


traditional nonlinear approaches. Clustering is an unsupervised method in which data are amalgamated into

homogeneous groups and more recently, some have used related methods to classify data, like Amaya

et al. (2020) with solar wind classifications from ACE data, Innocenti et al. (2021) with identifying different

regions in magnetospheric simulation results, and Köhne et al. (2023) for classifying PIC simulations involving

the tearing instability.

Our methodology is based on an unsupervised approach to separate the solar wind, magnetosheath, and

magnetosphere measurements from spacecraft data. Our data are recorded at different time resolutions, so

methods reliant upon a consistent time step cannot be utilized and must focus on the joint set of measurements

alone. We use principal component analysis to reduce the dimensionality and correlations in our data set, along

with a visualization technique to add greater interpretability to the dimensionality reduction. Self‐Organizing

Maps (SOMs) (Kohonen, 1982) are then used to effectively reduce the size of the training set so that a larger

number of clustering algorithms can be considered.We finally use hierarchical agglomerative clustering to cluster

the individual nodes of the SOM and propagate the cluster assignments of the nodes to the data they represent. The

use of hierarchical clustering coupled with a SOM provides a unique advantage in that in addition to being able to

separate the data into clusters, these clusters are composed of subclusters which can be further investigated. This

combination distinguishes it from other more common clustering methods. The paper is outlined as follows: data

sources, data preprocessing, dimensionality reduction, SOMs, clustering of SOM nodes, results, and derived

boundary crossings.

2. Data Sources

We use data from two missions, Time History of Events and Macroscale Interactions during Substorms

(Angelopoulos, 2008), or THEMIS, and the Magnetospheric Multiscale Mission (Burch et al., 2016), or MMS.

These data sets include measurements of magnetic field B, the ion velocity V, the ion scalar temperature T, and

the ion density n, a cumulative eight features. The vector data is in GSE coordinates. Below, we describe for each

mission how the data is prepared.

2.1. THEMIS

THEMIS is a collection of five spacecraft (THEMIS‐A, B, C, D, and E) with equatorial orbits with the purpose of

observing different aspects of magnetic storms and substorms We used data from March 2007 to the end of

December 2020. THEMIS‐B and C were moved to lunar orbit in 2009 to become the Acceleration, Reconnection,

Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (Angelopoulos, 2014) (ARTEMIS)

mission where they would make measurements departing from what would normally be seen by THEMIS‐A D,

and E. We only use THEMIS‐B and C data up until end of year 2009.

The ion velocity, temperature, and density measurements of THEMIS are from the Electrostatic Analyzer in-

strument (McFadden et al., 2008) and are available at multiple time resolutions, such as “reduced” (ESAR) and

“full” (ESAF) data packets. The ESAR offers higher time resolution at once per spin (∼3 s), but the cold tem-

peratures of typical solar wind mean that their distributions are narrow and require sufficiently high angular

resolution to resolve. The ESAF packets sacrifice time resolution for higher angular resolution and are available in

two formats, 32‐spin (96 s) in fast survey mode and 128‐spin (∼6.5 min) in slow survey mode. Figure 5 of

McFadden et al. (2008) illustrates the difference in angular resolution. The data are flagged for quality and we use

quality zero data, indicating no issues. The magnetic field measurements are from the Flux Gate Magnetometer

(FGM) (Auster et al., 2008) and are collected at spin resolution. This data is then averaged down to the resolution

of the ESAF measurements to synchronize them.

2.2. MMS

MMS, the Magnetospheric Multiscale Mission (Burch et al., 2016), is a constellation of four spacecraft (MMS‐1,

2, 3, and 4) flying in low‐to mid‐inclination orbits in tight formation to make electron‐scale measurements. The

ion measurements are taken from the Dual Ion Spectrometer as part of the Fast Plasma Investigation (Pollock

et al., 2016) suite. Multiple ion spectrometers per spacecraft makes it possible to make measurements below spin

resolution. The magnetic field measurements are taken from the FGM (Russell et al., 2016) and are available at

10 ms. These magnetic field measurements and ion measurements are averaged down together to 1 min
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K is specified and can vary between one and D. It is analogous to a hyper‐rotation of the D‐dimensional space in

which the cardinal axes, or principal components, are oriented along directions of decreasing variance. If a

variance threshold is chosen, then a number of the principal components can be selected that cumulatively

represent that variance. This method has limitations in that it is a obviously a linear method of dimensionality

reduction. When data are characterized by non‐linear correlations, this complicated structure can be destroyed in

the transformation and can cause misinterpretations of the resulting components.

