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ABSTRACT: This work reports a versatile polymer platform that

produces high molecular weight polymers containing triphenylmethane-

based backbones with highly tailorable chemical structures via facile e "
Friedel—Crafts (F—C) hydroxyalkylation polymerization and investigates @ + @ R —
their applications as gas separation membrane materials. Two series of ¢ R
triphenylmethane-based polymers with systematically varied substituent

groups were synthesized from carefully selected monomers containing ga DB Triphenylmethane-based polymer
varying substituent groups. Chemical structures, thermal properties, and .

g g : g : Size
microstructures were comprehensively characterized. The separation Polarity _—
performance of the polymer membranes was evaluated via conducting - 0 @ ~ M (D

RZ Q W/ ‘\//

pure-gas permeation measurements to elucidate how substituent groups
influence the fundamental gas transport properties. Variations of side
groups display dominant effects on gas diffusion processes in which bulky groups disrupt chain packing more efficiently, while steric
hindrance and overall flexibility of segments also play a role, leading to diverse and highly tailorable separation performance. Some
membranes in this work exhibit much-enhanced permeability and selectivity comparable to those of commercial materials. The
feasible and flexible synthesis procedure as well as promising separation performance indicate the great potential of
triphenylmethane-based polymers for major light—gas separations.

Bl INTRODUCTION performance,”~>° their complicated and expensive monomer
and polymer synthesis and poor scalability hinder their practical
implementation. Moreover, most glassy polymers for gas
separation membranes are prepared from polycondensation
reactions, which require strict 1:1 stoichiometry between the
bifunctional monomers and are prone to “backbiting” and the
formation of macrocycles, frequently making it difficult to
readily obtain high-molecular-weight polymers.”*™** The
variation of monomers’ functionality could also significantly
influence their reactivity in traditional polycondensation,

Molecular separation processes, including gas separations,
account for 10—15% of the world’s energy consumption and
approximately half of US industrial energy use." Membrane-
based gas separation technology relies on the intrinsic selectivity
of membrane materials instead of the intensive input energy to
achieve the thermodynamic limit of demixing. Due to its low
energy cost, membrane-assisted separation is promising to be
combined with or replace existing thermally driven separation

technologies such as cryogenic distillation, absorption, or o Y E
adsorption.>™* With the growth of gas separation membranes limiting structural tunability and molecular weight. Therefore,

market (about $1.0—1.5 billion per year™®), polymer materials new polymer platforms that involve feasible and flexible polymer
(e olysulfone.”® polvimides. > polvohenvlene oxide'®” synthesis to produce high molecular weight polymers with
ang"pglyz’arbonat,eslsr)) vxzrilth 10“; cost pgo):)I:tl pchessability and highly tailorable chemical structures and functionalities are
scalability to form membrane modules, have been widely applied highly desired to P roduce high performance polymer separation
in industrial gas separation process<es.19‘20 However, most membrane materials.

current glassy commercial polymer materials are limited by

low or moderate separation performance due to their low Received: June 12, 2024
fractional free volume and the lack of precise control of Revised:  August 12, 2024
microstructure.”** Although sophisticated polymers with bulky Accepted:  August 13, 2024

building blocks, specifically designed functionality and/or Published: August 17, 2024

