data Y(x, ¢) on Qols can be also projected to
the same eigenspace defined by p; and @,(x, 1) of Equation 19 as

Y(x,)=Mx, 1)+ Z n; ,uj(pj(x, 1), (20)
=l

where #;, the KL coefficients for ¥(x, 7), are computed via projection similar to how KL coefficients £;(x) of the
model are computed. The observations Y(x, 7) can be approximately estimated by setting J as the upper summation
limit in Equation 20, that is, using only the largest J eigenvalues and their corresponding eigenfunctions and KL
coefficients ;. The data truncation will induce additional noise in the likelihood approximation in theory.
However, it is an acceptable price for having a tractable and fast-to-evaluate likelihood. In practice, increasing J
induces more accurate likelihood approximation, but the overall cost of performing MCMC becomes unfeasibly
large defeating the purpose of the KL-based likelihood. The mechanistic model parameters can then be inferred
following the Bayesian inference approach taking the J eigen-variables as effective Qols, that is, by using J
coefficients n = (17, ..., ;) as “observations™ ¥ that need to be reproduced by the model M(x), given the uncertain
coefficients (k) (j = 1,2, ..., J) depending on the vector of uncertain model parameters  (i.e., as in Sec. 2.3.1).
In other words, the likelihood function described in Equation 16 is now approximated by:

J =& 2
Lo L) = 1 \/%exp (—(’7255‘))) o1
J= n'gj J

Besides the overall computational savings, this independent and identically distributed Gaussian likelihood is a
reasonable assumption in the KL-reduced space, as opposed to the full space, as the KL coefficients §/'s are
uncorrelated, zero mean and unit variance by construction. The data standard deviation o; corresponds to each
eigenvalue y; and is weighted by the normalized square root of the reciprocal of y, that is,
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J
o} = i/(Z l), 22)

Hi \J=1 Hj

An advantage of this treatment is that if the original Qol dimension Q is very large (e.g., O(10°-10%)), a
considerably smaller number J (e.g., @(10°-10")) of effective Qols is obtained using this approach. Consequently,
J surrogate models are needed, which substantially improves computational performance of the UQ machinery
(Ivanov et al., 2021).

As aresult, a PC surrogate model can be built for £;(x) as:

,
g~ W) = D cp¥i(K), (23)
=0

Combining Equation 23 and Equation 19 leads to a joint KL-PC expansion for the mechanistic model:

J P

Mk, x, )~ M(x, )+ ), ). e (kR fH (¥ 1. (24)

j=1 1=0

2.3.4. Overall UQ Workflow
The general procedure of parameter inference using UQ is described below.

1. The prior distributions for each parameter (i.e., the elements of k) are determined from a priori knowledge
(e.g., uniform or Gaussian priors with range or mean and variance found from literature, respectively).

2. Parameter values of k are randomly generated from their priors N times, forming a set of N parameter vectors
K, n=1,2,..,N.

3. N forward simulations of Qols are conducted using the model M(x, x, f) with x™; such Qol outputs are called
the training set.

4. The space-time dimensions of the Qols from M(k, x, t) and the data Y(x, ) are reduced using the KL expansions
in Equations 19 and 20 resulting in the independent variables &,(x), and 7; respectively.

5. A PC surrogate model .ff €(x) is built to mimic each j-th £;(x) as in Equation 23, leading to a joint KL-PC
expansion in Equation 24.

6. In Equations 13-17, the Qol observational data array Y is replaced by the set of J values of #; and the model
output on Qols M(kx,¢) is replaced by the joint KL-PC expansion, and Bayesian inference is performed with
the likelihood approximated as in Equation 21.

7. The joint posterior distribution for x in Equation 17 is sampled via MCMC, including the estimate for the
maximum a posteriori (MAP) parameter vector KMAP,

8. The final visual and statistical diagnostics are made by comparing the estimation of the Qol using the joint KL-
PC expansion in Equation 24 with "*” and the observation data with posterior predictive bounds representing
the uncertainty in model predictions (see Text S5 in Supporting Information S1 for posterior predictive
construction details).

