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Abstract

We study the linear stability of a planar interface separating two fluids in relative motion, focusing on conditions
appropriate for the boundaries of relativistic jets. The jet is magnetically dominated, whereas the ambient wind is gas-
pressure-dominated. We derive the most general form of the dispersion relation and provide an analytical
approximation of its solution for an ambient sound speed much smaller than the jet Alfvén speed v,, as appropriate
for realistic systems. The stability properties are chiefly determined by the angle ¢ between the wavevector and the jet
magnetic field. For ¢ = 7/2, magnetic tension plays no role, and our solution resembles the one of a gas-pressure-
dominated jet. Here, only sub-Alfvénic jets are unstable (0 < M, = (v/vz)cos @ < 1, where v is the shear velocity
and 6 the angle between the velocity and the wavevector). For 1) = 0, the free energy in the velocity shear needs to
overcome the magnetic tension, and only super-Alfvénic jets are unstable (1 < M, < \/ a+r fv)/ [1+ (vA/ c)zl“ﬁ,],
with T',, the wind adiabatic index). Our results have important implications for the propagation and emission of
relativistic magnetized jets.

Unified Astronomy Thesaurus concepts: Plasma astrophysics (1261); Plasma jets (1263); High energy astrophysics

(739); Relativistic jets (1390); Magnetohydrodynamics (1964); Relativistic fluid dynamics (1389)

1. Introduction

The Kelvin—Helmholtz instability (KHI; Von Helmholtz &
Monats 1868; Lord Kelvin 1871)—at the interface of two fluids
in relative motion—is one of the most ubiquitous and well-
studied instabilities in the universe. Since the pioneering works
of Chandrasekhar (1961), the linear theory of the KHI has been
investigated under a variety of conditions (Blumen et al. 1975;
Blandford & Pringle 1976; Turland & Scheuer 1976; Ferrari
et al. 1978, 1980; Pu & Kivelson 1983; Kivelson & Zu-Yin
1984; Sharma & Chhajlani 1998; Bodo et al. 2004, 2013,
2016, 2019; Osmanov et al. 2008; Prajapati & Chhajlani 2010;
Hamlin & Newman 2013; Sobacchi & Lyubarsky 2018; Berlok
& Pfrommer 2019; Pimentel & Lora-Clavijo 2019;
Rowan 2019), depending on whether the relative motion is
nonrelativistic or ultrarelativistic, whether the two fluids have
comparable or different properties (respectively, “symmetric”
or “asymmetric” configuration), whether the flow is incom-
pressible or compressible, and whether or not the fluids are
magnetized.

The boundaries of relativistic astrophysical jets may be
prone to the KHI, given the relative (generally, ultrarelativistic)
shear velocity between the jet and the ambient medium
(hereafter, the “wind”). In jet boundaries with flow-aligned
magnetic fields, KH vortices can wrap up the field lines onto
themselves, leading to particle acceleration via reconnection
(Rowan 2019; Sironi et al. 2021). Particles pre-energized by
reconnection (e.g., Sironi & Spitkovsky 2014; Zhang et al.
2021; Sironi 2022) can then experience shear-driven accelera-
tion (Rieger 2019; Wang et al. 2021, 2023)—i.e., particles
scatter in between regions that move toward each other because
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of the velocity shear, akin to the Fermi process in converging
flows (Fermi 1949). The KHI may then -constitute a
fundamental building block for our understanding of the origin
of radio-emitting electrons in limb-brightened relativistic jets
(e.g., in Cygnus A—Boccardi et al. 2016; and in M87—Walker
et al. 2018), and for the prospects of shear-driven acceleration
at jet boundaries in generating ultra-high-energy cosmic rays.

A study of the KHI in this context needs to account for the
unique properties of the boundaries of relativistic jets. First, the
relative motion between the jet and the wind can be
ultrarelativistic; second, while the wind is likely gas-pressure-
dominated, relativistic jets are believed to be magnetically
dominated (Blandford & Znajek 1977), i.e., an asymmetric
configuration. The linear stability properties of the KHI in this
regime (of relativistic, asymmetric, magnetized flows) are still
unexplored. In this letter, we derive the most general form of
the dispersion relation for the KHI at the interface between a
magnetized relativistic jet and a gas-pressure-dominated wind.
We also provide an analytical approximation of its solution for
wind sound speeds much smaller than the jet Alfvén speed, as
appropriate for realistic astrophysical systems.