contorted ladder-like backbones such as polymers of intrinsic
microporosity (PIM) exhibit highly attractive gas separation
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Friedel—Crafts (F—C) hydroxyalkylation polymerization
between carbonyl compounds bearing electron-withdrawing
groups and nonactivated aromatic hydrocarbons has been
reported by Zolotukhin et al. to give linear, high-molecular-
weight polymers at room temperature.’’~>* Recently, this
polymerization technique also has been used to fabricate novel
fully laddered PIMs**”® and biphenyl(isatin-co-trifluoroaceto-
phenone)-based copolymers,”” which exhibited high fractional
free volume (FFV) and highly permeable gas transport. In our
previous work, Friedel-Crafts (F—C) hydroxyalkylation
reactions have been demonstrated to be a promising approach
to producing high-molecular-weight and high-performance
polymers without the rigorous requirement of a stoichiometric
balance of monomers, metal catalysts, and/or air-sensitive
procedures.”® We demonstrated that a triphenylmethane-based
polymer synthesized from commercially available 4-nitro-
benzaldehye (NBA) and 1,4-dimethoxybenzene (DB-1) dis-
played ~10 times higher CO, permeability than commercial
Matrimid polyimide while having comparable CO,/CH,
selectivity. Moreover, F—C hydroxyalkylation introduces a
feasible way to tailor substituent groups in the macromolecular
design, allowing for fine-tuning of the polymer microstructure
and consequent separation performance. Specifically, triphenyl-
methane-based polymers obtained based on the polymerization
between aryl aldehydes (BA monomers) and 1,4-disubstituted
benzenes (DB monomers) (Figure 1)*” have huge chemical

BA DB Triphenylmethane-based polymer
Polarity Size
—_—
RO OO R O ( )

X

Figure 1. Triphenylmethane-based polymer design based on Friedel—
Crafts (F,C) hydroxyalkylation reactions.

diversity of substituent groups (e.g, R' and R* on BA and DB
monomers, respectively), allowing for the synthesis of a series of

polymers with systematically varied substituent groups for
fundamental structure—property relationship studies*’ to
elucidate the respective effects (e.g., polarity, physical size) of
substituent groups. Considering the feasibility of polymer
synthesis and membrane fabrication, this work mainly focuses
on elucidating how the physical size and geometric shape of
substituent groups influence gas transport properties.

In this work, two distinct series of triphenylmethane-based
polymers from various BA and DB monomers were produced to
decouple the effects of R' and R? of the substituent groups on the
fundamental gas transport properties. As shown in Scheme 1,
polymers in the NBA series including NBA-DB1, NBA-DB2,
and NBA-DB2' possess the same R' group (ie., -NO,) but
different R? groups of varying physical size or geometrical shape.
In contrast, polymers in the DB1 series, including NBA-DBI,
CF,BA-DBI, and EBA-DBI, possess the same R* group (i.e.,
—0—CH,) but different R' groups, wherein both bulkiness and
steric hindrance influence polymer chain packing. Pure-gas
transport properties were studied via permeation tests for H,,
CH,, N,, O,, and CO, at 35 °C over a wide range of feed
pressures; diffusivity and solubility coefficients were calculated
and analyzed to provide a fundamental understanding of gas
transport properties. Based on those data, we present in-depth
discussions about the synthesis, characterization, and structure—
property relationships of this new series of triphenylmethane-
based polymers. The experimental section including materials,
characterizations, synthesis of monomers and polymers, thin
film preparation procedure, and gas permeation test is provided
in the Supporting Information.

B RESULTS AND DISCUSSION

Polymer Synthesis and Characterization. To investigate
the effects of substituent groups, two series of polymers were
designed by varying the substituents on either the electrophilic
BA monomers or the nucleophilic DB monomers (Scheme 1)
while keeping the other monomer standard across the series.
The DBI1 series consists of three polymers (i.e., NBA-DBI,
CF;BA-DB1, and EBA-DBI1) with differing commercially
available electrophilic BA monomers, polymerized alongside
the DB1 monomer as the standard nucleophilic monomer for
the series. The NBA series is composed of three polymers with
differing nucleophilic DB monomers (i.e., NBA-DB1, NBA-
DB2, and NBA-DB2'), which are polymerized alongside the
standard electrophilic NBA monomer for the series. By setting

Scheme 1. Chemical Structures of Triphenylmethane-Based Polymers with Specifically Selected R' and R*> Groups of Various van

der Waals Volume (V,,, cm®/mol)

— R1 ] o\
| LE
R2 Rl
QNG o4
RZ Rz .
<k "
RZ
R1
Triphenylmethane-
based polymer R2
DB

8203

[

\(cm3/mol)