2.4. Surface Ground Heat Flux Reconstruction
2.4.1. Gy Data Are Available During Snow-Free Season

Data on G, can sometimes be obtained from field measurements but such data are mostly reliable during
snowpack-free seasons because the flux magnitudes are mostly larger than zero. During snow season, mea-
surements are often noisy due to the phase change of water in the vicinity of the heat flux plate and advective heat
flux related to infiltration caused by snowmelt. Flux G can also be inferred from typical global scale model
outputs based on the surface energy balance (Section 1). However, as estimates of the change of the snowpack
internal energy are never provided, this approach cannot be applied to derive G, during snowpack seasons. In this
case, the available G, data during snowpack-free season can be used as a reference to infer the parameters
representing soil thermal properties in the HOD model. Once the parameters are estimated, the continuous heat
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flux G, can be reconstructed using near-surface temperature time series (more accurately measured and more
readily available) following the procedure described below.

The prior distributions of the HOD model parameter set k”/” = (c;,, kg, k,) obtained using the parameter sep-

aration method (Section 2.1.2) are first derived from available information on soil properties such as SoilGrids, a
digital soil mapping product based on a global compilation of soil profile data (Hengl et al., 2017). Details on the
derivation of the parameter prior distributions are provided in Supporting Information S1 (Text S1). After N arrays

of KH oD

are generated according to their prior distributions, a set of N series of ground heat flux (G{! 9Dy at a shallow
depth z; (not exceeding few cm and it was 5~10 cm in this study) are simulated using the time-series of near-
surface soil temperature and moisture (if available) at the same depth z; using Equation 1. In order to get a
close approximation of the surface ground heat flux, the heat storage and water phase change transformations in the
top soil layer between z, and z; should be accounted for. Because depth z; is deliberately chosen to be very shallow,
the approximate surface ground heat flux Gy, is proportional to G°P with a scaling factor a to account for the effect
of heat storage between the surface and z;, that s, Gy = aGlH 9D To estimate the N series of G, from GIH 0D Nvalues
of  are sampled from a uniform prior distribution. Available series of the surface ground heat flux (from ob-
servations, GCM model, or reanalysis product estimates) for all snowpack-free seasons are then concatenated into
a single series. They are used as available data on target Qols (denoted as G °7) and the similarly concatenated
simulations of G, are used as the training set in the UQ machinery (see Section 2.3) to infer a joint posterior
distribution of the parameter setk = (; 9D ). The MAP estimates kA7 = (x7OP-MAP o MAP) and the corresponding
marginal posterior distributions are estimated from the joint distribution. Finally, the surface ground heat flux for
both snowpack and snowpack-free seasons can be reconstructed by the HOD model using soil temperature and
moisture (if available) data series at z; and the inferred MAP parameter estimates: Gg/IAP = oVMAPGMAP  where
GYMAP = GHOP (kHOPMAP) | The uncertainty of the reconstructed Gy is represented by the posterior predictive
bounds computed from the surrogate model with parameter sets sampled from the joint posterior distributions (see
Text S5 in Supporting Information S1).

2.4.2. G, Data Are Unavailable

When data or estimates on ground heat flux G, are unavailable, it is infeasible to generate a target (G, Ty in the
parameter inference process for the HOD model as in Sec. 2.4.1. In this case, the HOD model is combined with the
physically-based freeze-thaw numerical model described in Section 2.2 (Sheshukov & Egorov, 2002) to simulate
soil temperatures. These temperatures 7; measured at depth z; (i = 1, 2, ..., n) are used as the target Qol (i.e.,
7797 = T,). Identical to the process described in Sec. 2.4.1, the prior distributions for the parameter set k are
constructed first, but here both the parameters used in the freeze-thaw numerical model, the HOD model, and the

UM , HOD
5

scaling factor « are included in the parameter set «, that is, k = (KN k' ,a). After that, N arrays of k are

GIP at the shallowest depth z; is

generated from their priors. For each parameter set of k., first, the heat flux
computed from the measured soil temperature T, by the HOD model using x7°°. Then the approximate surface
ground heat flux is calculated as G, = aGlHOD . Next, soil temperatures at the same depths of the observation,

