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The peripheral endoplasmic reticulum (ER) forms a dense, interconnected, and
constantly evolving network of membrane-bound tubules in eukaryotic cells. While
individual structural elements and the morphogens that stabilize them have been
described, a quantitative understanding of the dynamic large-scale network topology
remains elusive. We develop a physical model of the ER as an active liquid network,
governed by a balance of tension-driven shrinking and new tubule growth. This
minimalist model gives rise to steady-state network structures with density and
rearrangement timescales predicted from the junction mobility and tubule spawning
rate. Several parameter-independent geometric features of the liquid network model
are shown to be representative of ER architecture in live mammalian cells. The liquid
networkmodel connects the timescales of distinct dynamic features such as ring closure
and new tubule growth in the ER. Furthermore, it demonstrates how the steady-state
network morphology on a cellular scale arises from the balance of microscopic dynamic
rearrangements.

endoplasmic reticulum | physical modeling | networks | organelle structure |
subcellular dynamics

The endoplasmic reticulum (ER) consists of a vast interconnected web of membrane-
bound tubules and sheets in eukaryotic cells. It forms connections with many subcellular
structures (1, 2), synthesizes and delivers lipids to other organelles (3, 4), stores and
releases calcium (5, 6), and serves as a hub for the translation, folding, and quality control
of secreted proteins (7, 8). The ER is highly dynamic and assumes a variety of structural
motifs, which aid in accomplishing these diverse functional roles and maintaining its
interconnection with other organelles (9).

Prior work on ER structure has focused on how its diverse morphologies [tubules,
junctions, helicoidal ramps, fenestrated sheets, cisternae, etc. (10)] arise from an interplay
of ER morphogen proteins and membrane mechanics. A variety of ER membrane proteins
(including the reticulons and the DP1/REEP/Yop1p family) induce and stabilize the
high positive curvature of tubules (11, 12). Others (e.g.: Climp63) stabilize the thickness
of sheets and tubules (13, 14), while proteins such as lunapark (15) and the atlastin
GTPase family (15–17) help to form and maintain junctions. It has been shown that the
relative abundance of junctions, tubules, and sheets is determined by a combination of the
absolute concentrations of curvature-producing proteins and membrane tension (13, 18).
In other work, it was found that a diverse set of ER morphologies can be generated by
tuning the proportions of reticulons and lunapark (19). Recently, a model was developed
which highlighted the role of intrinsic membrane curvature and ultralow tensions in
generating ER tubular matrices, ER sheet nanoholes, and other intricate membrane
structures (20). These studies have helped elucidate the diverse structures observed in the
ER as manifestations of local mechanical equilibrium.

Other work has sought to understand the link between ER dynamics and its structure.
For instance, the anomalous diffusion of ER exit sites along tubules is captured by a model
of an individual ER tubule as a semiflexible polymer (21). The fluctuations of individual
tubules have also been quantified, with variations in their dynamic behavior associated
with different regions of the cell (22). The dynamics of the ER are also implicated in
controlling other subcellular structures; for instance, the motion of junctions may help
regulate the distribution of microtubules within the cell (23).

Prior modeling work on plant cell ER (24, 25) demonstrated how small networks
between persistent points appear to minimize tubule length, consistent with observations
from in vitro studies of reconstituted lipid-protein systems (26). Although these studies
focused on small regions of the ER with only a few tubules, quantification of such
minimal networks enabled estimation of biophysical quantities such as local membrane
tension and viscoelastic properties of the cytoplasm. Notably, the ER was treated not as
a polymer chain with spring-like stretching or bending energies, but rather as a network
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Fig. 1. The dynamic structure of the endoplasmic reticulum is represented by a liquid network model. (A) Confocal image of COS7 cell expressing fluorescent
endoplasmic reticulum (ER) marker (KDEL_mcherry), highlighting the peripheral ER network morphology. (B) Montage from the same cell line illustrating the
spawning of a new tubule (red arrow) and loop closure events (yellow and green shaded regions). Size of each image is 5.0 × 5.0 μm with a time step of 0.6 s
between each frame. (C) Physical model of junctions in a liquid network. A length-independent tension force (red) and a Brownian force (blue) combine to
define junction velocities (black). (D) Possible rearrangements within a liquid network include junction sliding, neighbor swapping and rearrangement, loop
closure and tubule spawning, growth, and fusion. (E) Representative simulated liquid network evolves from initially uniform honeycomb lattice to a random
structure, with characteristic steady-state density. Region shown is a small segment of a much larger domain.

with constant tension along effectively fluid tubules, an assump-
tion which we also adopt in this work.

The tubular network of the peripheral ER (Fig. 1A) undergoes
dynamic rearrangements (Fig. 1B and Movie S1) that include
two frequently observed processes. First, there is the creation
of new tubules, which branch from and remain connected to
the existing network. Most commonly, tubule creation occurs
when cytoplasmic dynein or kinesin-1 motors bind to the
ER and walk along acetylated microtubules (27, 28). Other
mechanisms of new tubule growth include attachment of the
ER to the dynamic plus-ends of microtubules (29), or to motile
organelles such as trafficking endosomes (30), lysosomes (31)
and mitochondria (32). The second class of dynamic ER rear-
rangements arises from the inherent membrane tension in the
lipid bilayer of the tubules. This tension induces junction sliding
and neighbor rearrangements, akin to the T1 rearrangements
observed in foams (33), leading to a net decrease in network
edge length (34). As a result, loops of tubules can shrink until
they vanish, often referred to as loop or ring closure. Certain
loop closure events may play important functional roles in the
fission of mitochondria (32) and endosomes (35), while other
loop closures are rapid and do not appear to be associated with
other organelles.

Similar structural rearrangements, including T1 events and
ring closures, have been observed in other physical systems
characterized by interfaces under an effective tension. These
include foams (36, 37), microemulsions (38, 39), crystal grain
growth in metals (40, 41), and patterns formed by mass-
conserving reaction-diffusion systems (42, 43). The evolution
of domain boundaries in these systems is driven by a curvature-
dependent effective pressure and a characteristic rate of material
transport across the boundary. The tendency of large domains

to grow at the expense of small ones leads to domain coarsening
over time with a characteristic scaling (33, 44).