T
L
R1: T | c=o
NO, CF; (o}
1
CH,
Vy: NBA CF,BA EBA
(cm3/mol) 16.8 21.3 29.0
4 $—0-CH,CH,CHj,
R2:  }—o0-cH, DB2
CHy
DB1 i—O'C\H
CH,
Vi DB2'
19.17 39.6

https://doi.org/10.1021/acs.macromol.4c01361
Macromolecules 2024, 57, 8202—8211


https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.4c01361/suppl_file/ma4c01361_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.4c01361?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.4c01361?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.4c01361?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.4c01361?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.4c01361?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.4c01361?fig=sch1&ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://doi.org/10.1021/acs.macromol.4c01361?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Macromolecules

pubs.acs.org/Macromolecules

(@)

chloroform

a
7

L ?e/ - 10 8 6 4
Chemical Shift (ppm)

chloroform

NBA-DB1 7\ M J L

CF;BA-DB1

EBA-DB1

8 6 4
Chemical Shift (ppm)

Figure 2. 'H NMR spectra of the polymers in (a) the NBA series and (b) the DB series.

one monomer as the standard in each series, the effects of the
varied substitution can easily be investigated. The NBA and DB1
monomers, both commercially available, were chosen as the
standards for their respective series due to their high
performance in the F—C polymerization and ease of achieving
high molecular weights.”’

The DB2 and DB2’ monomers were synthesized via the
Williamson ether synthesis of hydroquinone and the respective
alkyl bromide as described in the Supporting Information, with
proton nuclear magnetic resonance ("H NMR) spectra shown in
Figure S1. All triarylmethane-based polymers were synthesized
by dissolving in dichloromethane (DCM) before initiating
polymerization with methanesulfonic acid (MSA) with feed
ratios of [DB]:[BA]y:[MSA], = 1:X:4 where X = 1.1—1.3. With
the exception of the EBA-DB], all polymerizations were carried
out at room temperature and [DB], = 1 M, while the EBA-DB1
polymerization was conducted with [DB];, = 2 M. Detailed
procedures can be found in the Supporting Information. 'H
NMR was employed to monitor monomer conversion through
the use of 2,3-dinitro-2,3-dimethylbutane as an internal
standard, with polymerization stopped once conversion of the
BA monomer ceased.

Polymer structures were verified via '"H NMR spectroscopy,
with each unique monomer leading to distinct shifts in the F—C
backbone peaks as shown in Figure 2. All of the obtained
polymers were of sufficient molecular weight to form films.
Apparent number-average molar mass (M,) and polydispersity
(M,./M,) were determined by size exclusion chromatography
(SEC) based on a calibration curve of linear poly(methyl
methacrylate) (PMMA) standards, with results listed in Table 1.
The EBA-DBI1 polymer displayed low solubility in tetrahy-
drofuran (THF) and was thus measured on dimethylformamide
(DME) SEC.

The thermal properties of these polymers were investigated
via thermogravimetric analysis (TGA) and differential scanning
calorimetry (DSC), and the results are shown in Table 1. The
thermal decomposition temperatures at 5% weight loss are in the
range 316—407 °C. Glass transition temperatures (T,s) of NBA-
DB2 and NBA-DB2"’ were not detected, while Tls of the rest of
polymers are about ~190—230 °C. Although polymer CF;BA-
DBI possesses bulky —CFj groups (V,, = 21.3 cm®/mol) which
should largely increase the rigidity of polymer chains due to
steric hindrance effects,*"** T, of CF3;BA-DB1 is lower than that

Table 1. Molecular Weights and Thermal Properties of
Triphenylmethane-Based Polymers

[DB],: .
[BA](): M, Mwé Td,s% T
Polymer” [MSA], Conditions (kg/mol) M, (°C) (“é)