Tﬁv UM (j=1,2, ..., n), are simulated by the freeze-thaw numerical model using k™"

and with G, set as the top
boundary condition. The N sets of simulated soil temperatures 7¥Y™ form the training set. Finally, the joint

posterior distribution of k can be inferred by the UQ machinery (Sec. 2.3) with the training set and 77,

After the MAP estimates x4 and the corresponding marginal posterior distributions are estimated, the surface
ground heat flux can be reconstructed as Gy = aPGMAP  where GMAP = GHOD (x1OPMAP) Since the mea-
surements of G, are not available, the approximated flux GgMP cannot be directly validated. However, by applying

~MAP s . . .
G,  asthe top boundary condition in the numerical model, its accuracy level can be corroborated indirectly by the
magnitude of the error between the simulated and observed soil temperatures, as well as the degree of deviation of
the model parameters' values with respect to their physically realistic range.

2.4.3. Soil Moisture Data Are Unavailable

When soil moisture data are unavailable, the HOD model parameters are determined assuming saturated soil
with single phase of water, that is, 6,;, = 0,4, ;.. = 0 for T > 0°C and 6,;, = 0, 6, = 0, for T < 0°C. For this

sat> Yic sat
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Figure 1. Part (a): visualization of the overall UQ workflow described in Section 2.3.4. Part (b): an overview of the surface ground heat flux G, reconstruction workflow
for the four types of data presented in Section 3.

case, the parameter k., is no longer required in the computation, and the parameters to be inferred in the set are

K = (Cp Ky O,

3. Data

Four types of data are used in this study to test the performance of the developed process of heat flux G,
reconstruction: (a) in situ field measurements of soil temperature, moisture, and snowpack-free season G at a
shallow depth; (b) GCM outputs and (c) ERAS-Land reanalysis products of soil temperature and moisture
for the topmost soil layer, and snow-free season G, derived from the surface energy balance; and (d) borehole
data of soil temperature measured at four depths. An illustration of the general workflow is illustrated in
Figure 1.
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3.1. Field Measurements

Soil temperature, moisture, and ground heat flux were monitored at several sites located in the eastern slope of the
Polar Urals of Russia since 2013. Data from one plot (LPTEG-TREES-1, N66°53’55", E66°45'27", the location is
shown in Figure S6 in Supporting Information S1) are used to apply the developed process in Sec. 2.4.1. This site
is vegetated with Siberian larch (~5 m height). The distances between individual trees are several meters. The
ground surface is covered by an organic or peat layer (~5 cm thick), with clayish soil underlain. Specifically,
ground heat flux was measured using soil heat flux plates (HuksefluxUSA Inc. HFPO1 Heat Flux Sensor). The
plate was placed horizontally in the soil and in tight contact with soil medium. In most Arctic regions, a peat layer
composed mainly of soil organic matter is present above mineral soil due to its slow rate of decomposition (El
Sharif et al., 2019). The porous peat layer of heterogeneous thickness and thermal properties makes it difficult to
measure conductive heat flux due to poor sensor-medium contact. Hence, the heat flux plate was installed at 6 cm
below the mineral soil surface covered with a peat layer of ~6 cm thickness. At the same location where the heat
flux plate was buried, three temperature sensors (Campbell Scientific Inc. 109 and 107 thermistors, analog) were
installed. Two thermistors were placed at 2 and 4 cm depth in the mineral soil to measure temperature gradient and
one thermistor was placed at 2 cm below the peat layer surface for peat layer temperature monitoring. The mineral
soil temperature and moisture are measured using a Time-Domain Reflectometer (TDR) sensor (Campbell
Scientific Inc. CS655, digital) with two prongs inserted at 1.5 and 4.5 cm below the mineral soil surface. The rate

of change of soil thermal energy storage E, above the heat flux plate, % (W m™?), is computed from the measured

temperature and moisture of both peat and mineral soil: dz* ~ AAE; = AT Z"IAZ"‘, where AT is the hourly soil tem-

perature change, Az, is the thickness of the mineral soil over the heat flux plate, and ¢, is calculated by Equation 8
with ¢, estimated by Equation S1.1a in Supporting Information S1. Ground heat flux at the surface for this plot

(GOF 5 is reconstructed as the measured flux corrected by df;" (Campbell Scientific, 2016).

