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Abstract

Bug report management is a costly software maintenance process
comprised of several challenging tasks. Given the Ul-driven nature
of mobile apps, bugs typically manifest through the UI, hence the
identification of buggy UI screens and UI components (Buggy Ul
Localization) is important to localizing the buggy behavior and
eventually fixing it. However, this task is challenging as developers
must reason about bug descriptions (which are often low-quality),
and the visual or code-based representations of Ul screens.

This paper is the first to investigate the feasibility of automating
the task of Buggy UI Localization through a comprehensive study
that evaluates the capabilities of one textual and two multi-modal
deep learning (DL) techniques and one textual unsupervised tech-
nique. We evaluate such techniques at two levels of granularity,
Buggy UI Screen and UI Component localization. Our results illus-
trate the individual strengths of models that make use of different
representations, wherein models that incorporate visual informa-
tion perform better for UI screen localization, and models that
operate on textual screen information perform better for UI compo-
nent localization — highlighting the need for a localization approach
that blends the benefits of both types of techniques. Furthermore,
we study whether Buggy UI Localization can improve traditional
buggy code localization, and find that incorporating localized buggy
Uls leads to improvements of 9%-12% in Hits@10.
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1 Introduction

Bug report management is an essential, yet costly process for soft-
ware projects, in particular for mobile apps [88]. It demands high
developer effort [15, 22, 35, 72, 87, 88] due in part to the potential for
large volumes of reported bugs and the varying quality of submitted
bug reports. These reports are the central artifact in bug manage-
ment [28, 35, 87, 88], as they directly impact downstream tasks
such as bug triaging, reproduction, localization, program repair,
and even regression testing. Bug reports typically describe defects
found during software development and usage, and are expected to
include, at minimum, the app’s observed (incorrect) behavior (OB,
the expected behavior (EB), and the steps to reproduce the bug
(S2Rs) [21, 28, 50, 68, 69, 87].

Given the Ul-centric nature of mobile apps, a large majority of
reported bugs for these apps manifest through the UI [45]. There-
fore, an important first step toward understanding, diagnosing, and
resolving underlying bugs in the code is localizing the buggy behav-
ior to both a UI screen and UI components [58]. As such, a critical
bug report management task for mobile apps is the identification of
Ul screens and UI components (e.g., buttons or text fields) that cause
or display the reported incorrect behavior of the app (i.e., the OB), a
task that we term Buggy UI Localization. This task is essential but
can be difficult for developers, especially when many incoming bug
reports need to be addressed and fail to include important details
or graphical information (e.g., buggy app screenshots [34]). Despite
the growing body of work on automating bug report management
tasks [88], prior work has not yet explored how to assist developers
in Buggy UI Localization.

In this paper, we present the first empirical study that investi-
gates the feasibility of automatically localizing bug descriptions to
UI screens and UI components of mobile apps. Similar to traditional
buggy code localization [14, 25-27, 40, 46, 76], we formulate Buggy
UI Localization as a retrieval task, in which a bug description (i.e.,
the OB) is used as query input to a retrieval engine that searches
the space of UI screens and UI components of an app and recom-
mends a ranked list of candidates that most likely correspond to
the bug description. Specifically, the study focuses on two retrieval
tasks for a given bug description: screen localization (SL), which
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involves retrieving potentially buggy UI screens from the app, and

component localization (CL), which aims to retrieve the relevant

buggy Ul components from a given buggy UI screen.

The study investigates how the textual and visual information
from UI screens and UI components can be leveraged for Buggy
UI Localization, and hence, explores the effectiveness of unsuper-
vised textual techniques and pre-trained textual and multi-modal
deep learning (DL) techniques. Specifically, we examine one unsu-
pervised text-based model (LUCENE [42]) and three DL models: a
supervised text-based model (SENTENCEBERT or SBERT [67]), and
two supervised vision-language learning models (Crip [65] and
Brip [52]), under a zero-shot setting to explore their capabilities for
Buggy UI Localization. To evaluate the effectiveness of the mod-
els in real-world scenarios, we created a manually curated dataset
of 228 OB descriptions from 87 real bug reports. The dataset also
includes associated buggy Ul screens and UI components that we
manually labeled from a UI corpus created by employing GUI app
exploration techniques [59], for 39 Android mobile apps.

The results of our study indicate that no single technique uni-
versally performs best for the two localization tasks (screen and
component localization). The best-performing approaches suggest
the correct buggy Ul screens (BLip) and Ul components (SBERT)
in the top-3 recommendations for 52% and 60% of the bug descrip-
tions, respectively. We also found the models tend to perform better
for higher-quality bug descriptions and easier-to-retrieve cases as
judged by humans. The results show the feasibility and effectiveness
of using existing DL models for Buggy UI Localization.

To illustrate the practical usefulness of automated Buggy UI Lo-
calization, we conducted a second empirical study that investigated
how identified buggy UI screens from the best-performing screen
localization model can improve traditional buggy code localization
approaches. We adapted the approach proposed by Mahmud et
al. [58] to filter or boost code files retrieved via existing buggy
code localization approaches using retrieved UI screen informa-
tion by screen localization. We designed an end-to-end, automated
approach comprising two major steps: (1) Buggy UI Localiza-
tion, which receives a bug description and the app Ul screens and
automatically identifies buggy UI screens, and (2) Buggy Code
Localization, which (i) computes the textual similarity between
the bug report and the app code files to retrieve potentially buggy
files, and (ii) boosts the rankings of retrieved code files related to
identified buggy Ul screens in step (1). Using two buggy code local-
ization tools applied to 79 bug reports we found that incorporating
information from the automatically identified Buggy Ul screens can
lead to a 9% to 12% improvement in Hits@10, compared to baseline
techniques that do not use UI data.

In summary, we make the following contributions:

(1) We are the first to address the problem of Buggy UI Local-
ization by investigating how different information sources
(textual UI metadata and app screenshots) and four existing
textual and multimodal models can be leveraged for Buggy
UI Localization. Our results suggest that the models perform
differently depending on the retrieval task. These findings can
inform the design of future domain-specific models.

(2) We illustrate a practical application of buggy UI screen local-
ization on Buggy Code Localization. The application of our
screen localization approach to Mahmud et al.’s approach [58]
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Title: Can no longer enter text in SSID Filter TextView

Description: Cannot enter any text in the SSID Filter field.
Steps:

1. Click on Filter icon.

2. Click/tap on SSID Filter text field.

3. Keyboard does not pop up.

Expected Behaviour:
Should display keyboard and allow you to enter SSID filter text.

J

Figure 1: Bug report #191 from the WiFi Analyzer app [10]

illustrates that it can both automate and improve upon existing
buggy code localization techniques.

(3) We provide a novel, publicly available benchmark (data, in-
frastructure, results, and documentation) for Buggy UI Local-
ization, which facilitates replication and experimentation [12].
The benchmark provides a new, manually-curated dataset with
buggy UI screens and Ul components, textual and visual re-
trieval corpora, and bug descriptions for each bug report.

