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ABSTRACT
Understanding fluid viscosity is crucial for applications including lubrication and chemical kinetics. A commonality of molecular models is
that they describe fluid flow based on the availability of vacant space. The proposed analysis builds on Goldstein’s idea that viscous trans-
port must involve the concerted motion of a molecular ensemble, referred to as cooperatively rearranging regions (CRRs) by Adam and
Gibbs in their entropy-based viscosity model for liquids close to their glass transition. The viscosity data for propylene carbonate reveal a
non-monotonic trend of the activation volume with pressure, suggesting the existence of two types of CRR with different compressibility
behaviors. This is proposed to result from a change in CRR free volume (<0.2 GPa) and a growth in its size (>0.2 GPa). We use Evans–Polanyi
perturbation theory to develop an analytical model for the structural changes of the CRR in function of pressure and temperature and their
effect on Eyring viscosity. This analysis shows that the activation energies and volumes scale with the CRR size. Using the compressibility
data of propylene carbonate, we show that the activation volume of the CRR at low pressures depends on the compressibility of an ensemble
comprised of the first coordination shell around amolecule. At higher pressures, we apply an Adam–Gibbs-type analysis to model the increase
in CRR size and its effect on viscosity, where the increase in size is estimated from propylene carbonate’s heat capacity. However, this analysis
also reveals deviations from the Adam and Gibbs model that will guide future improvements.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0242497

I. INTRODUCTION

Of the three states of matter, the liquid is the most difficult
to model because it lacks the symmetry of ideal solids but still has
strong intermolecular interactions. This has meant that the molec-
ular origins of even apparently simple phenomena such as a fluid’s
viscosity have remained elusive. This has technological implications.
For example, understanding the way in which the viscosity of a
fluid varies with pressure is important for lubrication because of the
high pressures that can exist at moving contacts in machines. This
has often caused quite vigorous discussions about what is the best
model to use to describe the shear-rate dependences of the lubricant
viscosity,4,5 whether it is an empirical model proposed by Carreau6
or a molecular-based model by Eyring,7,8 among others. The lim-
itations of Eyring’s molecular-based model have been thoroughly

analyzed including that this model fails to describe the high-pressure
dependence of the viscosity of glass-forming liquids, which is the
subject of interest of this work.4 A recent review has summarized
the progress in the molecular-scale understanding of fluid viscosity
and the ability to precisely simulate it over a wide range of pres-
sures, shear rates, and temperatures,9 yet it does not discuss what
are the molecular structures that are involved in the molecular-
exchange processes that are required for the fluid to flow. There
are also two distinct approaches to describing fluid viscosity: ther-
mal models based on the ideas of Eyring7,8 and free-volume models
that posit the existence of molecular voids into which molecules can
move.10–12

Furthermore, understanding viscous flow is intimately related
to the formation of glassy materials because the increase in vis-
cosity as the temperature is lowered prevents the molecules from
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ordering into the most thermodynamically stable, crystalline states
but causes them to become trapped in a metastable “glassy” con-
figuration.13 Here, the theory focuses on the viscous properties as
the fluid approaches the glass-transition temperature, while under-
standing the rheological properties over a wide range of tempera-
tures and pressures is required for technological applications. It is
a theoretical challenge to unify the behavior in both regimes, and
this is the essence of the problem addressed here. This is arguably
due to the limited understanding of the molecular structures
involved in molecular motion in a fluid and the models to analyze
them.

Goldstein suggested that thermal models should provide the
most promising approach for analyzing viscosity,13 as long as the
energy barriers were greater than kBT. He also argued, by analogy
with Orowan’s analysis of dislocation motion,14 that viscous molec-
ular transport must involve the concerted motion of an ensemble of
molecules. This is referred to as a cooperatively rearranging region
(CRR) by Adam and Gibbs.15

The first models suggested by Eyring involved a molecule mov-
ing into some vacant site (with some free volume, V f ) as shown
in Fig. 1(a), but there were clear objections to this model as, for
example, pointed out by Alfrey.16 The first is that this model cannot
lead to molecules moving large distances, and, second, such a lateral
translation would not be induced by shear stresses. Alfrey proposed
an alternative process [Fig. 1(b)] in which two molecules change
places, thus causing a net molecular motion, analogous to the Grot-
thuss mechanism for proton transport through water,16 although
Eyring did later propose similarmodels.17 Group-theoretical consid-
erations suggest that the symmetry of the molecular motion should
be the same as that of the perturbation that induces it (here, a shear),
in support of such a model. Here, the energy barrier is due to an
interaction of a molecular dimer with the surroundings to provide
the space to allow molecular exchange to occur. A more plausible
model that does not need to postulate the existence of such a spe-
cial dimeric configuration is shown in Fig. 1(c) (Robert Thomas,
Oxford University, personal communication), which resembles the
Alfrey model except that it involves an exchange between a molecule
and another neighboring molecule in the first coordination sphere.

Assuming that the central blue molecule can only exchange with
adjacent neighboring molecules, the number of molecules in this
ensemble is 1 + nnn, where nnn is the average number of molecules in
the first coordination sphere. There are, on average, ∼12 molecules
in the first coordination sphere of a liquid so that the number of
molecules in the ensemble is ∼13. The number of molecules in the
two-dimensional slice shown in the cartoon in Fig. 1(c) is ∼7.

Such a simple, single ensemble suggests that there should be
an exponential dependence of viscosity on hydrostatic pressure P,
η = η0 exp (αBP), where η is the viscosity, as proposed by Barus,18
and αB is a Barus constant. Figure 2 shows a plot of log(η) vs P
for propylene carbonate, a well-known glass-forming fluid, which
should be linear if the Barus equation were obeyed. There are clear
deviations from linearity, in particular at lower temperatures. The
following work addresses the origins of these deviations from linear-
ity and will focus on propylene carbonate because other properties
of this fluid that are relevant to the analysis of its viscous behav-
ior have been measured. It also has technological applications as
an electrolyte for Li-ion batteries,19 where viscosity20 and dielec-
tric constant21 are important properties of battery electrolytes. Such
deviations from linearity are commonly observed for molecular
fluids.22,23

To analyze this molecular model using an Eyring-type
approach, we use a perturbation method of transition-state theory
proposed by Evans and Polanyi24–26 to analyze the effect of stresses
on the rates of chemical reactions.27–31 This method allows activa-
tion volumes to be calculated for several simultaneous perturbations
such as combined normal and shear stresses30,32 and is therefore
ideally suited to analyzing the molecular origins of viscosity.