EBA-DB1 1:1.2:4 rt, 24 h 201.4° 199 407 208

CF;BA- 1:1.2:4 rt,48h 78 2.28 395 194
DB1

NBA- 1:1.2:4 rt,48h 112.3 1.79 319 232
DB1

NBA- 1:1.3:4 rt,45h 65.6 3.22 328 -
DB2

NBA- 1:1.1:4 rt, 96 h 38.4 3.88 316 -
DBY

“Polymer names consist of BA monomer followed by DB monomer

b .
used. “Apparent number-average molecular weight and molecular
weight distribution (M,,/M,) measured by SEC in THF with RI
detector, calibrated with linear PMMA standards. “Apparent number-
average molecular weight and molecular weight distribution (M,,/M,,)
measured by SEC in DMF with RI detector, calibrated with linear
PMMA standards.

of NBA-DB1 and EBA-DB1, which is likely due to its relatively
lower molecular weight and broader molecular weight
distribution.

Film Preparation and Characterization. Fully trans-
parent thin films with smooth surfaces and even thickness in the
range 40—70 um (Figure S2) were successfully fabricated
following the solution casting procedures described in the
Supporting Information. The densities of polymer films were
measured by the buoyancy method at room temperature and
were used to determine the fractional free volume (FFV) of the
film based on modified Bondi’s group contribution method."
To further study polymer chain packing, densities and FFV
values of thin films were compared in two series:

(1) NBA series (NBA-DB1, NBA-DB2 and NBA-DB2').
They possess the same R' group (i.e., —~NO,) but different
physical sizes or shapes of the R* groups (Vyy,, < Viy,,, =
VWDBZ') :

(2) DB1 series (NBA-DB1, EBA-DB1 and CF;BA-DB1).
They possess the same R* group (i.e, —O—CH,) but
different R' groups (Vyy,,, < Vig,..n < Vvesa)-
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As listed in Table 2, among the three films that contain the
same NBA monomer units, density decreases, while FFV

Table 2. Density, FFV, and Chain Packing Properties
(WAXS) of Triphenylmethane-Based Polymer Films

20 d-spacing (&)
Film density (g/

Samples cm?®) FFV A B A B
EBA-DB1 1.197 + 0.006 0.143 13.0 21.0 6.8 42
CF;BA- 1.246 + 0.004 0.191 13.5 19.7 6.6 4.5

DB1
NBA-DB1 1.243 + 0.004 0.151 12.9 21.0 6.9 4.2
NBA-DB2 1.142 + 0.005 0.169 9.7 20.2 9.1 44
NBA-DB2’ 1.135 + 0.003 0.174 8.8 19.0 10.0 4.7

increases with the increasing bulkiness of the R* groups. NBA-
DB2' displays the lowest density and, consequently, the highest
FFV, which is likely related to the geometric shape of iso-
propoxy groups. In the DBI1 series, CF;BA-DB1 exhibits the
highest FFV due to the bulkiness and steric hindrance effects of
—CF;. In contrast, although EBA has the largest van der Waals
volume, the planar nature and flexible ether bond of the methyl
ester in the EBA substituent may allow the polymer chain to
pack more efliciently when compared with NBA and CF;BA,
leading to a more densely packed structure and thus the lowest
FFV.*

WAXS (wide-angle X-ray scattering) patterns of polymers are
displayed in Figure 3, and their d-spacing values are tabulated in
Table 2 to provide comparisons within the two series. All films
exhibit two broad halos (i.e., peak A and peak B), indicating their
amorphous structures. Peak A with a d-spacing value of ~6.6—
10.0 A might be associated with the inefficient chain packing
caused by the rigid triphenylmethane-based backbone struc-
tures, while peak B with a smaller d-spacing value of ~4.2—4.7 A
could be related to the interchain distance formed from the
ineflicient packing of less rigid segments or substituent groups.
As shown in Figure 3a for NBA series, with increasing physical
size of the R* group (i.e.,, DB1 < DB2 = DB2’), both peak A and
peak B shift to smaller values, suggesting increased interchain
distance typically relatable to higher fractional free volume,
which is consistent with FFV results. Although the n-propoxy
group (DB2) and iso-propoxy group (DB2’) have the same
nominal van der Waals volume, NBA-DB2' with iso-propoxy
groups exhibits the largest d-spacing values in the NBA series, in
agreement with the trend of FFV. That is likely due to the steric
hindrance effects of the branched iso-propoxy group, which
might more effectively frustrate chain packing and limit