2 Background, Problem, & Motivation
2.1 Bug Descriptions & App UI Elements

In this paper, a bug description is the observed or incorrect app
behavior (OB) textually described in a sentence of a bug report. We
focus on descriptions of bugs that manifest visually on the device
screen. Figure 1 shows a real bug report for WiFi Analyzer [10],
an app for monitoring the strength and channels of surrounding
WiFi networks [9]. The bug/OB descriptions in the bug report are
underlined in Figure 1 and describe a bug in which the app fails to
show the keyboard to enter the WiFi’s SSID.

App UI screens implement one or more app features and rep-
resent the canvas upon which Ul components (a.k.a. widgets) are
drawn. UI components are elements rendered on a Ul screen (e.g.,
buttons, text fields, or checkboxes) that allow end-users to interact
with the application. A screen is composed of a hierarchy of Ul
components and containers (a.k.a. layouts) that group UI compo-
nents together [7]. Figure 2 shows examples of Ul screens (2b) and
their components (2c) for the WiFi Analyzer app. In this paper, a
Ul screen is represented as a screenshot and its corresponding UI
hierarchy of components/containers described in metadata. Each UI
component is represented by a set of attributes, including the com-
ponent type (e.g., TextView or Button [7]), its label or text shown
on the screen, an ID, a description, and various visual properties
such as the component’s visibility and size. Buggy UI Screens and
UI Components display unexpected, incorrect behavior of an app.

2.2 Problem and Motivating Example

We envision a system that suggests to the developer a ranked list
of Ul screens (i.e., app screenshots) that display or is related to the
buggy app behavior reported by a bug description in a bug report
(see Figure 2b). The developer would then inspect the suggested
Ul screens in the ranked list (in a top-down fashion) and select
one or more screens that s/he deems display the reported bug. The
system would then identify (and highlight) the UI components in
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Figure 2: Example of the Ul screen/component localization process for an OB/bug description of the WifiAnalyzer app [10].

the selected buggy UI screens that are most related to the reported
bug (see Figure 2c). The suggestions of this system can help de-
velopers not only automatically localize buggy Ul screens and UL
components [13, 23, 62, 80, 87], but also understand the reported
bug, and assist them in other bug management activities (e.g., bug
reproduction). Additionally, this system can be useful for various
bug report management tasks, as it can provide information to
existing automated techniques that aim to reproduce bugs [83, 84],
generate test cases [37], assess the quality of bug reports [24, 70, 71],
and perform buggy code localization [58].

While bug reports provide the steps to reproduce the bug (S2Rs)
and the expected app behavior (EB), which can be used to iden-
tify the buggy UI screens and Ul components, we focus on OB
descriptions for at least two reasons [28]: (1) they convey the faults
observed by the user, and (2) they are often written using different
wordings (even for a single bug type—see fig. 1). The S2Rs and EB in
bug reports do not necessarily describe a bug and they are often de-
scribed using a more limited language compared to that of OBs [28].

We formulate automated buggy UI localization as two retrieval
tasks (see Figure 2): screen and component localization. In screen
localization (SL), a bug/OB description (i.e., the query) is the input
to a retrieval engine that searches the space of (automatically iden-
tified) Ul screens (see Figure 2a) of a given app and retrieves a list of
UI screens ranked by their similarity to the bug description, which
indicates the likelihood of a Ul screen to show or be affected by the
bug described by the query. Figure 2b illustrates the screen localiza-
tion process for one OB description from the bug report shown in
fig. 1. The highlighted UI screen with the green border (see Screen
(iii) of Figure 2b) is the buggy screen (initially unknown to the devel-
oper). The two best approaches we studied (BLip & SBERT) are able
to retrieve the buggy screen as their first suggestion. In component
localization (CL), the retrieval engine searches the space of (auto-
matically identified) UI components (see Figure 2a) of a given buggy
UI screen and retrieves a list of UI components ranked by a similar-
ity score that indicates the likelihood of the components to show or
be affected by the bug. Figure 2c illustrates the component localiza-
tion process for the buggy Ul screen of the bug description. The UI
components in orange are the ones that the bug description refers

to, hence they are expected to be ranked higher by the component
retrieval engine. The two best-performing approaches we studied
(SBERT & BLip), rank the buggy components in the first position(s).

Screen and component localization are impacted by the amount
of information that a OB description contains (i.e., query quality)
and the difficulty in retrieving buggy UI screens/UI components
(i.e., retrieval difficulty). If the bug description is poorly written
or does not provide enough information about the bug (which is not
uncommon in bug reports [24, 71]), then a retrieval engine (or even
a human) would have a hard time identifying the buggy UI screens
and Ul components (if not familiar enough with the app). This prob-
lem is exacerbated by the fact that the same bug can be described in
a variety of ways [28] — e.g., see the underlined sentences in fig. 1.
Even if the OB is clear and informative, identifying the buggy UI
screens/UI components can be challenging when numerous similar
Ul screens/UI components exist in the app. As an example, consider
the last OB/bug description from the Wifi Analyzer app shown in
fig. 1: “Keyboard does not pop up". The best approach for screen lo-
calization, BLIP, retrieved the true buggy screen at the 21st position
and true buggy component at the 16th position. Component local-
ization’s best approach, SBERT, retrieved the true buggy screen at
the 6th position and the true buggy components at the 12th position.
This illustrates the difficulty of buggy Ul localization, hence in our
study, we assess the performance of various approaches considering
bug descriptions of different quality and retrieval difficulty levels.

3 Automating Buggy Ul Localization

This study aims to investigate different methods for automatically
locating buggy UI screens and UI components based on bug/OB
descriptions and measure their effectiveness for this problem. To
that end, we investigate existing retrieval approaches that leverage
textual and/or visual information from the bug descriptions and UI
screens and components, to perform screen and component localiza-
tion. With this in mind, we address three research questions (RQs):
RQ;: How effective are retrieval approaches at locating buggy UI
screens (SL) from bug descriptions?
How effective are retrieval approaches at locating buggy UI
components (CL) from bug descriptions?

RQz:
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RQs: How effective are retrieval approaches for different query
quality and retrieval difficulty levels?

To answer the RQs, we selected four (un)supervised approaches
of various kinds (section 3.1). Then, we constructed a real-world
dataset for evaluating the effectiveness of the approaches (sec-
tion 3.2). We executed the approaches (section 3.3) and measured
their performance with standard retrieval metrics (section 3.4). This
section provides details about these steps, while sections 3.5 and 3.6
present and discuss the obtained results.