2. Setup

We consider a planar vortex sheet interface in the x—z plane
at y=0, as shown in Figure 1. The jet (y >0) is cold and
magnetized, with field Bo; = (By,, 0, By,) lying in the x—z plane
and Alfvén speed v4. The ambient wind (y < 0) is gas-pressure-
supported (with sound speed cs,,) and has a vanishing magnetic
field. We use the subscript *j” for the jet and “w” for the wind.
We solve the system in the jet rest frame, where the wind
moves with velocity v = v X. We adopt Gaussian units such
that c =4 m=1 and define all velocities in units of c.

We describe the flow with the equations of relativistic
magnetohydrodynamics (RMHDs; e.g., Mignone et al. 2018;
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Figure 1. A 3D schematic diagram of the boundary of the relativistic jet. The
boundary (gray color) is located in the x — z plane. Above and below the
boundary are the magnetically dominated cold jet and the unmagnetized gas-
pressure-supported ambient wind, respectively. g, is the projection of the
wavevector ¢ onto the boundary. The jet is at rest and the wind has a relative
shear speed of v. The magnetic field in the jet is B. @ is the angle between g
and v, while 1) is the angle between B and ¢q.

Rowan 2019):

XD 1 g (o) =0, (1)
ot

g(wvzv) +V-wyw)+Vp=pE+JxB, (lb)

a—B+V><E:0, (1c)
ot
8—E—V><B:—J, (1d)
or

a 2 2 _

E(VW -p)+ V. -(wywv)=J-E, (1e)

supplemented with the divergence constraints
V-E=p, V- -B=0. 2)

Here, p, p., J, v, 7, B, E, w, and p are the rest-mass density,
charge density, current density, fluid velocity, Lorentz factor
y=1 / V1 — v?), magnetic field, electric field, gas enthalpy
density, and pressure, respectively. For an ideal gas with
adiabatic index I, the enthalpy can be written as
w=p+Ip/T-1).

We assume a cold and magnetically dominated jet, with
Alfvén speed v; = v,iin + vﬁ,out, where

2 2
BOx BOz

A A+ BE + B M T \ e + B2 + B2
woj + By + By, woj + B, + By,

and the jet enthalpy density is wg; ~ pg; for a cold jet. The wind
has negligible magnetic field and is gas-pressure-supported,
with sound speed (Mignone et al. 2018)

CSW - \/WOW — pOW(aWOW/apOW) L = r‘w& ) (4)
(8W0w/ ap()w) -1 Wow V Wow
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where wy,, is the wind enthalpy density. From pressure balance
across the interface,

1 2 Wow Wow 1 viT,,
—(Bf + Bj) = M S — A (5)
2 Fw Woj 2 (1 - VA)Csw

where I',, is the wind adiabatic index.

3. Dispersion Relation

The dispersion relation of surface waves at the interface can
be found from the dispersion relations of body waves in both
the jet and the ambient wind, together with the displacement
matching at the interface. The dispersion relations of body
waves in each of the two fluids can be found by linearizing
Equation (1), such that the perturbed variables take the form
Y =2 o+ 1, where ¢y and ¢, are the background and the first-
order perturbed variables respectively. The perturbed electric
field in the jet is E; = —v; X By; in the ideal MHD limit,*
where v is the perturbed velocity in the jet frame.

In the jet, we consider perturbed variables ¢; of the form
@1 0c eI “D where g = (k, [;, m) is the complex wavevector
and w is the complex angular frequency, both defined in the jet
rest frame. Note that Im(w) > 0 implies that the amplitude of
the wave grows exponentially, i.e., an instability. We define the
angle 0 between the projection of the wavevector onto the x—z
plane and the direction £ of the shear flow velocity such that

cosf = 7]( (6)

Vk? + m? -

Similarly, we define the angle 1 between the wavevector
projection onto the x — z plane and the jet magnetic field such
that

kv in + mMVA out
VA \/kz + m?

