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Abstract

Vector processing has become commonplace in today’s
CPU microarchitectures. Vector instructions improve perfor-
mance and energy which is crucial for resource-constraint
mobile devices. The research community currently lacks
a comprehensive benchmark suite to study the benefits of
vector processing for mobile devices. This paper presents
Swan—an extensive vector processing benchmark suite for
mobile applications. Swan consists of a diverse set of
data-parallel workloads from four commonly used mobile
applications: operating system, web browser, audio/video
messaging application, and PDF rendering engine. Using
Swan benchmark suite, we conduct a detailed analysis of the
performance, power, and energy consumption of vectorized
workloads, and show that: (a) Vectorized kernels increase
the pressure on cache hierarchy due to the higher rate of
memory requests. (b) Vector processing is more beneficial
for workloads with lower precision operations and higher
cache hit rates. (c) Limited Instruction-Level Parallelism
and strided memory accesses to multi-dimensional data
structures prevent vector processing benefits from scaling
with more SIMD functional units and wider registers. (d)
Despite lower computation throughput than domain-specific
accelerators, such as GPU, vector processing outperforms
these accelerators for kernels with lower operation counts.
Finally, we show five common computation patterns in mobile
data-parallel workloads that dominate the execution time.

1. Introduction

Vector processing was first introduced in supercomput-
ers [38, 42, 45] and has become commonplace in today’s CPU
microarchitectures. Both server-grade and resource-limited
mobile CPUs integrate vector pipelines. Vector Instruction
Set Architecture (ISA) extensions efficiently encode multiple
operations within a single instruction and enjoy fine-grain
scalar-vector instruction interleaving [21]. The performance
and energy improvement of vector processing is even more
significant to the resource-limited mobile processors. This
work aims to study the strengths and limitations of vector
processing for mobile devices and provides a comprehensive
benchmark suite for further research in this area.

Despite the availability of several domain-specific and
general-purpose mobile benchmark suits [14, 16, 17, 27, 33,
34, 40, 47], a comprehensive benchmark suite for evaluating
vector processing in mobile devices is lacking. This is
because prior vector benchmark suites include Chip Multi-
processor (CMP) or GPU applications for vector processing

evaluation, where the control-flow divergence limit the power
of vector processing. These applications are offloaded to
domain-specific accelerators of the mobile SoCs. In addition,
these benchmark suites contain desktop and server appli-
cations with massive parallelism that are offloaded to the
cloud-computing in mobile applications. Therefore, providing
a benchmark suite for mobile applications significantly eases
the state-of-the-art research in this area.

This paper introduces Swan—a benchmark suite for
studying vector processing in mobile devices. Swan encom-
passes vectorized workloads for resource-constraint mobile
processing platforms from multimedia processing, graphics,
data compression, cryptography, and string utility domains.
We assemble a diverse set of optimized mobile applications
and conduct an in-depth performance and energy analy-
sis study. Swan benchmark suite is maintained online at
https://github.com/arkhadem/Swan.

To create Swan, we extensively study the source code of
four widely-used mobile applications: Chromium [5] (web
browsing), Android [1] (operating system), WebRTC [10]
(audio/video messaging service), and PDFium [7] (PDF
rendering engine). We carefully choose 12 libraries that
are commonly used among these applications to cover a
large set of workloads representative of mobile applications.
We select a rich set of 59 data-parallel kernels, each of which
executes an independent task. We study the vector instruction
set and instruction reduction diversity of these workloads.

Using the Swan benchmark suite, we conduct a detailed
study of vector processing for mobile applications, specifi-
cally Arm Neon architecture, in terms of performance and
energy/power consumption. We show that vector processing
is more beneficial for workloads with lower operation
precision and higher cache hit rate. In addition, we illustrate
the limited performance improvement of compiler auto-
vectorization for the scalar implementation since the scalar
code is optimized for superscalar execution. Our analysis
shows substantial energy savings of vector processing due to
significantly lower execution time. On the other hand, vector
processing increases chip power consumption in workloads
with large working set sizes due to the higher main memory
access rates. Studying three different core microarchitectures
of a big.LITTLE Arm architecture proves that more vector
pipelines are not always beneficial due to the limited vector
Instruction Level Parallelism (ILP).

We introduce five common computation patterns of vector
implementations: reduction, random memory access, strided
memory access, matrix transposition, and vector APIs. We
show the importance of these computation patterns in terms
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TABLE 1: PRIOR GENERAL-PURPOSE AND DOMAIN-SPECIFIC BENCHMARK SUITES FOR MOBILE PLATFORMS.

Ap]

Benchmark Suite \ Microarchitecture Implementation
EEMBC CoreMark [22] Single-core Scalar
Geekbench [30] Single-core Scalar
EEMBC MultiBench [6] CMP UNK
ParVec [14] Vector (CMP)* Pthread/AVX/Neon
RiVEC [40] Vector (CMP/GPU)* RVV
VectorBench [34] Vector AVX/Neon
VComputeBench [33] Vector (GPU)* Vulkan
MEVBench [17]* CMP Pthread/OpenCV
MLPerf [27]* CMP/GPU/DSP VendorSDK/TFLite
ARBench [16]* CMP/GPU/DSP ARCore/OpenGL
WiBench [47]* Vector SSE

Swan (this work) Vector Neon

Des|

plication Domain Metrics Diversity Analysis Open Source
Mobile Perf./Pow. X v
ktop/Server/Mobile Perf v X
Mobile Perf. X X
Desktop/Server Perf./Pow. v v
Desktop/Server Perf. v v
Desktop/Server Perf. X v
Mobile Perf. v v
Mobile Perf. X v
Mobile Perf. X v
Mobile Perf. X v
Desktop/Mobile Perf. X v
Mobile Perf./Pow. v v

* Domain-Specific Benchmark.

of the number of workloads exhibiting them, and the average
fraction of workload instructions they consume.

Arm Neon limits vector register width to 128 bits and
our evaluated mobile SoC contains only two vector execution
pipelines. To further study the scalability of vector processing
with wider registers and more vector pipelines, we implement
a fake Arm Neon library (available on GitHub) and re-
develop eight representative workloads with wider vector
registers up to 1024 bits using an in-house cycle-accurate
simulator. We show that wider vector registers provide sub-
stantial speedup for workloads with streaming memory access
patterns. When Data-Level Parallelism (DLP) is not evenly
divisible by the register width or strided memory accesses are
needed to access a multidimensional data structure, vector
engine utilization decreases and workloads hardly enjoy
wider implementations. Besides, high register pressure limits
Instruction Level Parallelism (ILP), which in turn drops the
utilization of vector pipelines and prevents performance from
scaling with more vector execution pipelines.

Finally, we show the limitations of domain-specific
accelerators (GPU and DSP) in terms of data transfer and
kernel launch overheads. We compare GPU and vector
processing performance for various problem sizes, showing
that GPU, despite having higher throughput, only outperforms
Neon in workloads with high operation counts.