3.1 Retrieval Approaches

We investigated three deep learning (DL)-based approaches and
one baseline unsupervised approach, which support text-to-text or
text-to-image retrieval for the two Buggy UI Localization tasks.
SENTENCEBERT (or SBERT) [67] is a neural text-based lan-
guage model, which augments the traditional BERT model [33] with
siamese and triplet networks. It can establish semantic similarity
for a pair of textual descriptions by generating embeddings. SBERT
can be utilized for both screen and component localization using
the textual bug descriptions, Ul screens, and UI components.
Cvr1p [65] is a neural multi-modal vision/language model that
can learn semantic embeddings from text and images via a con-
trastive architecture. Given a text-image pair, it can determine the
similarity between them. Hence, CLIp can be utilized for both screen
and component localization using textual information from the bug
description and visual information from UI screen/components.
BLrp [52] excels in vision-language understanding and gener-
ation tasks, and uses a multi-modal encoder-decoder component
(MED) and a dataset bootstrapping method, i.e., captioning-filtering
(CapFilt). We used a BL1P version optimized for text-image retrieval
tasks, which only implements contrastive and matching losses. BLip
can be utilized the same way Cv1p is used for buggy Ul localization.
Finally, we selected LUCENE [42] as a baseline technique for text
retrieval. LUCENE is a classical unsupervised approach that com-
bines the vector space model (VSM), based on the TF-IDF represen-
tation, and the boolean text retrieval model, to compute the (cosine)
similarity between a query and a document. LUCENE can be uti-
lized for both screen and component localization using the textual
information in bug descriptions, UI screens, and Ul components.
While Cr1p and BL1P have been pre-trained with general-purpose
data, they have performed well under zero-shot settings [52, 65, 67]
for tasks such as semantic similarity computation, object detec-
tion, image captioning, and text-image retrieval, under distinct
domains. These models have also been fine-tuned for downstream
tasks [18, 31, 66, 81], enhancing their capabilities. This study inves-
tigates the capabilities of these models for Buggy UI Localization.
The lack of a large, high-quality dataset specifically created for
Buggy UI Localization prevents us from fine-tuning Crip and Brip.
While the RICO dataset [8] would be a good dataset candidate for
our task, it does not provide bug descriptions, and the mobile app
screenshots included in RICO do not show any buggy behavior.
As such, creating this dataset with real-life bug descriptions and
buggy Ul screens of mobile apps would demand an enormous effort
that is beyond the scope of our work. A potential solution to create
this dataset, which we leave for our future work, is creating syn-
thetic bug descriptions using templates for different bug types and
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wordings, based on automatically modified RICO screenshots that
show various buggy behaviors (e.g., incorrect app output, crashes,
non-crashing errors, cosmetic issues, and navigation misbehavior).

Besides the three DL models, we considered models specifically
designed for mobile app UI understanding tasks, including UIB-
ERT [17], VUT [57], and ScREEN2VEC [53]. However, UIBERT and
VuT’s source code and pre-trained models are not available and
ScrREEN2VEC would require a significant adaptation effort for our
task as the model is only designed for generating UI screen embed-
dings from screen text and UT hierarchies; extra modules would be
required to adapt this model for Buggy UI Localization. We should
note, though, that we experimented with it as a zero-shot encoder
to represent Uls and with an SBERT model for representing bug
descriptions, computing the cosine similarity on both embeddings
to establish similarity. Unfortunately, this led to poor performance
for both screen and component localization tasks, hence we decided
to not report their performance in this paper.

Large language models (LLMs), e.g., ChatGPT [63] and Llama [73],
can be used for text-based Buggy UI Localization. However, study-
ing their capabilities for this task likely warrants a separate study be-
cause it requires careful control of several factors to make for a fair
comparison with non-LLMs, including addressing non-deterministic
responses, possible data leakages, selection of bug reports, token
limits, and prompting strategies. Studying the capabilities of LLMs
for the task of Buggy UI Localization is part of our future work.

3.2 Dataset Construction

We built a dataset of real-life bug descriptions and relevant buggy UI
screens and Ul components to assess the effectiveness of the models
in a realistic setting. The dataset construction process included:
(1) identifying bug/OB descriptions in a set of bug reports — these
descriptions represent the queries used for retrieval.

(2) building the UI screen corpus and the UI component corpus
used for retrieval. These corpora are constructed for the app
corresponding to each bug report.

(3) identifying the (ground truth) buggy UI screens and Ul
components in the corresponding corpus, and assigning a
quality and retrieval difficulty level to each query.

3.2.1 Bug Report Selection. Since one of our goals, later detailed
in this paper (see section 4), is to assess the usefulness of Buggy
UI Localization models for Buggy Code Localization, we followed
a pragmatic approach to select the bug reports for this study. We
started with the 80 bug reports of the buggy code localization
dataset provided by Mahmud et al. [58] so that we could reuse the
data for this study and the buggy code localization study reported
in section 4. Mahmud et al’s dataset was created based on the An-
droR2 dataset [44, 75], which consists of 180 manually reproduced
bug reports for popular open-source Android applications hosted
on GitHub. Of the 180 bug reports, Mahmud et al. discarded 100
reports because they: (1) described bugs that were no longer re-
producible, (2) included bug fixes in non-Java code files only, (3)
were no longer publicly available, or (4) included ambiguous code
changes or commit IDs. This resulted in 80 bug reports.

When collecting ground truth data for Buggy UI Localization
(see section 3.2.4), we discarded one bug report (from the GnuCash
app [1]) from the 80 bug reports of Mahmud et al.’s dataset because
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we were unable to reproduce the reported bug, thus leaving 79
reports. To expand the set of bugs usable for this study, we selected
14 extra bug reports from the 100 discarded ones whose bug fixes
were in XML resource files as opposed to Java code and discarded
six reports because we obtained errors trying to collect the retrieval
corpus for those reports (see section 3.2.3). This resulted in eight
extra bug reports, for a total of 87 reports. Although Mahmoud
et al. [58] could not use these 8 bug reports, they are usable for
the buggy Ul localization task since they are reproducible and we
collected (ground truth) UI data for the corresponding applications.

From the 87 bug reports (1 to 8 per app), 32 describe an output
problem, 23 report an app crash, 23 describe a Ul cosmetic issue,
and 9 report a navigation problem. The bug reports correspond to
39 Android apps (e.g., GnuCash [4], Mozilla Focus [2], K-9 Mail [6],
WiFi Analyzer [10], Images to PDF [5]) of different domains (e.g.,
finance tracking, web browsing, emailing, WiFi network diagnosis,
and image conversion) and UI layouts.

3.2.2  Bug Description Identification. To identify bug/OB descrip-
tions in the 87 bug reports, two authors inspected and annotated
the 1807 sentences in the reports’ title and description. Based on the
definition of OB and the criteria to annotate OB sentences defined
by Chaparro et al. [28], one author labeled each bug report sentence
as either an OB or non-OB. Here, the OB sentences describe the
buggy app behavior (e.g., the underlined sentences in Figure 1).
The second author then verified the annotations made by the first
author, indicating agreement or disagreement. Out of the 1807 sen-
tences across all bug reports, the authors reached agreement on the
labels for 1774 sentences (*98% agreement, 0.91 Cohen’s kappa [3]).
The authors solved disagreements via discussion and consensus.
Reasons for disagreement included mostly mistakes and misinter-
pretations (e.g., when sentences described root causes in the code,
rather than UI faults). Finally, 228 sentences were identified as
bug/OB descriptions for the 87 bug reports (2 or 3 OBs per bug
report on average), which serve as queries for the Ul screen and
component localization tasks.

3.2.3 Retrieval Corpus Collection. To build the retrieval corpus
for each bug description, we require the set of UI screens and UI
components of the apps, including the buggy Ul screens and UL
components. To collect these data, we employed a semi-automatic
app execution approach that consisted of: (1) a record-and-replay
methodology (used in prior studies [32, 71]), and (2) an automated
app exploration methodology (used by Chaparro et al. [24]). Both
methodologies reduce the manual effort of collecting UI (meta)data.