Other space-tiling systems, such as epithelial cell monolayers,
do not coarsen but also undergo boundary rearrangements driven
by a combination of interface tension and domain pressure (45).
Such monolayers exhibit T1 junction rearrangements, ring
closure due to cell extrusion, and domain splitting arising from
cell division. Domain splitting is also observed in ER networks,
resulting from the spawning and growth of new tubules.
However, the ER differs from previous classic models of foams,
crystal grains, and monolayers due to the “empty” nature of the
domains between tubules, with no substantial resistance expected
to the exchange of cytoplasm between neighboring domains.

With the aim of connecting the small-scale dynamic rearrange-
ments of the peripheral ER to its large-scale topological structure,
we develop a simple physical model of the ER as an “active
liquid network.” We first identify junction mobility and tubule
spawning rate as the primary regulators of steady-state network
density within the liquid network model. The balance of creation
and annihilation of tubules leads to a network structure with a
characteristic density and connectivity profile. Key geometric
features of the ER in living cells, such as the distribution of
areas between tubules and their shapes, are reproduced by this
simple model. Liquid networks with physiological densities are
also found to rearrange at a rate consistent with the living ER.
Intriguingly, extracted laws for growth and shrinking dynamics in
simulations are sufficient to recapitulate the distribution of areas,
thus highlighting how large-scale structure emerges from local
dynamics. Cells may modulate these properties by tuning their
effective junction mobility or tubule spawning rate. This could
be achieved by static tethering of the ER to the cytoskeleton and
other organelles and by withdrawal of newly growing tubules in
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“catastrophe” events whose rate is quantified via semiautomated
tracking in COS7 cells. Through computational models, analytic
calculations, and quantitative image analysis of the peripheral ER
in living mammalian cells, we identify physical rules governing
its formation and maintenance on a cellular scale.

Results

Emergent Network Topology from Tension and Growth. In-
spired by the dynamic processes observed in living animal cells
and prior descriptions of small ER subregions as length-
minimizing networks (24–26), we build a physical model of
the mammalian peripheral ER as an active liquid network. Here,
we focus on two-dimensional networks, relevant for adherent
mammalian cells such as COS7 cells, whose thin periphery
typically accommodates only a single layer of ER tubules (46).
The 2D nature of these ER networks is evidenced by the lack
of degree-four junctions observed in a planar projection of the
network (Fig. 1A). We separately explore an extension of the
model to three dimensions in (SI Appendix, Fig. S1). The liquid
network is composed of edges which transmit a membrane
tension force between neighboring junctions. The membrane
tension and tubule radii are assumed to be constant throughout
the network.

In the low Reynolds-number environment of the cytoplasm,
the motion of junction node i, located at position Eri, is assumed
to obey an overdamped Langevin equation (Fig. 1C ):

d Eri
dt

= −b∇f (Eri) +
√

2DE�(t). [1]

Here, b is the junction mobility (units of μm/s), f (Eri) =∑d
j=1

∣∣Eri − Erj∣∣ is the total tubule length connecting junction i
with its neighbors at positions Erj,D is the junction diffusivity, and
E�(t) is a Gaussian distributed random noise term with zero mean
and unit variance in each dimension. The first term describes the
deterministic response to length-minimizing tension forces along
the edges, and the second term describes a random Brownian
force meant to capture the noisy environment of the cytoplasm.

With the above laws of motion, liquid network junctions
are frequently pulled into close contact. Within some threshold
distance of one another, junctions may swap neighbors, allowing
for T1 transitions that lead to a decreasing edge length. Model
results are not sensitive to the choice of threshold distance
(SI Appendix, Fig. S2). Example neighbor rearrangements are
shown in Fig. 1D. Occasionally, loops may form due to these
neighbor swapping events, wherein two junctions are doubly
connected. These loops contract over time, due to there being
twice as much tension pulling them together as there is pulling
them apart. The network is not allowed to rupture or fragment,
a process which can be induced in vitro (47) but is not observed
in our data, potentially due to the high membrane tension in the
ER (26).

In addition to the tension and diffusion-driven motion of
junctions, new tubule nucleation from existing tubules is modeled
as an exponentially distributed random process with rate k (tubule
spawning rate, units of μm−1s−1). Newly spawned tubules grow
with a velocity v (μm/s), until coming into contact with an
existing tubule, at which point the growth ceases and the tubules
fuse, forming a stable junction.

In the endoplasmic reticulum, the velocity of growing tubules
has been measured to be on the order of 1 μm/s (28, 48).
We assume that this velocity is fast compared to the junction

mobility (v � b), so that a newly spawned tubule will span
across a polygon before it substantially changes its shape. This
assumption, justified via subsequently described measurements,
allows us to treat tubule growth as nearly instantaneous. Ad-
ditionally, the diffusive motion of junctions is assumed to be
relatively small compared to experimentally observed tension-
induced sliding events. With these assumptions, the behavior of
the liquid network model can effectively be described by two
parameters: the junction mobility, b, and the tubule spawning
rate, k.

We simulate active liquid networks for a variety of parameter
values, by integrating Eq. 1 forward in time (details in SI
Appendix, Materials and Methods). As seen in Fig. 1E, an initially
uniform honeycomb network develops into a random network
over time. The network continuously evolves, but after a transient
initial period, the tubule density remains relatively unchanged.
Thus, a steady state emerges due to the competing forces
of junction motion controlled by edge tension and stochastic
spawning of novel tubules.

Steady-State Density and Timescales of Liquid Networks. Be-
cause the liquid network model is governed by only two parame-
ters, dimensional analysis indicates there is a single characteristic
length scale (` =

√
b/k) and timescale (� = 1/

√
bk) that define

its behavior. Thus, changing the ratio of b and k generates
networks with varying steady-state density, and changing the
product of b and k affects the dynamics of the network (Fig. 2A
and Movie S2). To illustrate this effect, the results from nine
simulations of liquid networks are shown in Fig. 2B. Each of the
nine simulations has the same initial condition but a different
combination of ` and �.