One issue with the field measurements is that liquid soil water content is available only when the soil temperature
is above 0°C. This is due to the physical design of the TDR based on the time domain principle (Jones et al., 2002).
Volumetric water content is derived based on the dielectric permittivity of the medium, so the sensor can only
detect the signal of liquid water with high permittivity (Campbell Scientific, 2018). Due to this complication,
ground heat flux is reconstructed using hourly temperature T at 2 cm in the peat layer and 6y, at 2 cm in the
mineral soil layer, and G}’ 5 during the growing season of 2019 when near surface ice content 6., = 0.

In the context of the method described in Section 2.4.1, the measured time series of GOF 5 is the target Qol (denoted
as GOT OT earlier). The ensemble of G, is computed using N = 500 parameter sets to produce the training set. The
number of eigenvalues and eigenfunctions identified in the KL expansion is J = 2, which is drastically smaller
than the size of the input data (Q = 1,700 data points). The truncation order used for each polynomial surrogate
model is ¢ = 4. More details on the KL expansion estimates are presented in Supporting Information S1 (Text S2).

3.2. GCM Data Product

Global climate models are developed based on physical processes for simulating past, current, and future climate
trajectories. Main components of the land surface energy budget including R,,, H, and AE are provided explicitly in
GCM outputs, but not G,. Theoretically, the latter can be derived from the energy balance equation, that is,

Gy=R,—H-JE. (25)

During snow-free summer period, the heat flux derived using GCM outputs of surface energy budget components
(as discussed in Introduction) can be considered as GCM-modeled heat flux at the ground surface (G(fCM ).
Conversely, the components of the snow surface energy budget are never explicitly provided in GCM outputs for
snowpack period, and therefore G, cannot be derived from Equation 25 during snowpack conditions. None-
theless, when available, GCM simulated temperature of the topmost soil layer along with the derived summer heat
flux G(?CM can be jointly used to reconstruct G, following the process described in Sec. 2.4.1 and illustrated in
Figure 1.

In this study, GCM models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) (Eyring
et al., 2016) were selected to illustrate the method based on the following criteria. First, a GCM model must
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provide near-surface soil temperature and water content in order to enable applying the parameter separation
approach (see Sec. 2.1.2). Second, the model should provide outputs of all components of the surface energy
budget (i.e., R,, H, and AF) to derive snowpack-free season GOGCM , to infer soil thermal properties using the UQ
machinery. Third, the model should also provide snow coverage conditions, such as snow depth, to separate the
snowpack period from the rest of the year. After identifying the models, the required daily outputs (i.e., T, 6;,, 0;.,

in the top soil layer, R,, H, and AE) for the historical period from 1981 to 2014 were downloaded.

n»

The methodology is tested here using daily historical outputs from one exemplary member of the CMIP6 models:
CESM2 (Danabasoglu et al., 2020). The results are presented for the grid cell covering the location of a borehole
site used in this study (“Marre-Sale,” see Sec. 3.4). Soil temperature and moisture of the 2-cm topsoil layer of the
CESM2 are used to compute the training set G,. Summer period heat flux computed as the residual term of the
surface energy budget (G¥M) from Equation 25 is concatenated and used as G °” in the UQ machinery. For this
case, the training set size is N = 500, and the number of eigenvalues and eigenfunctions identified is J = 2, which
is much smaller than the input size Q of 3,889 data points (i.e., the number of snowpack-free days during 1981—
2014) in the CESM2 output time series. The truncation order of the surrogate polynomial expansion is g = 4.

3.3. ERA5-Land Reanalysis Product

Reanalysis products can theoretically provide the most complete description of past climate by assimilating
observations and dynamic model forecasts (Decker et al., 2012; Lindsay et al., 2014). One of the state-of-the-
science products is the fifth generation ECMWF atmospheric reanalysis (ERAS5) of the global climate (Hers-
bach et al., 2020). The new land component of ERAS5 (ERAS5-Land) provides outputs with higher spatial reso-
lution (0.1° X 0.1°) suitable for land application (Mufioz-Sabater et al., 2021). As in Sec. 3.2, data for variables
required to reconstruct G,: 7, 6 in the top soil layer, R,, (derived by shortwave and longwave radiation), H, and AE
from 1981 to 2020 were downloaded.

