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Abstract—Companies use personalization to tailor user expe-
riences. Personalization appears in search engines and online
stores, which include salutations and statistically learned cor-
relations over search-, browsing- and purchase-histories. How-
ever, users have a wider variety of substantive, domain-specific
preferences that affect their choices when they use directory
services, and these have largely been overlooked or ignored.
The contributions of this paper include: (1) a grounded theory
describing how stakeholder preferences are expressed in text
scenarios; (2) an app feature survey to assess whether elicited
preferences represent missing requirements in existing systems;
(3) an evaluation of three classifiers to label preference words
in scenarios; and (4) a linker to build preference phrases by
linking labeled preference words to each other based on word
position. In this study, the authors analyzed 217 elicited directory
service scenarios across 12 domain categories to yield a total of
7,661 stakeholder preferences labels. The app survey yielded 43
stakeholder preferences that were missed on average 49.7% by 15
directory service websites studied. The BERT-based transformer
showed the best average overall 81.1% precision, 84.4% recall
and 82.6% F1-score when tested on unseen domains. Finally,
the preference linker correctly links preference phrases with
90.1% accuracy. Given these results, we believe directory service
developers can use this approach to automatically identify user
preferences to improve service designs.

Index Terms—requirements engineering, elicitation, stake-
holder preferences, natural language processing

I. INTRODUCTION

Software personalization concerns the tailoring of software
features to better meet individual user desires. This includes
static personalization, in which designers study narrow seg-
ments of demographics in order to identify personalization
requirements and introduce options that satisfy those require-
ments at design-time, and dynamic personalization, which
includes building user models to personalize features at run-
time [19]. In this paper, we study techniques to improve
static personalization by focusing on directory services, which
describe services that support users who are searching for
a product, service or experience. Directory service design
spaces offer a rich, diversified and highly personal source of
user preferences, and software that provides these services
are becoming increasingly integrated into user experiences.
Moreover, a variety of directory services exist today, from
apartment and restaurant finding, to parking location and gas
station finding, to discovering hiking trails and new music.

Directory services that use static personalization rely on
large databases of information that have been organized around
a generally closed set of user preferences. The OpenTable
web and mobile application (app) is one such example, which
allows users to search for and reserve dining tables at popular

Figure 1. Example Preferences in OpenTable App

restaurants. In 2019, OpenTable served over 60,000 restaurants
and over 1.6 billion diners worldwide [51]. In contrast, in
2021 the AllTrails.com web app serves a specialized hiking
community of over 25 million registered users by indexing
over 200,000 trail guides across 190 different countries [55].
Directory service apps often integrate with third-party services
and allow users to rate their experiences of services and
products found through the apps to improve the quality of
data stored by these apps.

Figure 1 shows a set of preferences presented by the web
app OpenTable that users can use to search: in addition to
general preferences for dining option, price and region, the
app also allows users to filter by a set of 46 narrower “Top
Rated” preferences, including restaurants good for Afternoon
Coffee, Fit for Foodies, Gluten Free, Quiet Conversation and
Scenic View, to name a few. These preferences represent
how users experience the service they are seeking and have
become personalization requirements satisfied by filters in the
OpenTable app. As designers of directory services increase
their knowledge of user preferences, they can further tailor
these services to increase personalization and user satisfaction.

Generally, preferences describe constraints on what users



want. This could include an affordable apartment, in a safe
neighborhood, or a music library that offers classical music,
or whether or not a hiking trail is long or short. Preferences
are non-functional requirements, because they express a stake-
holder’s desire for a quality or attribute monitored by a sys-
tem [23]. In Jackson’s view of requirements engineering [29],
this system includes the environment about which require-
ments are expressed, and software may have limited visibility
into the state of that environment. As software increasingly
integrates data to maintain environmental models, this software
will be better situated to satisfy a broad range of stakeholder
preferences. Today in directory services, these qualities are
observed through data collected when users complete online
surveys to rate their experiences of the results found through
the directory. In the future, we believe opportunities will
increase to enhance how these services monitor stakeholder
preferences. For example, public crime statistics can be used
to assess if a neighborhood is safe, category labels on music
albums can be used to determine if music is classical, and
wearable fitness data could be used to measure the distance and
difficulty of a hiking trail. Richer environmental models that
better distinguish stakeholder preferences can also improve
how users find what they desire. While preferences have broad
applicability across many types of systems, in this paper we
focus specifically on directory services, which users query to
find a thing of interest. This includes unified services that index
a catalogue of interesting things using prepared categories of
user preference, such as an apartment listing, a job listing
or a hiking trail-finding application. Alternatively, users may
rely on a collection of unaffiliated services to find a thing
of interest. For example, a user interested in finding an aca-
demic degree program, may combine information from general
search services, university websites, university rankings, job
listing websites, and blogs, to differentiate degree programs.
In both situations, users have preferences about what they
are looking for, and are using services with varying levels of
personalization to aid in discovering their things of interest.
In this paper, we are primarily studying unified services and
how to enrich their environmental models to provide greater
personalization to users.

In agile software development, developers are frequently ex-
periencing pressure to deliver increments of working systems
that broadly satisfy a wide variety of users. This approach can
overlook the more nuanced stakeholder preferences that lead
to improved personalization. Because agile development has
led to limited documentation (e.g., replacing use cases with
user stories), we recognize that developers need automated
methods to extract requirements to meet the demands of
personalization. In this respect, we propose to elicit user
stories directly from users, and deliver to developers those
preferences that stakeholders describe without the effort to
manually analyze those scenarios.

To that end, we describe research to extract user pref-
erences from user-authored scenarios. The contributions of
the research include (1) a grounded theory based on the
analysis of 217 unique user scenarios elicited over 12 different

directory service domains. The grounded theory describes the
collective phenomena that comprise stakeholder preferences in
these domains, including heuristics to identify and code these
phenomena, resulting in 7,661 preference annotations. (2) A
survey of 15 popular directory service websites to identify gaps
between what stakeholders desire (stakeholder preferences)
and what those services offer (app features). (3) Three super-
vised machine-learning models to automatically extract pref-
erences from scenarios based on three different approaches:
a classical model using conditional random fields over word
distributions; a random forest trained on typed dependencies;
and a transformer trained on BERT word embeddings. Finally,
(4) we present a static technique to link preference labels in a
scenario into a preference phrase that describes a preference
requirement for use in the design of a web or mobile app.
Finally, we illustrate how the extraction and linking tools can
be used in an end-to-end preference elicitation pipeline. This
work is novel because, to our knowledge, it’s the first end-to-
end tool to extract stakeholder preferences from scenarios. Our
dataset and supporting tools, including a trained transformer
model that developers may use, are available online [73].

This paper is organized as follows: in Section 2, we present
background and related work; in Section 3 we present our
approach, including studies to construct the grounded theory,
survey existing systems, and extract and link preferences; in
Section 4, we report our evaluation and results; in Section 5,
we present our discussion; and in Section 6, we discuss threats
to validity, and we conclude in Section 7.

II. BACKGROUND AND RELATED WORK

We now review background and related work on prefer-
ences, requirements extraction, and software personalization.

A. Goals, Desires and Preferences

Personalization has a history of motivation in one-to-one
marketing, in which companies track users and promote their
products and services to individual user interests [54]. Au-
tomated techniques for one-to-one marketing rely on user
modeling [19], in which companies track: user-to-item affini-
ties, such as search queries and product views; item-to-item
affinities, such as correlations among product views by the
same user; and user-to-user affinities, including classifying
users by similar actions and item interests [61]. These three
affinities are relatively easy to measure from user telemetry
data, and thus have underpinned automated recommender sys-
tems over the past two decades. One disadvantage of relying
on these affinities, however, is that user needs are expressed
as correlations drawn from non-observable, latent variables
that may explain why users take actions or prefer specific
items, without indicating what characteristics of products and
services users actually prefer.

In requirements engineering, stakeholders are people who
have a stake in the system, including project managers,
customers, and users [69]. Stakeholder requirements may be
described as desirable, meaning they would be nice to have,
or necessary, meaning the system cannot be built without



satisfying those requirements. Requirements can be expressed
as high- and low-level goals to be achieved or maintained
by the system [15], and this includes system qualities or
soft-goals [48], such as privacy, safety, etc. Desirable and
necessary goals have been called optional and mandatory,
respectively [39]. In this case, a desirable (or optional) goal
is one that a developer may choose to implement or ignore,
because it is necessary. Similarly, preferences, which include
stakeholder desires, can be understood by developers to be
optional. However, we believe preferences can be indicators
of opportunities to innovate and better meet stakeholder needs.