Such analyses have also found that the activation volumes can
themselves depend on pressure due to the compression of the reac-
tant and transition-state structures,31,33 and it is anticipated that
similar higher-order effects will operate on the ensembles that facil-
itate molecular exchange. While many analyses of fluid properties
such as liquid–solid equilibria treat them as incompressible, they do
compress, especially under the influence of high pressures in the GPa
range (∼10 000 atm). The isothermal compressibility, κT = − 1

V
∂V
∂P ∣T

vs the hydrostatic pressure of a glass-forming fluid, propylene

FIG. 1. Possible depictions of the assem-
blies proposed by (a) Eyring and (b)
Alfrey and (c) a cartoon showing snap-
shots of the evolution of a proposed
molecular assembly in a fluid that leads
to molecular exchange and transport.
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FIG. 2. Pressure dependence of the viscosity of propylene carbonate for various
temperatures. Reproduced with permission from R. Casalini and S. Bair, J. Chem.
Phys. 128, 084511 (2008). Copyright 2008 AIP Publishing LLC.

carbonate, for which the viscosity is shown in Fig. 2, is displayed in
Fig. 3. The fluid becomes less compressible as the pressure increases.
The general features of this behavior can be understood using the
structural depictions in Fig. 1(c), where, above the melting temper-
ature, kBT > Uint, in which Uint is the interaction potential of the
fluid, the behavior is dominated by the weak intermolecular van der
Waals’ interactions. At low pressures, the molecules oscillate about
some average intermolecular spacing with an amplitude, x, where
the average potential energy is given by ⟨U⟩ = 1

2k⟨x⟩
2. Here, k is a

FIG. 3. Plot of the isothermal compressibility taken from Casalini and Bair of propy-
lene carbonate at several temperatures as a function of pressure up to a maximum
value of 1 GPa. The lines are fits to the Tait equation, κT =

C
PC(T)+P

. Reproduced

with permission from S. Pawlus et al., Phys. Rev. E 70, 061501 (2004). Copyright
2024 American Physical Society.2

harmonic force constant between adjacent molecules in the fluid and
⟨x2⟩ is the mean-square displacement from the equilibrium posi-
tion. Note that the average displacement ⟨x⟩ is, by definition, zero
in the absence of fluid shear. From the equipartition of energy, the
average energy equals 1

2kBT so that the mean-square displacement
⟨x⟩2 = kBT

k . A statistical thermodynamic analysis of fluid compress-
ibility indicates that it depends on the fluctuations in particle den-
sity,34 which is expected to increase with increasing temperature in
accord with the data in Fig. 3. An increase in mean-square displace-
ment of the molecules will result in an increase in the free volume,
the volume of the system that is not occupied in the van der Waals’
cocoon surrounding each molecule.35,36

At higher pressures, the molecules in the fluid become closer
to each other so that their van der Waals’ surfaces eventually come
into contact and the compressibility becomes relatively temperature
independent. This suggests that variations in pressure dependence
can be divided into two regimes: one below ∼0.2–0.3 GPa for the
fluid shown in Fig. 3 (propylene carbonate), where the temperature-
dependent compressibility decreases with pressure because the
vibrational amplitudes decrease with increasing pressure.

The second regime occurs at pressures above ∼0.2–0.3 GPa,
where the molecules come into contact and the compressibility is
controlled by the Pauli repulsion between them. As we shall see
below, this transition correlates with changes in viscous properties
(see Fig. 4). Interestingly, despite the different physical origins of
the compressibility at low and high pressures, the experimental data
are well reproduced by a single Tait equation37 over the whole
pressure range.

Traditionally, the Eyring viscosity model is derived in terms of
just the shear stress7,8 and the pressure dependence of the viscosity
is added later in ad hoc fashion. This has meant that it is difficult
to attribute a physical meaning to the pressure-dependent activation

FIG. 4. Variation in the viscosity activation volume as a function of pressure for dif-
ferent fluid temperatures. The values of the activation volume were obtained from
ΔV‡
=

∂ ln η
∂P
∣
T

from the measured viscosity from Fig. 2. The solid lines show

second-order fits to the data collected at 328 and 378 K. Reproduced with permis-
sion from R. Casalini and S. Bair, J. Chem. Phys. 128, 084511 (2008). Copyright
2008 AIP Publishing LLC.
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volume. We will use Evans–Polanyi perturbation theory to derive
an equation for the pressure-dependent Eyring viscosity. The goal of
this work is thus to postulate elementary-step processes that occur in
fluid shear such as shown in Fig. 1(c) and use Evans–Polanyi theory
to analyze the pressure-dependent viscosity to be able to rationalize
the experimental results.

Based on the structures discussed above [Fig. 1(c)], we first
briefly summarize the ideas behind Evans–Polanyi (E–P) theory.We
then describe the molecular ensembles that can facilitate molecu-
lar exchange. Note that we will focus here on molecules, not on
segments of polymers, although the analysis in that case may be
similar. Next, we show how the E–P analysis can be used to ana-
lyze fluid viscosity within the framework of an Eyring-type model.
The analysis will first be carried out for pressure/stress-independent
activation volumes and then be extended to include effects in which
the activation volumes are influenced by the pressure. Finally, we
will extend the analysis to glass-forming liquids where the size of
the reacting assembly, the cooperatively rearranging regions (CRRs),
varies with temperature and pressure,15 to allow the pressure- and
shear-dependent kinetics also to be analyzed by E–P theory.

II. OUTLINE OF EVANS–POLANYI THEORY
The Evans–Polanyi analysis is based on the idea that the equi-

librium constant of a chemical reaction, K, can be obtained from the
standard Gibbs free energy change per mole for the process, ΔG0, as

ΔG0 = −RTlnK, (1)

where R is the gas constant and T is the absolute temperature.38 For
an isobaric system, ΔG = ΔU + PΔV − TΔS, the variation in equilib-
rium constant with (hydrostatic) pressure is given by ∂lnK

∂P ∣T = −
ΔV
RT ,

where ΔV has the units of volume per mole; it corresponds to a
difference in molar volumes between the reactants and the prod-
ucts. Evans and Polanyi argued that, rather than using statistical
thermodynamics to calculate the equilibrium constant between the
transition state and the reactant,39 classical thermodynamic con-
cepts could be used instead. As a result, a similar equation could
be written for a rate constant k as ∂lnk

∂P ∣T = −
ΔV‡

RT , where ΔV‡ is
a molar activation volume. If the rate constant under a standard
pressure is k0, then k(P) = k0 exp(− PΔV‡

RT ). This has been called the
Bell equation in chemistry40 but was originally applied to analyz-
ing cell adhesion. Using the Arrhenius form of the rate constants
shows that Eact(P) = E0

act + PΔV‡, where E0
act is the activation barrier

in the absence of an applied pressure and Eact(P) is the pressure-
dependent barrier. Thus, a decrease in the volume of the activated
complex relative to the reactant causes ΔV‡ to be negative so that
increasing the pressure reduces the activation barrier and increases
the rate. The pressure sensitivity of the rate of a process depends
on the ratio E0

act/ΔV‡, where processes with lower activation barri-
ers (such as viscous flow) will be more sensitive to a volume change
between the initial and transition states than a chemical reaction,
where the activation energies are much higher, but the magnitude of
the activation volumes is similar.41,42

There are several advantages to using such an approach com-
pared to those, for example, that use a force-modified potential
energy surface.43,44 First, as a consequence of Hess’ law,38 this
analysis does not depend on the pathway between the activated

complex and the reactant.45 This provides a significant advantage
for applications to real systems, because calculating the potential-
energy surface is tedious, while obtaining just the reactant and
transition-state energies and structures and their properties is much
simpler.46–49 Second, the Evans–Polanyi perturbation model can
easily be extended to describing the effect of a combination of
stresses as well as including the effects of other perturbations. This
approach facilitates linking macroscale sliding phenomena to the
molecular origins that underpin them.