The ground heat flux reconstruction process described in Sec. 2.4.1 is applied with outputs from ERAS5-Land
product at the daily scale. The grid cell that covers the same borehole site in Marre-Sale is considered. The
training set G, is computed by the HOD model using soil temperature and moisture in the first soil layer (7 cm
thick). The target Qol GOT T is the concatenated snowpack-pack free season GOERA5 derived from energy balance
Equation 25. The training set size is N = 500, truncation order ¢ = 4, and the number of eigenvalues and
eigenfunctions identified is / = 1 (i.e., again, drastically smaller than the input size Q of 3,511 data points in the
downloaded ERAS5-Land time series).

3.4. Borehole Measurements

Since the most recent International Polar Year (2007-2009), a global data set of permafrost temperature has been
developed based on borehole measurements. Borehole soil temperature measurements starting at shallow depths
(~10 cm) are available from the Circumpolar Active Layer Monitoring (CALM) program (Brown et al., 2000).
Borehole measurements indicate one of the fastest-warming rates of ground temperature is in Northwestern
Siberia (Biskaborn et al., 2019). Measurements from the Marre-Sale borehole site (N69°43’, E66°51°, the
location is shown in Figure S6 in Supporting Information S1) (Malkova et al., 2022; Melnikov et al., 2004;
Vasiliev et al., 2008) representing this region were selected to reconstruct G, using the proposed approach. The
surface is covered with dwarf shrub, moss, and lichen combining with sedge-moss and mud. The soil underlain is
sandy and clayey. In general, an “ideal” set of characteristics for borehole locations includes (a) near-surface (few
cm) temperature measurements, (b) long-term continuous records, and (¢) measurements for several depths. Daily
soil temperatures are available at 5 cm, 50 cm, 1 m, 2 m depth for this borehole. Time series segments during 1
December 2006 to 31 December 2010 with the most complete and continuous temperature measurements are used
henceforth. Missing data points (12 in total, i.e., the gap is 12 days) of the observed 7} series are filled by linear
interpolation, resulting in the total of Q = 1,492 data points. Flux G, is then computed with the HOD model using
the gap-filled 7', and used as the boundary input for the numerical model. Since soil moisture was not measured in
the borehole, assumptions in Sec. 2.4.3 are used. Soil temperature measured at the four depths are concatenated
head to tail, shallow to deep, to build a one-dimensional array. This array is used as 777 in the UQ machinery (see
Text S4 in Supporting Information S1 for parameter inference of the numerical model in detail). The training set is
formed by N = 500 arrays of simulated soil temperatures (concatenated in the same manner as described above for
each simulation run). In the parameter inference process, we set the polynomial order ¢ = 4, and the KL expansion
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Figure 2. (a) Observed G(f S (black dashed line) and reconstructed Ggl 4P (red solid line) heat flux series at the hourly resolution with 5%-95% posterior predictive bounds
(cyan area). The reconstruction is based on the process described in Section 2.4.1 using field-measured soil temperature and moisture (Section 3.1). (b) The scatter plot

and linear regression (red solid line) fitted for G(];/’AP and GOF S (the blue solid line is 1:1) with slope = 1.009 and intercept = —0.999. “R®” is the coefficient of
determination of the regression. (c)—(f) Kernel density estimation (KDE) of the marginal posterior distributions for c,,, kd,y, k,, and a (green curves) derived as described in
Section 3.1. Values of MAP parameter estimates (i.e., cz,‘,‘AP KMAP (MAP Cand o™AF) are indicated by the vertical black dashed lines in (c)—(f). Parameter prior distributions

> Pdry » s

are shown as the magenta curves.

retains J = 6 eigen-modes. The numerical model simulation setups are described in Supporting Information S1
(Text S3).