Swan is the first benchmark suite for mobile vector
processing. Key contributions of this work are: (a) Swan,
an open-source and true vector processing benchmark suite
with 59 diverse data-parallel kernels of four commonly-used
mobile applications. (b) Performance, power, and energy
analysis of mobile vector processing benefits and compiler
vectorization limitations. (c) Performance scalability study of
vector processing with wider instructions and more vector ex-
ecution pipelines. (d) Evaluating domain-specific acceleration
bottlenecks for fine-grain data-parallel workloads.

2. Background and Motivation

2.1. Vector-Processing

Vector Processing was initially employed in supercom-
puters [38, 42, 45] to accelerate workloads with massive
parallelism [21]. Vector Instruction Set Architecture (ISA)
extension reduces the number of instructions by encoding
multiple operations, improving performance and energy
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*Benchmark redevelops workloads of other benchmark suites (features of the source benchmark).

consumption. Due to the instruction efficiency, general-
purpose microprocessors employed Vector ISA extensions
for multimedia processing workloads with high DLP [19,
23, 29]. Today, various ISAs provide vector extensions that
exploit fine-grain DLP in a broad set of applications.
Vector processing plays a crucial role in mobile devices
with limited resources due to performance and energy
efficiency. Arm first employed vector processing by Vector
Floating-point (VFP) Coprocessor [11]. State-of-the-art Arm
architectures integrate vector execution pipelines into mobile
processors with Advanced-SIMD (ASIMD) functional units.
While modern mobile SoCs incorporate various domain-
specific accelerators, vector processing enjoys tight integra-
tion with the scalar pipeline, which is especially important for
kernels with fine-grain scalar-vector instruction interleaving.

2.2. Benchmark Suites

Benchmarks ease the evaluation of instruction sets,
compiler optimizations, and architecture bottlenecks. Ta-
ble 1 shows various general-purpose and domain-specific
benchmark suites for mobile processors. We observe that
the research community lacks a benchmark suite containing
different state-of-the-art vector processing applications for
mobile devices. In this section, we describe the design goals
of Swan benchmark suite and discuss the opportunities for
improvement in prior works within each aspect.

Target Microarchitecture and Implementation. Dif-
ferent benchmark suites such as Embedded Microprocessor
Benchmark Consortium (EEMBC) MultiBench [6] and Geek-
bench [30] focus on the Single-Core scalar performance of
mobile processors. Due to the lack of enough parallelism,
it is reported that these benchmark suites face difficulty
exercising vector engines [30]. EEMBC MultiBench [6]
contains Chip Multiprocessor (CMP) workloads. In addition,
various benchmark suites are available for GPUs [8, 15, 44].
However, Task-Level Parallelism (TLP) of CMP and GPU
workloads is not suitable for vector processing.

Application Domain. Desktop and Server workloads
encompass extensive problem sizes and exhibit greater DLP
levels than mobile applications. For example, RiVEC [40]
and ParVec [14] contain Financial Analysis and Data Mining
workloads. Mobile applications offload these workloads to
cloud computing due to the huge problem size. In addition,
various applications that mobile vector processors executed
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in the past are now offloaded to domain-specific accelerators.
For example, VectorBench [34] and ParVec [14] provide
video processing workloads that are efficiently offloaded to
mobile GPUs. MEVBench [17], MLPerf [27], ARBench [16],
and WiBench [47] are domain-specific benchmark suites that
contain a single workload, such as Computer Vision, Machine
Learning, Augmented/Virtual Reality, and Wireless Signal
Processing workloads, respectively.

Metrics, Diversity Analysis, and Open Source. Prior
vector benchmark suites [34, 40] lack Power and Energy
analysis that is crucial to resource-limited mobile devices.
Instruction diversity is yet another important factor for
benchmark design to exercise different aspects of the design.

Despite prior works, Swan encompasses vector work-
loads from a wide set of mobile applications. Section 6
shows that Swan benchmarks contain different computation
patterns and Section 8 studies the inadequacy of domain-
specific accelerators for these benchmarks. In Section 5, we
study mobile platform-specific performance metrics, auto-
vectorization challenges, and instruction diversity of the
benchmarks. We release Swan as an open-source benchmark
suite on GitHub to ease the study of vector ISA, compiler,
and architecture.

3. The Swan Benchmark Suite

3.1. Scope of Benchmark

To create Swan benchmark suite, we target real-world
mobile applications, analyze their common libraries, and
select time-consuming data-parallel kernels. Table 2 shows
these libraries and their usage across four mobile applica-
tions: (a) Chromium Project [5] encompass Chromium and
Chromium OS, which contain the source code of Google
Chrome browser and Google Chrome OS. (b) Android
Project [1] contains the source code and scripts for Android
operating system. (c) WebRTC Project [10] provides Real-
Time (voice/text/video) Communication (RTC) APIs for
many messaging and audio/video conferencing platforms
such as Zoom, Microsoft Teams, Slack, or Google Meet.
And (d) PDFium [7] is a PDF rendering engine in Google
Chrome and Microsoft Edge browsers.

Our code analysis shows 12 common libraries between
these applications that contain data-parallel kernels and Arm
Neon implementations. We profile Chrome execution with
GPU acceleration while browsing top visited websites [25]
and choose nine libraries that are not offloaded to GPU due
to the offloading overheads (Section 8). Table 2 shows the
maximum and average execution time of Chrome consumed
by these libraries. Swan also encompasses three traditional
vector processing application domains, i.e., audio and video
codecs and Machine Learning for low-end mobile products
that lack GPU or DSP due to area and power constraints. Note
that Swan is a benchmark suite for CPU vector processing
exploration and does not provide GPU and DSP applications.

We carefully separate and benchmark 59 data-parallel
kernels from libraries, each of which performs an indepen-
dent task or algorithm. We prioritize algorithms that are not
specific to a library. For example, libvpx contains many

17

CHROMIUM EXE. TIME.

TABLE 2: ACCELERATED LIBRARIES: DOMAIN, USAGE, AND

. S
Library Domain E E .’é % E o s
SRR E Z
libjpeg-turbo | Image Processing [LI ||V | X | X |V || 6.8 |24
libpng Image Processing [LP [V [ X | X [/ || 0.8 | 0.3
Libwebp Image Processing |[LW ||V | X | X |/ || 73 | 1.7
Skia Graphics SK||[V |V [ X|V/]| 85 |46
WebAudio Audio Processing [WA || v | X |V | X || 16325
PFFFT Audio Processing [PF ||V [V |V [ X || 56 | 1.3
zlib Data Compression | ZL || V' |V | X |/ || 0.4 [ 0.2
boringssl Cryptography BS|[vV |/ |V |X]|] 09 0.6
Opt. Routines | String Utilities |[OR ||V [V |V [V || 9.6 | 1.2
Libopus Audio Processing |LO ||V |V |V | X - -
libvpx Video Processing [LV || v [V |/ | X
XNNPACK Machine Learning [XP || v |V | X | X -

data-parallel kernels for VP8 and VP9 video codecs, but we
choose a subset of four kernels that are commonly used in
the coding process of different video codecs.

