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Abstract

Two-dimensional semiconductors (2DSCs) are attractive materials for a variety of applications
in electronics, photovoltaics, and catalysis. Despite their promise, it is often unclear how the
performance of 2DSCs is influenced by structural defects present in these materials such as
atomic vacancies or step-edges. A better fundamental understanding of how such structural
features influence the generation and transport of charge carriers in 2DSCs will be critical in the
pursuit of improved practical devices moving forward. In this Opinion, we highlight how
electrochemistry can be leveraged to reveal fascinating insights into the behavior of 2DSCs.
Recent advancements in techniques for mapping the rate of photoelectrochemical processes at
2DSCs are outlined and salient experiments employing these techniques are discussed. We
conclude with sharing our perspective on opportunities within this field moving forward.

1. Introduction

Two-dimensional semiconductors (2DSCs) continue to gain popularity in fields ranging from
optoelectronics to catalysis due to their favorable optical and electronic properties and 2D
structures which enable their preparation as ultrathin films.'” Unfortunately, the performance of
existing 2DSC-based devices, particularly those fabricated via scalable methods, often fail to
meet their expected performance. These failures can be attributed to structural nonidealities, or
defects, in ultrathin 2DSCs which are not present in their bulk counterparts. Such defects include
atomic vacancies, impurities, step edges, etc. which can function as recombination centers for
photogenerated carriers in photovoltaic systems or negatively impact chemical stability.*”

Developing a deeper fundamental understanding of how these different structural defects
influence behavior will be critical to improving the performance of 2DSC-based devices moving
forward. This understanding is difficult to generate using conventional experimental approaches,
however, as defects are often present at very high densities (on the order of 10" em? or
greater).'’ In response to this challenge, there has been a great deal of recent progress in the
development and application of techniques capable of resolving photovoltaic behavior in 2DSCs
and related materials with nm-scale resolution, allowing researchers to generate valuable new
insights into the fundamental carrier transport and kinetics processes that govern the performance
of these systems. This review focuses on recent developments in experimental techniques for
visualizing these processes at the nm-scale and their application to advance our understanding of
important materials systems in the fields of optoelectronics and catalysis.
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2. Discussion
2.1. Experimental Techniques for Mapping Local Photoelectrochemical Behavior

The efficiency of an optoelectronic device such as a solar cell depends on several factors
including the absorption of light to create mobile charge carriers, the transport of these carriers
within the absorbing material, and the extraction of these carriers at selective contacts.
Photoelectrochemical methods offer a powerful route to fundamental studies into these processes
due to the simplicity of preparing carrier-selective semiconductor liquid junctions. In a
photoelectrochemical cell, a semiconducting working electrode is brought into contact with an
electrolyte and currents are recorded under illumination. These photocurrents directly reflect the
overall rate at which charge carriers are generated and transported to the electrolyte interface as
well as the kinetics of heterogeneous charge transfer reactions occurring at the interface.

Conventional photoelectrochemical techniques are employed to characterize
macroscopic, mm>-scale electrodes and are thus not capable of resolving how behavior varies
locally at individual, nm- to um-scale structural features. A variety of microscopy techniques can
be employed to spatially resolve photoelectrochemical reaction rates, a few of which are
illustrated in Figure 1."' One approach is to exert spatial control over charge carrier generation
by utilizing a tightly focused light source for excitation and recording photocurrents as the source
is scanned across the sample, a general approach which has been employed extensively in the
screening of photocatalyst materials'>'® and has recently been advanced for high-resolution
studies of 2DSCs. Using laser-based sources and high-quality optics, illumination can be
confined to diffraction-limited regions with dimensions on the order of 0.5 um. However, the
ultimate spatial resolution achieved will also be influenced by the diffusion of photogenerated
carriers within the semiconductor if diffusion lengths are comparable to or greater than the
optical diffusion limit."’