However, since PCA is linear, it can also be interpretable. Once Q is known, its elements, or “loadings,” can be

inspected to ascertain the influence of each feature along any principal component. Using just the first two

principal components, we can visualize these loadings as vectors that can visually communicate the importance of

each feature in the projection. Plotting these vectors on top of the first two components of the projection is called a

biplot and is shown in Figure 4. Using biplots to infer information from PCA results has a rich history and an

introduction to the concept is covered in Kohler and Luniak (2005).

Although feature correlations and dimensionality are simultaneously addressed using PCA, there is still the matter

of a large training size after the PCA transform. The size can be reduced by simply randomly selecting fewer

points, but this will only trade variance for sample size. Choosing enough points to represent a similar amount of

variance will still require a large population size. In the next section, we use a method in which distinct points act

as “representative” of their local distribution such that their amalgamation reflects the distribution of the

training set.

5. Self Organizing Maps

K‐Means (Lloyd, 1982) is the most popular clustering method and creates clustering solutions that separate data

into k Voronoi‐separated clusters where k is specified in advance. The most common convergence criteria used

for this is the sum of square distances of all points from their cluster centroids, also called the inertia or quan-

tization error, which is common among vector quantization methods (de Bodt et al., 2004; Gray, 1984). Self

Figure 4. Left: The normalized eigenvalues from the PCA decomposition are plotted in descending order as the solid blue

line. The cumulative sum of these normalized eigenvalues is plotted as the dashed black line.We choose to select a number of

components representing at least 90% of the variance (the horizontal black line), so 6 components are chosen that represent

93% (the vertical dashed black line). Right: A bivariate histogram of the training data projected onto the first two principal

components, representing 76% variance. It is evident from the first two components that several clusters are present in the

data. The arrows plotted here are the loadings for our features across the first two principal components. The length of an

arrow represents the influence that feature had for the PCA projection along that direction. All arrow lengths are normalized

to the longest arrow, that of the B feature. From the plot, the temperature feature, T, significantly influenced the 0th

component but barely for the 1st and points to the cluster on the left. This means that cluster is likely to correspond to higher

temperatures than the data on the right. The density, n, roughly equally contributed to both components and indicates that the top

right region is related to higher densities and by its antiparallel direction, the cluster on the left is largely associated with lower

densities. Since VX points to the top left and V to the bottom right, the bottom right region is related to data with high speeds and

large negative values of VX. The BX, BY, VY, and VZ features are clustered at the origin, indicating that they did not influence

the first two components (although they may have impacted the higher order components). Overall, we can surmise from this

plot alone that the left, top right, and bottom right areas are associated with higher temperature, higher density, and higher

speeds, respectively. Thus, it is likely that these clusters are the magnetosphere, magnetosheath, and solar wind populations.
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Organizing Maps (Kohonen, 1982, 2014) can be viewed as a more powerful alternative to K‐Means because they

utilize a combination of competitive and cooperative updates during training. Individual cluster centroids, or

nodes, of the map are updated to represent data in such a way that the topological relationships between the nodes

are maintained throughout training. Preserving this relationship means that the average inter‐node distance can be

used to effectively create 2D visualizations of the data. Any data point will always be closest to some node

(referred to as the Best‐Matching‐Unit, or BMU), and that node can represent the local distribution of data. Once a

map is trained, this property can be utilized such that the nodes are used as input for other clustering algorithms.

This greatly reduces the data size for clustering and expands the types of clustering methods we can use.

5.1. Implementation

There are several open‐source python packages implementing SOMs available. The most common is minisom

(Vettigli, 2018), which uses a vectorized design to speed up computations. For large data sets or network sizes, the

time to completion may still be quite long. Traditionally, training a SOM has been a computationally expensive

process for two reasons: The network adapts to one point at a time, and it is fairly common that multiple trainings

are done. The latter occurs because SOM initialization and training are done stochastically and there is a large

number of hyperparameter choices available (the number of iterations, the network size, the decay function, the

neighborhood function, the initial and final learning rate and neighborhood size, etc). Since the network with the

lowest quantization error is usually selected as the best fitting, this significantly increases the total amount of time

needed to get a complete and robust model.