Soft-goals, which describe both qualities of the system,
such as performance, and qualities of the environment and
stakeholder experience, such as privacy, intersect with human
values, which include larger societal concerns, such as social
justice and transparency [45]. Stakeholder preferences are
expressed as priorities over high-level qualities, or as desired
operational details [39]. Unlike necessities, all stakeholder
preferences need not be satisfied. Stakeholder preferences may
include pro-social qualities as well as pro-ego qualities that
benefit the individual over the group. Maximizing stakeholder
preferences satisfaction supports greater software personaliza-
tion, as software features are tailored to the individualized
needs of smaller, similar stakeholders groups.

Requirements elicitation has been the subject of significant
study [20], [36], [52]. Requirements can be acquired using
various techniques, such as: analyzing the direct and indi-
rect system stakeholders to determine stakeholder needs and
generate user stories [17]; combining object-oriented system
analysis [25], [49], task analysis and prototyping to better
account for end-users and the usage context [64]; gathering
informal text descriptions of user requests with crowd sourcing
methods, and automatically classifying those requests into
requirements classes based on keywords [38], among others.
Techniques can also be used to enhance creativity during the
elicitation of user stories [46]. The tasks of distinguishing be-
tween mandatory and optional stakeholder goals and building
tools that efficiently search for alternatives to best satisfy a
given set of mandatory and preferred requirements has also
been studied [39], [40].

B. Requirements Extraction

Techniques to extract requirements from texts have been
used to identify legal primitives in laws [32], mine software
requirements in app reviews [31], [66] and to perform domain
modeling [3]. Legal compliance checking can be automated
through the extraction of compliance requirements from legal
documents [32]. Jha and Mahmoud describe a two-stage pro-
cess for mining non-functional requirements from mobile app
reviews, noting that 40% of app reviews include at least one
non-functional requirement [31]. Domain models that describe
knowledge about domains [8] can be built using information
retrieval and natural language processing techniques for au-
tomatically extracting model elements from text using rules
based on natural language dependencies [3].

Typed dependencies correspond to syntactic and grammati-
cal relationships between words in natural language (NL), such
as the nominal subject of a sentence, or the direct object of a
verb [43]. Dependencies have been used in requirements engi-
neering to extract assertions from NL specifications for use in
formal verification [63], legal meta-data from regulations [62],
and software features from user manuals [57]. They have
also been used to classify requirements as either functional
or non-functional [14], [33], and to demarcate requirements
in a specification [2]. Conceptual models have been extracted
from user stories using syntactic rules that resemble typed
dependencies (e.g., nsubj and nmod) [58]. Natural language
syntax varies widely, even when describing the same con-
cept: e.g., the two sentences “the large apartment has two
bedrooms” and “the apartment, which has two bedrooms, is
large” yield two different dependency graphs. Thus, successful
typed dependency usage require analyzing large corpora, or a
narrow domain with few syntactic variations used to express
requirements. While current work using typed dependencies
with machine learning classification shows promise [2], [14],
[33], more work is needed to generalize these approaches.

Another method that has been used to extract requirements
is Named Entity Recognition (NER) [21], [26]. Named Entity
Recognition is an information extraction method that recog-
nizes word sequences in unstructured text, and classifies them
into predefined categories, called named entities, such as peo-
ple’s names, organizations, dates, and locations. Dictionary-
based NER techniques use gazetteers, i.e., lists of as many
predefined named entities as possible, since recognition and
classification performance relies on the completeness of the
dictionary [65]. The approach is simple but limited when
recognizing unseen words. Rule-based techniques use rules
or patterns drawn from real sentences where named entities
occur [9]. This approach addresses the limitation of unseen
words, but is limited because a wide variety of texts are hard
to summarize in a complete set of rules, and all rules must be
written prior to extraction. Machine learning (ML) techniques
include support vector machines (SVMs) [12], conditioned
random fields (CRFs) [41], and neural network models, such
as bidirectional long-short term memory (Bi-LSTM) [27],
convolutional neural nets (CNNs) [11], and transformers [68].
These methods do not rely on predefined rules, rather the
models are trained to learn statistical patterns from data.
The highest F1 score achieved using machine learning on
the CoNLL 2003 named entity recognition dataset is 94.3%
[67]. A limitation is the need for large training corpora,
which is being addressed by emerging unsupervised and semi-
supervised ML techniques [50].

In our work, we wish to extract requirement-related in-
formation from text corpus. To do this, we apply three ML
models. First, the CRF model is a graph-based model that
learns patterns in the words that appear before and after a
named entity, and computes the bi-directional flow of prob-
abilistic information across word sequences. We choose the
CRF model as a baseline to our task, because it was the state-
of-the-art prior to neural models [30]. Second, the Random



Forest model learns multiple decision trees using randomly
selected subsets of the data chosen to optimize performance.
The Random Forest is trained on the “neighborhood” of typed
dependencies before and after a named entity. We choose typed
dependencies as a scenario text representation to complement
word distributions, and because they are popular in automated
requirements analysis [14]. Third, the Bidirectional Encoder
Representations from Transformers (BERT) model [13] is a
transformer-based language representation model that utilizes
the attention mechanism to learn both relations between tokens
and relations between sentences in a text. We choose BERT
because it obtains state-of-the-art results on various natural
language processing tasks, including named entity recogni-
tion [67].

C. Software Personalization
Personalization began in product manufacturing in the

1980’s, when Stanley Davis [16] first argued to shift manufac-
turing from mass production to mass customization, in which
companies employ agile processes and delayed differentiation
to tailor products to individual customer needs [35]. In the last
two decades, the shift toward personalization in information
systems has outpaced manufacturing, as software developers
combine agile methods [5], A/B or split testing [34], real-
time user telemetry, and automatic updates to rapidly optimize
software and increase user dwell time and engagement. To
date, personalization is largely based on statistical models
of user-system interaction, with little documentation of what
users prefer when they evaluate information online by using
directory service applications.

D. Comparison with Other Preference Elicitation Approaches

Our preference-based elicitation method complements tra-
ditional elicitation approaches, such as personas [22], app
reviews and issues [47]. Compared to these approaches, our
approach situates stakeholder needs in the context of a rich
description that is technology-independent. Developers can
then envision how users would use their system in a real-
world setting, including the goals that users wish to achieve
and potential obstacles they would meet. Personas provide
developers with imaginary users from which they can envision
requirements. In our approach, we collect requirements from
real stakeholders and prospective users. In app reviews, the
requirements are entailed by the implementation and users will
only request new features when describing missing require-
ments. Our approach is not bound to a specific implementation,
and can yield user needs without a presumption of how those
needs would be realized by specific features. This provides
developers more flexibility in how to translate needs into
requirements and features. Finally, issues are similar to app
reviews and are also bound to specific requirements, whether
they be errors or feature requests.

Moreover, our scenario-based preference elicitation method
elicits and documents preference from potential directory
service application users, contradictory to traditional person-
alization methods that are largely based on statistical models

Figure 2. Research Method Overview

of user-system interaction. We believe our method allows
developers to obtain a more personalized understanding of the
users, which in turn further improves software personalization.

We conducted an unpublished survey to directly elicit
preferences from stakeholders, and discovered that direct elic-
itation requires first naming all the entities of interest (e.g., a
good neighborhood is [fill in blank]), whereas scenario-based
elicitation permits users to explore and propose entities they
prefer, especially those related to but not contained in the
scenario prompt. Hence we opted to use the scenario-based
elicitation approach.

III. APPROACH

Our research aims to answer the following research ques-
tions (RQs):

RQ1: How do stakeholders describe their individual prefer-
ences in scenarios they author?

RQ2: To what extent are the elicited stakeholder preferences
satisfied by existing directory services?

RQ3: What natural language features are best suited to
automatically extract preferences from scenarios?