3.2. Workloads

Table 2 shows the 12 libraries of Swan benchmark suite.
Image processing is a primary application for vector pro-
cessing. Libjpeg-turbo, Libpng, and Libwebp are all image
processing libraries used in Chromium and PDFium projects
for JPEG, PNG, and WEBP image codecs. Skia is a graphics
library that provides rasterization (i.e., converting paint oper-
ations to pixel bitmap) APIs as a graphics engine for other
mobile applications. These libraries provide fine-grain APIs
that process a block, row, channel, or multiple channels of the
image. These APIs: (1) modify the color space (Gray, RGBA,
and YCbCR), color code (PNG’s true and indexed color),
or size (down/upsample or vertical/horizontal convolution)
of the image, (2) apply prediction filters (WEBP’s DC,
TrueMotion, Vertical, and Horizontal predictions) for image
(de)compression, or (3) enhance image quality (Libwebp’s
Sharp YUYV filters). Due to the fine-grain interleaving of
scalar and vector APIs, domain-specific acceleration of these
image processing libraries imposes a non-negligible cost of
kernel launch overhead. In addition, while Skia exploits
GPU for accelerated rasterization, different operations that
convert data to GPU-compatible format before the GPU
rasterization exploit vector processing locally on the CPU.
Web Audio API provides audio synthesizing for Web
Applications. Web Audio applications create a graph of
audio processing nodes that define the overall rendering
behavior. Webaudio modules of Chromium and WebRTC
similarly operate on an audio frame (2 channels of 128 audio
samples) to: (1) implement an audio node’s functionality
(GainNode that changes audio volume), (2) transfer audio
samples between audio node buffers, or (3) merge multiple
audio inputs. PFFFT is a Pretty Fast FFT implementation
that provides frequency-domain analysis APIs for Webaudio.
Due to the latency constraints of Web Audio APIs, these
libraries are not suited for domain-specific acceleration.
zLlib provides compression APIs for different libraries
and applications, including Libpng. zlib uses two checksum
algorithms (Adler-32 and CRC-32) to detect data corruption,
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which takes considerable execution time. While both stages
of compression (LZ77 and Huffman de/encode) are scalar,
zlib uses vector processing for checksum calculations.

boringssl is Google’s fork of OpenSSL, an SSL library
that provides both low-level cryptography primitives (AES,
DES, ChaCha20, and SHA256) and SSL implementation for
secure network communications. Arm Optimized Routines
contains an optimized version of math, network, and string
utilities for Arm ISA-based processors. We target string
routines (memcmp, memchr, memcpy, and strlen) as many
mobile applications extensively use them.

Due to the fine-grain zlib, boringssl, and Arm
Optimized Routines utility APIs that are extensively in-
terleaved with applications’ scalar code, domain-specific
accelerations are not suited.

Opus is an audio codec for interactive audio applications.
Libopus is an Opus coder whose kernels operate on an
audio frame. We benchmark multiple kernels that: (a) apply
audio filters (Autoregressive Moving Average (ARMA) and
Linear Predictive Coding (LPC) filters), and (b) calculate
autocorrelation (pitch and frequency autocorrelations).

libvpx is the reference implementation of VP8 and
VP9 video codecs, widely used by content providers like
YouTube and Netflix. We benchmark kernels that are common
among most video codecs. These kernels operate on an block
of pixels to: (a) calculate frequency transforms (forward
and inverse Discrete Cosine Transform), (b) compute block
similarities (e.g., Sum of Absolute Difference), and (c)
quantize pixels for a higher compression rate.

XNNPACK provides optimized Neural Network primitives
that are employed in the back-end of Machine Learning
frameworks such as TensorFlow Lite and PyTorch. We eval-
uate four precisions for General Matrix Multiply (GEMM)
and Sparse-Dense Matrix Multiplication (SpMM) kernels.
Various neural network APIs (such as convolutional and
fully-connected layers) use these two kernels.

4. Methodology and Tools

4.1. Workloads and Input Data Size

Swan benchmark suite generates random inputs for
workloads with the following sizes: (a) 720x1280 (HD)
images for image processing, graphics, and video processing
libraries, (b) 1 second of a standard audio stream with a
44.1 kHz sample rate for audio processing libraries, (c)
128 KB data for data compression, cryptography, and string
utility libraries, and (d) 156 layers of Convolutional Neural
Networks for the machine learning library. When input data
values affect the control flow of the workload, we carefully
set the configuration and generate inputs based on the source
library configurations and testing infrastructures. To amortize
the measurement errors, we repeat the measurement for
multiple iferations until the execution time reaches 1 second.
Finally, we ensure the correctness of Swan workloads by
comparing the Scalar and Arm Neon implementation outputs.
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TABLE 3: QUALCOMM SNAPDRAGON 855 - CORTEX-A76
PRIME CORE BASELINE
Detail |
2.8GHz, 128 entry ROB, out-of-order
4-way Decode, 8-way Issue, 4-way Commit
2 128-bit Advance SIMD units + crypto and FP16 ext

[ Configuration |

Scalar core

Vector engine

L1-I cache 64 KiB, 4-way, 4 cycle latency

L1-D cache 64 KiB, 4-way, 4 cycle latency
L2 cache 512 KiB, 8-way, Private, Inclusive, 9 cycle latency
LLC 2 MiB, 8-way, Shared, Inclusive, 31 cycle latency

4.2. Evaluation Environment

We analyze Swan workloads on Snapdragon 855 SoC,
which enjoys Arm Big.LITTLE architecture with three
different CPU configurations: 1 Prime and 3 Gold high-
performance Cortex-A76 cores, and 4 Silver efficient Cortex-
AS5S5 cores. We pin the Swan benchmark process in all exper-
iments to the high-performance Prime core. In Section 5.5,
we show the sensitivity of vector processing performance to
the core microarchitecture. To focus on vector processing
performance, we study single-thread implementation to
minimize the error due to the multi-threading overhead.

4.3. Measurement and Simulation Tools

We employ Android NDK r23c to cross-compile Swan
with Android Clang 12.0.9. We choose level 3 optimization
for all workloads and compile the scalar code with auto-
vectorization (Auto implementation) to study its benefits for
our set of data-parallel kernels. We disable auto-vectorization
for the scalar code in the rest of the evaluation (Scalar
implementation). In addition, Clang replaces pieces of code
with certain standard C library functions (such as memset)
that use Arm Neon acceleration. Therefore, we also disable
optimizations of standard C library functions for the Scalar
implementation. With these compilation flags, we ensure
that the Scalar implementation does not employ any vector
operations. We also compiled the explicitly-vectorized Neon
code with auto-vectorization, yet, our evaluation showed
negligible auto-vectorization improvement. Therefore, we
only study the Neon code without auto-vectorization (Neon
implementation). In addition, we minimize memory stalls
to focus on the vector processing benefits by warming up
caches before each iteration.

We measure average battery current and voltage while
executing each benchmark to calculate the chip’s power con-
sumption, including main memory. Energy consumption is
calculated as a product of power consumption and execution
time. We use Simpleperf [20] to profile Performance Monitor
Unit (PMU) events [2] of the device for all workloads to
study microarchitectural bottlenecks in Section 5.4.