4. Results

4.1. Field Measurements

. ~MAP
The reconstructed G£° from heat flux plate measurements (black dashed line) and the reconstructed G, = from
temperature and moisture measurements (red solid line) at the field site are shown in Figure 2a. The variance of

G, is presented by 5%-95% posterior predictive bounds (cyan area, see Text S5 in Supporting Informa-

. . ~MAP . .
tion S1 for details). The accuracy of the reconstructed G, ~ is assessed using the root mean square error

Q
(@0 - 6wy
1

i=

o
6™ o - 6|

RMSE = 5 = 6.106 and bias = = 9 = 4.826 (W m~2), as well as by the coef-

ficient of determination (R®) of linear regression in Figure 2b. Figures 2c—2f shows the fitted marginal posterior
distributions for ¢, kg, k,, and a (green curves) and the corresponding MAP estimates along with their corre-
sponding prior distribution (magenta curves, see Text S1 in Supporting Information S1 for details). The inferred
MAP values are within the same order of magnitude of typical ranges of soil properties: ¢, ~ 0.2 to 1.4 X 10°(J
m > K™, kg ~ 0.05 0 0.3 (W m™" K™), and k, ~ 0.25 t0 9.0 (W m™" K™") (Lawrence & Slater, 2007).

4.2. GCM Data Product

The concatenated series of snowpack-free seasons for reconstructed éﬁ” A and GZM from CESM2 outputs were
computed from 1981 to 2014 and Figure 3a shows a time interval between 2010 and 2014 to illustrate a higher
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Figure 3. (a) Concatenated ng P (red solid line) and GOGCM (black dashed line) series for snowpack-free seasons at the daily resolution with 5%-95% posterior predictive

bounds (cyan area). ('}’0” 4P is reconstructed following the process in Section 2.4.1 using temperature and moisture of the topmost soil layer in CESM2 (Section 3.2).

(b) The scatter plot and linear regression (red solid line) fitted for G’g’“ and GOGCM (the blue solid line is 1:1) with slope = 0.822 and intercept = 6.002. (c)—(f) KDE of the
marginal posterior distributions for c,, k,,, k,, and a (green curves) derived as described in Section 3.2. Vertical black dashed lines indicate values of MAP parameter

estimates (i.e., cﬁ”AP . KMAP. kf”AP , and aMAP). Parameter prior distributions are shown as the magenta curves.
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level of detail. Posterior predictive bounds display the variance of G,. The scatter plot between f;?)/l A and Gé; M in
Figure 3b shows a lower coefficient of determination (R?) than that in Figure 2b. RMSE and bias are 8.166 and
5.982 (W m™?), respectively. The marginal posterior distributions inferred for c,, kg ks and a and their cor-
responding MAP values are presented in Figures 3c-3f. As with the field observations, the MAP values of ¢, k.,

and k, are consistent with typical values for these soil properties (see Sec. 3.1 for the ranges of these properties).

4.3. ERA5-Land

Figure 4a compares the concatenated GS/IAP and G(fRAS for snowpack-free seasons in the time interval from 2011 to
2015, with RMSE = 5.774 and bias = 4.619 (W m™2). Variance of G, is presented by the posterior predictive
bounds. Figure 4b presents the corresponding scatter plot with linear regression. The R* value is similar to that
estimated for the GCM data product. The MAP values of ¢, k,,, and k; are similarly within the typical ranges for
soil properties as shown in Figures 4c—4f.

4.4. Borehole

Figures 5a—5d compare the simulated temperatures from the numerical model that use GOMAP as the top boundary
input and the borehole measurements at different depths down to 2 m with the posterior predictive bounds
representing the uncertainty of simulation results. Figures Se—5h present the corresponding comparisons as a
scatter plot format. As the figure shows, the posterior predictive bounds predominantly contain the timeseries of
observations. The inferred MAP estimates of the model parameters and their corresponding marginal posterior
distributions are presented in Supporting Information S1 (see Figure S4) demonstrating that they are in a
physically realistic range.
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Figure 4. The same content as in Figure 3 for ERAS-Land outputs (Section 3.3). For the linear regression in (b), slope = 0.906 and intercept = 3.154.
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Figure 5. (a)—(d) A comparison of the temperature time series based on simulations results from the numerical model described in Section 2.2 using Gﬁ‘f AP and the daily
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corresponding scatter plots and linear regression (red solid line) between simulated and observed temperature.
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5. Discussion
5.1. UQ Efficiency