The approach consists of the following steps (see Figure 2),
which map onto the above RQs: (1) eliciting preference-
laden scenarios from stakeholders; (2) coding of the scenarios
by the researchers to discover a grounded theory of stake-
holder preferences; (3) surveying the features of top web-
based directory service applications to evaluate whether or
not they satisfy elicited stakeholder preferences; (4) training
three classifiers to automatically extract preference words
from scenarios using conditional random fields (CRF), random
forest (RF), and bidirectional encoder representations from
transformers (BERT); and (5) designing a static technique to
link extracted words into preference phrases. In Figure 2, the
research steps connected by dotted lines are used to develop
a solution to automate preference extraction, connected by
solid lines. In this figure, RQ1 is answered by eliciting
scenarios from users and coding the preferences within the
user-authored scenarios to describe how stakeholders express
their preferences. RQ2 is answered by summarizing the coded
preferences and conducting an app feature survey to identify
gaps in which apps do not satisfy user preferences. Finally,
RQ3 is answered by using the coded preferences to train
three natural language models and to predict links between
preference elements to yield requirements.



We now describe the technical details of each step and how
they relate to the research questions in the approach, below.

A. Scenario Elicitation

The scenario elicitation study is designed to invite authors
to answer a single question prompt by writing a minimum
of 150 words. The prompts were created to reflect a variety
of directory services, from unified services, where a web
applications (apps) assist users in answering the question, to
unaffiliated services, where users forage for their answer by
combining information from multiple web apps. For instance,
a user may look at a single apartment-finding website to find
a desired apartment, or may choose to forage through several
websites in order to choose a school or degree problem, likely
including school ranking websites, schools’ official websites,
and websites that contain reviews to each school. This study
extends a previous study conducted by Shen et. al [60] that
collected scenarios for 4 prompts with additional scenarios in
response to 8 new prompts collected for this study. This yields
a total of 139 new scenarios beyond the original 78 scenarios
collected by Shen et. al [60]. The prompts used in this step
appear in Table I. Each prompt asks the author to describe the
steps they take to answer the question, and does not require the
author to use apps to complete the steps. In addition, authors
may have varying degrees of experience with and knowledge
about each activity queried. Thus, the elicited scenarios will
include incompleteness, vagueness and ambiguity, which is
expected with a single-prompt elicitation exercise. We use the
category name of a prompt to refer to the scenarios elicited
using that prompt.

Table I
SCENARIO PROMPTS LISTED BY CATEGORY

Category Scenario Question Prompt
Apartment How do you find an apartment?
Restaurant How do you choose a restaurant to eat at?
Hiking How do you plan a trail hike in a park?
Health Clinic How do you choose a clinic to visit when

you get sick?
Flight Booking How do you book an airline ticket?
Social Net How do you stay connected with friends?
Movies How do you choose a movie to watch?
Hotel Booking How do you choose and reserve a hotel

room?
Degree Programs How do you choose a school or degree

program?
Job Hunting How do you search for a new job?
Travel How do you choose a place to travel to?
Course Selection How do you choose an elective course for

enrollment?

The scenarios were collected using Amazon Mechanical
Turk in an IRB-approved research study. Workers volunteered
and consented to participate by accepting the human intelli-
gence task (HIT), and were then provided the question, e.g.,
“How do you choose a clinic to visit when you get sick?” and
asked to write a scenario that includes four elements: steps in
the process; goals that the author wants to achieve; preferences
or qualities the stakeholder pays attention to during the process
of trying to achieve the goals; and obstacles that could go

wrong with the process, and how the stakeholder reacts. We
asked the authors to include goals, steps and obstacles in their
scenarios in addition to preferences, to encourage authors to
identify additional context, consisting of nouns and verbs,
that trigger thoughts about a wider range of preferences.
When asked about how to choose a restaurant to eat at, for
example, in addition to mentioning food quality and restaurant
environment as two example preferences, an author should
include the steps taken, such as going online to read reviews,
the goals the author wants to achieve, such as staying in
a comfortable and quiet environment, and the obstacles the
author may face, such as being unable to get the ordered food
in a timely manner.

Eligible workers completed over 5,000 HITs, have an ap-
proval rating greater than 97%, and are located in the United
States. Scenarios were rejected if they did not respond to the
prompt, if they did not contain the required four elements,
or if they contained more than five spelling, capitalization
or grammar errors. For example, some authors completed the
task by copy pasting irrelevant text from the internet, or by
just writing one or two irrelevant sentences that failed to
contain the four elements. Workers were paid $2.00 for each
accepted scenario, and workers who completed a scenario in
the top 20% of ranked scenarios were paid an additional bonus
of $1.00. For deciding which scenarios should receive the
bonus, scenarios were ranked based on their coverage of the
four elements. Both authors manually inspected the scenarios
and agreed on the ranking. Finally, worker identifiers were
removed from the scenarios prior to analysis.

B. Preference Coding

Grounded theories are “grounded” in the data, which can
yield strong evidence to support the theory, but which also
limits generalizability [10]. In this paper, we discover descrip-
tive theory of how stakeholders express preferences in text,
which is characterized by a typology to recognize those words
and combine those words into preference phrases in a reliable
and repeatable way. We use qualitative coding of scenarios in
multiple cycles to identify these words and phrases [59].

To answer RQ1, how do stakeholders describe their individ-
ual preferences in scenarios they author, the authors coded the
scenarios using a three-cycle coding process to produce the
grounded theory [59]. The annotations were applied using a
simple markup, which was parsed using regular expressions.
In the first cycle, the authors used initial or “open coding”
[59] to code all phrases that express what stakeholders prefer
when answering the scenario question using a sample of seven
scenarios drawn from four domains (Apartments, Restaurants,
Hiking, and Health). Next, they reviewed each coded phrase
and separated the phrase into disjoint sub-codes in a second
cycle, called axial coding, which was applied to the same seven
scenarios. Saturation was achieved in the second-cycle when
no new sub-codes were identified. The resulting closed coding
frame that comprises the grounded theory [59] is as follows:



• entity - a noun phrase about which a preference can be
stated, including any preceding adjectives, .e.g., “good
meal,” “best place,” or “price”

• modifier - an adjectival clause that modifies an entity and
indicates a preference but is not directly before an entity,
e.g., “good”, “quiet”

• relation - a prepositional word that is attached to an entity
and indicates a valued relationship between two entities,
e.g., “along” in “a swimming area along the hike”

• action - is a verb phrase that indicates either (1) a
distinguishing value of an entity, e.g., “teaches” in “a
destination that teaches its culture to me”; or (2) a
stakeholder goal that does not describe a step in the
scenario, e.g., “waste” in “waste a lot of gas”

While the coding frame is generic, it’s application is limited
to words and phrases about which stakeholders have expressed
preferences. Thus, not all noun phrases are coded as entities,
nor are all adjectives coded as modifiers. Techniques such as
part-of-speech tagging, typed dependencies and semantic role
labeling alone cannot predict these phrases without crafting
numerous individual rules that are unlikely to generalize. In-
stead, training a classifier aims to predict which noun phrases
and adjectives correspond to the codes for preferences.

Finally, both authors separately performed a third cycle
using theoretical or “closed coding” [59] by applying the
coding frame to relevant words in a new sample of 20
scenarios. Heuristics were developed independently to aid
the coders in recognizing when to include or exclude words
from annotations in the third cycle. The final heuristics used
were: annotations cannot overlap, determiners are excluded
(“a,” “an,” “the”), and avoid splitting conjunctions when
adjectives are present (“safe area and neighborhood”). After
independently coding the 20 scenarios, the authors measured
inter-rater reliability to yield 0.67 Cohen’s Kappa, which
Landis and Koch report as “substantial” agreement [37]. After
reviewing and resolving differences in the sample, updating
the coding heuristics, and re-coding the same sample, both
authors achieved a 0.94 Kappa, which shows high above-
chance agreement acceptable in computational linguistics [1].

Figure 3 shows an example sentence with each code rep-
resented from the coding frame. This example is unusual,
because it represents all four codes; sentences in the corpus
average 2.7 entities and 0.3 modifiers per sentence. Summary
statistics on the distributions of preference types across sce-
narios appear in the results in Table III.