The total network length approaches a steady-state value over
time and can be fit to an exponential of the form f (x) =
c
(
1− exp

(
t/�steady

))
. The parameter �steady gives an estimate

of the time for liquid networks to approach steady state. This
extracted time scales linearly with � over a wide parameter range,
as expected for simulations with a single dominant timescale
(Fig. 2C ).

To measure steady-state density one can consider the area of
polygons (minimal loops) within the network. The mean area
of these polygons scales linearly with `2 = b/k (Fig. 2D). It is
therefore possible to construct networks with the same density
as observed in living cells simply by tuning `. From a linear fit
of the mean area across a range of b and k values, we obtain
〈A〉 ≈ 0.29b/k.

The overall steady-state density of liquid networks can be
captured by a simple equation for the total network length as
a function of the new tubule spawning rate k and mobility b.
For simplicity, we consider a network of hexagonal polygons.
The total network length L can either grow via spawning of new
tubules across the polygons, or decrease due to junction sliding:

dL
dt

= kL�
√

3− 
bn. [2]

Here, � is the average edge length,
√

3� is the distance between
parallel edges of a hexagon, n is the total number of junctions
in the network, and 
b describes the average sliding speed of a
junction. At each individual junction, the value of 
 must be
between 0 and 3 depending on the angles between the adjacent
tubules. The speed of growing tips is assumed to be sufficiently
fast that growth events are instantaneous and there is no effect
from the diffusion of junctions.
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Fig. 2. Steady-state network density and rearrangement timescales are set by two parameters. (A) Junction mobility and tubule spawning rate set the length
and time scales (`, � respectively). (B) Network length over time for nine separate simulations, each starting from an initially sparse honeycomb network
enclosed in a circle of radius 15 μm. The steady-state network length is set by ` (color) and the time to reach steady state is set by � (line style). Other parameters
are D = 10−5 μm2/s and v = 1 μm/s. (C) Timescale to approach steady state, extracted via exponential fit of curves as in (B) is proportional to the intrinsic
network timescale �. (D) The mean area of polygons in a liquid network is proportional to `2 = b/k. Mean polygon area in COS7 cells is indicated by the dotted
blue line; the shaded region gives intercell SD (N = 7 cells). Inset: illustration of polygon extraction, different colored regions correspond to individual polygons.
(E) Measured spawning rates from 19 COS7 cells, with mean and intercell SD of 8.5± 0.8× 10−3 μm−1s−1. Scatter data for (C and D) is from simulations with
mobility ranging between 0.001 to 0.1 μm/s and spawning rate ranging between 0.0005 to 0.05 μm−1s−1.

The total network length can be expressed in terms of the
average edge length (�) and the number of junctions (n) using
the fact that the number of edges (e) in a hexagonal lattice is
e = 3

2n. Thus, L = 3
2�n and at steady state dL

dt = 0 gives an
average area of:

〈A〉 =
3
√

3
2

�2 = 

b
k
. [3]

This predicted scaling of mean area with b/k aligns with
expectations from dimensional analysis and agrees with the fit
of simulation results. Notably, an analogous scaling law relating
network dynamics and the average edge length is also observed
for three-dimensional liquid network simulations (SI Appendix,
Fig. S1). However, such 3D networks also depend on an
additional length scale (the contact radius within which a growing
tube is capable of fusing into the network), which modulates
network pore size and density.

The new tubule spawning rate k can be extracted directly from
observations of ER dynamics in live COS7 cells (Fig. 2E and
details in SI Appendix, Materials and Methods). Together with
the measured polygon area, this allows the effective mobility
of the ER junctions in COS7 cells to be estimated as b =
〈A〉k/
 = 0.03 μm/s. We note that the relevant mobility is
indeed much slower than the tubule growth speed (b � v),
justifying our assumption of a single dominant length and time
scale. One advantage of this approach is that tubule spawning
rate is simple to directly measure from experimental data whereas
junction mobility is a more opaque quantity. Thus, it is possible

to calculate ER junction mobility via mean polygon area and
spawning-rate measurements by taking advantage of the steady-
state properties of liquid networks.

Scale-InvariantNetwork Structure Reproduces ERMorphology.
While the two parameters of the liquid network model set length
and time scales, any dimensionless metric of network structure
must be parameter-independent. In particular, we consider
the full distribution of polygon areas for a range of ` values
(Fig. 3A). As the ratio of mobility to spawning rate increases,
the distributions shift to the right, indicating an increase in
large areas and a decrease in small areas. However, the overall
shape of the distribution remains unchanged. At low areas, the
log-binned distribution scales as ∼

√
A, and at high areas, it

decays exponentially. When normalized by the mean area, the
distributions collapse onto a single universal curve (Fig. 3 A,
Inset), highlighting the scale-free nature of the model. Thus,
increasing mobility is equivalent to “zooming in” on a patch
of network, while increasing spawning rates leads to a denser
network, or “zooming out.”

Notably, the parameter-independent shape of the polygon area
distribution for liquid networks provides a good approximation
to that of the ER in living cells. In Fig. 3B, area distributions
extracted from two different cell types commonly used to study
the peripheral ER are shown (details in SI Appendix, Materials
and Methods). Both COS7 and U2OS cells (monkey kidney and
human osteosarcoma, respectively) exhibit remarkably similar
scaling, collapsing onto a single curve. The exponential drop-
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A B
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Fig. 3. Scale-invariant liquid network model reproduces peripheral ER morphology. (A) Distribution of polygon areas in simulated liquid networks for a range
of b/k values. Bin sizes are logarithmic. Inset: distributions collapse onto a single curve when normalized by mean area, revealing scale-invariant behavior of
liquid networks. (B) Distribution of normalized polygon areas from the ER networks of COS7 and U2OS cells (yellow and pink, respectively) exhibit similar scaling
to simulated liquid networks (black). For comparison, the distribution of areas for Voronoi networks and experimental measurements of a two-dimensional dry
foam (data from ref. 49) are also shown (purple and blue lines). Example networks in matching color Below. (C) Mean and SD of angles between 3-way junctions
in liquid networks (black) and the COS7 ER (yellow). (D) Mean and SD of aspect ratio (shortest dimension/longest dimension) in liquid networks (black) and the
COS7 ER (yellow).

off at large areas is clearly conserved across experiments and
simulations. The experimental measurements exhibit a slight
enhancement of small-area polygons as compared to liquid
network simulations. However, limitations in imaging resolution
and segmentation prohibit the extraction of a reliable power-law
for small-area scaling in the distribution.