Alternatively, probe-based methods such as Scanning Electrochemical Microscopy
(SECM) or Scanning Electrochemical Cell Microscopy (SECCM) can be employed to locally
resolve photoelectrochemical reaction rates within illuminated electrode surfaces. In SECM, an
inlaid-disk (tip) electrode is positioned near the sample surface and reaction products are
detected locally by driving faradaic reactions at the SECM tip.'” SECCM achieves high spatial
resolution by utilizing an electrolyte-filled pipet to create a miniaturized electrochemical cell at
the sample surface.”” Currents flowing through this cell then directly reflect reaction rates within
the small region of the sample in contact with the electrolyte. The resolutions achievable via
SECM and SECCM are ultimately limited by the size of the probes employed and can thus
achieve sub-diffraction limit resolution, with resolutions approaching 10 nm having been
reported.”'* These probe-based methods can also be combined with local illumination schemes
to introduce additional functionality, such as the “through-tip illumination” SECM and “carrier-
generation tip-collection” SECCM techniques highlighted below.
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Figure 1: Schematic representation of four different electrochemical microscopy techniques.
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2.2. Implementation of Laser Scanning in Photoelectrochemical Approaches

Sambur and coworkers have reported a series of studies™ *° which utilize scanning
photoelectrochemical microscopy (SPECM) to probe the fundamentals of charge -carrier
recombination and transport in transition metal dichalcogenides (TMDs), a class of 2DSCs with
important potential applications in solar energy harvesting and catalysis. In these experiments,
well-defined, pm-scale TMD samples are immobilized on the working electrode of an
electrochemical cell and the laser scanning approach illustrated in Figure 1 is employed to
visualize photocurrent generation across these structures. In one study, illustrated in Figure 2a-f,
photocurrent generation in well-defined monolayer TMD heterojunctions was explored.”® Using
SPECM, photocurrent maps of iodide oxidation at heterojunctions with different stacking
configurations (ITO-MoS,-WS, and ITO-WS,-MoS,) were obtained using different excitation
wavelengths (Figure 2b,¢). For ITO-MoS,-WS, heterojunctions, strong photocurrents could be
observed when employing either 532 nm light (generating carriers in MoS; and WS;) or 635 nm
light (generating carriers selectively in MoS,) for excitation (see Figure 2e,f), attributable to the
type-II band alignment which drives holes to the electrolyte interface. In ITO-WS,-MoS,
heterostructures, photocurrents were strongly quenched when using 532 nm excitation but,
surprisingly, not for 635 nm excitation, revealing an excitation-wavelength-dependent
recombination pathway that is characteristic of the TMD stacking orientation. These
measurements also revealed that carrier transport occurs over distances on the order of 3 um
despite the facile carrier extraction pathway which is provided via the ultrathin geometry of the
monolayer heterostructures. This study highlights the importance of understanding the complex
transport and recombination pathways which influence the behavior of bulk heterojunction TMD
photoelectrodes.

In a more recent study, SPECM was utilized to reveal doping heterogeneities which can
exist within individual TMD nanoflakes.’”® Such heterogeneities can be detrimental to the
performance of bulk heterojunction devices, as opposing photocurrents are generated in different
areas of a material to effectively cancel out. Here, the stoichiometry and morphology of
exfoliated MoS, nanoflakes were characterized by XPS, ICP-AES, and SEM-EDS. Single
nanoflake SPECM measurements of both natural and synthetically-doped MoS; crystals revealed
distinct n- and p-type domains in the same nanoflake (Figure 2g,h). The currents produced
within individual n- and p-domains (iodide oxidation and triiodide reduction, respectively)
effectively cancel each other out due to the additive nature of photocurrents, leading to a
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Figure 1: Adapted from references 28 and 30. Charge carrier transport and recombination pathways under both
green and red illumination conditions. (a) Optical transmission image of the ITO/MoS,/WS, sample. (b,c)
Photocurrent maps under (b) 13.5 kV/ecm? 532 nm laser excitation and (c) 5.7 kW/cm? 635 nm laser excitation.
(d) EQE versus the distance line profile measured from the yellow lines in panels b and c. (e,f) Schematic energy
level diagram and proposed charge recombination and transport pathways in the heterojunction region under
green and red laser illumination, respectively. (g) Bright-field transmission image of a 63 nm thick natural MoS,
flake and (h) corresponding IQE map.

decrease in overall performance. These SPECM studies reveal doping heterogeneities likely
contribute to the discrepancies observed between the bulk and nanoscale photoelectrochemical
performance of TMD materials, but these heterogeneities may also enable new approaches to the
design of photocatalysts which naturally incorporate later p-n heterojunctions.