Figure 3. Example Sentence Coded with Coding Frame

C. App Feature Survey
Preferences clarify what kinds of entities stakeholders prefer

when they are engaging in an activity. With regard to directory

services, if a stakeholder prefers a “pet-friendly” apartment,
or a hiking trail “with elevation gain,” then a robust service
could provide functionality to discern which entities satisfy
their preferences. To answer RQ2, to what extent are the
elicited stakeholder preferences satisfied by existing directory
services, and as a further motivation for the importance of
our preference extraction tool, we identified popular direc-
tory service apps for a selection of scenario prompts and
checked whether the applications allow stakeholders to express
their preferences. Popular apps were identified from the top
twenty results of a Google search using keywords from four
scenario questions for apartments, restaurants, hiking, and
health clinics. Next, the labeled preferences elicited from
stakeholders were grouped by the second author into feature
categories that cover the preferences. The categories were
derived by comparing labeled preferences for similar meanings
(e.g., the “distance to work” category includes preferences
labeled “close to my work,” “close to where I work,” etc.)
An app satisfies a stakeholder preference if it contains a
software feature that matches the category associated with that
preference. Evidence for a software feature shown in a web
app include search filters, check boxes, fields in a result table,
and tags or badges, among others. For example, in Table II in
the first column, we present a non-exhaustive list of examples
of labeled phrases in brackets, followed by the assigned label
in the second column, and assigned feature category in the
third column. Note that we only put brackets around phrases
with the specific label stated in the Label column, and omitted
other brackets in the phrase for better clarity. For example, for
the labeled phrase “distance [to] work”, we omitted brackets
around the entities [distance] and [work]. Brackets will be used
throughout this paper to indicate labeled words and phrases.

Table II
EXAMPLE PREFERENCES WITH FEATURE CATEGORIES

Labeled Phrase Label Feature Category
[afford] action Affordable
too [costly] modifier Affordable
distance [to] work relation Commute
[in] walking distance relation Commute
[studio] or [one bedroom] entity Layout
[upstairs unit] entity Layout
[disable friendly] modifier Accessible
[wheelchair] entity Accessible
[feel] safe action Safety
[less-safe neighborhood] entity Safety

When reviewing a web app, if the app includes a search filter
to restrict price, then this feature would match the “affordable”
feature category, because it could be used by a stakeholder to
decide which apartments they can “afford,” or to filter out
apartments that are “too costly.” The first and second authors
coded the web apps using the feature categories [59], and the
results are presented in Section IV-A.

D. Preference Extraction

We sought to answer RQ3, what natural language features
are best suited to automatically extract preferences from sce-



narios, by investigating three approaches: a classic conditional
random field trained on word distributions, a random forest
trained on typed dependencies, and a transformer using BERT
word embeddings. For all of these three approaches, we
use the result from preference coding, as demonstrated in
Section III-B, as the ground-truth training data. We explain
how each of the three approaches are applied by us, and why
we chose them, below. We present our evaluation of the three
trained models in Section IV-B.

1) Rational for Model Choices: The first model we chose to
use is the Conditional Random Fields (CRFs) model. We chose
the CRF model as a baseline for our automated preference
extraction task, because CRFs have long been a top performer
in named entity recognition [53], and the Stanford Named
Entity Recognizer provides a reliable implementation [18].
The second model we chose is a random forest classifier
trained on typed dependencies. We chose typed dependencies
as a scenario text representation to complement word distribu-
tions, and because they are popular in automated requirements
analysis [14]. The last model we chose is a Bidirectional
Encoder Representations from Transformers (BERT)-based
language representation model. Due to BERT’s strong perfor-
mance in many language-related tasks, including named entity
recognition [67], we choose to apply BERT to our task of
preference extraction.

2) Conditional Random Fields: The Conditional Random
Fields (CRFs) model is the baseline in our automated prefer-
ence extraction task. The training files are prepared by first
word-tokenizing the scenario text and labeling each token
based on whether it is at the beginning (B), inside (I), outside
(O), or at the end (E) of an entity label, called the BIOES
representation. In this study, the entities correspond to one
of the four codes (entity, modifier, relation, action) described
in Section III-B. Figure 4 presents a training data example,
where tokens (words, punctuation, etc.) are tab-separated from
labels (O, B-ENTITY, etc.) and each line is numbered from 1
to 17 for presentation purposes. The labels include positional
information encoded using the BIOES representation: when an
entity begins, the position code “B” is prefixed to the entity
category label; inside a multi-token entity, the position code
“I” is prefixed; and the last token in a multi-token entity is
prefixed with the end code “E”; otherwise, the code “O” is
used to indicate tokens outside the labeled entity. In Figure 4,
lines 6, 9 and 16 show a single-token named entities “clinic”,
“integrity” and “patient” for the ENTITY label. Line 14
show a single-token named entities “with” for the RELATION
label. Lines 11-13 present multi-token named entities for the
ENTITY label.

3) Typed Dependencies: Typed dependencies describe
asymmetric, grammatical relationships between word pairs in a
sentence, such as whether a word is the subject or direct object
of a verb [43]. In Figure 5, we present a directed typed depen-
dency graph for an elicited sentence expressing a stakeholder
preference on a health clinic. The stakeholder expresses two
preferences: the clinic has “integrity” and the clinic has “great
communication skills.” Knowing the “clinic” word position in

Figure 4. Example Training Data for CRF-based Named Entity Recognizer

the graph, one can reach the first preference via two edges
in the graph: the acl:relcl (relative clause modifier) and obj
(direct object) relations. The second preference can be reached
via a third edge, the cc (coordination) relation. We trained a

Figure 5. Example Typed Dependency Graph

random forest classifier using the typed dependencies acquired
using the Stanza library [56]. Unlike the CRF and BERT-based
transformer, which learn from word distributions and word
embeddings, typed dependencies can be used to explain or
rationalize the predictions of the random forest based on the
grammatical relations between words.

The random forest was trained by vectorizing the coded
scenarios as follows: each word vector of length 2w - 1 consists
of the universal part-of-speech and dependency relation for up
to w other words found in the graph traversal to and from
the word represented by the vector. For example, the 3-word
context for the word “clinic” in Figure 5 would yield two
vectors1: [DT, det, NN, obj, VB] and [VBZ, acl:relcl, NN,
obj, VB]. The first w-1 elements in each sequence follow
dependency relations from governor to dependent, whereas the
last w-1 elements follow relations from dependent to governor.
If the traversal reaches an endpoint (e.g., the “root” of the
graph, or word without a governor role), then the vector
is zero-padded up to the length of the vector. Because a
word can be the governor in multiple relations, the word can

1Figure 5 shows Treebank part-of-speech tags, which total 36 possible tags,
whereas there are only 17 universal tags, e.g., the three adjectival tags JJ, JJS
and JJR in Treebank map to one universal tag ADJ.



be described by multiple dependency paths or vectors. Each
vector is finally labeled with the ground truth label, if the word
is annotated in the ground truth, or with no-label, otherwise.

4) Bidirectional Encoder Representations from Transform-
ers: The Bidirectional Encoder Representations from Trans-
formers (BERT) [13] is a transformer-based language rep-
resentation model that utilizes the attention mechanism in a
recurrent neural network to learn contextual relations in text.
BERT is pretrained with two unsupervised tasks, namely a
masked language task and a next sentence prediction task,
to understand relations between tokens and relations between
sentences. The parameters of BERT are then fine-tuned to
adapt to specific downstream tasks, in our case the named
entity recognition task. We use a pretrained DistilBERT model
[70], downloaded from the HuggingFace library [71], and fine-
tuned the model for preference extraction. This DistilBERT
model is a distilled version of BERT with 40% fewer param-
eters than BERT. DistilBERT reduces the size of the BERT
model for faster training and inference, while still retaining
97% accuracy of the full BERT on multiple language tasks.
We choose it because it is a smaller model and requires sig-
nificantly less computational power to train. The transformer
is trained using the same training files that we used to train
the Conditioned Random Fields model. We used the train-
validation-test split approach to obtain an unbiased, trained
model estimate to select between final models. The validation
error serves as the objective function for hyperparameter
tuning.