To study the scalability of vector processing with wider
registers, we implement eight kernels with fake wider Neon
intrinsics. We develop a functional simulator for Neon intrin-
sics to ensure the correctness of the fake intrinsics. Next, we
capture dynamic instruction traces using a DynamoRIO [24]
client running on a server-class CPU with Armv8.2-A
architecture (same as the mobile processor). Finally, we
develop a trace-driven simulator based on Ramulator [28]
CPU model and simulate instruction traces.
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5. Performance Analysis

We analyze the instruction set, performance, and energy
improvement of vectorized Swan workloads. Due to the lim-
ited of space, we show the Geometric mean of performance
and energy improvements for kernels of each library.

5.1. Instruction Diversity Analysis

Figure 1 (primary Y-axis) shows the instruction distri-
bution of the Arm Neon implementation based on Arm
Software Optimization Guide [4]. S-Integer + S-Float shows
the scalar part of the kernels. PF requires significant scalar
computation for FFT calculation. Hence, this library contains
the highest portion of scalar instructions. LT linearly operates
on an image row that requires the smallest portion of scalar
instructions for control flow and address calculation. A higher
fraction of Vector Load and Store instructions shows memory-
intensive libraries with lower compute density. WA takes
advantage of Vector APIs (Section 6.5) that keeps vector ele-
ments in memory, requiring a load and a store for each vector
operation. Swan contains libraries with different data types
(integer and floating-point). Audio processing and machine
learning libraries (WA, PF, LO, and XP) contain floating-point
operations. XP contains FP16 implementation of GEMM and
SpMM. Swan also provides a set of libraries that exploit
cryptography acceleration of Arm Neon architecture, i.e., ZL
and BS. Finally, Vector Miscellaneous instructions are used
for vector manipulation, i.e., converting vector register width
and vector element type and combining/extracting multiple
vector registers. LO contains operations with different data
types and extensively uses Vector Miscellaneous instructions
to manipulate vector registers. In summary, Swan workloads
encompass various applications with diverse instruction sets.
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Figure 1: Scalar and Vector instruction breakdown (primary

Y-axis) of Arm Neon kernels and total instruction reduction
(secondary Y-axis) compared to the Scalar implementation.
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Figure 1 (secondary Y-axis) compares the dynamic
instruction count of the Scalar and Neon implementations.
Assuming a similar code structure, the maximum instruction
reduction of vector processing is bounded by the number of
Vector Register Elements (VRE), calculated by Equation 1.

Vector Register Width (128 bits)

VRE =
Element Data Width
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Figure 2: Performance (primary Y-axis) and Energy (secondary
Y-axis) improvement of Auto-vectorization (Auto) and Explicit
vectorization using Arm Neon intrinsics (Neon) compared to
the Scalar implementation.

This equation shows that instruction reduction improves
with lower precision data types. Image and video processing
libraries (LT, LP, LW, and LV) process 8-bit pixel values,
encoding more operations in a vector instruction. ZL and BS
exploit cryptography instructions of Arm Neon architecture
that reduces dynamic instructions substantially. Therefore,
Vector ISA encodes low-precision operations more efficiently
compared to the scalar instruction set.

5.2. Performance Analysis

Figure 2 (primary Y-axis) shows the performance of
auto-vectorization (Auto) and vector implementations (Neon)
normalized to the Scalar implementation. Vector processing,
theoretically, improves the performance of the data-parallel
portion of the program by VRE. To explain this claim, we
break the instructions of the data-parallel portion of the
kernels into three categories: (a) Address calculation and
control flow scalar instructions: Data-parallel kernels only
need to calculate the base address of each vector memory
access, which reduces the address calculations by VRE.
Moreover, loop trip counts and their required control-flow
instructions drop by a factor of VRE. (b) Efficient vector
loads and stores: A 128-bit vector load/store accesses VRE
data elements from the memory hierarchy. The scalar kernel
requires VREx more cache accesses to load/store the same
amount of data. Assuming a high cache hit rate for data-
parallel applications, vector loads and stores take VREX
fewer cycles. (c) Vector compute instructions encode VRE
operations. Assuming the same number of scalar and vector
functional units with the same compute throughput in the
microarchitecture, vector compute instructions provide a
speedup factor of VRE.

Neon Performance Improvement. ZL and BS provide
higher speedup because these libraries exploit the cryptog-
raphy acceleration of Arm Neon architecture. Except these
libraries, Neon speedup is between 1.9x (WA) to 4.8x (LV).

According to Amdahl’s law, Neon speedup decreases
in kernels with a more significant portion of scalar code.
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LO requires pre-processing input and post-processing output
data of the data-parallel portion of the code. PF frequently
calculates the address and value of the FFT coefficients for
the data-parallel computation. The Neon implementations of
LO and PF libraries achieve low dynamic instruction reduction
(both 2.7x) and speedup (2.2x and 2.3 x).

Our discussion showcases that total speedup correlates
with VRE. XP provides a speedup of 3.3x. While the
theoretical maximum speedup of 32-bit and 16-bit kernels
is 4x and 8x, our evaluation shows that the performance
improvement of FP32/INT32 and FP16/INT16 kernels are in
the range of [2.0x to 3.0x] and [3.5% to 5.1 x], respectively.
In addition, audio processing libraries (WA, PF, and LO)
contain FP32 operations that drops Neon speedup to 1.8,
2.3x, and 2.2 %, respectively. Vector instructions encode low-
precision operations more efficiently, increasing the speedup.

Image processing libraries (e.g., LT and LP) require large
working set sizes. A large working set drops L1D, L2D,
and LLC cache hit rates to 91%, 90%, and 67% for the LT
library. Therefore, memory accesses take more cycles and
vector load latency is close to scalar load latency. In this case,
the speedup of vector memory accesses is lower than VRE.
Hence, although LT and LP contain low precision operations
on 8-bit pixel data and provide high VRE, the achieved
speedup of the Neon implementation of both libraries is
3.3x. Lower cache hit-rate drops vector processing speedup
in data-parallel kernels with large working set size.

Auto-Vectorization Performance Improvement. It is
believed that auto-vectorization requires less effort from
programmers than explicit vectorization. However, our anal-
ysis shows that auto-vectorizing the legacy scalar code
that is optimized for higher super-scalar performance is
not achieving sufficient speedups. In fact, auto-vectorization
requires complex loop transformations [32] to expose the
DLP to the compiler. Table 4 shows that among the 59
analyzed data-parallel kernels, auto-vectorization enhances
the performance of only 23 kernels. From these 23 kernels,
Auto marginally outperforms 5 Neon implementations only
because of higher loop interleaving count.

TABLE 4: Auto PERFORMANCE W.R.T Scalar AND Neon.