For a magnetized cold jet, the dispersion relation of its body
waves describes magnetosonic waves in the cold plasma limit:

(N

cosy =

wlw? — (kvain + mva ou)?]
[w? — (k2 + I} + mD)vi] = 0. (8)

In the wind, we consider perturbed variables ¢; of the form
¢, o €@~ where § = (k, I,,, m) is the complex wavevec-
tor and @ is the complex angular frequency, both defined in the
wind rest frame. For an unmagnetized wind, the dispersion
relation of its body waves reduces to the one of sound waves,

& — (> + 12+ m»)c2 = 0. By Lorentz transformations
of @ = y(w — kv) and k = ~(k — vw), we obtain
V2w — kv = eq Ly + m? + 72 (k — wv)?]. 9)

Since [/; and [, are Lorentz invariant, by solving
Equations (8) and (9) for [; and I, respectively, we can
construct a Lorentz-invariant ratio:

L Al W = k)? = cq 0m? + P2 (k — wn)?)]

= . (10

17 c2[w? — (k2 + m*)vi]

4 Resistive effects are likely important in the nonlinear stages (Sironi et al.
2021), but not for the linear analysis presented here.
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An independent way of obtaining /,/l; is to simultaneously
solve the linearized RMHD equation, Equation (1), together
with the first-order pressure balance equation,

BO)CBIX + BOzBIZ = Plw> (11)

and the displacement matching condition at the interface,

i o v (12)
w Y(w — kv)
yielding
201 — vV — k)2
by — (1 = v = k) Wow (13)

w
e 2 2
lj w™ — (kVA,in + mVA,out) Wo;

Using Equation (5), we can eliminate wy,/wy from
Equation (13) and, finally, the dispersion relation for the
surface wave at the interface can be obtained by equating
Equation (10) and the square of Equation (13):

v (w — kv)? — CS%N(m2 + Y2k — wv)?)
w? — (k% + m?) vﬁ

! viyt(w — kv)*T?,

=— 5 (14)
4 [Wz - (kVA,in + mVA,out)z]ZCsw
By introducing the following notations,
¢:L M:L’ gzcﬂ, (15)

9’
vavk? + m? VA VA

Equation (14) can be rewritten as (Sobacchi & Lyubarsky 2018;
Rowan 2019)

4€2(1 — M2v3)(cos2 i) — p2)?
[€2(1 — 2Mvipcosf + M?vi(cos? O — 1 + v3¢?)
—(Mcosf — ¢)2] = (Mcos® — $)*(1 — ¢T3,
(16)

The dispersion relation in Equation (16) holds for arbitrary
values of cgy, va, v, cosf, and cos), subject only to the
assumptions of a cold jet and an unmagnetized wind.

Since Equation (16) is a sextic equation in ¢, it has a total of
six (generally, complex) roots. However, not all of them may
be acceptable. First, not all of the solutions will satisfy
Equation (13), since we have introduced spurious roots when
squaring it. Also, by the Sommerfeld radiation condition
(Sommerfeld 1912), only outgoing waves should be retained.
This requires Im(/,,) < 0 and Im(/;) > 0. The expressions for
l,, and /; can be obtained from the derivation of Equation (13),

J
so the Sommerfeld condition can be expressed as

Im(l,) = hn(%) <0, (17a)

Im(l) = Im(W) > 0. (17b)

4. Analytical Approximation

Since in general a sextic equation has no algebraic roots
(Abel 1826), only approximate solutions of ¢ in Equation (16) can
be obtained. We first note that the parameters in Equation (15) are
chosen such that for a realistic wind with cg, < v, we have
€ < 1, whereas the other parameters do not depend on c,,. We
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then expand ¢ as a power series of € of the form
Pprco+cre+ czez, where ¢, ¢, and ¢, are constant with respect
to € and terms higher than € are ignored. Substituting this into
Equation (16) and comparing coefficients of various powers of ¢
on both sides, we can find an approximate solution for all six roots
of Equation (16). If we define an effective Mach number,

M, = M cosf = (v/va)cos0, (18)
i = cos2y) — M?, and recognize that v~ 2 =1 — M%Z, then
the approximate roots that correspond to the unstable modes
can be written as