The one‐at‐a‐time training constraint is resolved using SOMs that train over batch‐updates. These usually involve

computing weighted averages of the neighborhood values across a batch of samples. This approach is taken by

two popular python packages Somoclu (Wittek et al., 2017) and XPySom (Mancini et al., 2020) and speed‐up on

CPU resources alone can be close to a factor of 100, sometimes greater. We have used the XPySom package for

our results.

5.2. Hyperparameter Optimization and Training

To expedite the process of finding the best fitting SOM with the most appropriate set of hyperparameters, we

create a micro training set. First, we min‐max normalize the PCA‐projected training data in order to avoid bias to

any particular feature. Next, we run K‐Means to resolve 10,000 clusters with a K‐Means++ initialization method

for 100 runs and select the optimal run based on minimal inertia. This initialization method makes better choices

for cluster centroids by weighting data in proportion to their square distance from the previously created centroid.

Then for each centroid, the closest point in the training data is extracted, and the resulting 10,000 points form the

micro training set. The remaining points in the training data set are referred to as the macro training set with a size

of 470k.

We consider a number of different SOM hyperparameters and that each SOMwill be trained on the micro training

set and validated on the macro training set. The maps are validated in this way because the macro set will contain a

larger number of outliers, and given the noise evident in Figure 4, resolving these outliers correctly will be critical.

The hyperparameters of the map with the lowest value for our loss function will be retained and a final SOM will

be trained using these hyperparameters on the macro training set. We define our loss function to be

L = Q ∗ ( nxny

(nx)max(ny)max

+max{nx,ny}
min{nx,ny}

). (1)

where Q is the quantization error of the SOM, nx and ny are the dimensions of the 2D node grid, and (nx)max and

(ny)max
are the maximum values permitted for the x and y dimensions. The max{nx,ny}/min{nx,ny} term penalizes

non‐square networks and will only allow for non‐square maps should they provide a sizably lower quantization

error.

It should be noted that the use of a custom loss function for SOM validation is critical for our purposes. With the

number of training iterations and training data set held constant, increasing the map size will generally reduce the

quantization error for many choices of hyperparameters. A larger map size may better represent the training data,

and in many cases even the test data, than a smaller map, but a larger number of nodes and their distributions may
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be suboptimal for clustering methods that will fit to these nodes. This can be loosely seen as a form of overfitting,

but not in the sense of a model not generalizing well to unseen data. To illustrate this concept by example,

consider training a “small” map on a large data set containing heterogeneous groups whose distributions are

somewhat (but not extremely) non‐convex. One might find that the distributions of the nodes mapping to these

different groups are approximately spherically separable because there are few to no nodes mapping to outliers.

This would be a good motivation to use K‐Means to cluster the nodes for such maps. However, as the map size is

increased, the node distributions will begin to better resemble the more complicated, original distribution of the

data, which contains harder‐to‐resolve non‐convex distributions that clustering algorithms like K‐Means or

Gaussian Mixture Models (GMM) may struggle to resolve.

The python‐based optimization library Optuna (Akiba et al., 2019) is used to choose hyperparameter values. The

training of each SOM on the micro training set is referred to as a trial. Optuna offers a variety of samplers to

generate hyperparameter choices, and we use the Tree‐structured Parzen Estimator with independent sampling as

the sampler. It generates hyperparameter choices by fitting two sets of GMM per trial, one set for the better

performing trials, l(x), and another for the remaining, g(x). Each set involves fitting a GMM for each hyper-

parameter x and the hyperparameter value selected is that which maximizes the ratio of density estimates

l(x)/g(x). Maximizing this ratio is consistent with choosing a hyperparameter that is simultaneously most likely to

be generated by l(x) (the “good” models) and least so by g(x) (the “poor” models).

For our optimization, we considered the following hyperparameters. The number of nodes for the SOM grid nx
and ny, the initial learning rate α, the initial neighborhood size σ, the neighborhood function H, and the decay

functionD. We have fixed the number of training epochs to be 50, the final learning rate and neighborhood size to

be 0.01, and the maximum nx and ny dimensions to be 30. The values the hyperparameters are permitted to take are

in the following list:

1. 5≤ nx,ny ≤ 30

2. 1≤ σ≤
̅̅̅̅̅̅̅̅̅
nxny

√

3. 0.1≤ α≤ 1

4. D: {linear, exponential}

5. H: {Gaussian, Ricker}

5.3. SOM Results

After 500 trials, the best hyperparameter options are (nx,ny) = (14, 14), σ = 5.518, α = 0.843, D = exponential,

andH = Ricker. We train a SOMwith these hyperparameters on the macro training set which completes in 7 min.