Thus, the central concept behind Evans–Polanyi (E–P) pertur-
bation theory is that the Gibbs free energy of a system can include
the influence of any perturbations described by an intensive variable,
I (e.g., hydrostatic pressure or shear stress), by using an associ-
ated, extensive conjugate variable C, where IdC equals the reversible
work, so that G = U − TS + IC.50 Note that the value of the conju-
gate variable, C, can itself depend on I24,25 so that the equation for
the standard Gibbs free energy change becomes

ΔG0 = ΔU0 − TΔS0 + IΔC0(I). (2)

ΔC0(I) can most conveniently be evaluated by carrying out a
Taylor-series expansion in I. The resulting rate constant k is
given by

lnK(I) = lnk0 −
ΔC‡(I)
RT

I, (3)

where again k0 is the rate constant for the process in the absence of
the perturbation.

III. NATURE OF THE MOLECULAR ENSEMBLES
IN A FLUID THAT ARE RESPONSIBLE
FOR MOLECULAR MOTION

The central assumption behind the Eyring viscosity model is
that molecular motion is a thermally activated process for which the
activation barrier is modified by the stress. Eyring initially proposed
a process such as that depicted in Fig. 1(a), where a molecule dif-
fuses into a vacant site. There are clear objections to this model as
pointed out by Alfrey,16 who proposed an alternative configuration
[Fig. 1(b)] in which two molecules change place, thus causing a net
motion of the molecule. A similar model to that proposed by Alfrey
is depicted in Fig. 1(c) (Robert Thomas, Oxford University, per-
sonal communication) except that, here, exchange occurs between a
molecule at the center of a cluster of surrounding molecules and one
of its nearest neighbors. This model, being simpler than that sug-
gested by Alfrey, seems more plausible because it does not require
the creation of some special dimeric species. Figure 1(c) shows a
two-dimensional depiction of a three-dimensional cluster, and this
model assumes that the shear stresses are aligned in the plane of this
figure.

To more clearly define the various pressure-dependent vis-
cosity regimes, the viscosity results shown in Fig. 2 were analyzed
to yield pressure-dependent activation volumes, ΔV‡(P) = ∂ ln η

∂P ∣T ,
which are plotted vs pressure in Fig. 4. The activation volumes at
zero stress are ∼15 cm3/mol (∼26 Å3/molecule) for all temperatures
and are of the same order of magnitude as for chemical reactions.
However, the behavior at higher pressures depends on the tempera-
ture. The activation volume first decreases with increasing pressure
up to 0.3–0.5 GPa and then increases at higher pressures, only slowly
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at 378 K, but much more rapidly at 298 K, while the change at 328 K
is intermediate between that at 298 and 378 K so that the inflection
point depends on temperature. Such a behavior for glass-forming
liquids was first reported by Bridgman52 and later by others (e.g.,
Refs. 51 and 53).

An Eyring viscosity analysis (see below) assumes that there
is a single energy barrier for the process, and this results in an
Arrhenius-type temperature dependence of the viscosity. This has
been seen experimentally, thereby implying that there is indeed
a single structure that leads to molecular motion. However, a
different temperature-dependence has been observed for glass-
forming liquids in which the viscosity varies with temperature
as η = A exp( B

T−T0
), where A and B are constants, known as the

Vogel–Fulcher–Tammann (VFT) model,54–56 where T is the abso-
lute temperature and T0 is a reference temperature known as the
Vogel temperature. This equation can also be derived from the
Doolittle equation35,36 by assuming a simple model for the amount
of free volume in the liquid and glass that enables the molecule
to move, as shown in Fig. 1(c).11,57 The Doolittle equation (orig-
inally used to fit the viscosity of n-alkanes) gives η = A exp( BV0

Vf
),

where V0 is the volume of the fluid occupied by the molecules and
V f = V −V0, is the free volume, and V = V(T), the specific vol-
ume at temperature T. This model assumes that the barrier for
motion is of an entropic nature and, in comparison, the energy
barrier is small. If T0 → 0, the expression reduces to an Arrhenius-
type dependence of the viscosity; experimentally, it is found that
T0 > 0 K, but below the experimentally measurable glass transition
temperature, T g .

A different model has ascribed this temperature-dependence
of the viscosity to a decrease in the structural entropy as the tem-
perature approaches a second-order (liquid–solid) phase transition.
The enhanced entropic barrier reduces the transition rate, thereby
trapping the system in a metastable glassy state, which hinders the
system from reaching the second-order phase transition tempera-
ture. Adam and Gibbs analyzed this behavior15 and postulated a
cooperatively rearranging region (CRR) where the size of the CRR
increases as the temperature decreases toward the glass-transition
temperature. This implies that the molecular ensemble/CRR varies
depending on the conditions (temperature and pressure) to account
for the complex behavior highlighted in Figs. 2 and 4. There have
been a number of proposals concerning the nature of the CRRs58
that have led to widely varying estimates of shape and size of the
CRR.59 Clearly, its size varies depending on the conditions, and an
analysis of the pressure-dependent viscosity behavior as a function
of temperature can provide insights into the nature of the CRR.
A proposed molecular model for the behavior is outlined in Fig. 5.
At low pressures, the structure of the exchanging ensemble does
not change because there is sufficient space (free volume) for two
(blue and orange) molecules to exchange. As the pressure increases,
the ensemble is compressed to decrease the average inter-molecular
separation until the molecules become so close that exchange with
nearest-neighbor molecules cannot occur directly (when it forms
ensemble II). Here, enough space for the exchange within the
ensemble can only be made by molecules moving farther from the
center of the ensemble. This requires the size of the ensemble to
increase as shown in ensemble III so that the inflection point in the
plot of activation volume with pressure (Fig. 4) coincides with the

FIG. 5. Cartoons of the proposed variation in the ensembles that allow motion of
a molecule to an adjacent site as a function of pressure. Ensemble I is that shown
in Fig. 1(c), where the blue atom can move by only the orange atoms moving to
change places with one of the adjacent molecules. As the pressure increases, the
volume of the ensemble decreases to reduce the free volume (ensemble II), but
still leaves sufficient space for a blue molecule to exchange with an orange one.
As the pressure increases further, the molecules become closer to each other
(ensemble III) so that a blue molecule can no longer exchange with an orange one
without additional molecules, also indicated in orange, moving out of the way. This
leads to the formation of larger CRRs at high pressures and low temperatures.

formation of ensemble II; the temperature-dependent change in
inflection point reflects how the transition from ensemble I to
ensemble II depends on temperature. Thus, while only a molecule in
the center of the ensemble can exchange with a nearest neighbor, to
accomplish this in more-compressed systems requires a larger num-
ber of other molecules to move to make space for this process to
occur. This is the cooperatively rearranging region (CRR) referred to
by Adam and Gibbs. It should be emphasized that this picture is in
general accord with the free-volume concept where the free volume
V f is the total free volume of the whole ensemble/CRR. As the pres-
sure increases, the total number of molecules in the ensemble has
to increase to create the same total free volume, V f . A similar idea
has also been suggested by Powell et al.60 The way in which these
concepts are applied will be outlined using E–P theory as indicated
below.