The goal of the record-and-replay methodology was to collect
the buggy Ul screens for each bug report and the screens navigated
while reproducing the bugs, including screenshots and related meta-
data. Two authors manually reproduced the reported bugs by ex-
ecuting the reproduction steps found in the bug report on a Pixel 2
Android emulator. While reproducing the bugs, the authors used
the AVT tool [32, 71] to collect Ul-event traces and a video show-
ing the user interactions with the app and the bug itself [59, 60].
These traces were replayed on the emulator via the TraceReplayer
tool [58] to automatically collect app screenshots, UI hierarchies,
and metadata for the exercised app Ul screens.

The goal of the automated app exploration was to collect as
many Ul screens as possible for building the corpus. We executed
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a version of the CRASHSCOPE tool [60] that implements multiple
exploration strategies to interact with the Ul components of app
screens comprehensively, trying to exercise as many app screens
as possible. In the process, CRASHSCOPE collects app screenshots
and XML-based UI hierarchies/metadata for the exercised app Ul
screens, in the same manner as TraceReplayer.

Since these two methodologies can generate duplicate Ul screens,
we employed the approach by Chaparro et al. [24] to produce a
unique set of Ul screens for each of the 87 bug reports. This approach
parses the UI hierarchies of the collected UI screens for an app and
establishes the uniqueness between two screens: if they have the
same hierarchical structure, based on component types, sizes, and
parent-children relationships, they are considered the same screen
and one of the two is used. This implies that two Ul screens with
the same structure but different textual information are considered
the same UI screen. To create the UI component corpus for a given
(buggy) Ul screen, we parsed the UI hierarchy of the screen and
identified the visible leaf components, which are typically the ones
shown to the user on the mobile device. However, we discarded
layouts and other containers, thus focusing on labels, buttons, text
fields, and other UI components that users typically interact with.

This procedure resulted in UI screen corpora containing ~26 Ul
screens per bug report on average, which are used for screen lo-
calization. The UI component corpora contain ~17 Ul components
per (buggy) Ul screen on average, which is used for component
localization. A potential limitation of our corpus collection process,
based on dynamic app exploration, is the possibility of missing UI
screens for an app, which may affect models’ performance. How-
ever, we evaluate every approach using the same collected retrieval
corpus for each bug report, ensuring a fair evaluation. We discuss
the (dis)advantages of a static analysis-based approach for corpus
collection over dynamic analysis approaches in Section 6.

3.24 Ground Truth Construction. We used a rigorous data annota-
tion procedure to identify the buggy Ul screens for each bug report,
and the buggy UI components for each buggy screen.

During multiple annotation sessions, four paper authors (a.k.a.
annotators) first read and understood the reported bugs, watching
(if needed) the bug reproduction video collected during the corpus
collection step. Then, the annotators inspected the app screens from
the corpus to identify the buggy screens shown in the video and
marked them as such in a spreadsheet. The annotators identified
and marked the buggy Ul components in the same spreadsheet.
Each bug report was assigned to two annotators, making sure the
annotators had an even number of bug reports to annotate. For each
bug report, the first annotator identified the buggy UI screen and UI
components and then the second annotator validated whether the
identified screens and components were indeed buggy. Both anno-
tators followed the procedure described above, marking potential
disagreements in a shared spreadsheet. At the end of each annota-
tion session, the annotators discussed disagreements (mostly due to
misinterpretation of the bugs), and reached a consensus to produce
the final ground truth set of buggy Ul screens and UI components.

Besides identifying the buggy UI screens and UI components,
the annotators rated the quality of the bug/OB descriptions based
on the amount of information they provided to understand the bug.
Since Buggy UI Localization is performed using individual bug/OB
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Table 1: Screen and component localization statistics

Statistic Screen loc.| Component loc.
# of retrieval tasks/queries 228 254
# of hard-to-retrieve tasks 111 130
# of easy-to-retrieve tasks 117 124
Avg. # of buggy Ul screens/comp.| 2.06 (2) 1.86 (1)
Avg. of corpus size 25.97 (22) 17.11 (14)

Average (median) values per query/retrieval task

descriptions, the annotators judged the quality of each OB in a
bug report independently. The detailed understanding of each bug
report and the identified buggy Ul screens and components assisted
the annotators in assessing OB quality. The annotators agreed on
a quality rating based on a 1-5 discrete scale. A rating of 1 means
the bug description does not contain useful information to under-
stand the problem. Conversely, a rating of 5 means the description
contains complete information to understand the bug. A rating
between 1 and 5 indicates that there is missing information in the
OB that hinders bug comprehension. Additionally, the annotators
marked each bug description as easy or hard to localize, based on
the difficulty they encountered in identifying the buggy UI screens
and Ul components. A common reason why bug descriptions were
judged as hard to retrieve was that multiple UI screens (and UI com-
ponents) were similar, yet only one or a few were displaying the
reported bug. During the reconciliation sessions, disagreements
were discussed and solved to produce the final query quality and
retrieval difficulty category for each bug description.

3.2.5 Summary of the Collected Retrieval Data. For screen localiza-
tion (SL), each OB description (i.e., the query) represents a unique
UI screen retrieval task. Hence, our dataset contains 228 queries in
total, with 2.1 buggy Ul screens per query as ground truth and 26
Ul screens in the corpus on average (see table 1).

For component localization (CL), each OB description can have
multiple ground truth buggy UI screens, hence each combination
of OB description and Ul screen represents a single retrieval task.
Based on this, we created 254 queries (or retrieval tasks), with 1.9
buggy UI components per buggy Ul screen as ground truth, and 17
components in the corpus on average.

In summary, we collected: OB descriptions (i.e., the queries), the
retrieval corpora of Ul screens and UI components for each query
(including app Ul screenshots and cropped component images, and
their UTI hierarchy with associated metadata: component text, ID,
etc.), and ground truth buggy UI screens and UI components.

3.3

Each retrieval approach processes the query and retrieval corpus
differently. Some approaches rely solely on textual information,
while others utilize both textual and visual information.

Curp and Brip leverage textual and visual information from the
query and UI screens and components. The query for screen and
component localization (SL & CL) is the text of a OB description.
For SL, the corpus is all the screenshots of the application for which
the bug is reported, while for CL, the corpus is all the cropped
UI component images of a buggy UI screen. The models receive
a text-image pair and produce a score indicating how similar the
bug/OB description and each Ul screen and UI component are.

Execution of the Retrieval Approaches
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LuceNE and SBERT leverage only the textual information from
the query and UI screens and Ul components. The query is the
OB descriptions. As for the corpus, we extracted and concatenated
the text found in Ul component metadata (i.e., the component ID,
label, and type) to create textual documents for retrieval. For CL,
each document is represented by the extracted document for a
component. For SL, we concatenated the textual documents of the
components in a given screen to form the textual document of a
screen. LUCENE and SBERT compute a score that represents how
similar the bug description and each textual document are. Only for
LuceNE, we applied standard textual pre-processing on the queries
and documents (lemmatization, stop word removal, etc.).

The computed similarity scores yield a ranked list of UI screens
and components. Higher-ranked screens and components in these
lists are more likely to manifest or be associated with the bug.

3.4 Evaluation Metrics

We used standard retrieval metrics, widely used in prior studies [14,

32, 40, 51], to measure the effectiveness of the studied models:

e Mean Reciprocal Rank (MRR): it gives a measure of the aver-
age ranking of the first buggy Ul screen/component in the candi-
date list given by a model. It is calculated as: MRR = ﬁ Zfil #ﬂh

for N queries (rank; is the rank of the first buggy UI screen/com-

ponent for query i).