The resulting SOM has a quantization error of 0.0702 and 0.0703 on the macro training and test sets. The loss

function rounds to 0.0855 and 0.0856. With a Intel Xeon 2.90 GHz E5‐2690 (32 cores, 64 threads) CPU and

64 GB of RAM available, the entire process of hyperparameter optimization and final model training takes

approximately 3 hr.

While the SOM we have trained has a good quantization error, there are visualization techniques we can use to

further assess how well it represents the data. Since the goal of a SOM is to give a vector‐quantized representation

of the data, one simple approach is to create plots of the data itself with the SOM node positions overlaid. If it is an

effective representation, it should roughly map to positions of high data density, both in scatter plots and his-

togram marginals. We show pairplots over the first three min‐max scaled principal components of the test set in

Figure 5. When scaling up the marginal histograms of the node positions to that of the marginal histograms of the

test set, there is good agreement over the 0th and 2nd components. The 1st component shows partial agreement

with the node histogram, only somewhat capturing the peak in density between 0.3 and 0.4.

Another method uses the ordered nature of the SOM to create a heatmap of distances between the nodes. Since the

nodes of a SOM have an ordered topological relationship, we can compute the average distance between a node

and its immediate neighbors and create a heatmap of these average neighbor distances. The 2D matrix of these

values is referred to as the U‐Matrix. The U‐Matrix for the test data is shown in the top left of Figure 6. Moreover,

since each data point can be uniquely associated with its corresponding BMU in the SOM, we can then compute

the average of all data per node. This average value per node can be used to create heatmaps of the SOM for any

feature from the data, as seen in the remaining plots of Figure 6.
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6. Clustering of SOM Nodes

Applying direct clustering methods caused difficulties involving size, dimensionality, and multicollinearity. We

resolved the latter two using PCA and have addressed the first by training a SOM to act as a further discretized

representation of the data. With a SOM representation, we now can consider a much wider choice of methods to

cluster the data as training size is no longer a constraining factor. Once a clustering method is trained, it can

separate the SOM nodes automatically, classifying which nodes belong to which cluster. These node classifi-

cations can then be propagated to the data that the nodes represent, that is, if a node A is assigned to cluster 1, then

Figure 5. Pairplots over the first three min‐max normalized principal components (83% variance) of the test set. The off diagonal plots are bivariate histograms for the

test data in greyscale. Scatter plots of the Self‐Organizing Map (SOM) node position are plotted in red on top of the bivariate histograms. The diagonal plots are the

marginal distributions where the black line is the test data distributed over 100 bins. The SOM node positions are simultaneously binned but at a smaller resolution of 25

bins. The nodes generally match the histograms of the 0th and 2nd components with a dip noticeable in the nodes histogram of the 1st component.
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all data for which node A is the BMU will be assigned to cluster 1. We used an agglomerative, or “bottom‐up,”

form of hierarchical clustering as implemented in the scikit‐learn package (an overview of various hierarchical

clustering methods is covered in Nielsen (2016)). In order to focus on separating clusters based on homogeneity,

we used aWard linkage to determine the merge order of clusters. In hierarchical agglomerative clustering, if there

are N clusters, then all N‐choose‐2 cluster pairings are considered for possible merging. The optimal merger is

determined using a linkage function, which produces a number representing the similarity of the clustering where

smaller numbers indicate more similar clusters, and the pair with the smallest linkage function value are merged.

In some linkage functions, this can be interpreted as a distance, such as with the single, complete, average, and

centroid linkages. The linkage we used, Ward's linkage, is instead concerned with identifying the cluster pair that

minimizes the in‐cluster variance. The entire model pipeline, including the approach used for hyperparameter

optimization of the SOM, is shown in Figure 7.

The dendrogram of the clustered SOM nodes and their cluster assignments are shown in Figure 8. From the

dendrogram, we make cluster classifications using a distance threshold of 1.65 and propagate the cluster as-

signments of the SOM nodes to the test data. The number of data points in the test set mapped per node is also

shown in the same figure. Histograms of the classifications for each cluster are shown in Figure 9. These clusters

were obtained in an unsupervised manner and an a posteriori analysis shows that they are in line with expert

understanding of the solar wind, magnetosheath, and magnetosphere. In Figure 9, the solar wind corresponds to

moderate density and supersonic Alfvén Mach number (log10 MA> 0), the magnetosheath has the largest den-

sities and shocked Alfvén Mach number (log10 MA 0), and the magnetosphere has the lowest densities and

subsonic Alfvén Mach number (log10 MA< 0). The Alfvén Mach number is used as a loose metric of success in

that these regions can largely be distinguished with it.