IV. MOLECULAR-EXCHANGE KINETICS
IN A COOPERATIVELY REARRANGING REGION
CALCULATED USING EVANS–POLANYI THEORY

The E–P analysis of the Eyring model of fluid viscosity is mod-
ified to take account of the postulate that the reacting ensemble (or
CRR) must comprise a minimum number of molecules [Fig. 1(c)]
where, following Adam and Gibbs, we will calculate an isobaric
rate constant k(P,T) and then include a shear stress as a pertur-
bation using E–P theory. The viscosity, η, is defined as the ratio
of shear stress to shear rate, dγ

dt = γ̇, so that η = τ
γ̇ . The shear rate,

defined by Eyring in terms of molecular processes, is given by
γ̇ = Δv

d , where d is the spacing between the sheared molecular layers
and Δv is the velocity difference between them. If the rate con-
stant for motion in the forward (i.e., along the shear) direction is
k f and along the reverse direction is kr , then Δv = Δx‡(k f − kr),
where Δx‡ (an activation length) is the distance from the initial state
to the transition state along the shearing direction. Because the ini-
tial and final configurations of the exchange processes are identical,
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the activation lengths for the forward and reverse processes are also
identical. Thus, if the lateral distance moved by a molecule during
this exchange process is a, thenΔx‡ = a

2 . If, as shown in Fig. 1(c), this
involves a (blue) molecule moving from the center of the cluster to
a position in the adjacent shell (an orange molecule), a corresponds
approximately to an intermolecular spacing. This structure is also
shown as ensemble I in Fig. 5.

Within the context of the structural model shown in Fig. 1(c)
(and ensemble I in Fig. 5), the pressure dependence of the struc-
tural evolution that allows molecular exchange to occur is depicted
in Fig. 5 in going from ensembles I through II to III. We first inves-
tigate the low-pressure behavior in which only structure I is present.
The effect of the evolution to larger CRRs will be addressed using a
modified Adam–Gibbs theory in Sec. VII.

We take an isobaric, single-particle partition function of a sys-
tem with a series of energy levels, ϵi, and average volume occupied
by each molecule V i to be

z(T,P) =∑
ϵi ,Vi

w(ϵi,Vi) exp (−ϵi/kBT) exp (−PVi/kBT), (4)

where P is the pressure, T is the temperature, kB is the Boltzmann
constant, and w are the degeneracies of the levels. This is for-
mally applicable to non-interacting or weakly interacting molecules,
while glass formation and solidification will involve strong inter-
molecular interactions, which could be estimated, for example,
using a configuration integral.61 The N particle partition func-
tion is obtained for indistinguishable particles where the molecular
motion is assumed to be localized so that there is no transla-
tional contribution to the partition function and gives Z(T,P,N)
= z(T)N

N! exp (−PV/kBT), where V = NV i. Using Stirling’s approx-
imation, this yields a value of lnZ(T,P,N) = N lnz(T) −Nln
N −N − PV

kBT
. The chemical potential μ for this weakly interact-

ing system is given by μ = −kBT ∂lnZ
∂N ∣T,P. If the average volume

of the ensembles equals Ṽ , this yields the chemical potential as
μ = −kBT(lnZ(T) − lnN) + PṼ , where the first term is the vibra-
tional contribution, the second is the configurational contribution,
and the last is the work done on the system.

From above, and following the Adam–Gibbs analysis, we are
interested in calculating the rate of exchange of two molecules in an
ensemble containing α molecules that can, in principle, vary with
the temperature and pressure. We will initially assume that the pres-
sures are sufficiently low that this “CRR” corresponds to ensemble
I in Fig. 5, where α remains constant with an increase in pressure and
a decrease in temperature. In order to accomplish this, we will calcu-
late a pressure-dependentmolecular-exchange rate using E–P theory
from the difference in Gibbs free energies between the transition-
and initial-states of this ensemble using Eq. (3) to calculate k(T,P).
We will then use this rate constant to calculate an Eyring viscosity,
again using the E–P model.

If we take the common energy reference of the ensemble of
α molecules to be that of the ground-state (initial) configuration,
then its chemical potential μI is given by

μI = −kBT(ln(
zI(T)
α
) − PṼ I

kBT
), (5)

where Ṽ I is the average volume per molecule in the initial config-
uration. A similar equation can be written for the transition-state
configuration, which has an average energy per molecule, E‡, rela-
tive to the ground state, with an average volume per molecule, ṼT ,
to give a transition-state partition function,

μT = −kBT(ln(
zT(T)
α
) − E‡

kBT
− PṼT

kBT
). (6)

Thus, following Adam–Gibbs, ΔG = α(μT − μI), and the hydro-
static-pressure-dependent rate constant k(T,P) is obtained accord-
ing to E–P theory from ΔG = −kBT ln (k(T,P)) as

k(T,P,α) = υT(
zT(T)
zI(T)

)
α

exp(− αE
‡

kBT
) exp(−αPΔV

‡

kBT
), (7)

where ṼT − Ṽ I = ΔV‡
P is the average pressure-dependent volume

difference per molecule between the initial- and transition-state
structures and υT is the vibrational frequency of the (frustrated)
rotational mode of the transition-state structure that leads it to
decaying to the initial state. Assuming that the frequencies of the
skeletal vibrational modes of the molecule are sufficiently high that
their partition functions are close to unity gives z(T) ≅∏i

kBT
̵hωi

,
where ωi are the angular frequencies for the low-frequency frus-
trated translational and rotational modes of each molecule. This
yields zT(T) = kBT

̵h ∏RT ,TT
1

ω
RT ,TT

, where RT and TT label the frus-
trated rotational and translational modes of the transition-state
ensemble and zI(T) = kBT

̵h ∏RI ,TI
1

ωRI ,TI
is the corresponding formula

of the initial-state ensemble. Since the low-frequency vibrations of
the initial- and transition-state structures are likely to be similar,
( zT(T)zI(T)

) ∼ 1, and this implies that the intrinsic exchange rate, k0

= υT( zT(T)zI(T)
)
α
, in Eq. (7) should be a constant value close to υT , as

proposed by Adam and Gibbs.15
Adam–Gibbs assumed that there is a minimum number of

molecules, α∗, in the ensemble/CRR that allow molecular exchange
to occur, as shown in Fig. 5. The total exchange rate for all allowed
molecular ensembles, k(T,P), is given by

k(T,P) =
∞

∑
α∗

k0[exp(−
(E‡ + PΔV‡)

kBT
)]