Mean Average Precision (MAP): it gives a measure of the

average ranking of all the buggy Ul screens/components for a

query. It is computed as: MAP = ﬁ PR ngl P;(rankp),

where BU is the set buggy Ul screens/cérrlllfol{lents for query i,
ranky, is the rank of the buggy UI screen/component b, and
Pi(k) = w is the number of buggy UI screens/com-
ponents in the top-k candidates.

Hits@K (H@K): it is the percentage of queries for which a
buggy UI screen/component is retrieved in the top-K candidates.
All metrics give a normalized score in [0, 1]—the higher the score,
the higher the retrieval performance of the models. We executed
the models and the baseline approach on the constructed query sets
for screen and component localization and computed/compared
the metrics between these approaches.

3.5 Results

We present and discuss the effectiveness of the results of the ap-
proaches for both screen (SL) and component localization (CL). We
focus our discussion on MRR since the other metrics show similar
trends to the MRR results for all the models. Our replication package
contains the results of all the experiments we conducted [12].

3.5.1 RQj: Screen Localization (SL) Results. Table 2 shows the
screen localization performance of the approaches for 228 queries.
The results reveal that BLip performs the highest (0.457 MRR), out-
performing the second best SBERT (0.415 MRR) and the third best
LuceNE (0.411 MRR) with a relative improvement of 10.1% and
11.31% respectively. While LUCENE outperforms Crip (0.381 MRR)
by 7.87%, it fails to retrieve buggy screens in 18 cases (i.e., 7.89% -
not shown in the table). However, LUCENE achieves a competitive
H@1 to Brip (0.285). In terms of H@K, BL1p outperforms the remain-
ing models by a considerable margin. For example, it outperforms
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Table 2: Screen localization (SL) results

Approach | MRR MAP | H@1 H@2 H@3 H@4 H@5
BLip 0.457 0.443 | 0.285 0.447 0518 0.592 0.671
SBERT 0.415 0.385 | 0.259 0390 0.456 0.526  0.557
LUCENE 0411 0.384 | 0.285 0386 0.465 0.522 0.575
CLiP 0.381 0.348 | 0.206 0338 0.465 0.526 0.592
Table 3: Component localization (CL) results

Approach | MRR MAP | H@1 H@2 H@3 H@4 H@5
SBERT 0.517 0.504 | 0.339 0512 0.598 0.701 0.744
BLip 0.424 0.405 | 0.244 0417 0500 0.567 0.614
CLiP 0.413 0399 | 0.244 0386 0.472 0.567 0.618
LUCENE 0.398 0.355 | 0.311 0441 0.480 0.504 0.512

the models with a maximum relative improvement of 20.47% H@5
(compared to SBERT). The models other than BL1p achieve a similar
H@5 (Crip: 0.592, LUCENE: 0.575, and SBERT: 0.557).

The results show that Brip is the most effective model for screen
localization by a significant margin. This indicates that its rich
representations, learned from images and text from other domains,
can be transferred to the Buggy UI Localization problem. Also, the
results imply that both sources of information (UI pixels and text)
are beneficial for screen localization. Interestingly, SBERT performs
second and outperforms CLIP with a relative improvement of 8.9%
MRR. These results stem from the higher H@1-2 results achieved by
SBERT. This is interesting and somewhat unexpected as SBERT only
utilizes textual information (making it potentially less expensive
to execute), while CLIP uses both visual and textual information.
LUCENE is possibly the least expensive approach, and performs
comparably to SBERT, yet it fails to retrieve buggy Ul screens in
7.8% of the cases. In line with the original Brip evaluation [52],
Birip outperforms Crip, which can be explained by the models’
architecture. BLIp is a model particularly designed for textual-image
matching that includes a matching loss for aligning text phrases
and images, learning joint representations of both sources via a
contrastive loss. In contrast, CLIP aims to learn representations
of both textual phrases and images in the same embedding space
without performing any matching.

The results also indicate that there is still room for improvement,
as the best model (BLIP) can suggest the buggy Ul screens in the
top-1 to top-3 recommendations in about 29% to 52% of the cases
(see the H@1-3 results in table 2). A more sophisticated model is
required to perform screen retrieval more effectively. Such a model
should leverage both the visual information of a screen image and
the textual information from the UI metadata of that screen.

3.5.2 RQg2: Component Localization (CL) Results. Table 3 shows
the component localization results of all the approaches for 254
retrieval tasks. Note that although the number of OBs is 228, some
OBs may have a different component corpus for retrieval, one for
each buggy screen in the ground truth (i.e., one OB/bug description
may correspond to multiple buggy Ul screens).

The results reveal that all supervised approaches perform higher
(0.413+ MRR) than the baseline (LUCENE), which achieves 0.398 MRR.
SBERT is the most effective of all approaches (0.517 MRR), signif-
icantly outperforming Birip, Crip, and LUCENE by 21.86%, 25.24%,
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and 29.7%, respectively. The superiority of SBERT is consistently
observed across all the metrics and it can suggest the buggy UI com-
ponents in the top-1 to top-3 results in about 34% to 60% of the cases.

As in screen localization, Brip slightly outperforms Crip, yet both
models achieve similar performance for H@1, 4, and 5. Although
LuceNE (0.398 MRR) achieves similar performance to CL1p’s (0.413
MRR) and Brip’s (0.424 MRR) and higher H@1, 2, it fails to retrieve
buggy UI components in 66 of 254 tasks (25.98%).

Several observations can be derived from these results. First, the
superiority of the supervised models compared to LUCENE suggests
that DL models are better for component localization. Second, there
is still room for improving component localization: while the per-
formance of the best model is not low, the performance is not very
high either, which means that specialized models for component
localization are needed. Third, the textual information present in
the UI components of the screens seems to be highly effective in per-
forming localization, as indicated by SBERT results. Fourth, BL1P’s
superiority over CLIP stems from their architectural differences (as
discussed in Section 3.5.1). Fifth, while it may be counter-intuitive
that SBERT outperforms the multi-modal approaches, we generally
observed that OBs tend to describe the buggy components using a
language that is more similar to the component text observed by the
user, which a language model like SBERT is specifically designed for.
While Biip also leverages textual information from components, it
does so based on the pixel data rather than the actual component
text extracted from the Ul metadata.

3.5.3 RQjs: Results by Query Quality and Retrieval Difficulty.
Query Quality. Figure 3 shows the screen localization results
(based on MRR) across different query quality ratings (from 1 to 5,
5 meaning most informative). The figure shows that while different
approaches perform differently across the quality ratings, all models
achieve the best performance for the most informative queries (i.e.,
rating 5). Moreover, the performance trend is similar for all the
models on the queries with quality ratings 4 and 5. Interestingly, of
18 queries for which LUCENE fails to retrieve a buggy screen, eight
of them have a rating of 1, and the MRR achieved for the remaining
successful cases is relatively high.