The distributions for two other families of network are
provided in order to demonstrate that the close match to ER
morphology is not exhibited by other commonly studied 2D
networks. The area distribution of simulated Voronoi networks
(purple line) is comparatively narrow and sharply peaked around
the mean. Experimental imaging data of a two-dimensional dry
foam (49) (blue line), shows that the area distribution of foams
is broader than Voronoi networks but still narrower than the
ER and liquid networks. The foam also exhibits an exponential
drop-off at large areas but has a linear scaling in the logarithmic
distribution of small-area polygons. We note that extending the
liquid network model to three dimensions yields a distinctly
different scaling for the size distribution of small pores, akin to
that observed in foams and random-line networks (SI Appendix,
Fig. S1).

For 2D liquid networks, it is possible to estimate the functional
form of the polygon area distribution (black line) using only
the rules for polygon growth and splitting, as described in the
following section.

Other metrics of shape further confirm the similarities between
the liquid network model and experimental ER networks. The
distribution of angles between neighboring 3-way junctions is
centered at 2�/3 or 120◦. This is a universal property of two-
dimensional networks composed of degree 3 junctions. The SD of
angles at 3-way junctions is also shown to be similar for simulated
and observed ER networks across a wide range of parameter values
(Fig. 3C ). Finally, the aspect ratio of polygons (ratio of shortest

dimension to longest dimension) is calculated in both simulated
and experimental networks. This provides another dimensionless,
scale-free measure of shape: The mean and SD of polygon
aspect ratio are constant over a wide range of parameter values
and approximately match experimental measurements (Fig. 3D).
Notably, the realistic variances of the aspect ratio and junction
angles arise from heterogeneity in polygon shapes and are not
related to the Brownian forces on the junctions (SI Appendix,
Fig. S2 A–C ), which are taken to be very small in the simulations.

Model Dynamics Determine Network Rearrangement Rates.
Having demonstrated that the liquid network model approxi-
mately matches the steady-state morphology of ER networks, we
next proceed to compare the dynamics of simulated and observed
network structures. We consider two metrics for the dynamic
rearrangement of the networks, demonstrating how parameters
extracted from measuring polygon size and new tubule spawning
enable accurate prediction of the time-evolution of ER network
structure.
Edge mean minimal distance. To quantify the motion of indi-
vidual tubules over time and the resulting changes in network
structure, the edge mean minimal distance (EMMD) is calculated
between the first and all subsequent networks, as described
in SI Appendix, Materials and Methods. Briefly, the network is
meshed and for each point on subsequent networks, the minimal
distance to a point on the starting network is found; these
minimal distances are averaged to find the EMMD. The EMMD
grows over time (Fig. 4 B, Left panel), with an initial jump
between the first and second frames that can be attributed to
localization error and network segmentation artifacts. The same
calculation is performed for simulated liquid networks with a
matching average polygon size and a range of timescales.
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Fig. 4. Dynamics of liquid networks predict ER rearrangement timescales and give rise to emergent polygon area distribution. (A) Confocal images of COS7
ER with 1 s interval between first and last frames (green, pink). Extracted networks overlaid in matching colors. White arrows indicate minimal distance from
meshed points on final network (pink) to meshed points on the initial network (green). (B) Left panel: edge mean minimal distance (EMMD) over time for 16
peripheral ER networks of COS7 cells. Right panel: EMMD of liquid networks with � = (bk)−1/2 varying across one order of magnitude and fixed

√
b/k = 2 μm.

(C) Exponential timescale for EMMD to approach steady-state scales with � for liquid network simulations. Yellow lines show mean value and intercellular SD
for COS7 cells. (D) Example polygon tracking of experimental data to quantify polygon growth and shrinking rates. Each frame is 5.0× 5.0 μm with a timestep of
2 s. Red and green arrows indicate shrinking and growing polygons, respectively. (E) Nondimensionalized growth rates normalized by mean area and network
timescale for 10 liquid network simulations. The green curve indicates mean (and SE of the mean) within coarse bins of normalized area. Dotted black curve
indicates fit to Eq. 4, giving � = 0.78, g = 1.69, and h = 1.85. (F ) Mean growth rates normalized by mean area and their dependence on relative polygon size
from 7 experimental COS7 peripheral ER networks. The green curve indicates mean (and SE of the mean). Dotted black curve indicates fit to Eq. 4, with � fixed
at 0.78 giving g/� = 0.018 s−1 and h/� = 0.015 s−1. (G) Polygon growth timescale (defined as �/g) from 7 COS7 cells agrees with the simulated timescales
extracted from simulations. (H) Polygon survival times normalized by � for 10 liquid network simulations. The green curve indicates mean (and SE of the mean)
within bins of area. The black curve indicates theoretical prediction. Inset: representative trajectories for shrinking and splitting polygons. (I) Distribution of
normalized polygon areas in a simulated liquid network (black) compared to analytically approximated area distribution (pink). The vertical dashed line shows
A∗, where small-area and large-area solutions are joined.

Exponential fits of the EMMD growth over time give
an effective timescale for the rearrangement of the network.
As expected, this rearrangement time scales linearly with the
intrinsic timescale � of the simulations (Fig. 4C ). The observed
rearrangement timescale for the COS7 ER is 35±11 s, implying
that during this time edges are significantly displaced from their
original location. This timescale is of similar magnitude to the
time required for the ER as a whole to explore a large fraction
of the cytoplasm (50). Notably, this rearrangement timescale is
consistent with the simulation model, given the parameters b
and k extracted from measurements of polygon area and tubule
spawning rate. Thus, the liquid network model makes it possible
to connect two seemingly independent dynamic processes—new
tubule growth and rearrangement of existing edges.