E. Preference Linking

Preference extraction described in Section III-D yields
words labeled with the types modifier, relation, and action
that must be linked to an entity to form a preference phrase.
Approaches to link such types based on part-of-speech include
regular expressions, constituency parsing and typed depen-
dency parsing [28]. In practice, these approaches are tailored
to specific examples and can be hard to generalize due to
the variability and ambiguity in natural language syntax. As
a baseline solution, we introduce a simple static technique
based on word position as follows: for a list E of n triples,
each corresponding to the i-th labeled word in 0 ≤ i ≤ n
and consisting of the labeled word wi, word position pi, and
preference label li, let E = (w1, p1, l1), ..., (wn, pn, ln), and
for each non-entity labeled word wi with word position pi,
find the nearest entity labeled word wj with word position pj ,
with the minimum absolute distance between word positions
|pi−pj |. Figure 6 shows an example with entities highlighted
in blue, and modifiers in orange: using this technique, the
nearest entity to “studious” would be “school environment”,
which is four words apart, versus “campus life,” which is five
words apart.

We present evaluation and results for linking in Section IV-C

IV. EVALUATION AND RESULTS

We now report the results of eliciting and analyzing scenar-
ios for preferences. The scenario corpus was constructed by

Figure 6. Preference Linking using Word Distance

recruiting 151 distinct crowd workers to respond to 12 scenario
prompts. Each worker may choose to answer one or more of
the prompts, and each answered 1.44 prompts on average. The
corpus consists of 217 scenarios, each with a minimum of 150
words, yielding 2,088 sentences and 46,173 words, overall.
The annotators, consisting of the first and second authors,
independently annotated a sample of 20 scenarios using the
coding frame described in Section III-A to yield an inter-rater
agreement (Cohen’s Kappa) of 0.94. The annotators (first and
second authors) annotated the remaining corpus independently
to yield a total of 7,661 labeled items.

Table III presents average, relative frequencies per scenario
for the labeled items organized by the prompt category (e.g.,
“Apartment” corresponds to the prompt, “How do you find
an apartment?”), the number of scenarios completed by a
unique worker in the category, the average number of sen-
tences per scenario in the category, and the average number
of labeled items per scenario, separately counted by type:
(E)ntity, (M)odifier, (R)elation, and (A)ction, as defined in
Section III-A. The last row describes the average frequency
per scenario for the total number of sentences and labeled
items.

Table III
SUMMARY STATISTICS FOR SCENARIO CORPUS

Category Scen # Sent # E M R A
Apartment 20 9.9 25.9 4.0 2.4 2.5
Restaurant 18 9.2 18.8 3.2 1.1 2.8
Hiking 20 9.7 27.2 4.2 3.6 3.4
Health Clinic 20 8.8 23.9 3.8 2.5 3.5
Flight Booking 17 8.7 27.8 2.2 1.4 3.0
Social Net 16 9.1 29.8 2.0 1.9 2.3
Movies 16 8.8 24.8 2.1 1.5 3.2
Hotel Booking 17 10.2 32.5 3.2 3.0 2.5
Degree Programs 18 10.4 27.2 3.4 1.9 6.1
Job Hunting 19 10.9 28.2 2.4 1.8 3.9
Travel 18 9.6 27.5 2.2 2.4 3.1
Course Selection 18 9.9 26.2 4.6 1.8 5.7
Total/Avg. Freq. 217 9.6 26.6 3.1 2.1 3.5

In RQ1, we asked “How do stakeholders describe their
individual preferences in scenarios they author?” As shown
in Table III, the grounded theory introduces four categories of
preference words or phrases that stakeholders use to express
their preferences: entities (E), modifiers (M), relations (R)
and actions (A). Among these categories, modifier indicates
a category of words that differentiate what stakeholders want
of the entity modified. For example, some stakeholders prefer
a “good and quiet neighborhood”, while others prefer a “lively
neighborhood”. As a component of the grounded theory, mod-
ifiers predict how entity descriptions correspond to alternative



preferences: if an entity has a modifier or can be modified,
then a stakeholder can have a preference, and if there are n
modifiers to an entity, then there could be n weights assigned
to each modifier to indicate the distribution of stakeholder
preferences for that entity. Similarly, the relation indicates how
stakeholders associate their entities of interest, such as if a
“neighborhood” is “close to a grocery store”, or “sits in a mod-
ern area”. Action indicates either a distinguishing aspect of an
entity that a stakeholder prefers, or a stakeholder’s goal. The
discovered theory shows how these categories of preference
words coordinate to communicate stakeholder preferences, and
further how a requirements analyst can use these categories to
discover such preferences, which is a topic that is beyond the
scope of this study. As a comprehensive example, in scenario
#S0001-R06, the author wrote, “In finding an apartment, first I
would make sure that it is a home that is near my job. Then, I
must find one in a good and quiet neighborhood. Next, I need
to check it out if it is handicap accessible. The place has to be
disable friendly where a wheelchair can roam around freely.”
Herein, we observe that “apartment”, “neighborhood”, and
“wheelchair” are examples of entities to which the author has
specific preferences. In addition, “good”, “quiet”, “handicap
accessible”, “disable friendly” and “freely” are examples of
modifiers, the word “near” indicates a preferential relation,
and finally “roam” indicates an preferential action. We found
that these four categories are exhaustive, given the Cohen’s
Kappa score of 0.94, and that no new preference categories
were observed.

In this evaluation, we report results using the proportions of
true positives (TP), false positives (FP), false negatives (FN)
and true negatives (TN) as follows: precision is equal to TP /
(TP + FP); recall is equal to TP / (TP + FN); and F1 Score
is the standard harmonic mean of precision and recall. True
positives (TP) are tokens that are labeled not as outside (O)
in the ground truth that the model classified correctly. False
positives (FP) are tokens that are labeled as (O) in the ground
truth that the model classified incorrectly as some labels other
than (O). True negatives (TN) are tokens that are labeled as (O)
in the ground truth that the model classified correctly as (O).
False negatives (FN) are tokens that are labeled not as outside
(O) in the ground truth that the model classified incorrectly as
(O). We now present the results of the app feature survey
and automated extraction and linking of preferences from
scenarios.

A. Preference Gaps in Existing Systems

As described in Section III-C, the labeled preferences were
coded to discover feature categories. In RQ2, we ask “to
what extent are the elicited stakeholder preferences satisfied
by existing directory services?” To answer this question, we
used the discovered features from the coded preferences to
survey popular directory service websites in the U.S., and we
scored each site for the presence or absence of a specific
feature. For website selection, we identified the top twenty
results of a Google search using keywords from four of
our scenario questions for apartments, restaurants, hiking,

and health clinics. We ran the app feature survey on these
selected four categories because they are among the most
frequently used services, and have a lot of website applications
specifically targeting each of them. The summary number
of features identified appears in Table IV, which shows the
scenario category, the number of labeled preferences (Lab.),
the number of unique features (Uniq.), and commonly missing
feature categories - feature categories missing from over half
of the directory service websites that we surveyed.

Table IV
REQUIREMENTS COVERAGE SURVEY RESULTS

Category Lab. Uniq. Missing Requirements
Apartments 254 11 Commute, Kid-Friendly, Noise,

Safety
Restaurant 207 12 Availability, Cleanliness,

Coordination, Service
Hiking Trail 410 11 Crowdedness, Difficulty Level,

Equipment, Exercise, Weather
Health Clinic 279 10 Schedule Availability, Walk-Ins,

Travel Distance, Communications,
Care Quality, Affordability

Table V presents the survey results for four popular
Apartment finding websites ApartmentFinder.com (F), Apart-
ments.com (A), Rent.com (R) and Zumper.com (Z). Each web-
site provided filters for monthly rent, amenities, wheelchair
accessibility (listed as an amenity), and pet-friendliness (dis-
tinguishing cats and dogs). Missing requirements identified
in scenarios include: commute time to work or the grocery
store, kid friendliness, noise from neighbors, and neighbor-
hood safety. While all sites provided mapping features, users
would need to individually plot distance to or from work, and
conduct additional research to identify area grocery stores,
playgrounds, schools, etc.