Figure 4 shows the component localization results (based on
MRR) across different query quality ratings. The figure shows a
clear trend: the models tend to perform better for higher-quality
queries (rating 4 & 5) than lower-quality queries (rating 1 & 2).
As in screen localization, of 66 queries for which LUCENE fails to
retrieve the buggy components, most of them (43) have a rating of
1 or 2. Of the 17 queries with a rating of 1, LUCENE fails to retrieve
the UI components for 14 queries. For the remaining 3 queries, it
cannot retrieve any relevant component resulting in a 0 MRR.

For screen localization, we found a medium-to-high positive cor-
relation between the OB quality and the MRR results: a Spearman’s
correlation of 0.41 to 0.8 across all models except CLIP. For com-
ponent localization, we found a high correlation: Spearman’s cor-
relation of 0.72 to 0.99 across all models. The results show that the
models tend to perform better for higher-quality queries than lower-
quality queries for both screen and component localization. Our
replication package contains the # of queries per quality ratings [12].
Retrieval Difficulty. Figures 5 and 6 show the results (based on
MRR) for easy- and hard-to-retrieve retrieval tasks, for screen and
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component localization respectively. For SL, all models perform
higher on easy-to-retrieve tasks. The same results are found for
component localization, except for Crip. The biggest performance
gap is observed for LUCENE (31% for SL and 68.6% for CL). Of 18
failed screen localization cases for LUCENE, 3 tasks are easy and 15
tasks are hard to retrieve, and of 66 failed component localization
cases, 17 tasks are easy and 49 tasks are hard to retrieve. Regardless
of the difficulty of the tasks, BLip performs highest for screen lo-
calization, and SBERT performs highest for component localization.
The results suggest a correlation between the difficulty of retrieval
by humans and the retrieval performance of the models: they tend
to perform higher/lower for easier/harder cases.

The results of the different models stem from their distinct ar-
chitectures, training datasets, and types. Being heavily dependent
on word overlap, LUCENE may fail to retrieve any UI screen/compo-
nents resulting in an MRR of 0. As among the failed cases of LUCENE,
the majority of the queries have a lower quality level and are hard to
retrieve, it exhibits the worst performance in Figures 3 and 4 and the
largest gaps between easy- and hard-to-retrieve cases in Figures 5
and 6. For the other three models, it is always guaranteed that no
matter whether there is textual/visual similarity or not, the models
will retrieve the desired UI screen/UI component in some position.

3.6 Discussion

Screen Localization vs. Component Localization. We found per-
formance differences between screen localization (SL) (0.381 - 0.457
MRR) and component localization (CL) (0.398 - 0.517 MRR). Several
factors make SL more challenging than CL. First, the corpus size is
larger for SL than for CL (25.97 screens per app vs. 17.11 components
per screen on avg.). Second, SL is more abstract or general than CL
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Figure 5: SL results for easy- and hard-to-retrieve tasks
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Figure 6: CL results for easy- and hard-to-retrieve tasks

as the scope of SL is broader (all screens of the application vs. all
components of a screen). Additionally, OBs are generally written fo-
cusing on the component level as the user interacts with the compo-
nent while reproducing the bug. Third, the quality of the OBs has an
important impact on the results. For instance, “The color is unset." is
an OB with a quality rating of 2. The best SL model, BL1p, identified
the relevant screen for this OB in the 21st place. However, the best
CL model, SBERT, identified the relevant component in the 1st place.

Textual vs. Multi-modal Models. For screen localization, BLip
performs best on all metrics, while, for component localization,
SBERT is the best performing. This distinction stems from the fun-
damental differences in the tasks: the retrieval corpus for compo-
nent localization consists of components from the buggy screen,
requiring a model that can distinguish subtle differences among
components without necessarily understanding the entire screen.
Additionally, when reporting bugs related to specific components,
users often use the text displayed in UI components to precisely
describe the issues. Therefore, text-based models like SBERT are
effective at capturing the semantic meanings of these textual de-
scriptions, making them more suitable for component localization.

However, for screen localization, multimodal models like BrLip
which integrates both textual and visual data, excel in understand-
ing the full context of a screen. They offer detailed insight into
spatial and functional interactions of various Ul elements, which
is crucial for localizing buggy UI screens. Moreover, multimodal
models excel not only in capturing the overall screen content but
also in demonstrating strong grounding capabilities by locating
specific Ul components within the screen based on textual bug
descriptions. This capability is particularly crucial for screen local-
ization, as it allows the model to identify and differentiate screens
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by accurately pinpointing the relevant components when bugs are
related to specific UI components.

While we found that both textual and textual-visual models
achieve a reasonable performance for Buggy UI Localization, no
single type of model seems to stand out. BLip and SBERT were
the best-performing approaches, yet no single model was the best
for both tasks. The results indicate that both types of information,
textual and visual, can be leveraged for Buggy UI Localization, yet
textual data seems to be more useful for component localization,
while visual data seems to be useful for screen localization.

Design Requirements for Buggy Ul Localization Methods.
The results suggest that both textual and visual information alone
are helpful for Buggy UI Localization. However, there is still room
for improving the localization performance and specialized models
may be required for this. We believe that both visual and textual in-
formation of the Ul screens should be blended to build a more sophis-
ticated model to increase localization performance. Other sources
that can be explored are Ul hierarchy information, which has shown
promising results for command/instruction UI grounding [55, 57].
Moreover, for a successful localization approach, we may require
potentially distinct models for screen and component localization.

Finally, while our study showed that it is feasible to leverage the
pre-trained models for Buggy UI Localization, fine-tuning may be
required to increase the performance of these models. However, cre-
ating or obtaining a comprehensive dataset for model fine-tuning is
challenging because it should include OB descriptions of different
types of bugs and wordings found in real bug reports, with corre-
sponding ground truth data. At the same time, such a dataset should
include a variety of mobile apps and should be sufficiently large for
the models to effectively learn patterns from the data. Creating a
global model that applies to any mobile app and bug description
is challenging. Future work should explore the possibility of com-
paring global vs. local models that work for specific apps, which
brings an additional challenge: collecting sufficiently large ground
truth data for individual apps.

UI Metadata Quality Assessment. To examine the impact of
potential noisy Ul metadata on the results, we assessed the quality
of the three UI metadata attributes used by the textual models
(Lucene and SBERT): component ID, label, and type. We focused
on two factors: attribute value presence and informativeness level.

For value presence, 95.2% of all the 36,572 UI components in our
dataset have at least one attribute value. For 92.9% of the compo-
nents, there is a value for the component ID and/or label, which are
potentially more informative than the component type. These re-
sults mean that, in 95.2% of the cases, LUCENE and SBERT leverage at
least one piece of information from the UI components for retrieval.

For the informativeness level, we qualitatively analyzed the at-
tributes of 380 UI components (a statistically significant sample
with 95% confidence level and 5% error margin). One author as-
sessed and assigned a category (informative or non-informative) to
the value of the three attributes. Another author reviewed the first
author’s categorization, agreeing in 91.4% of the cases. We found
that 95.8% of components have a least one informative attribute
(among the three attributes), which means that LUCENE and SBERT
leverage at least one informative value from the UI components for
retrieval. Aggregating across the three attributes, we assessed the
informativeness of 927 attribute values and found that 92% of them
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are informative: 91.2% of the component IDs, 89.8% of the labels,
and 94.7% of the component types are informative.