Polygon growth rates. An additional metric to quantify the
dynamic behavior of liquid networks arises from considering the
growth and shrinking rates of polygons (independent of splitting
events due to new tubule growth). Polygons are tracked in time
and space using conventional particle tracking software (51)
(details in SI Appendix, Materials and Methods). We calculate the
normalized growth rate for all tracked polygons in several COS7
ER networks and simulated liquid networks. The normalized
growth rate is defined to be the time-derivative of each polygon’s
area scaled by the average polygon area in that cell. For simulated
networks, the growth rate is rescaled by the characteristic model
timescale � = (bk)−1/2, allowing simulations with different
parameter values to be analyzed together. By determining
the relationship between growth rate and polygon area the
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underlying laws governing the dynamics of the network can be
probed.

A characteristic behavior of liquid networks is the growth of
large polygons and the shrinking of small ones (Fig. 4E). This
is similar to von Neumann’s law for foams, which dictates that
polygons with more than 6 sides grow while those with fewer
sides shrink (36). In liquid networks, as in foams (33) and crystal
grain boundaries (41), polygons that are larger than average tend
to have more sides, as a greater number of average-sized neighbors
can fit around them (SI Appendix, Fig. S3A). Consequently,
such above-average polygons tend to have internal angles greater
than 120◦, causing them to grow under tension. As noted in SI
Appendix, the growth and shrinking rates for a regular n-gon are
expected to be proportional to its perimeter, which scales roughly
as
√
A. For large polygons, the number of neighbors should also

increase as the polygon grows, giving a steeper dependence of the
growth rate on area. We fit the average simulated growth rates to
the following expression: (Fig. 4E):

�
1
〈A〉

dA
dt

= g
(

A
〈A〉

)�
− h

√
A
〈A〉

, [4]

where the prefactor g encapsulates the rate of large polygon
growth and h describes the rate of small-polygon shrinkage. We
note that the above equation constitutes an approximate ansatz
that describes the distinct dynamic behavior of polygons at the
extremes of the area distribution. From the fitted function, we
can extract the typical rate kgrow = g/� for the growth of large
polygons.

When tracking polygons in images of live ER, the average
growth rate is also negative for small polygons and positive for
large ones, as in the liquid network model. Due to the limited
data at small polygon areas, we fix the value � = 0.78 as fitted for
simulated networks, and fit the remaining coefficients in Eq. 4
to the experimental data (Fig. 4F ). This enables the extraction of
a growth rate for large polygons, in real time units. As shown in
Fig. 4G, the estimated growth rate for COS7 ER falls within range
of the predicted value for liquid networks with the appropriate
timescale �. Thus, by measuring the average polygon area and
rate of new tubule spawning (to set parameters b, k), the liquid
network model makes it possible to predict the typical growth
rate of large polygons in the ER network, thereby connecting
distinct dynamic processes.

These results demonstrate that liquid networks are not only
able to replicate key steady-state structural features but also
capture the rearrangement timescales of living ER networks, pro-
viding a connection between morphology and tubule dynamics.

Steady-State Structure Emerges from Polygon Dynamics. The
dynamic behavior of network polygons can be abstracted still
further by considering them as a population of individual aspatial
entities capable of growing, shrinking, and splitting (Movie S3).
The drift velocity of polygon areas v(A) = dA/dt is set by
Eq. 4. The rate of splitting is expected to be proportional to
the perimeter of a polygon, which scales as the square root of
the area: ksplit = k̂

√
A. This simplified description neglects noise

in the polygon trajectories, assuming the dynamics of each is
consistent with the average behavior of the population.
Polygon survival times. The normalized area of a given polygon
[Â(t) = A(t)/〈A〉] can be treated as a deterministically growing
or shrinking quantity, computed through integration of Eq. 4.
The polygon will grow if its initial normalized area is above the

cutoff value of Âc = (h/g)1/(�−1/2) and will shrink otherwise.
The polygon trajectory is terminated by a stochastic splitting
event with rate ksplit.

For a shrinking polygon with initial area Â0, we can compute

the time to closure as t∗ =
∫ Â0

0
−dÂ
v(Â)

. The survival probability

S(t) to time t < t∗ is given by

S(t) = e−k̂
√
〈A〉

∫ t
0

√
Â(t ′)dt ′. [5]

and the average survival time can be found as

� = t∗S(t∗)−
∫ t∗

0
t ′∂t ′S(t ′)dt ′ =

∫ t∗

0
S(t ′)dt ′. [6]

For growing polygons, an analogous expression for the average
survival time is given by replacing t∗ → ∞. The resulting
estimate for the survival time approximately matches the behavior
of polygons in liquid network simulations (Fig. 4H ). Notably,
polygons with intermediate areas have the longest survival time
because they are both slow to shrink and also have a low
splitting rate.

Because this simplified model of polygon dynamics does not
incorporate stochastic noise in the trajectories, the approximated
survival times tend to be slightly overpredicted. In simulations,
some polygons with area below Âc may nevertheless be growing
and some larger polygons may be shrinking. As a result, polygons
spend less time trapped in the intermediate-area state where
deterministic dynamics are very slow; they are more likely to
fluctuate to a more extreme small or large area that quickly
leads to a shrinkage or a splitting event, thereby reducing the
survival time.
Steady-state area distribution. Making the same approximation
of deterministic dynamics for the population of polygon areas,
we define P(A) as the area distribution function, whose steady-
state form must encompass a balance between small polygons
disappearing due to shrinking and large polygons splitting into
new ones.