Auto vs. Scalar | #Kernels || Auto vs. Neon | #Boosted Kernels
Auto =~ Scalar 34 Auto =~ Neon 6
Auto < Scalar 2 Auto < Neon 12
Auto > Scalar 23 Auto > Neon 5

In general, our study shows two main reasons for auto-
vectorization failure:

First, compiler is unable to prove the legality of vector-
ization, i.e., the safety and correctness of vector transfor-
mations. We provide three examples that fail the legality of
vectorization and how Neon implementations solve them.

Example 1. Loops shall be countable, i.e., compiler can
calculate the number of loop iterations based on the variables.
A for loop with a break statement or a while loop with
an unknown condition is not countable. Uncountable loops
prevent vectorization in eight data-parallel kernels. Neon
uses reduction instructions to detect loop break conditions.
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Example 2. Compilers use run-time checks if there is not
enough information in compile-time to prove the safety of the
vectorization. Code patterns that hinder run-time checks fail
vectorization. For example, indirect memory accesses such
as A[BLi]] prevent memory aliasing checks as calculating
the boundary of accesses to array A requires evaluating all
elements of array B. This code pattern is used to convert
computations to look-up tables and optimize the scalar code
for super-scalar performance. Indirect memory accesses fail
compiler vectorization in 8 data-parallel kernels.

Example 3. Variables are often initialized before the
loops and used and modified inside the loop. In this case,
compilers add a PHI node that selects between the initial
values (before the loop) and modified values (within the loop).
Therefore, PHI nodes generate data dependencies between
different iterations of the loop that the vectorizer must appro-
priately handle. LLVM can recognize and handle the common
PHI nodes in vectorization. However, complex PHI nodes
fail compiler vectorization because of data dependencies. For
example, Downsample kernel of LT initializes bias values
before the loop and used and modifies biases inside the loop.
LLVM auto-vectorizer fails as it cannot safely resolve this
data dependency. Neon implementation, however, uses pre-
defined constant bias values. Loop data dependencies prevent
compiler vectorization in 9 kernels of Swan benchmark suite.

Other legality obstacles, such as reordering Floating-
Point and Memory operations, inability to vectorize CALL
instructions and switch statements, and unsafe memory
operations prevent compiler vectorization in 10 kernels.

Second, compiler employs a heuristic cost model that
compares the benefits of vectorizing a loop with different
Vectorization Factors (VF). Then, it chooses the VF with the
minimum cost-to-width ratio. LLVM cost model, however,
suffers from inaccuracies because different code charac-
teristics (e.g., loop trip counts and control flow behavior)
and microarchitectural features (e.g., throughput and latency
of each instruction) are not known in the compile time.
Inaccurate cost model prevents compiler vectorization in 12
kernels of the Swan benchmark suite.

5.3. Power and Energy Analysis

While vector processing substantially improves execution
time, Figure 3 shows that it increases total chip power
consumption, including the main memory. This is because
vector processing increases DRAM access rate. Since mem-
ory accesses consume significant power, an increased DRAM
access rate results in higher power consumption.

We measure the number of main memory accesses using
LLC misses and the main memory access rate as the number
of memory accesses per cycle. Our evaluation shows that
the Neon memory access rate is 8.8x more than Scalar
implementation. This is because of the higher LLC miss rate
and lower cycles of the Neon implementation. Comparing
the power consumption of libraries shows that kernels with
higher LLC miss rate and memory access rate, such as the
image processing and graphics libraries (LT, LP, LW, and SK),
consume more chip power.
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Figure 3: Total chip Power Consumption of libraries (including
DRAM power).

Figure 2 (secondary Y-axis) shows the energy consump-
tion of Auto and Neon normalized to the Scalar. Despite
the higher power consumption of Neon implementations,
significantly lower execution time and dynamic instruction
count result in high energy savings, specifically in kernels
with lower precision (higher VRE) and higher cache hit rate,
such as LW (4.4x), OR (3.9x), and LV (4.8x%).

5.4. Bottleneck Analysis

To study the bottlenecks of vector processing, we follow
Intel’s top-down microarchitecture analysis [46] by profiling
microarchitectural characteristics of data-parallel kernels.
Table 5 studies cache (L1D, L2, and LLC) Miss Per Kilo
Instructions (MPKI), the portion of cycles stalled by Front-
End and Back-End (%), and Instructions Per Cycle (IPC).

Data-parallel kernels enjoy regular control flow. There-
fore, front-end stalls are less than 5% in the Neon imple-
mentations. In 4 data-parallel kernels, control divergence
is handled by If-Conversion, where control dependency is
converted to data dependency by executing both branches
and choosing the final values of a vector using AND/OR or
BSL (Bitwise Select) instructions. Low front-end stalls show
that the front-end modules of the microarchitecture, such as
Instruction Cache and TLB, Branch Predictor, and Instruction
Fetch and Decode are not a bottleneck for vector processing.

IPC is lower in Neon implementations due to higher
Back-End stalls of data-parallel kernels. We observe that
two ASIMD functional units of the Prime core provide
enough computation throughput. Therefore, data-parallel
applications with high back-end stalls are mainly bounded
by memory stalls. Vector processing increases the pressure
on the cache hierarchy by frequent cache accesses. Hence,
all cache levels experience higher MPKI. Scalar and Neon
implementations of XP manually unroll the loops with a
factor of 32 and 8. Thus, a burst of memory accesses is
injected into the L1D cache, increasing L1D MPKI of Scalar
and Neon to 4.9 and 20.1. Workloads with larger working
set sizes, such as image processing and graphics libraries
(L7, LP, and SK), increase .2 and LLC MPKI.
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TABLE 5: MICROARCHITECTURAL CHARACTERISTICS OF
EVALUATED LIBRARIES.

Lib- L1D L2 LLC Front-End | Back-End IPC
rary MPKI MPKI MPKI | Stalls (%) | Stalls (%)
STVISIVI]SITVI]SITVI]SIVI]S]Y
Ly || 1.7]17.01][ 05|74 ([28]27.0([02| 0.2 || 149|519 ([3.04|1.2
LP || 1.2] 81 [[03[65([28|179(/02| 04 |[|11.3[472 | 29 |14
w [[02] 24 [[0.1]00][0.1] 0.1 [[0.1] 0.1 114384 2.1 [ 1.2
SK [[1.2] 48 [[0.1]04]23] 94 [[0.1] 0.1 104252 26 |23
WA [[0.1] 02 [[O.1]O.1([0.1] 0.1 [[02] 3.2 1.1 [ 103 || 3.1 |27
PF [[3.1] 9.7 |[[1.2]33][0.1] 0.1 [[04] 0.2 [[223[282] 29 |24
zL [[08] 5.8 [[0.1]0.1([0.1| 0.1 [[0.1| 04 [[12.1]259]] 3.3 [2.1
BS [[05] 1.2 [[o.1]|0.1([0.1| 01 [[0.1] 0.1 11.0 [ 345 [ 2.6 |22
OR [[1.2] 62 [[0.1]0.1([0.1| 0.1 [[02] 0.2 43 273 || 33 |22
Lo [[0.8] 24 [[0.1]02][0.1] 0.1 [[04] 0.1 [[27.3[49.7]| 2.1 |1.6
Lv [[1.4] 78 [[03[33[[1.9] 65 [[02] 0.1 15914191 2.8 [ 1.6
XP [[49]200[[05]13[/0.6] 20 [[02] 02 [[357]463 ] 2.1 |15

*Numbers are rounded up to 1 decimal place.
*S and V are Scalar and Vectorized Neon implementations.