The demonstrated results confirm the credibility and skill of the ground heat flux reconstruction framework in
various settings. As compared to previous efforts of parameter tuning, one of the advantages of using the UQ
machinery in the developed approach is the significant improvement of computational efficiency due to the
drastically decreased dimensionality of Qols using the KL expansion and a reduced model complexity attained by
PC surrogates. For all the cases presented above, the dimension of the Qol set required in the parameter inference
process is reduced from @(10) to 9(10°). Such an extreme reduction is partially due to the high spatiotemporal
correlation of the data. For example, soil temperatures for consecutive days are correlated through legacy effects
(previous conditions will have impact on later conditions), and temperatures at different depths are correlated
because of the diffusive heat transfer process. Even-though the KL-PC estimation assumes approximations
affecting the solution accuracy during dimensionality reduction, the observational data are well captured by the
KL-PC expansion and fall within the posterior predictive bounds for all types of data used. This reaffirms the
consistency and generality of the developed process.

5.2. Relationship Between Joint and Marginal Posterior

Importantly, the developed methodology permits probabilistic assessment of surface ground heat flux and model
parameters used in the heat flux reconstruction. The MAP estimates of individual parameters (Figures 2c—2f, 3c—
3f, and 4c—4f, and Figure S4 in Supporting Information S1) do not necessarily coincide with the modes of their
marginal posterior distributions. This mismatch means that the joint posterior distributions incorporate strong
interdependency for individual parameters. Indeed, if all marginal posterior distributions were entirely inde-
pendent (and since the joint distribution in this case is simply the product of marginal distributions), then MAP
estimates of individual parameters derived from the joint posterior distribution would correspond to the maxima
of the corresponding marginal distributions. Another possible reason of this mismatch is the relative importance
of different parameters. If the model is more sensitive to certain parameters, their posteriors will be sharper and
other less important parameter posteriors will be flatter with the joint MAP estimate deviating from the marginal
modes.

5.3. HOD Limitation

One limitation of the HOD model is that the analytical solution of G, does not take the latent heat of phase change
of water into account. Nonetheless, the latent heat of the phase change within the considered shallow layer of
~5 cm is negligible compared to the total accumulative seasonal heat into or out of the ground. For example, the
latent heat of phase change can be approximately calculated as (z; — z9)¢p,,L, Where p,, is the density of liquid
water (kg m~>) and L is the latent heat of freezing for water (J kgfl). For the case of borehole in Section 3.4, the
latent heat of phase change is less than 0.03% of the cumulative diffusive flux for all seasons (calculation not
shown). Therefore, the reconstructed flux G, is not affected by neglecting the phase change energy in the top
shallow soil layer.

When soil moisture data are missing, assumptions about the soil water content need to be made, as described in
Section 2.4.3. One can avoid using these assumptions by applying the HOD model in its original formulation in
which only two temporally invariant variables (/ and D) are required, that is, the formulation does not depend on
the change in soil water content. However, the thermal properties of frozen and liquid water are different and need
to be considered when reconstructing G, at the daily resolution as well as in numerical simulations of even finer
time steps. The assumptions are overall suitable for locations in the Arctic region where the active layer is nearly
saturated during the winter. During relatively short summer seasons, the reconstructed G, may be overestimated
under the assumption of full soil saturation due to the higher thermal conductivity and diffusivity of liquid water
than those of the air. Measurements of soil water content of daily or finer resolution concomitant with borehole
temperature measurements may help overcome this problem. The HOD solution has been shown to be a good
approximation for variable diffusivity (Wang & Bras, 1998). The diffusion equation from which HOD solution in
Equation 1 is derived with a space-and-time dependent diffusivity has analytical solution through a change of
variable (Fitzmaurice et al., 2004). The results presented in Sec. 4.1, 4.2, and 4.3 indicate that the modified HOD
model is capable of reproducing ground heat flux accurately within a reasonable range of uncertainty.
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6. Conclusion