Figure 6. 2D heatmaps of the test data as seen through the Self‐Organizing Map. In the U‐matrix, plotted in the top left, nodes are colored according to their distance to

the nearest neighbors: the lighter nodes are more similar to the neighbors than darker nodes. Note that neighbors here is defined in the square topological sense; nodes in

the corners only have two neighbors, nodes along the rest of the perimeter have three neighbors, and all other nodes have four neighbors. The fewer neighbors among

those on the perimeter means that there will usually be less variance among them such that the perimeter nodes have a lower (lighter) U‐matrix value. A region of dark

gray nodes partitions the U‐Matrix into two areas of lighter color in the top left and bottom right. This means that there are two relatively homogeneous groups of nodes.

To interpret what groups of data these nodes represent, we can look at the feature maps in the remaining plots. In these plots, the average feature value per node is

depicted as a heatmap. It is apparent from the feature maps that the group of nodes on the left side of the U‐Matrix correspond to regions of low density and high

temperature. The nodes to the right correspond to moderate‐to‐high densities, low‐to‐moderate temperatures and negative values of VX.
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The clustering of the SOM nodes in PCA space is shown in Figure 10. We

previously made conjectures as to what portions of the biplot from Figure 4

are associated with the solar wind, magnetosheath, and magnetosphere, and

they are confirmed with the clustering depicted. In both the (0,1) and (0,2)

plots of Figure 10, the magnetosheath cluster has overlap with both the

magnetosphere and the solar wind clusters but the magnetosphere and solar

wind clusters have little overlap with each other, as one can expect from the

physics of the magnetospheric system. Higher order components possess less

variance and show considerable overlap as seen in the (1,2) plot. This is a

consequence of using PCA for dimensionality reduction: The first PCA

components will generally capture the majority of the variance and subse-

quent components will be less significant.

In GSE coordinates, the solar wind tends to be in the sunward (here, right-

ward) direction, the magnetosphere in the tailward (leftward) direction, and

the magnetosheath is a curved transition region between the two. The histo-

grams of log10 density and log10 AlfvénMach number of Figure 9 reflect this

and show the clustering is very effective in separating supersonic, moderate

density plasma (solar wind) from shocked, dense plasma (magnetosheath) and

very subsonic, thin plasma (magnetosphere). Note that since the Alfvén Mach

number is plotted in log10 scale, the supersonic to subsonic transition occurs

as a change in sign. Overlap between these distributions can certainly occur

and this is reflected in their histograms. Incorrect classifications are also

visible in Figure 9, such as scattered magnetosheath and solar wind classi-

fications occurring in the nightside at −20 RE ≤YGSE ≤ 20 RE, a swath of

magnetosheath classifications at −10 RE ≤XGSE ≤ −5 RE, and magneto-

sphere classifications well out into the dayside. In analyzing time series, these

are generally spurious in that misclassifications occur but are relatively

infrequent (such as in Figure 11 where the magnetosheath misclassifications are correlated with jumps in VX) and

rarely part of consecutive misclassifications. We show two sample classifications of time series, one for

THEMIS‐C where the classification is exactly correct (Figure 11) and one where the majority of classifications

are correct but suffer from spurious misclassifications (Figure 12). Analyzing when MMS 1 is in the solar wind in

Figure 12, it's apparent that the magnetosheath‐misclassifications correspond to higher temperature and lower

absolute value of the velocity, as in the magnetosheath. When MMS 1 is in the magnetosheath, the solar wind‐

misclassifications correspond to higher absolute value in velocity and the magnetosphere‐misclassifications

correspond to lower density, again consistent with the characteristics of the region to which the measurements

are incorrectly assigned.

In Figure 8, it is evident that the different clusters are largely segregated spatially in the node grid but exceptions

are present. There are multiple nodes that are at best somewhat adjacent to the remainder of their cluster. Notably,

the magnetosheath cluster has nodes at grid positions (12,12) and (8,12) that are surrounded by the solar wind

cluster. The magnetosheath cluster also has a node that is surrounded by the magnetosphere cluster at (6,2) and a

vertical streak of magnetosphere‐classified nodes starting at (10,4). Results like this are not entirely unexpected as

we are analyzing observations and the magnetosheath acts as a transition region between the magnetosphere and

solar wind. We analyze the data that map to these nodes in detail in the appendix.