5.5. Performance vs. Core Architecture

To further study the sensitivity of vector processing to
core microarchitecture, Figure 4 shows the performance
(Primary Y-axis) and energy (Secondary Y-axis) improvement
of Neon normalized to the Scalar execution. Silver (Cortex-
AS5S5) core contains an In-Order pipeline with one 128-bit
ASIMD functional unit at 1.8 GHz, while Gold and Prime
(Cortex-A76) enjoy two ASIMD functional units of an out-
of-order microarchitecture at 2.4 and 2.8 GHz, respectively.

Comparing Silver with Gold and Prime cores shows
us that more ASIMD units do not substantially improve
performance and energy consumption. In fact, more ASIMD
units only benefit when there is enough Instruction-Level
Parallelism (ILP). When a vector compute instruction is
data dependent on a vector load/store, it is not issued to
the ASIMD units until the memory access is finished and
the vector load/store is executed. Thus, higher memory
stalls of LT, LP, and LO libraries reduce ILP and Neon
performance and energy improvement. XP implementations
manually unroll the loops; therefore, this library increases
the ILP, and Gold and Prime cores enjoy more ASIMD
functional units and out-of-order processing.

Silver cores require less power consumption due to the
in-order pipeline and lower DRAM access rate. Silver and
Gold cores consume less power than the Prime core due
to lower frequencies. Consequently, Neon achieves higher
energy savings for Prime cores in nearly all workloads.
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Figure 4: Performance analysis of core architectures.
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6. Common Computation Patterns

In this section, we study common code patterns of the
evaluated libraries and discuss their bottlenecks.

6.1. Reduction

Reduction is a computation pattern that reduces vector
elements into a single result. Swan benchmark suite contains
seven data-parallel kernels with reduction operations. These
kernels exploit parallelism for vectorization in two ways:

(1) Inter-Reduction Parallelism: Neon exploits the
parallelism between multiple reduction operations. Each
vector instruction performs 1 step of reduction for VRE
output results. For example, Vertical/Horizontal Convolution
kernels of SK convolve multiple columns/rows in parallel. In
this way, vectorization imposes no overhead on the kernel.

(2) Intra-Reduction Parallelism: Five kernels compute a
single output in each invocation. Neon exploits the parallelism
within a single reduction operation. When reduction function
is both Associative and Commutative, vector implementation
breaks the reduction to VRE partial reductions and processes
VRE inputs in each iteration. The only overhead of this
reduction pattern is reducing VRE partial results to one
final result. An example is the Audible kernel of WA, which
calculates the energy of an audio frame as Y s?.

Vector implementation parallelizes the sequential reduc-
tion and changes the order of the operations AND source
operands. Consequently, a reduction operation must be As-
sociative AND Commutative to be vectorized. Otherwise, the
scalar reduction requires significant algorithm modifications
to be vectorizable.

For example, Adler-32 kernel of ZL calculates two
checksum values for an array of N characters: S1 = Zﬁo b;
and S2 = Z?Lo(N —1) X b;. Scalar implementation sequentially
consumes characters and calculates S1+ = b; and S2+ = S1.
While the first reduction operation (S1) is associative and
commutative, the second (S2) is neither associative nor
commutative. A naive approach to vectorize these reduction
patterns is loop distribution. For example, we can calculate
S1 in a separate loop and store partial values (PS1;) in
the memory. In the second loop, we modify S2 reduction
operation to $2 = Y¥,PS1;. This way, both S1 and S2
reduction operations are associative, commutative, and, hence,
parallelizable. Swan benchmark suite contains five data-
parallel kernels with this computation pattern.

6.2. Random Memory Access

Gather and Scatter operations access arbitrary memory
locations, enabling random access patterns in 7 data-parallel
kernels of Swan benchmark suite. While RISC-V Vector
Extension (RVV) [9] implements random memory accesses
(a.k.a, Indexed Vector Load/Store intrinsics), Arm Neon lacks
a general-purpose solution for these access patterns.

We observe that random access patterns in all seven data-
parallel kernels are employed for gathering values from Look-
Up Tables for two reasons: (a) transforming vector elements
(keys) to another domain (values). or (b) converting multiple
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operations to single look-up table access. For example, in
each round of AES cipher, BS substitutes AES states (keys)
with other states (values). The following code listing shows
the semantics of look-up table accesses in these kernels.

1 template <typename TI1, typename T2>

> void LU_TBL(Tlxtable , T2#% keys, Tlsx vals,
3 for (int i = 0; i < len; i++)

4 vals[i] = table[keys[i]];

int len)

If the table contains less than 64 8-bit values, one can load
it in multiple vector registers and access the table registers
using Arm Neon’s TBL instructions. This pattern is not em-
ployed in these data-parallel kernels since the table contains
more than 64 values. Arm Neon provides domain-specific
acceleration for two kernels with Look-Up Table access, i.e.,
AES and CRC-32 Cryptography intrinsics. Developing Look-
Up Table access for Neon requires exporting elements of key
vector register to the Scalar registers, performing Look-Up
Table access for each individual key using scalar instructions,
and packing the results back to the value vector register.
Due to the high overhead of this operation, four kernels give
up the benefits of look-up tables, and one kernel (DES) of
BS does not provide Neon implementation.

While we exclude DES kernel from this paper’s eval-
uation, we developed a Neon implementation to study the
overhead of Look-Up Table accesses in vectorization without
Random Memory Access intrinsics. Our evaluation shows
11% slow-down compared to DES scalar implementation.
Next, we deprecated Look-Up Table accesses from the Scalar
and Neon baselines. In this case, Neon outperforms Scalar
by 2.1x. Our evaluation shows Table Look-Up accesses take
73% of total instructions in DES Neon implementation.

Therefore, supporting intrinsics for gathering values from
Look-Up Tables benefits seven data-parallel workloads.

6.3. Strided Memory Access

Arm Neon supports memory accesses with stride values
up to 4. 4-stride memory accesses are frequently used in
Image Processing and Graphics libraries to load and de-
interleave or interleave and store 4-channel pixel values.
Non-unit stride memory accesses are implemented using
Arm’s multi-register data types and instructions. A multi-
register data type, TWXxExXR_t encompasses R vector registers,
each of which contains E elements (i.e., VRE) of W-bit T-type
data. The following code listing shows a strided memory load
that fetches E(16) x R(4) data values and interleaves them
between R(4) vector registers. Therefore, adjacent vector
elements within a vector register are loaded from memory
locations with stride R =4. A stride memory store operates
in the opposite direction, where E elements from R registers
are stored in memory with the stride of R.