2.3. SECCM as a Tool for Visualizing Photoelectrochemical Processes

SECCM has emerged as a powerful tool for the study of electrochemical processes at
heterogeneous interfaces and has provided valuable new insights into novel electrocatalysts™ "
32 jon transport membranes®, and fundamental electrochemical kinetics.>* *° In recent years,
Hill and coworkers have advanced the use of SECCM for the visualization of
photoelectrochemical processes in 2DSCs.'™ *** In this context, SECCM can be utilized to
essentially create miniaturized photoelectrochemical interfaces with nm- to um-scale dimensions
which can be characterized to reveal how structural features within these interfaces influence
photoelectrochemical behavior. An example is shown in Figure 3, where SECCM was employed
to map the photoelectrochemical reduction of Ru(NHs)s®™ across exfoliated p-type WSe;
nanosheets. The use of SECCM allows the behavior of pristine basal planes to be distinguished
from different types of defect structures like the step-edge defect present in the WSe, nanosheet
in Figure 3. In this example, the p-WSe; basal planes produce strong photocathodic currents as
expected whereas step-edge defects are found to exhibit poor photocathodic currents and can
enable photocorrosion at anodic potentials. However, SECCM studies have also revealed that
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Figure 3: Mapping the photoelectrochemical behavior of p-type WSe, nanosheets via SECCM. Photocurrent
images of an exfoliated nanosheet supported on indium tin oxide (optical transmission image given to the right)
were constructed from voltammograms taken at 1 pm spatial increments. The pipet was filled with an aqueous
electrolyte solution containing 25 mM citric acid, 25 mM trisodium citrate, and 10 mM Ru(NH;3)¢Cl;. Picture
adapted with permission from reference 40.

shorter step-edge features can be beneficial for driving inner-sphere processes at TMD
materials.***” More recently, this approach has been applied to map the photoelectrochemical
behavior of vertical WSe»/WS, heterostructures, revealing how photocurrents vary in these
systems as a function of thickness and stacking order.’® Transitioning from bulk TMD
nanoflakes to monolayer yields intriguing properties, such as an enhanced molar absorption
coefficient, switch from indirect to direct bandgap, and long-range photogenerated carrier
transport.‘“'44

In the SECCM studies described above, samples are evenly illuminated over wide areas
which means the resulting data reflects local variations in reaction kinetics, charge separation, or
carrier recombination. Recently, the carrier generation-tip collection (CG-TC) mode of SECCM
has been demonstrated as a tool to selectively map carrier transport in complex 2DSC structures.
In CG-TC SECCM, a tightly-focused laser is utilized to locally generate carriers within a sample
of interest. Carriers generated within the illuminated region diffuse outwards and those which
reach a pipet-based probe positioned some distance away are able to drive a redox reaction at the
electrolyte interface, giving rise to a measurable photocurrent. By analyzing these photocurrents
as a function of probe position, carrier transport can be directly visualized and quantitative
insights into carrier diffusion and recombination can be generated. In initial experiments, CG-TC
SECCM was applied to visualize transport in bulk WSe; nanoflakes, both within pristine basal
planes as well as well-defined step-edge features. Within basal planes, bulk in-plane and out-of-
plane diffusion lengths were measured to be ~3 um and ~6 nm, respectively. CG-TC
measurements also revealed that individual step-edge defects could act to completely suppress
lateral carrier transport (Figure 4a,b). These results suggest that strong fields exist within these
materials that actively drive carriers toward these defects, effectively enhancing the local carrier
recombination rate. CG-TC SECCM studies have since been extended to few-layer WSe,
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Figure 4: Adapted from references 18 and 37. CG-TC SECCM studies of WSe, nanoflakes. (a) optical
transmission image of a multilayered bulk WSe, nanoflake. The orange line corresponds to a step-edge height of
64 nm and the red line corresponds to a step-edge height of 94 nm from the ITO substrate to the sample. (b)
Photocurrent mapping images of the sample in (a) at a series of different applied potentials (1 pm resolution). (c)
False color optical reflection and photoluminescence (PL) images of an exfoliated WSe, structure. The number
of WSe, layers in different regions established via AFM measurements are indicated. A PL spectrum acquired
from the monolayer is given below. (d) Photocurrent images at different potentials obtained in the vicinity of a
chopped (20 Hz) focused 633 nm laser (0.4 uW). Voltammograms obtained at different potentials along the
white dashed line are given below.