In the limit of very small areas, the formation and disappear-
ance of polygons due to splitting is negligible compared to the
flux associated with polygon shrinking (SI Appendix). The overall
rate of polygons disappearing when their area shrinks to zero can
be estimated as

J0 = lim
A→0

v(A)P(A) = lim
A→0

h
�
〈A〉1/2√AP(A). [7]

Because this flux must be a finite nonzero value, the small-area
limit of the distribution is set to P(A) → c1/

√
A, where c1 is a

constant. A logarithmic transform gives the scaling P(log A) ∼
√
A, as observed in Fig. 3A.
In the limit of very large polygons, the distribution evolves

due to area growth and splitting, and the steady-state form can
be found by solving the resulting equation:

∂P
∂t

= −
∂

∂A
[v(A)P]− k̂

√
AP = 0 [8]

P(A)→ c3c1A−�e−c2A
z
, [9]

where z = 3
2 − �, c2 = − k̂〈A〉�−1

gz , and c3 is a constant.
In order to construct a full approximate distribution, the

two limits for small and large areas are married together at
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some intermediate value A∗, thereby enforcing a value for
the coefficient c3 = (A∗)1−z exp (c2A∗z). The coefficient c1 is
obtained by normalizing P(A). Furthermore, the total rate at
which polygons disappear (J0) and the rate at which new ones
are produced (Jsplit =

∫
∞

0 k̂
√
AP(A)dA) must be equal at steady

state. This constraint fixes the transition value A∗ ≈ 0.12b/k.
These calculations lead to a predicted average polygon area
〈A〉 ≈ 0.23(b/k), similar to the fitted relationship in Fig. 2D.
Furthermore, the overall distribution of polygon areas, with a
polynomial scaling at small A and an exponential scaling at
large A, approximately reproduces the observed distribution from
liquid network simulations (Fig. 4I ). We note that the only fitting
parameters employed in this analysis are the values of g, h, � in the
expression for polygon growth rates as a function of area (Eq. 4).
Thus measurement of polygon dynamics can be leveraged to
approximately predict the steady-state architecture of the liquid
network as well as the ER network structure in live cells.

Pinning to Static Structures Increases Network Density. We
have shown how the structure and dynamics of liquid networks
are governed by two parameters: the junction mobility and tubule
spawning rate. In the next two sections, we explore how the cell
effectively controls these parameters to modulate ER properties,
first examining how junction mobility can be tuned by tethering
of the ER to static structures.

The ER exists within the crowded, complex environment of
the cytoplasm. It is pinned to the cytoskeleton via contacts with
microtubules and actin filaments (52, 53). The ER also forms
critical contact sites with mitochondria (28, 32, 54), the plasma
membrane (55), the Golgi (56, 57), endosomes (30, 35) and other
organelles (1). Quantification of ER network dynamics in plant
cells has indicated that certain points along the network remain
persistent over minute-long timescales (24). To determine the
effect of connections to static structures, we introduce a process
for temporarily immobilizing junctions in liquid networks via
pinning (rate kp). An unpinning process (rate ku) allows for a
steady-state number of pins (Movie S4). The ratio np = kp/ku
sets the average number of pins in the model. We analyze systems
with variable pin densities and with a wide range of pin persistence
times.

To begin, we find how mean area depends on both junction
mobility and pin density, calculated as np divided by total
simulation area (Fig. 5A). For a fixed mobility, increasing the
density of pins leads to a denser network with smaller mean areas.
This effect is most pronounced for larger mobilities, leading to a
steep decrease in mean area as pin density increases. The contour
corresponding to the average area across COS7 cells is shown
in green, indicating a wide range of possible mobility and pin
density combinations in experimental networks.

The overall effect of pinning is to reduce the rate at which
the network can relax and rearrange. For any given pin density,

A B C

D E

F

Fig. 5. Tethering to static structures reduces effective mobility and increases network density. (A) Dependence of mean area on mobility and pin density.
The dashed green line indicates contour corresponding to mean COS7 area, with the shaded green region indicating SD across all cells (N = 7). Inset: depicts
an example 10 × 10 μmsnapshot of a liquid network with pinned nodes highlighted in red. (B) Effective mobility, defined as beff = 〈A〉k/
 , as a function of pin
density for different mobilities. (C) Mean polygon survival time for simulations with and without pinning. Yellow curve: no pinning, varying junction mobility b
(Bottom axis). Pink curve: different pin densities (Top axis), with constant mobility b = 0.02 μm/s, plotted against the effective junction mobility beff (Bottom axis).
Matching effective mobilities gives similar results with and without pinning. Error bars indicate SD across three simulations for each data point. (D) Reversible
pinning leads to denser networks, shifting the area distributions. Inset: normalized area distributions collapse to a single curve for all pin densities. (E) Aspect
ratio is unchanged across a range of pin densities. (F ) Mean area remains constant across a wide range of pin lifetimes. All results are with a tubule spawning
rate of k = 0.005 μm−1s−1.
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we can define an “effective mobility” (beff = 〈A〉k/
 , with 
 =
0.29) by finding the value of b that would give the same average
polygon area in the absence of pinned points. At low pin density,
beff ≈ b, but as the pin density grows, the effective mobility
steeply decreases (Fig. 5B) as the rearrangement of the network
is slowed down. The effect of pinning on the increasing survival
time of individual polygons is encompassed by the accompanying
slow-down in effective mobility (Fig. 5C ).

In liquid networks, pinning to static structures or other
organelles may thus limit network mobility and increase the
corresponding density of ER network tubules in critical regions
of the cell. For instance, this mechanism could aid the coalescence
of ER around mitochondria contact sites.

Beyond tuning the density of the network, pinning has little
effect on steady-state properties. Area distributions shift as a
function of pin density, but when normalized by mean area, the
data collapse onto a single curve (Fig. 5D) just as before (Fig. 3A).
There is also no effect on the mean and variance of polygon shape,
as measured by aspect ratio (Fig. 5E). Furthermore, altering the
pinning and unpinning rates (thus probing a wide range of pin
lifetimes while maintaining a fixed pin density) has no effect on
the steady-state structure of liquid networks (Fig. 5F ).

Tracking Tubule Spawning in COS7 ER Reveals Rate of Catastro-
phe. Another mechanism through which cells can modulate ER
network properties is by tuning tubule spawning rate. Within
living cells, newly spawned tubules often cease growth and
retract, a process we refer to as “catastrophe.” Independent of
the underlying mechanism of growth [e.g. ER sliding or TAC
events (27–29)], we quantify ER tubule catastrophe rates in
COS7 cells, and explore the effect of catastrophe on network
structure.

The tips of newly spawned tubules are tracked within COS7
cells (details in SI Appendix, Materials and Methods). In addition
to positional data, it is also recorded whether the growth is

successful in fusing with a neighboring tubule (fused) or if it
ultimately retracts (not fused). Using the position of tracked tips,
the average velocity until fusion or until the time of retraction is
calculated. The distribution of growth speeds is broad (Fig. 6A),
with an average and SD of 1.09 ± 0.75 μm/s, consistent with
previous measurements (28, 48). No significant differences in the
distribution are observed between tubules that successfully fuse
and those that do not.