¢(Mt,<l) = Me + A+€ — Z+€2, (19)
Pog, 1y =Me — Ae + Y_€2, (20)
where
2
Ay = _2(/l—:|32)\)2 , QD
72(1 - MB)PW

A=t 20— M) — MARTE. (22)

We find that the first-order term A e generally provides a good
approximation of the numerical solution for ¢. However, the
second-order term (which we write explicitly in Appendix B) is
required for identifying the physical solutions that satisfy
Equation (13) and the Sommerfeld condition. At zeroth order in
€, the real part of the solution (i.e., the phase speed of unstable
modes) is ¢ = M,, or equivalently w/k = v, i.e., unstable modes
are purely growing in the wind frame.

In Figures 2 and 3, we compare the numerical solution (left
column) of Equation (16) with our analytical approximation
(right column). We fix ¢, = 0.005 and consider v = 0.2 and
0.8, so the assumption cg,/va < 1 of our analytical approx-
imation is well satisfied. The analytical solution for Im(¢)
displayed in the figures only employs the first-order terms (as
discussed above, we also use the second-order terms to check
the Sommerfeld constraint), yet it provides an excellent
approximation of the numerical results, apart from M, = 1. For
M, =1, the first-order term A of our analytical approximation
diverges. We discuss below this special case.

Our analytical approximation allows us to determine the
range of M, where the system is unstable. If A in Equation (22)
is imaginary, then also A has a nonzero imaginary part. We
then find the values of M, that satisfy A>=0 and obtain the
following unstable bounds: for M, < 1,

cosyp < M, < min(cose, 1); (23)
VA
whereas for M, > 1,
Ny cmin| S0 [t o
2 4+ 2v T, VA 2 4+ 2v T,

where
vy=2cos2y) + (1 + vHT2
vy = J(l — v — 40 — cos2y)(1 — vicos2y)I2.  (29)

Note that the condition M, < cosf/vs is equivalent to the
obvious requirement v < 1. The condition M, > cosv in
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Figure 2. Dependence of the instability growth rate Im(¢) on 6 and M,, for two
choices of v4 and two choices of cos ¢, as indicated in the plots. The left and right
columns represent the numerical and analytical solutions, respectively. For
cos = 0, the maximum growth rate of the analytical solution is capped at its
numerical counterpart to avoid the divergence at M, = 1. In all the panels, Im(¢)
is then normalized to its maximum value, which is quoted in the panels
themselves. The vertical dotted lines show the analytical upper bound on M, when
cos ) = 1; see Equation (26). The vertical solid white lines indicate M, = 1.

Equation (23) can be equivalently cast as v cosf > v cos ),
which has a simple interpretation. The system is unstable if the
projection of the shear velocity onto the direction of g, (which
we defined as the projection of the wavevector g on the x — z
plane; see Figure 1) is larger than the projection of the Alfvén
speed onto the same direction. In other words, the shear is able
to overcome magnetic tension.

Equations (23) and (24) fully characterize the instability
boundaries in Figures 2 and 3. In particular, the vertical white
dotted lines in the figures illustrate the upper bound in
Equation (24) for the special case cos = 1, which yields

. | cosf
1 < M, < min s

VA

1 +T2
1+ ;T3

forcosy = 1. (26)
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Figure 3. Dependence of the instability growth rate Im(¢) on ¢ and M,, for
two choices of v, as indicated in the plots. We fix cos @ = 1. See the caption to
Figure 2 for further details.

It follows that the unstable range at M, > 1 shrinks for v — 1,
but never disappears as long as va < 1.

4.1. The Special Case M, =1

In the case M, =1, our analytical approximation diverges.

The singular case M, = 1 can be solved by expanding ¢ with
a Puiseux series (Wall 2004; Wolfram Research 2020). Among
the six approximate solutions of ¢ at M, = 1, the only unstable
one is

San—ny = 1 + (1381323, @7)
where

_ (cos21p — 1)*(cos?H — v3)

I'2 cos? 6

§

(28)

In Appendix A, we demonstrate that this analytical approx-
imation for the special case M, =1 is in good agreement with
the numerical solution.