segmental motion leading to more loosely packed structures.
In the DBI1 series (Figure 3b), all three films show similar
positions of peak A at about 12.9°—13.5° (d-spacing of ~6.6—
6.9 A) as well as similar peak B positions (d-spacing of ~4.2—4.5
A). CF;BA-DBI displays the largest d-spacing value of peak B
(4.5 A), suggesting the relatively loosely packed polymer chains
due to the bulky structure and steric hindrance of —CF;.

Gas Transport Properties. Pure-gas permeation tests of
five fresh films (NBA-DB1, NBA-DB2, NBA-DB2’, EBA-DB],
and CF;BA-DB1) were performed via a constant-volume,
variable-pressure method® for five gases (ie, H, CH, N,
0,, and CO,) at 35 °C to elucidate how different substituent
groups influence gas permeability (P) and selectivity (a) in these
new triphenylmethane-based polymers. Fundamental gas trans-
port properties, including gas diffusivity (D) and solubility (S),
were also experimentally measured and calculated, respectively,
to provide insight into the fundamental structure—property
relationships for these polymers. Gas permeability and
selectivity data, as well as diffusivity and solubility data, are
listed in Table 3 for both NBA series and DB1 series. Detailed
discussion on the respective effect of the R' (DB1 series) or R*
(NBA series) group is as follows.

Effects of Physical Size and Geometric Shape of the R’
Group in NBA Series. To investigate the effects of the R* group
on the separation performance, permeability and selectivity data
are compared within the NBA series, where the R* group was
varied in increasing size from methoxy (DB1), n-propoxy (DB2)
to iso-propoxy (DB2’) while keeping the same NBA as R' group.
As shown in Figure 4a, permeabilities of large gases (i.e., O,,
CH,, and N,) increase obviously with increasing the physical
size of the R group, while Py and P, display relatively

moderate changes. The difference suggests that large gases are
more sensitive to enhanced excess free volume, which provides
more pathways to allow the transport of large gas molecules.***”
Specifically, compared with NBA-DB1 containing methoxy
groups, the CH, permeability of NBA-DB2 with larger n-
propoxy groups increases by 165%, while H, permeability and
CO, permeability slightly decrease by about 10—20%. Although
the iso-propoxy group has the same van der Waals volume (V)
as that of the n-propoxy group, NBA-DB2' exhibits the highest
permeabilities for all gases in the NBA series, consistent with the
results of FFV and WAXS analysis. That could be ascribed to the
difference in geometric shape between n- and iso-propoxy
groups. Linear n-propoxy groups are more likely to fill free
volume microvoids due to their slimmer shape and flexibility,
while branched iso-propoxy groups likely disrupt chain packing

(@)
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NBA-DB2

NBA-DB2'
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Figure 3. WAXS patterns of the (a) NBA series and (b) DB1 series.
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Table 3. Pure Gas Permeability (P) (35 °C, 130 psig), Ideal Selectivity, Diffusivity Coefficient (D, 10~ cm?/s), Solubility
Coefficient (S, 107> cm® (STP)/cm® cmHg), Diffusivity Selectivity, and Solubility Selectivity of Triphenylmethane-Based