α

, (8)

assuming that k(T,P) = 0 for α < α∗. Since the exponential term is
less than unity, the infinite series converges and yields a rate con-

stant k(T,P) = k0
⎛

⎝

1−exp
⎛

⎝

−

(E‡+PΔV‡)

kBT

⎞

⎠

⎞

⎠

exp(− α∗(E‡+PΔV‡
)

kBT
). In general,

(E‡+PΔV‡
)

kBT
should be quite large so that its exponential is much less

than 1 so that Eq. (8) becomes

k(T,P) = k0 exp(−
α∗(E‡ + PΔV‡)

kBT
). (9)

This formula is less accurate for processes with low activation
barriers.62 This suggests that, for processes with sufficiently high
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activation barriers, the rate will be dominated by an ensemble with
a single number of α∗ molecular components with a single activa-
tion energy given by α∗E‡ and an activation volume of α∗ΔV‡ and
is consistent with the assumptions made in Eyring theory. This has
recently been verified in simulations using just a single barrier that
yield good agreement with experimental results.63

V. SHEAR STRESS AS PERTURBATION
As shown previously,30 the molar Gibbs free energy change

between the transition-state and the initial-state under the influ-
ence of a shear stress τ is given by G = ΔU − TΔS + Pα∗ΔV‡

P
+ τα∗ΔV‡

S , where ΔV
‡
S is the activation volume per molecule along

the x (shear) direction. Thus, ΔV‡
P is the isotropic volume difference

between the transition- and initial-state ensemble (CRR) config-
urations, while ΔV‡

S is the volume difference along the shearing
direction, which are the volume changes conjugate to hydrostatic
pressure and shear stress, respectively. Using Evans and Polanyi per-

turbation theory24,25 gives ∂ ln(k(τ))
∂τ ∣

T,P
= − α∗ΔV‡

S
kBT

to yield formulas
for the forward and reverse rate constants under the influence of a
shear stress as

k f (τ,P,T) = k(T,P) exp(−
α∗ΔV‡

S τ
kBT

), (10)

kr(τ,P,T) = k(T,P) exp
⎛
⎝
−
(−α∗ΔV‡

S τ)
kBT

⎞
⎠
, (11)

where k(T,P) is the pressure-dependent rate constant [Eq. (9)] and
ΔV‡

S is assumed to be independent of τ. Note that ΔV‡
S must be neg-

ative for the forward transition rate to increase in a direction aligned
with the shear force. These rate equations can be substituted into the
equation for the velocity gradient to give

Δv = Δx‡k(T,P)
⎧⎪⎪⎨⎪⎪⎩
exp(−α

∗ΔV‡
S τ

kBT
) − exp

⎛
⎝
−
(−α∗ΔV‡

S τ)
kBT

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
.

(12)
This can be simplified by rearranging and substituting for Δv to give
an equation of the shear rate as follows:

γ̇ = 2k(T,P)ΔV‡
S

ACd
sinh(−α

∗ΔV‡
S τ

kBT
), (13)

where using the Stearn–Eyring approximation64 gives
ΔV‡

S = Δx
‡AC, in which AC is the area over which the stress

acts. This yields a pressure-dependent Eyring viscosity, ηe = τ/γ̇,

ηe =
τACd

2k(T)ΔV‡
S

exp( Pα
∗ΔV‡

P
kBT
)

sinh(− α∗ΔV‡
S τ

kBT
)
, (14)

where k(T) = k0 exp(− α∗E‡
kBT
), which is a constant as long as the

number of molecules in ensemble I (with α∗ molecules) remains
constant. Here, the pressure-dependent activation volume, ΔV‡

P , is
positive, that is, the volume of the transition-state structure must

be larger than that of the initial state to cause the viscosity to
increase with pressure (Fig. 2). This is in accord with the cartoon
shown in Fig. 1(c), where the intermolecular distance decreases
along the shear direction as molecular exchange occurs, while the
total volume of the ensemble increases. This formula is identical
to that derived by Eyring8,65 except for an additional pressure term

exp( Pα
∗ΔV‡

P
kBT
), known as the Barus equation,18 where αB(T) = α∗ΔV‡

P
kBT

is the Barus pressure–viscosity coefficient. This has previously been
derived as a separate equation but arises here quite naturally using an
Evans–Polanyi analysis. Assuming that α∗ ∼ 13, the zero-pressure
activation volume is α∗ΔV‡

P = 15.5 cm3/mol (∼25 Å3/molecule,
Fig. 4). The molar volume of propylene carbonate is 87 cm3/mol
(∼145 Å3/molecule) at 298 K so that an ensemble with α∗ = 13
molecules has a total volume of Vo ∼ 13 × 145 = 1885 Å3 so that,
if we assume that V f is the minimum volume required for molecu-
lar exchange to occur, and Vf ∼ α∗ΔV‡

P , the free-volume fraction is
Vf
V0
∼ 0.02, which is in the range of free-volume fractions for organic

liquids.66
The Eyring viscosity depends on the pressure and shear stress,

while the Newtonian viscosity ηn is a material property and is inde-
pendent of the stress. This occurs as the stresses tend to zero so that

exp(− α∗ΔV‡
P P

kBT
)→ 1 as P → 0 and sinh(− α∗ΔV‡

S τ
kBT
)→ −ΔV‡

S τ
kBT

as τ → 0

to give a Newtonian viscosity, ηn = kBTACd
2k(T)(α∗ΔV‡

S )
2 , which depends on

the material and the temperature. If we define an Eyring stress as
τe = kBT

α∗ΔV‡
S
, the strain rate is given by

γ̇ = τe
ηn

exp (αB(T)P) sinh(−
τ
τe
), (15)

which is used to model shear-thinning of lubricants under severe
conditions of pressure and stress. The Eyring stress is taken to
define the stress at which there is a transition from the Newtonian
behavior to shear-thinning described by an Eyring viscosity. Eyring
stresses are the order of 10 MPa for a typical lubricant fluid.67,68

As described in Ref. 4, Eyring’s model is not able to account for
the inflection point of the viscosity of glass-forming liquids, among
other shortcomings, that have led to various modifications in the
past.67 Note that the pressure-dependent Eyring viscosity obtained
here [Eq. (14)] accounts for a varying activation volume to eventu-
ally be able to model the inflection point in the viscosity-vs-pressure
results.

The above analysis also assumes that the activation volumes
themselves do not depend on pressure. However, as ensemble I is
compressed to form ensemble II (Fig. 5), the values of the activa-

tion volumes, α∗ΔV‡
S , and the Barus coefficient αB(T,P) =

α∗ΔV‡
P

kBT
are

expected to change. This will be discussed in Sec. VI.