Equation (27) allows us to identify the range of M, (near
unity) where the diverging growth rate in Equation (19) should
rather be replaced by Equation (27). By equating the imaginary
parts of ¢, _,, in Equation (19) and ¢, _,, in Equation (27),
and solving for M,, we can obtain the upper bound M* for
Equation (19) such that ¢y, 1) < ¢yy,—y, for M, € [0, M¥.
We expect M. to be close to unity, so we assume M, =1 in
and ) for A of Equation (19). The resulting expression for M.*
can then be written as

MF =1 —8-37126)132/3, (29)

where we require € < 3%/22!/3¢71/2 for real M.
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Figure 4. Dependence of the maximum instability growth rate Im(¢) on cos €2
and M = v/v,, for two choices of v,, as indicated in the plots. The maximum
value of Im(¢) is taken across all values of cosf € [0, 1] for each (M, cos ()
pair. The left and right columns represent the numerical and analytical
solutions, respectively. In all the panels, Im(¢) is then normalized to its
maximum value, which is quoted in the panels themselves. The white lines
indicate M = cos2 and M = 1/v,.

4.2. Maximum Growth Rate

The results presented so far retain the explicit dependence on
the angle 0 between the projected wavevector g and the flow
velocity v, and on the angle v between g and the magnetic
field B (see Figure 1). In practice, for a given Mach number
M=v/vs and a fixed magnetic field orientation (e.g., with
respect to the shear direction), one can determine the maximum
growth rate, irrespective of the specific value of # at which it is
attained. This is presented in Figure 4, where we show the peak
growth rate as a function of M and cos (2, where we define

cos = LB (30)
[v||B]

The plot shows that, for most magnetic field orientations, the
peak growth rate is achieved at M ~ 1. The exception is the
case of fields nearly aligned with the shear velocity, where
magnetic tension pushes the unstable region to higher M. The
region of stability in the upper left corner is delimited by
M = cos () (the white line), which comes from the instability
condition M, > cos® in Equation (23). The range of unstable
Mach numbers extends up to M < 1/v, (the vertical white
line), which simply corresponds to the requirement v < 1.

5. Comparison to the Hydrodynamic Case

When the unstable mode propagates perpendicular to the
magnetic field (cos i) = 0), we expect magnetic tension to have
no effect, and the solution should resemble the hydrodynamic
asymmetric case discussed by Blandford & Pringle (1976). We
demonstrate this by choosing a different parameterization in
Equation (16), similar to the one of Equation (2) in Blandford

Chow et al.
& Pringle (1976), i.e.,
1 v, w
E/I—I—A, qs/:g:i’
€ Cew € ek +m?
2
§ = Wow Gw
- *x 27
Woi Va

M,_McosH_L k

€ csw K2 + m?

where ng is the total enthalpy of the jet, namely the sum of the
gas enthalpy wy; and the magnetic enthalpy:

— —
N = VA€ = Csw,

wo )j

WS; = ng + BOZZ + wy; = (€29)]

1 —vi

Then the dispersion relation Equation (16) can be equivalently
written as

(67 = cos? )2 [y2(1 = 2)(& — M) + 726> — 1]
:746/2(¢/ _ M’)4(¢,2 _ 6/2)6/2’

which, by setting cos ¢ = 0, is exactly the same as Equation
(1) in Blandford & Pringle (1976), where both the jet and the
wind were assumed to be unmagnetized. We conclude that,
even though our jet is magnetized, in the case cosy = 0, the
instability behaves similarly to the case of a hydrodynamic jet.
Here, the magnetic field provides pressure, but not tension.

6. Discussion and Conclusions

We have studied the linear stability properties of the KHI for
relativistic, asymmetric, magnetized flows, with a focus on
conditions appropriate for the interface between a magnetized
relativistic jet and a gas-pressure-dominated wind. We derive
the most general form of the dispersion relation and provide an
analytical approximation of its solution for € =gy /va < 1.
The stability properties are chiefly determined by the angle 1
between the jet magnetic field and the wavevector projection
onto the jet/wind interface. For ¢ =/2, magnetic tension
plays no role, and our solution resembles the one of a gas-
pressure-dominated jet. Here, only sub-Alfvénic jets are
unstable (0 < M, = (v/w)cosf < 1, as long as v < 1). For
1 =0, the velocity shear needs to overcome the magnetic
tension, and only super-Alfvénic jets are unstable

(<M, < (I +T2)/(1 + viT2)). At zeroth order in e,
the phase speed of unstable modes is w/k = v in the jet frame,
i.e., they are purely growing in the wind frame.