Polymer Films
Tested Gases Ideal Selectivity

H, CO, 0, N, CH, H,/CH, 0,/N, CO,/CH, CO,/N,
NBA-DB1 pP* 583+ 1.1 493 £ 12 6.5+0.2 1.6 + 0.04 2.0 £ 0.02 27.6 + 1.0 42+02 24.6 + 0.9 31.8+1.2
D’ - 74.6 + 3.9 125.1 £ 25.5 45.0 + 14.5 158+ 1.5 - 28+ 1.1 47+ 0.5 1.6 £0.5
S - 6.6 +0.3 0.5+ 0.1 03 +0.1 1.3+0.1 - 1.5+ 0.6 52 +0.6 192 £ 6.3
NBA-DB2 P 424+ 0.8 444+ 1.1 92+02 25+0.1 53+0.1 8.0+ 0.2 3.6+£0.1 84+ 0.3 174 £ 0.6
D - 1450 £ 7.8 3334 + 1164 112.7 + 46.6 83.6 £ 12.7 - 3.0+ 1.6 1.7+ 0.3 1.3 +£0.5
N - 3.1+£02 03 +0.1 02+0.1 0.6 +£0.1 - 12 +0.1 4.8 +0.8 13.5+ 5.7
NBA-DB2 P 793+ 13 743 + 1.6 15.6 + 0.3 40=+0.1 7.1+0.2 11.1 + 0.3 39+0.1 104 + 0.3 18.7 + 0.6
D - 1579 £ 2.9 4239 + 769 158.1 + 40.4 733 £ 5.1 - 2.7+0.8 22+02 1.0+£0.2
S - S2+0.1 04 +0.1 03+0.1 1.0+ 0.1 - 1.5+0.5 52+0.5 20.7 £ 5.4
EBA-DB1 P 429 +0.8 32.0 +0.6 54+0.1 1.3 £0.02 1.4 +0.03 29.8 +0.8 43 +0.1 222+ 0.6 253 +0.7
D - 582+ 13 101.9 +£24.3 412 + 154 119 £ 1.1 - 25+11 49 £ 0.5 14 +£05
S - 6.0 +£0.2 0.5+0.1 03+0.1 12+0.1 - 1.7 £ 0.7 49 +£0.5 192+72
CF;BA- P 223 +4.3 293.0 £ 3.1 571+ 1.1 178 £0.3 232 +04 9.6 +0.3 32+0.1 12.6 + 0.3 164 + 0.4
DBl D - 603.5 + 63.2 939.2 + 110.5 736.4 +214.2 441.3 £ 59.5 - 1.3+04 1.8 +£0.2 0.8 +0.3
N - 3.8+0.6 0.6 +£0.1 02+0.1 0.5=+0.1 - 25+08 7.8 +1.8 23.0+72

“Units: P, 1 Barrer = 107" cm®*(STP)*cm/cm**s*cmHg; D, 10™° cm?/s; S, 107> cm*(STP)/cm**cmHg, by, diffusivity coefficients were not
determined due to the very short lag time. All diffusivity coefficients were calculated from the lag time and the pure gas permeability at 30 psig.
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more efficiently, resulting in the most loosely packed structures

in the NBA series.

The physical size and geometric shape of the R* group also
display a significant influence on the size-sieving property of the
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NBA series. With increasing physical size, ideal selectivity (a)
values largely decline for most gas pairs (Figure 4b). Compared
with NBA-DB1, the H,/CH, selectivity of NBA-DB2 decreases
by 71%, and the O,/N, selectivity also decreases by 14%. The
impaired size-sieving ability is also likely due to more open
microstructures with the incorporation of bulkier n-propoxy
groups. Compared with NBA-DB2, the iso-propoxy containing
NBA-DB2’ exhibits comparable or slightly higher ideal
selectivity for all gas pairs, which are further elucidated via the
analysis of diffusivity selectivity and solubility selectivity in the
following paragraphs.