1 uint8x16x4_t vld4q_u8(uint8_t
uint8x16x4_t Result;

const =ptr) {

for (int element = 0; element < 16; element++)
4 for (int reg = 0; reg < 4; reg++)
5 Results[reg][element] = =ptr++;

return Result;

6
7}
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Arm Neon also supports UZP (de-interleave) and ZIP
(interleave) instructions, which, instead of accessing memory,
move elements between vector registers with the stride value
of 2. Table 6 shows the number of kernels containing non-
unit stride value instructions and the average portion of these
instructions in those kernels.

TABLE 6: NUMBER OF KERNELS AND PORTION OF STRIDED
MEMORY ACCESSES.

Stride | Instruction | #Kernels | Avg. Portion
LD 1 2.9%
2 ST 4 2.3%
ZIP 5 6.2%
UzZP 7 3.0%
4 LD 8 5.8%
ST 8 4.77%

Arm Neon multi-register data types and instructions
efficiently encode memory accesses with non-unit strides
of up to 4 in Image Processing and Graphics libraries.
However, when a higher stride value is required, one needs
to use multiple instructions that hurt the performance of
the kernel. RVV architecture implements Strided Vector
Load/Store, which can efficiently encode arbitrary strides
memory accesses.

6.4. Matrix Transposition

Matrix Transposition is a common computation pattern
used in six data-parallel kernels. In addition, Matrix Trans-
position is one of the frequently-used primitives of XP to
transpose the input of Neural Network layers for cache-
friendly memory access. FFT kernels of PF use eight ZIP
instructions to transpose a 4 x 4 matrix of 32-bit floating-
point numbers. Matrix transposition is only used in pre- and
post-processing steps of FFT using on average 3.3% of the
total PF instructions. Arm Neon provides transpose intrinsics
that use two instructions to transpose every two elements of
two vector registers using the following code listing.

intl6x8x2_t vtrnq_s16(intl16x8_t a, intl6x8_t b) {
intl6x8x2_t Result;
for (int element = 0;

{

element < 8; element+=2)

// {a[0],b[0],a[2],b[2],...}
Results [0O][ element] = a[element ];
Results [O][ element+1] = b[element];
/l {a[l],b[1],a[3],b[3],...}
Results[1][element] = a[element+1];
Results[1][element+1] = b[element+1];

}

return Result;

Forward and Inverse DCT kernels of LV use intrinsics
similar to the code listing above to transpose 8 x 8 DCT
blocks of 16-bit integer numbers in 32 instructions. While
this is the most efficient way of implementing 8 x 8 matrix
transposition using Arm Neon, it takes, on average, 24.1%
of total LV instructions.

To transpose an arbitrary-sized M x N matrix, one only
needs to use VRE x VRE matrix transposition primitives
to transpose each square sub-block separately. Thus, we

calculate the latency of matrix transposition (latyr) using
the following equation:

M

N
X [
VRE

latyr(M,N) = [ VRE

[

| x lat,r(VRE,VRE) ~ (2)

For example, LV library also requires matrix transposition
of 16 x 16 DCT blocks of 16—bit values. LV breaks the block
into four quarters and transposes them separately using the
mentioned 8 x 8 matrix transposition primitive. Therefore, LV
achieves 16 x 16 matrix transposition in 4 x 32 = 128 cycels.

Matrix Transposition is an intensive computation pattern
of data-parallel kernels. Swan contains efficient matrix
transposition primitives as a part of PF and LV libraries.

6.5. Portable Vector APIs

While we showed that explicit vectorization achieves a
higher speedup compared to auto-vectorization, performance
improvement comes with the cost of re-developing kernels for
a new ISA or ISA extension. To avoid kernel re-development
for a new ISA, applications add a new layer of abstraction
using a library of Portable Vector APIs with common simple
functions and use these APIs across the data-parallel kernels.
Vector libraries provide a set of implementations for different
ISAs, and select an implementation based on the capabilities
of the target platform. Therefore, to support a new ISA,
applications are only required to implement vector APIs
for the target instruction set, while the algorithm of the
data-parallel functions remains the same.

PF defines a set of macros for common vector intrinsics
to operate on floating-point vector variables. Due to the
different instruction sets of various vector architectures, PF
only supports basic intrinsics and does not take advantage
of sophisticated vector instructions. For example, PF uses
a naive vector Complex Multiplication implementation that
takes six instructions and eight cycles of Cortex-A76 core [4].
Armv8.2-A architecture supports multiply-add and multiply-
subtract operations, with which Complex Multiplication
requires four instructions and five cycles. Armv8.3-A sup-
ports complex multiply-add intrinsics that only require one
instruction and take two cycles of Arm Cortex-A710 core [3].
However, none of these sophisticated intrinsics are supported
by Intel SSE; therefore, PF only uses basic vector APIs,
dropping Neon performance improvement to only 2.3 .

Webaudio modules (WA) of Chromium and WebRTC
projects use vector APIs with simple vector operations such
as vector convolution, multiplication, clip, etc. These fine-
grain vector APIs load input arrays in the vector variables,
perform a simple operation, and store the results back to
the output arrays. Therefore, WA requires a load and a store
for every arithmetic operation. In fact, around 59% of WA’s
vector instructions are loads and stores, dropping instruction
reduction to 3.4x and Neon speedup to 1.8x.

While Vector APIs substantially reduce the cost of
supporting different vector processing architectures, they
increase the number of instructions and significantly limit
the benefits of vector processing.
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Figure 5: Neon performance scalability with: (a) wider vector registers and (b) more Vector execution units and 0.0.0 Ways.

7. Scalability Analysis

The evaluated Cortex-A76 Prime core baseline is
equipped with two 128-bit ASIMD units. We study the
performance scalability with wider vector registers and more
vector execution units using eight kernels with different
computation patterns that are representative of their libraries.

7.1. Wider Vector Registers

We redevelop kernels with wider registers using a fake
Arm Neon library with 128, 256, 512, and 1024-bit registers
and further optimize the algorithms based on the available
set of vector instructions for each vector register width.
Figure 5(a) shows the performance improvement of these
implementations. Note that 2/4/8x wider registers exploit
data-level parallelism to improve the performance at the cost
of 2/4/8 < larger vector register file and ASIMD units.

Wider registers are beneficial when a data-parallel kernel
only requires streaming memory accesses. For example, LT’s
RGB-to-YCbhCR and SK’s Convolution enjoy high SIMD lane
utilization of 99% and 98%. Therefore, 1024-bit implemen-
tations improve performance by 7.9x and 6.7x compared
to the 128-bit implementations using 8 x SIMD lanes.

GEMM-FP32 implementation exploits parallelism across
the output matrix columns. When the number of output
columns is not evenly divisible by VRE, Neon implementa-
tions use narrower registers that drop SIMD utilization from
98% of 128-bit to 89% of 1024-bit implementations.

WA’s Audible kernel measures the energy of an audio
channel using reduction. While Arm Neon efficiently reduces
128-bit vector registers to a scalar register with U/SADDLV
instructions, we do not extend these instructions to wider
implementations. This is because these instructions take 5/6
cycles for 128-bit vector registers [4], and reducing very
wide registers results in longer latencies. Instead, we reduce
wider registers to 128-bit in multiple iterations by breaking
them into two halves. Hence, SIMD utilization and speedup
of 1024-bit implementation drop to 74% and 3.7 x.