We next calculate the gap size that growing tubules must
traverse in order to fuse, a quantity which differs between
successful and unsuccessful spawning events (Fig. 6B). Here,
gap size is the approximate diameter of the enclosing polygon
(d = 4A/P, with A area and P perimeter, equal to the inscribed
diameter of regular polygons). On average, successful growth
events traverse shorter gap sizes (2.1±0.5 μm) than unsuccessful
events (2.4 ± 0.5 μm). This effect can also be visualized by
considering the success rate of newly spawned tubules, which
decreases as a function of gap size (Fig. 6C ).

An estimate for the catastrophe rate in living ER networks can
be extracted by fitting the experimental success rate to S(d) =
e−�d/v (Fig. 6C ). Here, d is the gap size, v = 1.1 μm/s is the
average velocity of all measured growth events, and � is the catas-
trophe rate and fit parameter. This gives �ER = 0.25±0.04 s−1.

To explore how these events affect the steady-state structure
of the network, we introduce a constant-rate (Poissonian)
catastrophe process for each growing tubule in the liquid network
simulations. A single parameter (�) controls the rate at which
a growing tip ceases forward motion and begins to retract
due to membrane tension. Simulations are performed with
experimentally relevant choices for mobility and spawning rate
(b = 0.02 μm/s, k = 0.005 μm−1s−1) across a wide range of
catastrophe rates, and the steady-state structural properties of the
network are analyzed.

At small catastrophe rates, the mean area of polygons in
the network remains relatively unchanged from the case with

A B

D E

C

Fig. 6. Growing tubules undergo catastrophe events that alter polygon size distributions. (A) Velocity distributions of growing tubules that lead to both
successful and unsuccessful fusion. Mean of each distribution indicated by a dashed line. (B) Distribution of gap sizes across which tubules are growing for both
successful and unsuccessful fusion events. Mean of each distribution indicated by a dashed line. P = 0.001 for a one-sided Student’s t test. (C) Success rate as a
function of gap size d, with fit to S(d) = e−�d/v indicated by a dashed line. (D) Mean area grows as a function of catastrophe rate. The black line marks analytic
prediction. The dashed vertical line shows predicted critical rate beyond which mean areas diverge. (E) Normalized area distributions for liquid networks with
increasing catastrophe rates. High catastrophe rate leads to an enrichment of both small and large areas.
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no catastrophe (Fig. 6D). As the catastrophe rate increases, it
becomes more likely that growing tubules will retract before
fusing, especially across larger gaps. Thus, there are fewer splitting
events of large areas, leading to an increase in mean area. The
larger average gap size, in turn, leads to even fewer fusion events.
As the catastrophe rate grows sufficiently large, the persistence
length of growth events becomes smaller than the average gap they
must traverse. The mean area is then expected to diverge beyond
a critical catastrophe rate, as confirmed by simulations (Fig. 6D).

The average effect of catastrophe on steady-state structure in
liquid networks can be analytically approximated by modifying
Eq. 2 for the total network length to incorporate the success rate
S(d) of new growth events:

dL
dt

= kL�
√

3e−
√

3��/v
− 
bn. [10]

At steady state, this reduces to the following transcendental
equation for �,

�2e−
√

3��/v =
2
b

3
√

3k
. [11]

The derivative of � with respect to � approaches infinity at �c =
1
e (2
√

3k/
b)1/2, indicating that no finite solution is possible
above this critical catastrophe rate. For the simulation parameters
used in Fig. 6D, the critical value is given by �c = 0.64 s−1.
Solving for � numerically, the polygon mean area (Eq. 3) can
be found as a function of catastrophe (black curve in Fig. 6D).
The divergence of average area with increasing catastrophe rate is
successfully predicted by this analytic model. Using this model for
catastrophe (SI Appendix, Fig. S4), we additionally demonstrate
that liquid networks can form quasi-stable architectures without
a boundary or tethering to static structures, so long as there is
sufficient growth to counteract the tension-induced shrinking.

Notably, the catastrophe process affects not only the average
polygon area, but also the normalized distribution of areas
(Fig. 6E). The altered distributions arise because catastrophes
have a greater effect on large than on small polygons. Thus,
normalized distributions for systems with frequent catastrophes
have a fatter tail of large-area polygons that are unlikely to be
split by a successful new tube fusion.

Discussion

Physical modeling of the peripheral ER as an active liquid
network elucidates a fundamental connection between subcel-
lular dynamics and organelle structure. The behavior of liquid
networks is effectively described by two main parameters: the
junction mobility and tubule spawning rate. A characteristic
network density and connectivity emerges from a balance
between tubule creation and the contraction of small polygons.
This model reproduces key geometric features of the peripheral
ER in adherent mammalian cells, such as the typical shape
and distribution of areas between tubules. We find that liq-
uid networks are able to replicate physiological rearrangement
timescales. Quantifying polygon dynamics in these systems allows
us to derive the distribution of areas, thus forming a connection
between emergent steady-state structure and the underlying
dynamics. Finally, by considering the effects of static tethering
points and catastrophe of tubule growth we explore how the cell
can alter the effective junction mobility and tubule spawning rate
to modulate network properties.

In this work, the complex protein-studded membrane struc-
ture of the peripheral ER is reduced to a spatial graph of

junctions connected by one-dimensional, constant-tension, fluid-
like edges. This simplified model is able to recapitulate many of
the structural and dynamic properties of the living ER, while
remaining agnostic to the specific details of membrane-shaping
and dynamics at the nanometer scale. In reality, the effective
tension driving the shortening of ER tubules could be modulated
by varying tubule radii and by the distribution of tubule-
stabilizing proteins such as the reticulons (58). Both tubule radii
and reticulon distributions are spatially heterogeneous across
the network (14), potentially giving rise to tension gradients.
Fluctuations in tension may also arise from cis-dimerization of
membrane proteins such as atlastin (26). More complicated ER
structures, such as fenestrated sheets (46), may also influence the
tension and hence the dynamics of the surrounding network.
Furthermore, tubule spawning rate may be heterogeneous due to
varying distributions of microtubules and motors. These effects
may account for some of the spatial variability in ER density
observed in cells (59).