We conclude that the Ul metadata of our dataset is of high quality,
thus giving high confidence in the study results and conclusions.

4 Improving Buggy Code Localization

To illustrate the usefulness of automated Buggy UI Localization, we
conducted an additional study that investigated how the identified
buggy Ul screens by BLIp, our best-performing screen localization
model, can improve traditional buggy code localization approaches.
We aim to answer the following research question:
RQy: Can the identified buggy UI screens by BLIP lead to improved
buggy code localization?

To answer this RQ, we adapted Mahmud et al.’s approach [58]
(section 4.1) as an end-to-end automated buggy code localization
technique (section 4.2), which retrieves potentially buggy files based
on Ul information from BLip’s suggested buggy UI screens. We de-
fined different pipelines that combine Buggy UI Localization and
buggy code localization (section 4.2) and compared their perfor-
mance with baseline techniques that do not use UI data (section 4.3).

4.1 UlI-Based Buggy Code Localization

Mahmud et al. [58] showed that mobile app UI interaction data
improves the performance of four IR-based buggy code localizers
that rely on bug reports (e.g., BucLocaTor [86]). Their approach
modifies the initial ranking of potentially buggy code files produced
by a buggy code localizer for a given bug report, by boosting
relevant files and/or filtering out irrelevant files, or by performing
query reformulation. These operations (a.k.a. augmentations) use
information extracted from the UI screen that shows the reported
bug and the preceding 1-3 screens in a bug reproduction trace.

The information extracted from Ul screens is UI terms (e.g., ac-
tivity and window names) which are matched against code file
names to produce a set of Ul-related files. The Ul terms and UlI-
related files are used by two augmentation methods: (1) Reformu-
lating queries via query expansion, which appends UI terms to
bug reports, or via query replacement, which uses Ul terms as the
query; and (2) File re-ranking by filtering, boosting, or combining
filtering and boosting. Filtering removes files that do not match
Ul-related files (e.g., classes that directly interact with the UI) from
the file corpus. Boosting elevates the ranking of files in the corpus
that match Ul-related files during the search.

Mahmud et al. employed four main configuration parameters to
integrate Ul information into the IR bug localizers: (1) the number
of Ul screens in a reproduction trace (i.e., the buggy screen and the
preceding 1-3 screens); (2) five types of Ul information sources (e.g.,
UI screen, UI components, and exercised Ul components); (3) query
reformulation strategies; and (4) re-ranking strategies. In total, 657
configurations were defined and evaluated for each bug localizer.

4.2 Integrating Buggy Ul and Code Localization

Mahmud et al’s approach [58] requires as input a trace of the UI
screens and Ul components that the user interacted with to re-
produce a reported bug. The trace and the buggy Ul screen in the
trace are meant to be manually collected/identified by the devel-
oper. Mahmud et al.’s approach then uses the metadata information
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from the buggy screen and the 1-3 prior screens/components in the
reproduction scenario as input to their augmentation approaches.

Our goal is to eliminate the manual effort of Mahmud et al.’s
approach and define an effective and fully automated end-to-end
pipeline of buggy code localization using the buggy UI screens rec-
ommended by a Ul screen localizer. To that end, we adapted their
approach by using our best screen localization approach (i.e., BLIp)
to automatically suggest the top 3-4 buggy Ul screens as the only
information needed by the buggy code localization pipeline.

As such, we defined an approach that integrates both the screen
localization and buggy code localization pipelines since the ultimate
goal is to produce a ranked list of potentially buggy code files for a
given bug report. The challenge in defining this combined approach
is that a bug report can contain multiple OB descriptions. If we
execute BLIP on each OB description, it would produce multiple
lists of potentially buggy UI screens. Therefore, this challenge is
rooted in deciding which buggy screens should be given as input to
the localization pipeline, to produce a single ranking of buggy files.

To address this problem, we considered two options: (1) produce
and provide a single ranking of UI screens for the bug report, or
(2) provide each ranking of UI screens (for each OB description in
the bug report) to the buggy code localization pipeline, to produce
multiple code file rankings, and then combine these rankings into
a final code file ranking. For option #1, we explored two strategies,
namely: (i) ConcaT OBs, which concatenates the OB descriptions
in a bug report and uses the resulting query as input to BL1p, and (ii)
FIrsT OB, which selects only the first OB description found in the
bug report as a query to BLip. When executed, these two strategies
produce a single Ul screen ranking, which can be used by the buggy
code localization pipeline to suggest a single code file ranking for
the bug report. As for option #2, to produce a single code file ranking,
we defined a strategy called INDIVIDUAL OBs, which first averages
the similarity scores of each code file found in all the buggy file
rankings to produce a single similarity score for the file. Then, these
combined similarities, for all the files in the rankings, are used to
produce a final code file ranking (i.e., sorting by these similarities).

4.3 Approach Execution, Dataset, and Metrics

We selected the two best IR-based buggy code localization tech-
niques from Mahmud et al.’s study [58], namely LUCENE [42] (adapted
for buggy code localization) and BucLocAaToRr [86], and executed
them in our combined pipeline for buggy code localization. We
tested all 70 feasible configurations of different augmentation meth-
ods and Ul information kinds defined in the prior work. We also
experimented with providing the top 3 and 4 buggy UI screens
suggested by BL1P, based on the best number of screens found in
the prior study for LUCENE (4 screens) and BUGLOCATOR (3 screens).
We executed the three combined pipelines defined above, namely
Concar OBs, FIrsT OB, and INDIVIDUAL OBs, using both buggy
code localizers. However, we could not execute INDIVIDUAL OBs
with BucLocAToR because the tool provided by the original au-
thors [86] does not provide the code file rankings needed by IN-
pIvIDUAL OBs. The pipelines were executed on 79 of the 80 bug
reports from the buggy code localization benchmark provided by
Mahmud et al. [58]. As mentioned in section 3.2.1, we excluded one
bug report because we could not reproduce the bug. The full set of
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Table 4: Buggy Code Loc. Performance via Buggy UI Loc.

. # RIof | #Bug

Bug Localizer Approach Scrns H@5 H@10 H@10 | Top10
Baseline 4 0.74 0.79 - 61
LUCENE Concat OBs 4 0.75 0.88 11.49% 68
FirsT OB 4 0.74 0.88 11.49% 68
INDIVIDUAL OBs 4 0.77 0.87 9.85% 67
Baseline 3 0.59 0.71 - 56
BucLocaTor Concat OBs 3 0.72 0.79 10.72% 62
FirsT OB 3 0.61 0.80 12.41% 63

87 bug reports was not used in the Buggy UI Localization due to the
absence of Java files as ground truth for buggy code localization.

The performance of the combined pipelines, using all possible
configurations and IR bug localizers, was measured and compared
using Hits@k and its relative improvement (RI), in line with the
methodology followed by the prior work [58]. We used as baselines
the original IR bug localizers, without using any UI information.
Note that 4 screen experiments used 77 bug reports as 2 bug reports
have only 3 screens in the screen localization (SL) corpus.

4.4 Results

Table 4 shows the buggy code localization results for both IR bug
localizers and the best configurations we obtained among all con-
figurations. These results are obtained when BL1P suggests the top
3 and 4 buggy screens. Complete results of all configurations and
experiments are provided in our replication package [12].