When kernels process small multi-dimensional input data,
wider SIMD lanes require numerous vector manipulation
instructions. For example, LV’s Sum of Absolute Differences
(SAD) and LW’s TM-Prediction kernels need to fetch data
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from 8 x 8 and 16 x 16 blocks of pixels. While 128-bit
implementation encodes fetching a row of the input data
efficiently with one vector load instruction, wider registers
require loading each row and packing them before processing.
These implementations are significantly bounded by the
vector manipulation instructions due to the Neon’s inability
to encode multi-dimensional strided accesses efficiently.
Therefore, wider registers do not benefit these kernels.

7.2. Increasing the Number of ASIMD Units

Figure 5(b) shows the performance improvement of an
Arm core with 2/4/6/8 128-bit ASIMD units (V). These
configurations take advantage of vector Instruction-Level
Parallelism (ILP) at the cost of more vector register file
ports and ASIMD units. In addition, we employ 2/4/6/8
decode and commit ways (W) to issue enough instructions
to the vector execution units. 4W-2V baseline is the evaluated
Cortex-A76 core of Table 3.

We observe that increasing the number of vector exe-
cution pipelines to more than decode ways (i.e., 4W-6V
and 4W-8V implementations) provides limited performance
improvement. This is because ASIMD units are under-utilized
due to the lack of enough issued instructions. Hence, the
core is unable to exploit the ILP of the workloads.

In configurations with enough decode ways, we observe
that ASIMD unit utilization is limited by the inherent ILP
of the workload. Note that we manually unroll loops to
increase the vector ILP of the workloads. GEMM kernel of
XP simultaneously computes 32 output columns using eight
128-bit registers. LV’s SAD kernel is unrolled to compute
the Sum of Absolute Difference of a video frame in 32
accumulators of eight vector registers in parallel. GEMM
and SAD provide the highest vector ILPs. Hence, 8W-8V
configuration outperforms 4W-2V by 1.9x in both kernels
using 4x ASIMD units.

RGB-to-YCbCr kernel of LT converts the color space of
16 pixels in four vector registers in parallel. However, due
to the high vector register pressure of this kernel, LLVM’s
bottom-up list instruction scheduler [31] schedules vector
instructions close to their use and reduces the ILP. Therefore,
ILP is limited to computing three color spaces of four output
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pixels, limiting the 8W-8V configuration performance to
1.2x of the 4W-2V configuration (4x ASIMD units).

8. Mobile Application Processors

Mobile SoCs are equipped with different domain-specific
accelerators such as GPU and DSP. These can be alternatives
to vector processing for data-parallel kernels. However,
domain-specific accelerators suffer from data transfer and
kernel launch overheads negating their acceleration benefits
for fine-grain kernels. Vector processing, on the other hand,
enjoys tight integration to the CPU and fine-grain instruction
interleaving without data transfer or kernel launch overhead.

We observe that the first nine libraries of Table 2 are
not accelerated on GPUs. Table 7 compares only kernel
launch overhead with the average Neon execution time of
these libraries. We measure the time of launching a dummy
kernel on Adreno 640 GPU (Qualcomm OpenCL driver)
and Hexagon 690 DSP (fastRPC). On average, GPU and
DSP kernel launch overhead alone is 1.9x and 19% of the
average execution time of the aforementioned nine libraries
on Neon. These libraries provide fine-grained APIs that
are necessary for workloads with parallel and serial code
interleaving. Therefore, GPU and DSP are not employed
in any of these libraries due to the data transfer cost and
kernel launch overhead. In addition, GPU suffers from high
power consumption, which reduces the battery life of mobile
devices. Programming DSP is complex, and it only supports
fixed-point operations.

TABLE 7: GPU AND DSP KERNEL LAUNCH OVERHEAD VS.
NEON TOTAL EXECUTION TIME.

Neon Kernel Execution
Min. Avg. Max.
0.1us ‘ 117us ‘ 1209us

Kernel Launch Overhead
Adreno 640 GPU [ Hexagon 690 DSP
230us ‘ 20us

Furthermore, we compare Neon and GPU performance
of XP’s GEMM and SpMM (80% sparse) kernels for 156
different convolutional layers. We use 2 OpenCL matrix
multiplication libraries [18, 35] for GPU and eliminate
its memory copy overhead due to the unified memory of
mobile SoCs [39]. Figure 6 shows that vector processing
outperforms GPU in matrix multiplication with less than 4M
FP32 operations despite 96x less throughput. The primary
reason for better Neon performance is the lack of offload
overhead, thanks to the tight integration with the code. This
overhead is illustrated in the figure by horizontal dash lines.

9. Conclusion and Future Work

In this work, we presented Swan, the first mobile vector
processing benchmark suite with 59 data-parallel kernels
from four commonly-used mobile applications. Using our di-
verse set of workloads, we analyzed the performance, power,
and energy consumption improvement of vectorized kernels,
performance bottlenecks of vector processing, limitations of
compiler vectorization, and common intensive computation
patterns. In addition, we analyzed the performance scalability
of vector processing with wider instructions and more vector
execution pipelines. We discussed the inefficiency of domain-
specific acceleration for the fine-grain data-parallel kernels
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Figure 6: Neon and GPU performance comparison of XP’s
GEMM and SpMM kernels w.r.t. different operation counts.

and compared vector processing performance with GPU for
different problem sizes.

Swan is maintained online on GitHub. We plan to extend
Swan in these directions:

Other Vector ISA Extensions: While Arm Neon is
the most widely-used vector architecture of Mobile devices,
RISC-V Vector Extension (RVV) [9] and Arm Scalable
Vector Extension (SVE) [43] provide wider registers and
sophisticated operations such as Random Memory Accesses.
This is appealing for workloads with irregular memory
accesses. Prior work [14] provides an RVV benchmark suite
for Desktop and Server applications. We aim to equip Swan
with RVV and SVE implementations of Mobile applications.

Android Applications and Java Vector API: Java is
the primary programming language for Android Application
development, which supports vector operations using Java
Vector API [36]. JVBench [12] provides a benchmark of
Java applications and analyzes the performance limitations
of Java Just-In-Time Compiler Auto-Vectorization. However,
JVBench borrows data-parallel applications from prior CMP
and GPU benchmark suites that are not suitable for vector
processing. We plan to add vectorized Java Applications
to Swan from various Mobile Application domains such as
Social Media, Calendar, E-mail Client, and Navigation.

Vectorized Mobile Web Applications: While Swan
contains 12 libraries of the Chromium Project, prior work [13,
37] show that V8 JavaScript and WebAssembly Engine take
a significant portion of the browser’s time and energy. Web
Assembly [41] is a complementary language to JavaScript
for high-performance Web Applications. V8 JavaScript and
WebAssembly Engine supports vector operations through We-
bAssembly SIMD Proposal [26]. We plan to extend the Swan
benchmark suite with WebAssembly SIMD applications.
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