VI. INFLUENCE OF SHEAR
STRESS/PRESSURE-DEPENDENT ACTIVATION
VOLUMES ON THE EYRING VISCOSITY

Now, we consider the possibility that the activa-
tion volume itself can depend on the hydrostatic pressure,
ΔV‡

P(P), so that the pressure-dependent rate constant is
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k(T,P) = k0 exp(−
α∗(E‡+PΔV‡

P (P))
kBT

) = k0(T) exp (αB(T,P)P), to

indicate the possibility that the Barus coefficient, αB(T,P), can
depend on pressure. The pressure dependence of the activation
volume will depend on the isothermal compressibility of the fluid,
which is given by the Tait equation: κT = − 1

V
∂V
∂P ∣T =

C
PC(T)+P

,
where PC(T) is a temperature-dependent reference pressure,
and both C and PC(T) are known parameters for a fluid. The
experimental data for propylene carbonate in Fig. 3 fit well to
this equation with a constant value of C = 0.126. The temperature
dependence of PC is shown in the inset of Fig. 3. The equation
for the isothermal compressibility, − 1

V
∂V
∂P ∣T =

C
PC(T)+P

, can be

integrated to give V = V0(1 + P
PC(T)

)
−C
, where V0 is a reference

volume at zero pressure. Since the activation volume depends
on a difference between two volumes, it is convenient to expand
f (x) = (1 + x)−C as a Maclaurin series in x = P

PC(T)
. For P < PC, this

yields f (x) = 1 − Cx + C(C+1)
2! x2 − C(C+1)(C+2)

3! x3 . . . . . . . . .. Since
C = 0.126, C(C+1)

2! = 0.071 and C(C+1)(C+2)
3! = 0.050. We assume that

these equations apply to both the initial- and transition-states so that
the molar activation volume is α∗ΔV‡

P(P) = α
∗(ṼT(P) − Ṽ I(P)).

This leads to the final equation for the pressure-dependent
activation volume as

α∗ΔV‡
P (P) = α∗ΔV‡0

P − 0.126(
Ṽ0

T

PT
C
−

Ṽ0
I

PI
C
)α∗P + 0.071

⎛

⎝

Ṽ0
T

PT2

C

−

Ṽ0
I

PI2
C

⎞

⎠

α∗P2
. . . ,

(16)
where α∗ΔV‡0

P is the activation volume at zero pressure. The Barus

coefficient becomes αB(T,P) = α∗ΔV‡
P (P)

kBT
and is used to calculate

the pressure dependence of the activation volume as the system is
compressed from ensemble I to ensemble II.

The results are fitted to the low-pressure (P < 0.6 GPa) propy-
lene carbonate activation volumes obtained from the viscosity mea-
sured at 378 K displayed in Fig. 4. This yields a zero-pressure
activation volume, α∗(Ṽ0

T − Ṽ0
I ) = 1.60 ± 0.02 × 10−5 m3/mol,

which is typical of chemical processes.31 The fit gives values of

α∗( Ṽ
0
T

PTC
− Ṽ0

I
PIC
)= 1.88± 0.16×10−13m3/Pa and α∗(( Ṽ0

T
PT2C
− Ṽ0

I
PI2C
))=3.92

± 0.43 × 10−22 m3/Pa2. The validity of these parameters can be
gauged since the value of PI

C for the initial-state structure is known
from the fit to the isothermal compressibility data in Fig. 3, where
PI
C = 2.08 × 108 Pa at 378 K. The value of Ṽ0

I is equal to the
molar volume of propylene carbonate (8.70 × 10−5 m3/mol) at

zero pressure so that we can calculate a value of α∗( Ṽ
0
I

PIC
) for

the initial state. This depends on α∗, the number of molecules
in the low-pressure ensemble (II). This in turn allows the value

of α∗( Ṽ
0
T

PTC
) for the transition-state structure to be obtained from

the slope (1.88 ± 0.16 × 10−13 m3/Pa) of the activation volume
vs pressure curve [Fig. 4 and Eq. (16)]. We can similarly calcu-

late not only the value of α∗( Ṽ0
I

PI
2
C

) for an ensemble/CRR with α∗

molecules but also the value of α∗( Ṽ0
T

PI
2
C

) for the transition-state struc-
ture from the quadratic dependence of the activation volume (3.92
± 0.43 × 10−22 m3/Pa2). The ratio of these two quantities gives

a value of PT
C , and these results can be used to calculate α∗Ṽ0

T
in two different ways: (i) from the zero-pressure activation vol-
ume, α∗(Ṽ0

T − Ṽ0
I ) = 1.60 ± 0.02 × 10−5, and (ii) by substituting

the value of PT
C into the equation for the slope of the activa-

tion volume vs pressure curve, α∗( Ṽ
0
T

PTC
) = α∗( Ṽ

0
I

PIC
) − 1.92 ± 0.2

× 10−14 m3/Pa. Both results depend on α∗. To determine the best
value of α∗, it was systematically varied until identical values of
α∗Ṽ0

T were obtained by both methods, which occurred at α∗ ∼ 15
± 3 molecules. The calculation also yielded the molar volume of
the transition-state structure, Ṽ0

T = 88.1 ± 0.2 cm3/mol, slightly
larger than the molar volume of the initial-state of propylene car-
bonate (87.0 cm3/mol), as expected. The resulting value of PT

C
(0.211 GPa) is also only slightly different from that of 0.208 GPa
for the undistorted propylene carbonate, PI

C. This suggests that the
ensemble/CRR structure is only slightly perturbed when molecular
exchange occurs, thus justifying the assumption made above that
( zT(T)zI(T)

) ∼ 1. Thus, these results are in accord with the idea that the
whole, three-dimensional CRR present at low pressures contains
about 13 molecules. Note that structure III formed at higher pres-
sures when the CRRs start to grow is likely to bemuch less compliant
than these low-pressure structures and the activation volume will
then be dominated by the growth of the CRRs.

VII. THE VISCOSITY OF GLASS-FORMING FLUIDS
USING ADAM–GIBBS THEORY

The next task is to calculate a value of α∗ at higher pressures and
lower temperatures (ensemble III in Fig. 5) in the region where they
are expected to grow to eventually form a glassy structure. It is clear
from the results in Fig. 4 that the low-pressure decrease in activa-
tion volume is due to the compressibility of the molecular ensemble
below ∼0.3–0.4 GPa, but the activation volume then starts to increase
at higher pressures. It is proposed that this is due to a compression
of the low-pressure CRR (ensemble I) as described in Sec. IV until
there is little vacant space (free volume) between molecules for them
to change positions. At higher pressures, molecules can exchange
positions only by more of the surrounding molecules moving to
make space available. Any increase in the size of the CRR increases
both the activation volume, α∗(T,P)ΔV‡

P , and the activation barrier
because they both scale with α∗.