Table V
REQUIREMENTS COVERAGE FOR APARTMENTS

Feature Category F A R Z
Accessibility - wheel chair accessible X X X X
Affordability - monthly rental price X X X X
Amenities - lists pool, gym, laundry X X X X
Atmosphere - quiet neighbors - - - -
Commute - to work, to grocery - - - -
Kid-friendly - - - -
Layout - number of bedrooms X X X X
Layout - upstairs unit - - - -
Maintenance - apartment unit upkeep - - - -
Pet-Friendly - allows pets X X X X
Safety - in safe neighborhood - - - -

Table VI shows the survey results of the four popular
restaurant finding websites OpenTable (O), TripAdvisor (T),
Yelp (Y) and Zagat (Z). All sites provided filters for price,
cuisine or menu options, location and options for dining
in, take-out or delivery. While location was shown, no site
provided information on commute time. Three of four sites
included reviews and listed kid-friendly and diet options: three



indicated vegetarian, one indicated gluten-free. OpenTable and
Yelp provided atmosphere filters related to noise and intimacy,
and OpenTable indicated wait time. All sites were missing
information about cleanliness and service, and none offered the
ability of friends and family to coordinate restaurant selection
in real-time.

Table VI
REQUIREMENTS COVERAGE FOR RESTAURANTS

Feature Category O T Y Z
Affordability - total cost of meals X X X X
Atmosphere - seating, crowded X - X -
Availability - wait time before seating X - - -
Cleanliness - of restaurant, bathroom - - -
Cuisine - menu, regionality and authenticity X X X X
Diet - food restrictions X X X -
Diet - friend’s diet - - - -
Kid-friendly - seating, diet for children X X X -
Location - travel time to restaurant X X X X
Options - Dine-in, Delivery or Take-out X X X X
Reviews and ratings X X X -
Service - personality and timely - - - -

Table VII shows the survey results for four popular hiking
trail finding sites AllTrails.com (A), Cairn (C), Gaia GPS
(G), and TrailLink.com (T). All sites provided measures of
hiking time or distance, with AllTrails.com satisfying the most
features, including tags to indicate scenery, trail amenities,
difficulty level, and dog-friendliness. No site included infor-
mation on trail crowdedness or supplies needed, and only half
had weather-related information. Notably, authors expressed
many preferences over supplies that could be informed by trail
length and weather-related information.

Table VII
REQUIREMENTS COVERAGE FOR HIKING

Feature Category A C G T
Supplies - water, food, rope, etc. - - - -
Difficulty Level - easy, difficult X - X -
Weather - sunny, rainy X - X -
Hiking time - from start to finish - X X -
Hiking distance X X X X
Scenery - trail features and amenities X - - X
Crowdedness - popularity, number of visitors - - - -
Exercise - suitability for cardio - - X -
Trail hours - opening and closing times - - - -
Dog-friendly X - - -
Reviews - written hiker recommendation X - - X

Lastly, Table VIII presents the survey results for popular
health clinic directory services, including BCBS.com (B),
which is a prominent U.S. health insurer, HealthGrades.com
(H), ShareCare.com (S), and WebMD.com(W). Features to
check schedule availability, including walk-in availability,
were missing, as well as travel distance, care quality, and
affordability.

In answer to RQ2, “to what extent are the elicited stake-
holder preferences satisfied by existing directory services,”

Tables IV-VIII illustrate that while some app websites in-
clude features that satisfy many stakeholder preferences (e.g.,
OpenTable, AllTrails.com, HealthGrades), most websites are
not comprehensives and illustrate gaps or exhibit missing
features. A notable pattern across stakeholder preferences
is a heavy reliance on user-provided reviews and ratings.
This indicates that many directory services have “plateaued”
as limited features force users to rely on unstructured in-
formation to make selections. In contrast, the three ser-
vices (OpenTable.com, AllTrails.com, and HealthGrades.com)
clearly satisfy more preferences than their peer sites by ad-
dressing more personalized needs.

Table VIII
REQUIREMENTS COVERAGE FOR HEALTH CLINIC

Feature Category B H S W
Availability - scheduling, walk-ins X X X X
Insurance - acceptance, coverage X X X X
Distance - travel time, distance in miles X - - -
Specialities - appropriate for type of issue X X X X
Communications - bedside manner, respect - X - X
Care quality - - - -
Wait time - walk-ins, scheduling backup - X - X
Affordability - - - -
Doctor gender X X X -
Reviews - X X X

B. Automated Preference Extraction

We now present results of three classifiers to automatically
extract stakeholder preferences from scenarios: (1) conditional
random fields trained on word distributions; (2) random forest
trained on typed dependencies; and (3) transformer trained
using BERT word embeddings. In RQ3, we asked “what nat-
ural language features are best suited to automatically extract
preferences from scenarios?” Each of the three selected models
use different natural language features to predict preferences.
In CRF, the author’s sentences are encoded as word sequences
and label sequences, which form a chain comprised of the
last label and the next label. In this respect, CRF is can be
used to find multi-label phrases by conjoining labels. Typed
dependencies use binary relations among word based on their
grammatical functions (e.g., determiners, adjectives, direct
objects, etc.) Where CRF is grammar-agnostic, using type
dependencies tests whether grammatical information is predic-
tive of which word sequences indicate stakeholder preferences.
Finally, BERT uses word embeddings that encode information
between words and sentences. Each word corresponds to a
vector that encodes statistical relations among words and
sentences that can be used to predict semantic relationships.
By comparing each of these models, we are interested in
which of these feature encodings are best suited to extract
preferences. We evaluated the three classifiers in two ways:
(1) A seen evaluation that trains the model on 4/5 of all
the scenarios randomly selected from each category, and tests
on the remaining 1/5 of the scenarios from each category.
The process is repeated 10 times, each time randomizing



the scenarios used for training and test, and the results are
averaged. (2) An unseen evaluation that trains the model on
11/12 scenario categories, and tests on the remaining 1/12
scenario categories not seen during training. This process is
repeated 12 times using different combinations of training and
test data, and the results are averaged. For the transformer,
we sub-divide the training data in both seen and unseen
evaluations as follows: we use 80% of the training data for
training, and 20% for validation, which includes tuning hyper-
parameters and choosing the number of epochs for training.
Table IX presents the precision, recall and F1-score for each
approach. The highest scores are in bold.

We observe that the BERT-Transformer model gives the best
weighted overall average F1 score, as well as performing the
best in classifying modifiers, relations and actions among all
experiments with one exception: the Random Forest classi-
fier performs slightly better on entity classification in seen
domains.

C. Automated Preference Linking

The preference linker, described in Section III-E, was eval-
uated by both authors by developing a linking corpus that
consists of one sentence for each labeled non-entity from the
ground truth preference corpus, in addition to the one entity to
which the non-entity is meaningfully attached. Those actions
that describe goals linked to the author instead of to an entity
were excluded from the ground truth. We did the evaluation
on the ground-truth dataset instead of on our models, in order
to avoid the influence of model errors on our preference
linker. Next, the linking technique was applied to the itemized
sentences in the preference corpus that contains all the ground
truth annotations, and word distance was computed for each
entity in the sentence, with regard to each non-entity in the
same sentence. The entity with the shortest distance, which
became the prediction result, was compared to the linking
corpus: if the entity matched, the link was correct, if not,
the link was incorrect. This evaluation results in the best-case
performance, which would be reduced by any errors produced
by the best performing classifier. The linking technique was
evaluated using accuracy, which is the ratio of correct links to
the total number of non-entities to be linked.

Table X presents the average number of linked preferences
per scenario (Avg Prefs), the total number of non-entity labels
correctly linked to entity labels (Correct), the total number of
non-entity labels (Total), and the Accuracy for each non-entity
label type, in addition, to the overall summative performance.
Each authored scenario includes on average 6.2 preferences
across each of the non-entity link types.

Table XI presents examples of correctly linked preferences
to illustrate the results that developers could use as outputs of
the overall approach.

V. DISCUSSION

We now discuss the error analysis, privacy-sensitive prefer-
ences, and the approach’s practical application.

A. Extraction Error Analysis
We examined sources of extraction error by developing

Model A, which is trained on eleven of the question categories
and tested on the remaining category, Apartments. Table XII
presents the precision, recall, true positives (TP), false posi-
tives (FP), and false negatives (FN) for Model A for each of the
three classifiers. To identify the error sources for all models,
we randomly sampled 20 sentences from the test dataset and
compared predicted and ground-truth labels for all sentence
tokens. Detailed analyses are discussed below.