An additional simplifying assumption inherent to the liquid
network model is the ability of individual tubules to straighten
on a timescale faster than the node rearrangements. While
some bent tubules can be seen in the peripheral ER, their
persistence length (22) is usually much longer than the typical
polygon size. Thus the kinks that sometimes appear in long
ER tubules are likely associated with connections to other
cellular structures (analogous to the “pinning points” discussed
above). The constant, isotropic mobility coefficient for network
nodes is another simplification, neglecting the differences in
friction for dragging a tubule perpendicular to its axis, versus
sliding a junction along the tubule membrane. Despite these
simplifications, the liquid network model captures many aspects
of ER structure and dynamics, linking local rearrangements to
the network’s large-scale architecture.

The model presented here is most relevant for two-dimensional
networks such as those observed in the periphery of COS7
cells. In many other cell types, the ER forms three-dimensional
structures. Such networks require an additional length scale
defined by the range within which a growing tubule tip can
fuse into another tubule. This length scale alters the dependence
of network density on the kinetic parameters b, k. While we
outline scaling behaviors of 3D liquid networks in SI Appendix,
more detailed exploration is left for future work. Further
high-resolution imaging and quantification of 3D ER network
architecture will also be necessary to probe the validity of the
model in 3D.

Alternative 3D models can also give rise to network-like
structures. In particular, microemulsions of lipids, water, and
surfactants can form bicontinuous cubic phases whose density
is governed by the relative concentrations of the components
(38, 39). Such structures coexist with lamellar phases, with
the balance modulated by the curvature preferences of the
lipid layers (39). These models may be particularly relevant for
understanding the transition of the ER between network-like and
sheet-like structures, which can be tuned by changing the distri-
bution of preferred membrane curvatures (19). While our liquid
network model focuses on structures emerging through tension
and growth, future work comparing the resultant dynamics and
architecture to networks arising via phase transition may prove
informative. In particular, such connections may shed light on
in vitro observations of ER network formation in the absence of
cytoskeletal filaments needed for new tubule extension (60).

Maintaining an organelle as an active, dynamic liquid network
incurs an energy cost for the cell. In particular, motor activity or
microtubule polymerization is required to grow new tubules that
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split polygons and interrupt coarsening. Given that individual
kinesin motors burn one ATP per 8-nm step (61), we would
expect the rate of energy consumption associated with network
maintenance to scale as

√
2
/
√

3Lk`/ds, where L is total
network length, ` =

√
b/k, ds is the motor step size, and 
 is

the scaling factor relating average polygon area to `2. For the
cells considered here, this would amount to roughly 2 × 103

ATP/s. Notably, this maintenance cost is orders of magnitude
lower than the estimated energy consumption (∼108 ATP/s)
associated with synthesizing the proteins shipped from the ER
in the secretory pathway (62–64).

For this modest energetic cost, the dynamic network of the
ER provides the cell with a number of functional benefits. As
a topologically isolated space with high calcium concentration,
the ER provides a compartment for the efficient folding of
proteins destined for the extracellular environment (7, 8). Its
dense network structure enables the rapid and proximal delivery
of calcium ions into the cytoplasm (6) during localized signaling
events known as puffs or sparks (65). The well-connected
network architecture also allows for rapid search by newly folded
proteins to encounter exit sites in the ER (59). Furthermore,
the density of the network makes it possible for the ER to form
a plethora of contact sites for the transport of proteins, lipids,
and ions to and from other organelles such as mitochondria and
endo/lysosomes (31, 32, 35, 66).

The dynamic rearrangements of the network could allow for
rapid structural response of the ER to local and global pertur-
bations. For example, the increased network density associated
with pinning points may aid the accumulation of ER tubules
near mitochondrial contact sites, where the ER is known to play
an important role in mitochondrial fission and fusion (32, 67).
Network dynamics could also allow the ER to restructure around
rearranging organelles or in response to cytoplasmic deformation
in motile cells (68).

The interplay between microtubules and peripheral ER (69)
enables the network to maintain its structure against tension.
Suppression of motor proteins that drive tubule extension results
in retraction of the ER network from the cell periphery (70). In
addition, depolymerization of microtubules following nocoda-
zole treatment leads to the withdrawal of peripheral ER tubules
and an increase in perinuclear ER sheets and cisternae (71). By
maintaining the ER in a state of constant tension, poised on the

verge of retraction and controlled by driven extension along the
cytoskeleton, the cell ensures that its structure can respond rapidly
to changing cues. Such mechanical response may partly underlie
the ability of the ER to restructure rapidly during mitosis, when
it undergoes a global tubule-to-sheet conversion (72, 73).

Overall, the liquid network model not only accounts for the
unique reticulated structure of the ER but also demonstrates how
this architecture can emerge from and be regulated by a balance of
two simple dynamical processes: tension-driven coarsening and
new tubule growth.

Materials and Methods

Liquid Network Simulations. Liquid networks are simulated via Brownian dy-
namics, integrating Eq.1 forward in time. Length-minimizing T1 rearrangements
are allowed to occur between colliding junctions, as described in SI Appendix.

Cell Culture and Imaging. COS7 and U2OS cells were cultured and transfected
with mCh-KDEL or KDEL-venus (74). The peripheral ER of these cells was imaged
using confocal microscopy (Zeiss LSM 880), as described in SI Appendix.

Image Analysis. The machine learning segmentation toolkit ilastik (75) is used
to segment ER network structures and identify polygons in live-cell images. New
tubule growth events are identified and tracked in a semiautomated protocol
followed by manual verification. Details are described in SI Appendix.

Quantifying Network Rearrangement. Mean minimal distance between
edges and polygon growth rates are computed to quantify network rearrange-
ment dynamics, as described in SI Appendix.

Data, Materials, and Software Availability. Software for liquid network
simulations and a database of simulated and observed polygons are provided
on GitHub (76).
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