Diffusivity coefficients (D) were determined via the time-lag
method, and solubility coefficients (S) were then calculated
according to the solution-diffusion model.”® Correspondingly,
diffusivity selectivity and solubility selectivity were calculated,
and all of the results are listed in Table 3. As shown in Figure Sa
using the CO,/CH, gas pair as an example, with increasing
physical size of the R? group, both NBA-DB2 and NBA-DB2'
exhibit much higher gas diffusivities than NBA-DB1, consistent
with the trend of permeability as a function of the R? group. An
increase in the size of the R* group leads to declined CO,/CH,
diffusivity selectivity as expected (e.g., ~47% decrease in NBA-
DB2 and ~53% decrease in NBA-DB2' relative to NBA-DB1),
suggesting the impaired size-sieving ability with large substituent
groups. Between NBA-DB2 and NBA-DB2', the effect of
geometric shape does not seem to be of significance on
diffusivity selectivity, particularly when errors are included. On
the other hand, the trend of solubility coeflicients is less
straightforward (Figure Sb). Unlike the trend of CO, diffusivity
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coeflicients, CO, solubility coeflicients display much less
significant changes with the variation of R* groups, indicating
the dominant role of diffusion process in these polymers.
Considering the uncertainties of the time-lag method, solubility
selectivity does not change a lot within the NBA series.
Therefore, with the increasing physical size of the R group, the
declined ideal selectivity could be mainly ascribed to a greatly
reduced diffusivity selectivity.

Effects of Physical Size and Steric Hindrance of the R’
Group. To investigate the effects of the R group on separation
performance, permeability and selectivity data are compared
within the DBI series, where different R' groups including
—NO, (NBA-DB1), —CF, (CF,BA-DB1) and —~COOCH,
(EBA-DB1) were incorporated while keeping the same methoxy
group (DB1) as the R®> group. According to Figure 6a,
permeability coefficients of DB1 series films show a non-
monotonic trend with increasing van der Waals volume of the R*
group (Vyy . < Viy .. < Vv ...)- CF:BA-DBI displays
significantly higher permeability (e.g., ~300% higher H,
permeability relative to NBA-DB1 and ~960% higher O,
permeability relative to EBA-DB1), likely due to the geometric
feature of R' groups. Specifically, the three bulky fluorine atoms
in the —CF; group effectively impose strong steric hindrance
effects that can limit mobility or free rotation of chain segments,
resulting in a loosely packed structure leading to high
permeability.*”*° Additionally, despite its largest van der
Waals volume among the R' groups, the planar nature of the
—COOCH, substituent likely leads to more densely packed
segments and thus exhibits even lower permeability than NBA-
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DB1 with the smallest —NO, substitution. Correspondingly,
ideal selectivity for several gas pairs exhibits a nonmonotonic
trend, where CF;BA-DBI1 displays the lowest selectivity values
following the typical permeability-selectivity trade-off relation-
ship (Figure 6b).

Diffusivity (D) and solubility (S) coefficients of DB1 series
films, as well as corresponding diffusivity selectivity (D,/Dg)
and solubility (S,/S) selectivity, were measured or calculated as
listed in Table 3. The dependence of diffusivity on the R' group
shows the same trend as that of the permeability (Figure 7a).
With the presence of —CF; groups, CF;BA-DB1 exhibits the
highest diffusivities for all gases among the DBI1 series, while
EBA-DBI1 containing the largest but more planar —COOMe
groups shows the lowest diffusivity coefficients in this series.
This trend also indicates that steric hindrance of substituent
groups and flexibility of segments could influence polymer chain
packing more significantly than the physical size. The depend-
ence of diffusivity selectivity on the R' group shows an expected
trade-off trend, where polymers with high diffusivities tend to
have low diffusivity selectivity.

Solubility coefficients seem to be less sensitive to the variation
of the R group (Figure 7b). With the variation of the R' group,
all three membranes in the DB1 series display similar solubility
coefficients, suggesting that diffusion dominates gas transport in
these new triphenylmethane-based polymers. As shown in Table
3, CF;BA-DB1 displays slightly higher CO,/CH, solubility
selectivity values than the other two polymers in the DB1 series,
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which might be related to the high affinity of CF; groups with
CO, molecules.""*>*"** However, the enhanced solubility
selectivity could not offset the largely decreased diffusivity
selectivity, leading to the lowest overall ideal selectivity of
CF;BA-DBI1 among the DB1 series.