1) CRF Model Error: The Conditional Random Fields
(CRF) model applied to the 20 sentences yielded 608 tokens,
among which 56 (9.2%) are errors. Among the errors, 32/56
(57.1%), 2/56 (3.6%), 4/56 (7.1%), 1/56 (1.8%) are entities,
modifiers, relations and actions, respectively, wrongly classi-
fied by the CRF model. The remaining 17/56 (30.4%) errors
are labeled as “outside” in ground-truth but not predicted so,
which are false positives (FPs). We observe 23/56 (41.1%)
are span-related errors where a label covered a portion of an
entity. For instance, for the phrase “available units”, where
each of the 2 tokens “available” and “units” should be labeled
as an entity, the model only labeled the token “units” as an
“entity”. 6/56 (10.7%) of the errors are English conjunction
errors, in which the model labels one or more elements in the
list, but misses other list elements. For instance, in the phrase
“right school and degree program”, the model correctly labels
“right school” and misses “degree program”. 2/56 (3.6%) of
the errors are goal-action errors, where actions indicating a
goal of the author are missed by the model. For instance, the
word “live” in the phrase “I want to live by myself” should
be labeled as an action but is missed by the classifier. Finally,
3/56 (5.4%) of the errors are mistakes made in the ground-
truth, where the independent investigators should have labeled
items that were missed.

2) Random Forest Model Error: The Random Forest (RF)
model applied to 20 randomly selected sentences yielded 2,436
tokens, among which 93 were errors, to yield an error rate of
3.8%. Among these errors, 7/93 (7.5%), 39/93 (41.9%), 5/93
(5.4%) and 11/93 (11.8%) are entities, modifiers, relations and
actions, respectively, wrongly classified by the RF Model. The
remaining 31/93 (33.3%) errors are false positives (FPs).

3) BERT-Transformer Model Error: The BERT-
Transformer model applied to the 20 sentences yielded
595 tokens, among which 25 tokens are errors, to yield
an error rate of 4.1%. Among these errors, 3/25 (12.0%),
0/25 (0%), 1/25 (4.0%), 1/25 (4.0%) are entities, modifiers,
relations and actions, respectively, wrongly classified by the
BERT-Transformer model. The remaining 20/25 (80.0%)
errors are labeled as “outside” in ground-truth but not so in
the predictions, which are false positives (FPs). Following
the explanations as in Section V-A1, we observe that 7/25
(28.0%) of the errors are span-related errors; 1/25 (4.0%) are
goal-action errors; and 2/25 (8.0%) are ground-truth mistakes
made in the ground-truth.

4) Error Correction: Several classifier errors may be fixed
with post-processing to improve performance. For example,



Table IX
SUMMARY STATISTICS FOR THREE CLASSIFIERS WITH SEEN AND UNSEEN DOMAINS

Evaluation on Scenarios from Previously Seen Domains
Conditional Random Fields Random Forest BERT-Transformer

Label Prec. Recall F1 Prec. Recall F1 Prec. Recall F1
entity 0.8146 0.7703 0.7918 0.8581 0.9202 0.8880 0.8645 0.9017 0.8826
modifier 0.7715 0.5247 0.6239 0.7489 0.6097 0.6720 0.7074 0.7544 0.7294
relation 0.7496 0.4641 0.5710 0.2818 0.0953 0.1405 0.6914 0.7128 0.7008
action 0.6977 0.4077 0.5117 0.6616 0.2796 0.3929 0.6362 0.6655 0.6491
Weighted, overall average 0.8008 0.6920 0.7424 0.7796 0.7730 0.7654 0.8160 0.8525 0.8338

Evaluation on Scenarios from Previously Unseen Domains
Conditional Random Fields Random Forest BERT-Transformer

Label Prec. Recall F1 Prec. Recall F1 Prec. Recall F1
entity 0.7906 0.6702 0.7240 0.8301 0.9021 0.8638 0.8661 0.8925 0.8789
modifier 0.7312 0.5182 0.6037 0.5786 0.4662 0.5099 0.7101 0.7599 0.7280
relation 0.6197 0.3826 0.4668 0.2321 0.0950 0.1322 0.6579 0.6808 0.6640
action 0.6266 0.3817 0.4668 0.2509 0.0688 0.1056 0.5908 0.6423 0.6059
Weighted, overall average 0.7683 0.6117 0.6798 0.7150 0.7331 0.7139 0.8106 0.8435 0.8262

Table X
ACCURACY OF STATIC PREFERENCE LINKER

Non-Entity Avg Prefs Correct Total Accuracy
Modifier 3.26 481 557 0.8636
Relation 2.27 369 382 0.9660
Action 2.51 342 384 0.8906
Overall 6.21 1192 1323 0.9010

Table XI
EXAMPLES OF LINKED PREFERENCES

Category Example Phrases
Apartment [apartment] that is [close] to my [workplace]

Hiking long and [difficult] of a [hike]
Hiking swimming [area] [along] the [hike]
Hiking a nice [view] where I could [relax]

Health Clinic [clinic] that is [professional]
Flight Booking boarding [pass] that [allows] you to get on

the [flight first]
Movies [movie] doesn’t [make] me laugh
Movies watch a [movie] [in] the [theater]

Degree Programs how [respected] the [programs] are

conjunction errors may be detectable by finding conj depen-
dencies linked to the labeled entities. Similarly, span errors
may be remediated by checking neighboring parts of speech
(PoS) against inclusion and exclusion criteria (e.g., entities
described by noun phrases may contain adjectives, nouns and
conjunctions, but not other PoS). Furthermore, we acknowl-
edge that scenarios we use to train our models are written
by human authors and thus may contain errors in grammar,
spelling, punctuation, etc. Although we have taken precautions
by rejecting scenarios that contained more than five spelling,
capitalization or grammar errors, pre-processing steps may
still be taken, manually or automatically, to correct these
errors, which may in turn boost the model performance. We
leave the pre-processing and post-processing, along with other
possible techniques to further improve the performance of the
classifiers, to future work.

5) Model Comparison: We observe from Table IX that
the BERT-Transformer model gives the best weighted overall
average F1 score, as well as performing the best in classi-
fying modifiers, relations and actions among all experiments
with one exception: the Random Forest classifier performs
slightly better on entity classification in seen domains. This

particular exception itself is hard to empirically explain from
the empirical result alone. While one can acquire the weights
of tokenized words used by RF to predict the class labels,
these weighted tokens are also rarely good explanations for
predictions that involve complex lexical and syntactic struc-
tures in text. Since this performance difference is small, it
may not indicate a reliable superiority of the Random Forest
classifier on entity classification in seen domains. Furthermore,
we observe the trend that the CRFs model tends to have a
decent precision yet a low recall. We conjecture that this may
be because the CRFs model is a “picky” model that makes
careful predictions - it is capable of tagging the predicted
positive results with correct labels, yet suffers in distinguishing
between positive and negative results. We also observe that
overall, the models’ performance on entity is better than that
on modifier, relation, and action. This may be caused by each
label’s unequal representation in the dataset - entities generally
have more training samples than the other labels. Moreover,
when trained on a Precision 3640 Tower Machine’s CPUs, the
CRFs model and the Random Forest model are both quicker
to train than the BERT-based model, but all three are able
to finish the training within a reasonable amount of time.
Specifically, the BERT-based model takes around 22 minutes
to train for 15 epochs, while the CRFs model and the Random
Forest model both finish training within 5 minutes.

B. Linking Labels to Preferences

The preference linker yielded 131 errors out of 1323 ex-
pected preference phrases (9.9%), as presented in Table X. An
analysis of these 131 errors identified three primary causes:

• leftward bias (32%) is a bias to find expected entities
left of the non-entity label, e.g., “[apps] provide [fast],
reliable and free calling [facilities]” where “fast” should
link to “facilities,” but the linker chooses “apps.”

• intermediating subject (6%) is where the labeled entity
occurs left of the incorrect entity, which is the subject of
the action, e.g., “[place] that [friends] really [enjoyed]”
in which “place” is the correct entity, and “friends” is the
intermediating subject.