The task is then to calculate the pressure dependence of
α∗(T,P), which is accomplished by using Adam–Gibbs theory.
According to Ehrenfest, at a second-order transition from a liq-
uid to a solid at a temperature T2, the entropy, volume, and free
energy are continuous functions of temperature, while the specific
heat capacity, thermal expansion coefficient, and compressibility
are discontinuous. Thus, as a liquid cools to form a solid, it must
become more ordered, thus requiring the constituent molecules to
move to take up the locations in the solid lattice, thereby reducing
its entropy. Adam–Gibbs theory shows how the rate of that process
depends on the difference in configurational entropy between the
solid and liquid phases. Thus, there is a significant relaxation-time
increase as a consequence of the approach to the phase transition
that implies that the rate at which the molecules can reorganize
becomes slow on a laboratory time scale, resulting in the formation
of a glass at a higher temperature, Tg. As a result, the glass-transition

J. Chem. Phys. 161, 214502 (2024); doi: 10.1063/5.0242497 161, 214502-8

Published under an exclusive license by AIP Publishing

 20 D
ecem

ber 2024 07:58:10

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

temperature is not a thermodynamically defined quantity but rather
depends on the cooling rate. For example, metals can be persuaded
to form glasses if they are cooled sufficiently rapidly.69

The configurational entropy of a system in which the proba-
bility of occurrence of the ith configuration is pi is given by the
Boltzmann equation, ⟨kB ln pi⟩, where ⟨. . .⟩ represents an average
over all configurations. The CRR must be one of these configu-
rations. The configurational entropy of an individual CRR shown
in Fig. 5, where a blue molecule exchanges with an orange one to
give two identical configurations, is s∗C = kB ln 2. Different numbers
of exchanging molecules in the ensemble are, in principle, possible,
which would give correspondingly larger values of s∗C. If, at any given
temperature and pressure, there are a total of L CRRs, each contain-
ing α∗ molecules, then the total number of molecules in the system
N = Lα∗. The total configurational entropy of the system is obtained
by summing over all possible CRRs: SC = ∑L

i=1⟨kBlnpi⟩. However, the
principle of equal a priori probability indicates that each configu-
ration is equally probable and equal to s∗C. Thus, SC = ∑L

i=1s
∗

C = Ls∗C
so that the average number of CRRs is given by L = SC/s∗C. Now,
substituting for L from the above-mentioned expression, the final
equation for the average number of molecules in a CRR for one mole
of material (N = NA, Avogadro’s number) is

α∗(T,P) = NA
s∗C

SC(T,P)
. (17)

Thus, as the temperature decreases, the number of molecules in the
CRR increases so that, in principle, at the second-order transition
temperature, the number of molecules in CRR becomes close to infi-
nite as it forms a solid. However, as noted above, the rate becomes
very small at the glass-transition temperature, T g , often about 50 K
above T2, where the CRR contains a finite number of molecules.

Substituting Eq. (17) into Eq. (9) gives the following expres-
sion for how the molecular exchange rate, k(T,P), depends on the
configurational entropy:

k(T,P) = k0 exp(−
NAs∗C(E‡ + PΔV‡)

SC(T,P)kBT
). (18)

Note that Eq. (9) is quite general and does not presume a specific
value of α∗ but just describes the consequence of the assumption that
a minimum ensemble size is required to allow molecular exchange
to occur.13

The final task is to obtain the temperature and pressure depen-
dences of SC. As shown in Sec. III, the entropy of the liquid includes
contributions from both the one-particle partition function and
from the configuration so that the liquid entropy can be written as
S l = S l

internal + SC. By definition, the configurational entropy of a per-
fect solid is zero so that the entropy of the solid is Ss = S s

internal. If
it is assumed that S l

internal ∼ S s
internal, that is, their one-particle par-

tition functions are similar, then SC = S l− Ss, which becomes zero
at T2 (S l = Ss) and remains zero at lower temperatures. The tem-
perature dependence of the configurational entropy of propylene
carbonate has been calculated3 based on data from Tatsumi et al.70
The resulting values of SC are plotted as a function of temperature in
Fig. 6 and can be fit very well to an empirical function of the form
SC = β(1 − T0

T ), which equals zero at T = T0 and yields a value of
∼137 K, close to the Kauzmann temperature of propylene carbonate

FIG. 6. Plot of Sc as a function of temperature for propylene carbonate obtained
from measurements of CP vs temperature (see the text). The line is a fit to the
empirical formula SC = β(1 − T0

T
), where T0 is the temperature at which the

configurational entropy goes to zero. The fit yields β = 76.9 ± 0.3 J/mol/K and
T0 = 137.0 ± 0.3 K. Reproduced with permission from M. Ozawa et al., J. Chem.
Phys. 151, 084504 (2019). Copyright 2024 AIP Publishing LLC.

of ∼126 K,71 although this is formally the second-order transition
temperature, T2. Note, however, that the value of limiting tempera-
ture obtained below from fits to the pressure-dependent activation
energy is significantly higher than that measured here from the
variation in configurational entropy with temperature. Various val-
ues have been suggested for the glass-transition temperature from
∼22072 to 169 K,73 reflecting the fact that it depends on the kinetics of
the system. Accordingly, we will considerT0 to be a fitting parameter
and defer discussions of its physical meaning for later. Substituting
the fit in Fig. 6 into Eq. (18) gives

k(T,P) = k0 exp(−
NAs∗C(E‡ + PΔV‡)
βkB(T − To(P))

)

= k0 exp(−
NAs∗CE

‡

βkB(T − T0(P))
) exp(− NAs∗CPΔV‡

βkB(T − T0(P))
),

(19)

which gives a formula for the temperature variation in the rate that
is in accord with the Vogel–Fulcher–Tammann (VFT) equation.

The activation energies have been measured for propylene
carbonate viscosity,1 and the results are shown in Fig. 7. This
shows that the pressure dependences are higher at lower tempera-
tures, consistent with them having larger CRRs. According to the
above-mentioned analysis, the activation energy should vary with

temperature and pressure as Eact = NAs∗CE
‡

β(1−T0(P)/T)
.

The results in Fig. 7 were fit to Eact = E‡0
(1−T0(P)/T)

at each pres-

sure to give values of T0(P) and E‡
0(P), where E

‡
0 =

NAs∗CE
‡

β , which,
according to the assumptions of Adam and Gibbs, should be con-
stant if E‡ is constant and if the entropy model correctly predicts the
growth of the CRRs.
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FIG. 7. Plot of the activation energy for the viscosity of propylene carbonate for
various temperatures as a function of pressure up to a maximum of 1 GPa. Repro-
duced from R. Casalini and S. Bair, J. Chem. Phys. 128, 084511 (2008). Copyright
2008 AIP Publishing LLC.

The resulting values of T0(P) are plotted as a function of pres-
sure in Fig. 8. The low-pressure limit of the critical temperature is
T0 ∼ 213 K, close to the value obtained from Fig. 6 based on the
specific heat capacity, implying that T0 remains constant up to
∼0.3 GPa, where the ensembles do not change in size. The linear
portion at higher pressures has a slope of ∼80 K/GPa, due to a vari-
ation in T0 with pressure, but then stabilizes at ∼0.8 GPa at a value
of ∼260 K.

Figure 9 displays the corresponding variation in the value of
E‡
0 as a function of pressure, which varies linearly from ∼2.5 kJ/mol

at zero pressure to ∼7 kJ/mol at 1 GPa. These results suggest that,
while the Adam-Gibbs model captures the broad trends in the high-
pressure viscosity of propylene carbonate (see Fig. 10), other effects,

FIG. 8. Plot of the critical temperature in the Adam–Gibbs model for the viscosity
of propylene carbonate as a function of pressure up to a maximum of 1 GPa.