Our analytical results are valuable for both theoretical and
observational studies. They can be easily incorporated into global
MHD simulations of jet launching and propagation, to identify
KH-unstable surfaces (Chatterjee et al. 2020; Sironi et al. 2021;
Wong et al. 2021). On the observational side, claims have been
made that the KHI is observed along active galactic nucleus
(AGN) jets, based on the geometry of the outflow (Lobanov &
Zensus 2001; Issaoun et al. 2022). Our formulae can place this
claim on solid grounds, if estimates of the field strength and
orientation and of the flow velocities are available. Besides AGNs,
our results have implications for other jetted sources, such as, but
not limited to, gamma-ray bursts, tidal disruption events, X-ray
binaries, and pulsar wind nebulae.

We conclude with a few caveats. First, the plane-parallel
approach we employed is applicable only if the jet/wind interface
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is much narrower than the jet radius (for studies of surface
instabilities in force-free cylindrical jets, see, e.g., Bodo et al.
2013, 2016, 2019; Sobacchi & Lyubarsky 2018). Second, our
local description implicitly assumes that the flow properties do not
change as the KHI grows. Third, we have assumed the jet plasma
to be cold, and the surrounding medium to be unmagnetized.
These assumptions will be relaxed in a future work.
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Appendix A
Analytical Approximation for M, =1

For the singular case M, = 1, our analytical solutions take the
form of the first-order Puiseux series. Here, we compare the
analytical and numerical solutions. In Figures 5 and 6, we plot the

0.100
== Numerical (v4 =0.2)
Analytical (v4=0.2)
0.075 1 — Numefical (v4=0.8)
==+ Analytical (v4=0.8)
£ 0.0501
£ .=1.0
cosy=0.0
0.025 [ Csw =0.005
'
‘ /
0.000 .
0.0 0.5 1.0
cos6

Figure 5. Dependence of the instability growth rate Im (¢) on cosé for two
choices of v, and a fixed value of cos ¢ = 0 in the singular case M, = 1. The
solid lines represent the numerical solutions, while the dashed lines represent
the analytical solutions obtained by Puiseux series expansion in the main text.

~ Mul(l — M) (cos? (1 — vy) + MZ(1 + 3v3) — 2 — 2M V)T, + 2(cos? Y + M7 — 2)(12 £ N)]

Chow et al.

0.09

= Numerical (v4 =0.2)

Analytical (v4=0.2)
= Numerical (v4 =0.8)
==+ Analytical (v4 = 0.8)

0.06 4

s Me=1.0
£ cos6=1.0
0.03 - Cqw =0.005
- | \
0.0 0.5 1.0

cosy

Figure 6. Dependence of the instability growth rate Im (¢) on cos for two
choices of v4 and a fixed value of cos @ = 1 in the singular case M, = 1. The
solid lines represent the numerical solutions, while the dashed lines represent
the analytical solutions obtained by Puiseux series expansion in the
main text.

instability growth rate for M,=1, comparing analytical and
numerical solutions. We choose the same parameters as in the
figures of the main paper, namely c, =0.005 and v4 =0.2 or
0.8. We fix cosy = 0 for Figure 5 and cos§ = 1 for Figure 6.
We use solid and dashed lines to represent numerical and
analytical solutions, respectively. The figures show that our
analytical solutions in Puiseux series provide a good approx-
imation to the numerical ones across the entire range of cos 6 (for
Figure 5) and cos ¢ (for Figure 6).

Appendix B
The Second-order Terms

In the main body of the paper, we have looked for an
analytical approximation of the form ¢~ co+ cje+ coe?,
where ¢y, ¢1, and ¢, are constant with respect to € and terms
higher than € are ignored. For the unstable solutions, we find
that the first-order term A e generally provides a good
approximation of the numerical solution. However, the
second-order term X, € is required for identifying the physical
solutions that satisfy the Sommerfeld condition. The explicit
expression for > is

Xy

(B1)

(A = MZPTIN
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