structures™, where distinct changes in band structure are known to occur which impact the nature
and properties of photogenerated carriers.*'**

Figure 4c¢ shows a complex WSe, nanoflake exhibiting a variety of regions with
thicknesses down to the monolayer level. CG-TC measurements revealed carriers generated
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Figure 5: (a) TEM image of a TiO, nanorod supported on an Au TEM grid. (b) Noncontact mode topographic
AFM image of the same nanorod. (c) A photo-SECM map of photoelectrochemical oxygen evolution obtained
under through-tip UV illumination (200 W HgXe lamp). Data obtained in a 0.1 M borate buffer (pH 8.5) in 0.5
M Na,SO,. Adapted with permission from reference 49.

within the monolayer region could drive photocurrents at distances greater than 20 pm away.
Photocurrents observed in bilayer regions were negligible compared to other sample areas.
(Figure 4d), attributable to electrostatic forces caused by the formation of interlayer excitons in
the bilayer region. Together, these studies offer new insights into carrier transport and
recombination at the nanoscale and the importance of defect mitigation to improve practical
2DSC-based devices.

2.4. SECM Techniques for Probing Photoelectrochemistry at Individual Nanostructures

As the most mature probe-based electrochemical technique, SECM has long been
recognized as a useful tool for imaging a wide variety of electrochemical processes, though its
application to photoelectrochemical systems is complicated by the need to illuminate the surface
of a sample in close proximity to a tip electrode. This problem can be overcome by employing
through-tip illumination, wherein excitation light is coupled into the glass sheath of an inlaid
disk electrode.*®*’ Recently, significant improvements to this methodology have been made by
Mirkin and coworkers which have enabled SECM studies of photoelectrochemical systems to be
carried out effectively at the nanoscale.**° In one example depicted in F igure 5, through-tip
illumination was combined with the substrate generation-tip collection (SG-TC) mode of SECM
to image photoelectrochemical oxygen evolution at individual TiO, nanorods supported on Au
TEM grids. These results demonstrate the potential of SECM, which can provide rich chemical
information on the nature of electrochemically active surface sites and identity of reaction
products, to be combined to atomic-resolution structural probes to generate unparalleled insights
into the factors controlling reactivity in photoelectrochemical systems. Using this approach,
SECM could similarly serve as a powerful tool for characterizing the photoelectrochemical
behavior of nm-scale features within extended materials such as 2DSCs.



3. Conclusions and Outlook

The work highlighted in this review demonstrates how recent experimental developments have
provided researchers with the tools to explore the photoelectrochemical behavior of materials at
the nanoscale. While valuable insights into carrier transport and recombination pathways in
2DSCs have been produced with these newly developed methods, the work carried out to date in
this field is merely scratching the surface. Materials beyond TMDs remain largely unexplored, as
do heterostructured photocatalyst systems which will continue to grow in importance moving
forward given their potential applications in solar fuel production and CO, remediation.”’ And
while considerable progress has been made in the development of these photoelectrochemical
microscopy techniques, further improvements in spatial resolution are needed to “catch up” to
modern structural characterization tools such as TEM and enable the chemical behavior of
atomic-scale active sites and surface defects in these systems to be elucidated. Moving forward,
these nanoscale methods will be critical to improving our understanding of emerging
photoelectrochemical systems.
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