• intermediating clause (59%) is where the labeled entity
occurs left of one or more clauses in a list, which include
incorrect entities, e.g., “[providers] are in [network] and



Table XII
SUMMARY STATISTICS FOR THREE CLASSIFIERS USING MODEL A VARIANT

Conditional Random Fields Random Forest BERT-Transformer
Label Prec. Recall TP FP FN Prec. Recall TP FP FN Prec. Recall TP FP FN
entity 0.7868 0.7110 369 100 150 0.7831 0.9268 1823 476 144 0.8710 0.9364 740 68 27
modifier 0.7746 0.6790 55 16 26 0.6522 0.5305 165 86 146 0.7245 0.8765 81 19 11
relation 0.6389 0.4792 23 13 25 0.0833 0.0196 1 9 50 0.5738 0.7292 36 25 13
action 0.5200 0.5200 26 24 24 0.1356 0.0586 16 94 257 0.5063 0.800 41 38 12

[within] 10 miles of my home” in which the relation
word “within” links to “providers,” yet “network” is in
the intermediating clause “in network.”

Among all error types observed, 59% of the error is due to
intermediating clauses, 32% is due to leftward bias, and 6%
to intermediating subjects. A more robust technique, such as
typed dependencies or constituencies, which link words across
clauses, may improve these results in future work.

Moreover, the preference linker is one simple method to re-
establish the context for the results from preference coding, but
we acknowledge that it is not complete. More context is likely
missing. We leave other possible context restoration techniques
to future work.

C. Privacy-sensitive Preferences

Because preferences are personal to individual users, they
can concern privacy, such as income, health status, marital
status, and presence/absence of children, and app features
that support their collection should also protect this data as
personal information. Preferences about affordability include
low-income, such as “avoid living check to check.” Mid-
and high-income preferences covered apartment amenities,
such as “in-unit laundry” or “gym,” and airline flyers willing
to spend money to avoid “poor meals” or “sit closer to
the front of the plane.” In the restaurant category, authors
expressed preferences for dietary restrictions due to “digestive
disorder[s],” and in the hiker trail category, authors described
preferences for “easier, shorter hike[s]” versus “long” and
“strenuous” hikes “in steep conditions.” In restaurants, hiking,
movies, and travel, authors referred to their marital status
using words such as “girlfriend,” “husband” and “wife,” when
stating their preferences and how they make decisions. Finally,
authors further referred to entities that are “kid friendly,” and
“good for children,” and “expert in children medics.”

Privacy-sensitive preferences introduce additional concerns
for elicitation: (1) privacy-sensitive preferences are generally
exclusionary; and (2) stakeholders may be less willing to
disclose these preferences. Exclusionary preferences are those
that stakeholders hold at the exclusion of holding other prefer-
ences. Because a stakeholder is low-income, their preferences
for affordability would be at the exclusion of preferences for
luxury. Preferences for kid-friendly services will exclude ser-
vices where children cannot be easily accommodated. Exclu-
sionary preferences based on stakeholder traits require special
attention during author sampling to ensure broad representa-
tion across traits. This may improve scenario completeness by
asking follow-on questions to elicit exclusionary preferences.
Because stakeholders may be less willing to disclose privacy-
sensitive preferences, techniques such as seeding the writing

prompt or eliciting targeted quality descriptions can be used,
when it is known that a stakeholder is in a privacy-sensitive
class. To recognize if a stakeholder is in such a class, one can
conduct a pretest before scenario authoring.

D. Applicability to Requirements Practice

This work is significant because it enables developers to
extract preferences from scenarios, which can then be used
to identify new or missing requirements as illustrated in
the app survey. Directory service developers can now obtain
stakeholder preferences as follows: 1) use the existing scenario
dataset, or if the directory service category is not covered in
that dataset, collect new scenarios from stakeholders. Stake-
holders can be existing users, or workers hired from Amazon
Mechanical Turk. Special attention may be needed to assess
worker experience with the domain, before eliciting scenarios.
The number of scenarios needed depends on the diversity of
individual preferences. For four domains, our results show that
16-20 scenarios yielded 15-27 feature categories, among which
49.7% were missing in popular sites. 2) Apply our model
and tools to automatically extract preference labels from the
scenarios. 3) Apply the preference linker to produce preference
phrases from preference labels.

VI. THREATS TO VALIDITY

Construct validity refers to whether we are measuring what
we believe we are measuring [72]. The construction of the
ground truth annotations requires a carefully designed coding
frame that is applicable by any investigator and able to achieve
similar results across applications. The preference types and
the scenarios annotations must be consistent and repeatable.
Moreover, the feature categories in the App Feature Survey
are the authors’ interpretations or categories of the user-stated
preferences, which have not been cross-validated with those
scenario authors. To address the coding threat, the authors em-
ployed a three-step annotation process where they compared
and converged their annotations, while computing the inter-
rater reliability to yield a high, above-chance agreement to
reveal specific sources of disagreement. The same validated
ground truth corpus was used to separately evaluate the results
of the app survey, classifier study, and linking study. Similarly,
the app features that were identified from the ground truth
corpus were reviewed by both authors, independently, prior to
assessing the directory services for gaps.

Internal validity refers to validity of analyses and conclu-
sions drawn from the data [72]. To reduce this threat, the
authors carefully reviewed and updated the heuristics used to
assign labels to the scenarios. In the app survey, the investiga-
tors reviewed the directory service websites for functions that



match features identified from stakeholder preferences. This
procedure depends on user familiarity with the services, and
thus app features could be present but unaccounted for. To ad-
dress this threat, the first author validated the second author’s
categorization and independently examined the features, and
both authors agreed on the survey results. To ensure results
comparability among classifiers, the authors used the same
dataset partitions to evaluate the seen and unseen domains,
and the same performance measures.

External validity refers to the generalizability of results [72].
Preferences are unique to individual stakeholders, and pref-
erences described by scenario authors will vary based on
author personality, interests and writing styles. As a grounded
theory, the preference types are only valid for this dataset,
and generalizability to other domains is unknown. We chose
the directory services domain because Internet users spend
large amounts of time searching for information online, thus
improvements to these services could save users valuable
time, and because personalizing these services requires higher
quality data on what factors affect user preferences, thus
directory services is an ideal fit to study preferences. In
addition, personalization as a software feature is cross-cutting
and appears in other domains, e.g., shopping includes features
to search for products, and entertainment includes features
to search for movies and music. Thus, while this domain
is seemingly narrow, we believe better requirements models
of user preferences will be beneficial to understanding other
domains. To support generalizability, we collected scenarios
from 12 different directory service domains and from 157
different authors. These authors were drawn from the AMT
worker population, which is 57% female, skewed younger,
with a relatively similar racial and economic distribution to
the U.S. population [42]. We limited workers to US location,
which correlates with English proficiency. To our knowledge,
the underrepresented demographics do not use English dif-
ferently to express preferences, but they may express different
preferences. Statistical models risk overfitting the training data,
where performance drops considerably as models are applied
to unseen data. To address this threat, we studied multiple
domains in two configurations: seen domains, wherein the
model predicts labels for new scenarios from domains seen
in training data; and unseen domains, where models predict
labels for new scenarios from domains excluded from training
data. While the preference linker does not rely on machine
learning, the reported accuracy is dependent on sentence type:
longer, more grammatically complex sentences may affect
linker performance. To understand sources of error and their
affect on generalizability, we analyzed errors in a random
sample of 20 sentences for each classifier and the linker.

VII. CONCLUSION

In this paper, we conducted studies to elicit stakeholder
preferences using scenarios wherein users describe their goals
for using directory services to find entities of interest, such
as apartments, hiking trails, etc. With greater understanding
of preferences, developers can enhance software with features

that better satisfy such preferences. Our results indicate that
feature support for preferences varies considerably in popular
directory services, and that 49.7% of preferences that were
identified were not satisfied by these sites, requiring users to
resort to using other tools to support their decision-making.

In addition, we studied ways to automatically extract pref-
erences from scenarios using named entity recognition based
on three separate approaches. The BERT-based transformer
performed best with an average overall 81.1% precision,
84.4% recall and 82.6% F1-score evaluated on scenarios from
unseen domains. Finally, we describe a static preference linker
that links extracted entities into preference phrases with 90.1%
accuracy. Based on this pipeline, we believe developers could
use our BERT-based model and preference link to identify
stakeholder preferences from scenarios. The preferences could
then be used to identify gaps and to improve how services
satisfy stakeholder preferences by addressing those gaps with
new or improved app features. The dataset and supporting
tools are available online [73].
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