For each pipeline, IR bug localizer, and number of buggy screens
recommended by BLip, we consistently found that the best con-
figuration (i.e., the highest H@10 improvement compared to the
baselines) includes filtering with UI Components (SC) and boosting
with UI Screens (GS). Additionally, the best configuration includes
query expansion with GS when ConcAT OBs is used with LUCENE
and query expansion with SC when First OB is used with BugLo-
CATOR. As in the prior work [58], we obtained the best results with
4 screens for LUCENE and 3 screens for BUGLOCATOR.

Table 4 reveals that all the combined pipelines for buggy code lo-
calization lead to a performance improvement compared to the base-
lines, by 9.85% to 12.41% H@10. When using LUCENE, the CoNcAT
OBs and FIrsT OB pipelines achieve the best improvement: 11.49%
for H@10, which translates into retrieving the buggy code files in
the top-10 results for 7 more bug reports, compared to the baseline.
When using BUGLOCATOR, FIRsT OB pipeline results in improving
the baseline by 12.41% H@10 (i.e., 7 more successful retrieval tasks).

We compare our results from table 4 with the results achieved by
the best configurations obtained for LucENE and BUGLOCATOR by
Mahmud et al. [58], since those results represent a perfect identifi-
cation of the buggy Ul screen, along with the reproduction scenario.
However, we must cautiously compare these results since the bug
reports used in both studies are not exactly the same. Not sur-
prisingly, the performance of the manual buggy code localization
approach by Mahmud et al. [58] is slightly higher than the perfor-
mance of our best configurations (0.9 vs 0.88 H@10 for LUCENE, and
0.84 vs 0.80 H@10 for BugLocaTor). This difference is acceptable,
considering that we propose a fully automated way of localizing
buggy code files via Buggy UI Localization, which still outperforms
baseline localizers, while the prior work requires manual effort in
collecting reproduction traces and the buggy screen.
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Given the results, we conclude that Buggy UI Localization can
be useful to improve the performance of Ul-based buggy code
localization in a fully automated end-to-end way.

5 Threats to Validity

Construct Validity. There may be subjectivity introduced in the
dataset construction when identifying the OB descriptions in the
bug reports, their quality rating, retrieval difficulty levels, and the
ground truth buggy UI screens and components. We mitigated this
threat by adopting a rigorous methodology to label and curate the
data during joint sessions of bug understanding, replication, and
analysis among four authors, reaching consensus in all cases.

Internal Validity. The selection of models affects the internal
validity of our results/conclusions. To mitigate this, we covered
both uni-modal (SBERT) and multi-modal (Crip & Brip) DL mod-
els, and a unsupervised textual technique (LUCENE) as baseline for
Buggy Ul Localization. For buggy code localization study, we con-
ducted various experiments with all feasible configurations on two
localizers (LucENE and BUGLOCATOR) to obtain the best-performing
configuration. Another threat concerns the methodology we used
to collect UI corpus data, which may have led to incomplete cov-
erage of Ul screens for an app. While this can have an impact on
the study results, we used the same screen corpus to evaluate all
models, thus ensuring a fair evaluation.

External Validity. The conclusions of our study may not gen-
eralize to other retrieval models, bug descriptions, and apps. To
improve the generalization, we selected different types of models
and built a real dataset containing a variety of bug types, and apps
that implement different UIs for multiple domains.

6 Related Work

Mobile App Bug Report Management. Recent research [36, 38,
39, 71, 82] has explored the use of mobile app bug reports to auto-
mate various bug report management tasks. Researchers [82, 84]
have proposed approaches to reproduce Android bugs or gener-
ate test cases based on bug reports. Our Buggy UI Localization
approach that identifies the buggy screens/components can help
these approaches to generate assertions that validate the reported
bugs. Song et al. [71] proposed a chatbot to help users report An-
droid bugs via visual guidance and quality verification. This chatbot
can benefit from a Buggy UI Localization approach by accurately
assessing how bug descriptions corresponds to UI screens/compo-
nents. Despite the growing body of research on automating bug
report management tasks such as bug reporting [36, 71], repro-
duction [19, 20, 38, 82-84, 84], localization [14, 25-27, 40, 46, 76],
and others [32, 39, 78, 85], prior work has not explored how to
automatically localize buggy Uls as we do.

Static Analysis of Mobile App Uls. Researchers have proposed
techniques/tools to statically analysis mobile app UIs (e.g., FRONT-
MATTER [47, 48], GATOR [79], BACKSTAGE [16], GOALEXPLORER [49],
and others [41, 54]). One main advantage of these approaches, over
dynamic analysis, is their ability to cover a large number of UI
screens for an application. Our future work will explore the use of
these techniques to assess how Ul screen coverage can impact the
performance of the studied models. Static analyzers also provide
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features that can assist buggy code localization. For example, FRONT-
MATTER [47, 48] identifies which Android APIs can be triggered by
an interaction with a Ul component, which may help identify buggy
code elements. While the main problem we address in this paper is
buggy Ul localization, our future work will explore how static an-
alyzers and Ul localizers can be integrated to better localize buggy
code based on a bug description. The main limitations of static
analyzers, which prevented us from using them for data collection,
include: (1) they may fail to capture server-side content loaded
only at runtime, resulting in potentially unrealistic UI screens (2)
they do not provide Ul screenshots, needed to evaluate the studied
multi-modal models, and (3) potential imprecision of app behavior
captured by these tools as they may not provide Ul screens display-
ing certain bugs (e.g., incorrect output and navigation issues).

UI Representation Learning and Applications. Ul repre-
sentation learning aims to represent UI elements or text via em-
beddings [17, 43, 53, 57] for downstream tasks such as image cap-
tioning [30, 61, 74] and UI component labeling [29, 30, 56]. One
application of UI representation learning is mapping (a.k.a. ground-
ing) textual instructions to Ul action/elements [55, 64, 77]. Pasupat
et al. [64] evaluated three models to ground natural language com-
mands to web elements. Li et al. [55] utilized transformers models
for this task, based on three synthetic training datasets. There are
key differences that make it hard to adapt those models to our prob-
lem. For example, Li et al.’s approach [55] requires a sequence of
screens where the instructions are performed, and then locating the
corresponding UI component for each instruction. In contrast, our
work identifies the buggy Ul screens and components without any
prior information about relevant screens. Furthermore, our study
deals with bug descriptions, whose language is more complex than
that of Ul instructions [28].

7 Conclusions

This paper reports the results of the first empirical study that in-
vestigates the effectiveness of textual/visual neural models for au-
tomatically localizing buggy Ul screens and Ul components based
on the bug descriptions of mobile apps. We evaluated approaches
for screen and component localization, using a real-world dataset
of manually-curated bug descriptions and ground truth UI data.

The study reveals that the best-performing approaches can local-
ize correct buggy Ul screens and components in the top-3 recom-
mendations for 52% and 60% of the bug descriptions. We found that
the models tend to perform better for the bug descriptions which
are easier to retrieve even for humans and which have a higher
quality. We also illustrate that Buggy UI Localization can be useful
to automate and improve traditional buggy code localizers.

8 Data Availability

For verifiability and reproducibility, we have made all the study
artifacts (e.g., dataset, source code, and documentation) publicly
available including the latest version [12] and the first version [11].
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