Overall Gas Separation Performance. CO, plasticization
behavior of all membranes was studied via plotting CO,
permeability versus upstream pressure (i.e., 30—230 psi) in
Figure S3. With increasing upstream pressure, CO, permeability
slightly decreases which corresponds with the typical behavior of
glassy polymers according to the dual-mode sorption model.>*>*
The plasticization point could not be detected within the testing
range, suggesting the attractive resistance to CO, plasticization
due to the rigid triphenylmethane polymer backbone.

While multiple variables between the BA and DB series were
adjusted, including polarity, size, and number of substituents per
repeating unit, a cursory comparison between the series
illustrates the effect on substituent position for tailoring gas
transport properties. The changes in permeabilities and
selectivities by adjusting the R' or the R? groups are compared
in Figure 8. It seems that varying the R' group could tailor gas
permeabilities more efficiently while better maintaining the size-
sieving capability than systematically adjusting the R, groups.
Bulky groups with large steric hindrances (i.e., —CF; groups)
play an important role in disrupting chain packing and
improving gas permeabilities. In contrast, the H,/CH, and
CO,/CH, selectivities are more sensitive to variation of the R?
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group. Compared with n-propoxy (DB2) and iso-propoxy
(DB2’), the methoxy group (DB1) seems to contribute to the
well-maintained size-sieving capability, resulting in the overall
more promising selectivities of the DB1 series.

To evaluate the overall separation performance of triphenyl-
methane-based polymers, permeability and selectivity data are
plotted together with the Robeson upper bound in Figure 9 and
Figure S4. Data of some commercial polymer films, e.g,
Matrimid polyimide, cellulose acetate with 2.45 deg of
acetylation (CA-2.45), polysulfone (PSF) and poly(2,6-
dimethylpheylene oxide) (PPO), as well as high-performance
polyimide-based membranes reported in recent years, are also
included for comparison. Overall separation performance of
EBA-DB1, NBA-DBI1, and CF;BA-DBI1 is comparable to or
even outperforms those commercial materials, judging by the
distance between the data points and the upper bound.
Additionally, the highly diverse chemical structures of triphenyl-
methane-based polymers make it feasible to finely tailor the
separation performance by incorporating diverse substituent
groups. With bulky —CF; groups, the newly synthesized CF;BA-
DB exhibits a largely improved permeability without significant
sacrifice of selectivity. The H, permeability and CO,
permeability of CF;BA-DB1 were more than 9 and 14 times
higher than those of Matrimid, respectively. By incorporating
planar —COOMe or small —NO, groups, the size-sieving
property is largely improved, resulting in ~100% higher H,/CH,
selectivity and ~47% higher CO,/CH, selectivity than PPO.

B CONCLUSIONS

Two series of novel triphenylmethane-based polymers with
various substituent groups have been successfully synthesized
via facile F—C polycondensation from a series of BA and DB
monomers with specifically chosen substituent groups for
systematic structure—property relationship studies. Obtained
high-molecular-weight polymers could be readily cast into
freestanding thin films, of which their gas separation perform-
ances were comprehensively evaluated at ambient conditions
with five light gases. Through independent investigation on the
two series of polymers with varied substituent groups as well as
systematic comparisons between the two series of polymers, we
were able to decouple the effects of R' and R? groups. Bulky R*
groups on DB monomers (i.e., propoxy) are able to effectively
improve permeability and diffusivity coefficients of gases by
disrupting chain packing, while the small methoxy group seems
to make a significant contribution to the size-sieving capability.
The steric hindrance of R' groups on the BA series plays an
important role in limiting segmental motion and thus improving
permeability. With highly tailorable chemical structures,
triphenylmethane-based polymers display a wide range of gas
separation performance that can be finely tailored by
incorporating different R' and R* groups to meet various gas
separation needs. The permeability can be effectively tailored by
varying the bulkiness and steric hindrance properties of the R'
group, while the selectivity can be optimized when the methoxy
group is used as the R? group. As a result, all newly synthesized
thin films realize a much-enhanced permeability and comparable
selectivity with commercial polymer materials. The easily
available monomer sources and facile synthesis procedure also
indicate the great potential of this new polymer platform for
applications of gas separations.
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