Ground heat flux is a vital energy budget component in cold regions and its quantification is important for un-
derstanding surface mass-energy relations and subsurface thermal condition. The process developed in this study
provides a useful approach for reconstructing surface ground heat flux and its probability distribution from
different types of shallow soil temperature data, with or without auxiliary data (i.e., soil moisture and snowpack-
free season G, data). The reconstructed G, offers an alternative data source to the laborious measurements of in
situ G, in remote regions such as the Arctic or Antarctica. Another advantage of the proposed approach is that G,
for all seasons can be derived as long as year-round (daily, or finer temporal resolution) soil temperature data are
available, which are more straightforward to obtain in terms of relevant sensor deployment and maintenance in the
field. In the case of future climate projections, the likelihood and severity of future ground heating in areas
underlain by the permafrost can only be inferred from GCM projections of soil temperatures; however, the
validity of these projections is questionable since GCMs typically have a simplified representation of the
belowground freeze-thaw dynamics, yet available outputs do not offer flux G, for independent validation.
Furthermore, in experience of this author group, data requests to individual GCM centers to obtain G, series are
generally futile and therefore the developed methodology offers means for independent verification of the past
heating and plausibility of the projected heating of the permafrost in the future.

The credibility of the reconstructed flux G, is supported by a series of results presented in the application section.
The UQ machinery applied in this study is useful for parameter inference and yields estimates in a plausible range
of real-world soil properties. In the meantime, the developed process can significantly increase the simulation
speed for data that are highly correlated in space and time. This is especially beneficial for the case when complex
models based on complex physical processes are applied.

As discussed, the reconstructed flux G, may be overestimated during summer due to the assumption of full
saturation (when soil moisture data is not available). This assumption is acceptable for the Arctic regions
considered in this study due to the relatively short summer period and low evapotranspiration potential. Suitable
moisture measurements can facilitate a more accurate G, reconstruction.

Importantly, the reconstructed G, and its probability density function can be used as an upper flux boundary
condition in detailed numerical physical models to evaluate the probability distribution of the subsurface
thermal state in specific regional and built environment settings. This is important for understanding the future
dynamics of the belowground environment. For example, the developed process can be applied to reconstruct
plausible future heating scenarios of the permafrost, with respect to the Shared Socioeconomic Pathways as
developed by the Intergovernmental Panel on Climate Change (IPCC). Aided by detailed physical modeling
and data for a region of application, such scenarios can help better resolve the probabilistic description of
permafrost future impacts on land-surface hydrology, built environment, and livelihoods of the peoples of the
North.

Data Availability Statement

The soil temperature, moisture, and ground heat flux data for the LPTEG-TREES-1 field site are licensed
under Creative Commons Attribution 4.0 International (CC BY 4.0) and published on Zenodo https://doi.
org/10.5281/zenodo.7600654 (Zhou & Ivanov, 2023). GCM outputs are licensed under CC BY 4.0 and
downloaded for the CESM2 model (Danabasoglu et al., 2020) from the CMIP6 repository https://esgf-node.
lInl.gov/search/cmip6 (Eyring et al., 2016). ERAS-Land data products are licensed under the Copernicus
C3S/CAMS License agreement and downloaded from the Copernicus Climate Change Service (C3S)
Climate Data Store (CDS) https://doi.org/10.24381/cds.e2161bac (Mufioz Sabater, 2019). Borehole mea-
surements are licensed under Creative Commons Attribution 3.0 Unported (CC BY 3.0) and downloaded
directly CALM https://www2.gwu.edu/calm/data/north.htm (Brown et al., 2000) public repositories. The
Uncertainty Quantification Toolkit (UQTk version 3.1.2) used in this study is publicly accessible at https://
github.com/sandialabs/UQTk (Debusschere et al., 2004, 2016). Soil properties used to derive parameter
prior distributions are downloaded from SoilGrids https://soilgrids.org (Hengl et al., 2017) and licensed
under CC BY 4.0.
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