FIG. 9. Plot of the activation energy in the Adam–Gibbs model for the viscosity of
propylene carbonate as a function of pressure up to a maximum of 1 GPa.

which are not included in the model, also seem to contribute. This
difference might also influence the calculated values of T0. The acti-
vation energy permolecule E‡ in the CRR is assumed to be a constant
in the Adam–Gibbs model, but it is found to increase linearly with
pressure in these experiments. This is perhaps not surprising given
that Adam–Gibbs describes an entropy-basedmodel, which assumes
that the energy also scales with the number of molecules in the CRR.
These results suggest that this is an oversimplification but can be
corrected empirically by adding a simple linear pressure-dependent
energy to the model.

The activation volume at higher pressures is reasonably mod-
eled by assuming that the critical temperature in the Adam–Gibbs

FIG. 10. Variation in the viscosity activation volume as a function of pressure for
different fluid temperatures. The dashed line shows the fit of D

T−β(P+P0)
to the

activation volume Vact for pressures above ∼0.4 GPa. Reproduced with permis-
sion from R. Casalini and S. Bair, J. Chem. Phys. 128, 084511 (2008). Copyright
2008 AIP Publishing LLC.
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model varies linearly with pressure (Fig. 8). Indeed, a thermody-
namic analysis of the theoretical behavior of dT2

dP indicates that it
depends on the isobaric expansion coefficient, αT = 1

V
∂V
∂T ∣P, and the

isothermal compressibility to give dT2
dP =

Δκ
Δα ∣T=T2

at the second-order
transition temperature T2, where Δκ and Δα are the compressibility
and thermal expansion coefficient changes between the liquid and
solid states at T2. Hence, T2 is expected to change linearly with pres-
sure. The isothermal compressibility follows the Tait equation above
T2, κT = C

PC(T)+P
, and the fits are shown in Fig. 3, where C = 0.126

± 0.007 and is independent of temperature and PC(T) varies
between 0.2 and 0.3 GPa (see the inset of Fig. 3). Note that these
values were used to calculate the variation in activation volume
with pressure in Sec. VI. While the thermal expansion coefficient of
propylene carbonate of the liquid has beenmeasured,74 to the best of
the author’s knowledge, it has not been reported for the glass phase,
and hence, a calculation of Δα is not possible.

The general picture of the variation in activation volume for
pressures above ∼0.3 GPa is consistent with there being a pressure-
dependent number of molecules in the ensemble that makes up the
CRR. Equation (19) predicts that the effective activation volume
should vary as 1/(T − T0(P)). From the results shown in Fig. 8, at
a pressure of ∼0.3 GPa where T0 = 215 K, (T − T0(P)) varies from
158 to 108 to 78 K for data collected at 378, 328, and 298 K (Fig. 10),
but (T − T0(P)) reduces to 118, 68, and 38 K at 1 GPa, consis-
tent with the experimental variation in activation volume. Figure 8
shows that T0 varies linearly with pressure over the range at which
Adam–Gibbs theory is proposed to operate so that T0 = γ(P + P0),
where, from Fig. 8, γ = 82.4 ± 0.2 K/GPa and P0 = 2.36 GPa. This
implies that, for pressures above ∼0.3 GPa, the activation volume
should depend on pressure as ΔV‡ = D

T−γ(P+P0)
.

This equation was fitted to the high-pressure experimental data
for the activation volume, and the results are shown as dashed lines
in Fig. 10. The fits to the above-mentioned formula agree well with
experiment and, in particular, reproduces the non-linearity found
at the lowest temperature. This indicates that the results at higher
pressures are due to the formation of larger CRR ensembles that
grow more quickly with pressure at lower temperatures. This anal-
ysis of the variation in fluid viscosity over a wide range of pressures
and for several temperatures provides insights into the nature of the
cooperatively rearranging region proposed by Adam and Gibbs. It
also allows the identification of the extent to which the assumptions
made by Adam and Gibbs impact the accuracy of the model and will
guide future efforts to improve the accuracy of the model.

VIII. SUMMARY
The pressure dependence of the activation volume of a glass-

forming fluid, propylene carbonate, initially decreases as the pres-
sure increases, but then starts to increase at higher pressures with a
value and slope that depend on the temperature (Fig. 4). The gen-
eral behavior is analyzed using Evans–Polanyi perturbation theory
considering the pressure-dependent structural evolution depicted
in Fig. 5. The idea is that the structural changes that occur when
the fluid is compressed at a particular temperature modify the rate
at which a molecule in the fluid can diffuse through it. It is also
assumed that the rate of molecular transport controls various phe-
nomena such as the fluid relaxation time, its viscosity, and the rate

at which the structure transforms as the fluid is cooled to form
metastable structures, i.e., glasses. At low pressures, the liquid is
moderately disordered with sufficient space between the molecules
(large free volume) to facilitate molecular motion from one site
to the next as shown in structure I in Fig. 5. Structure I is rel-
atively compressible (Fig. 3) with a compressibility that increases
with increasing temperature. The molecular ensemble that allows
molecules to change places in the fluid remains constant and is
similar to that suggested by Alfrey except that we assume that the
exchange occurs between a central molecule and one of its nearest
neighbors. This situation can be analyzed using Eyring’s viscosity
model but implemented using Evans–Polanyi perturbation theory.
The conversion to Newtonian viscosity at lower pressures and the
decrease in activation volume with increasing pressure are ascribed
to a change in the Barus coefficient as the intermolecular spacing
decreases. This is accompanied by amodest increase in the activation
energy. Such pressure-dependent activation volumes have been ana-
lyzed for chemical reactions,31 where, because of the relatively large
activation energies, the influence of changes in activation volume
with pressure is negligible, while they become significant for lower-
barrier processes such as molecule exchange. As such, we expect this
effect to be a common feature of fluid viscosity.

When the pressure increases above ∼0.2 GPa, the compress-
ibility becomes smaller and less temperature dependent and the
molecules interact to cause Pauli repulsion to form ensemble
II (Fig. 5). Now, the molecules are sufficiently crowded that there
is insufficient space in the Thomas-like structure for molecules to
exchange, and this requires more molecules to be able to move to
provide sufficient space for exchange with another molecule; the
CRR is forced to grow. This leads to a temperature-dependent inflec-
tion point in the plot of activation volume vs pressure at the point at
which ensemble II is formed.

The growth in CRR is analyzed using Adam–Gibbs theory
but modified by using the Evans–Polanyi approach to calculate the
molecular transport rate and the pressure-dependent viscosity. Note,
however, that the physical processes that underpin this effect are
rooted in concepts of free-volume theory. While this model pro-
vides general agreement between theory and experiment, there are
crucial differences. First, both the activation energies and the acti-
vation volumes increase with pressure, while Adam–Gibbs theory
proposes that the energy per molecule should remain constant. Sec-
ond, in the case of propylene carbonate, the critical temperature,
T0, does not seem to coincide with the temperature of the second-
order phase transition, T2. The difference will guide strategies for
improving the model. Finally, Casalini and Bair pointed out that
there is an inverse correlation between the pressure-dependent acti-
vation energy (Fig. 9) and the isothermal compressibility (Fig. 3).1
This inverse correlation is justified by the structural evolution model
proposed here.
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