Lastly, we comment on our choice of SSD cutoff shown in Figure 8. In hierarchical agglomerative clustering,

spaces on the dendrogram that show long vertical drops before another cluster bifurcation indicate that the clusters

before the bifurcation are largely heterogeneous. Looking to Figure 8, this means that the two clusters that would

be formed using an SSD = 2 cutoff would be quite distinct from each other. When we analyzed the four clusters

resulting from an SSD cutoff of 1.3, inspection of this revealed that these four clusters corresponded to a solar

wind cluster, a magnetosheath cluster, and a split magnetosphere cluster into two pieces. Since an SSD = 1.65

cutoff cleanly yielded a solar wind, magnetosheath, and single magnetosphere cluster, it was decided to use that

cutoff instead. The two resulting magnetosphere sub‐clusters are shown in Section 7.1. An interpretation of why

the two magnetosphere sub‐clusters possess such a high SSD (relative to the merged magnetosheath and solar

wind) is that the variety of magnetospheric observations is comparable to the mutual variety of the solar wind and

Figure 7. The pipeline of methods in our model. Solid arrows indicate a

component of the model and dashed lines show how the optimal

hyperparameters were learned using a micro and macro training set.
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magnetosheath (or more simply, the magnetosphere, as observed by THEMIS and MMS, has almost as much

“variance” as the magnetosheath and solar wind combined).

7. Applications

7.1. Subpopulation Analysis

We show in brief the capability of subpopulation analysis with this clustering method. Since we have used a

hierarchical method to cluster the SOM nodes, we can pick any cluster and investigate the previously merged

clusters that compose it. We “unpack” the magnetosphere cluster in Figures 13 and 14 to show how distinct

magnetospheric populations were collectively recognized as the magnetosphere. From the histograms, we see that

the feature that changes most clearly between the two clusters is the Alfvénic Mach number. Note that the

subclusters of the magnetosphere in Figure 13 are not as evenly topologically separated like the original clustering

solution seen in Figure 8. This is not surprising given the large overlap in features between these subclusters seen

in the univariate histograms of Figure 14 and indicates that the variance between these two subclusters is less than

the variance between the magnetosphere, magnetosheath, and solar wind clusters, hence these two subclusters

appearing earlier in the merge order with a Ward linkage. In simpler terms, it is easier to distinguish solar wind

measurements from those of the magnetosheath or magnetosphere than it is to separate magnetospheric pop-

ulations by Alfvén Mach number.

Figure 8. Top Right: A dendrogram of the clustered nodes using aWard linkage. Separate clusters only up to the five most recent mergings are shown. We chose a cutoff

sum of square deviations from the mean (SSD) of 1.65 to extract three clusters, as shown by the horizontal dashed black line. The number of times the line intersects with

the vertical lines of clusters is the number of clusters recovered. The cluster assignments are visualized in the left image. Top Left: Cluster assignments of the Self‐

Organizing Map nodes shown on the 2D node grid. The region of low density and high temperature observed in Figure 6 has been assigned to cluster 0 (blue), the region

of low VX is largely cluster 2 (green) and the region of high density is largely cluster 1 (orange). The color scheme used to represent the different clusters will remain the

same. Bottom Row: For each cluster, the number of test points per node is shown. Note that the magnetosphere‐classified nodes (10,6), (10,5), and (10,4) within the

magnetosheath cluster contain few hits and the magnetosheath‐classified node (6,2) within the magnetosphere cluster also contains few hits. However, the

magnetosheath nodes (12,12) and (8,12) within the solar wind cluster are responsible for a sizable number of hits.
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7.2. Derived Boundary Crossings

With a model that can classify when a measurement occurs in the magnetosphere, magnetosheath, or solar wind,

we can study the time series of these classifications and infer when a spacecraft has crossed the magnetopause or

bow shock. To select crossings, we used a moving window over the time series of classifications and find where

the classification changes from magnetosheath to solar wind or vice‐versa. We considered such a change in

classification to be a crossing if all points half a window length before belong to one cluster and all points half a

window length ahead belong to the other. The changing time resolution in the THEMIS data means that we need

to consider different window lengths between MMS and THEMIS observations. A window length of 20 min was

used for MMS to give up to 10 points per half window length and a window length of 40 min for THEMIS to give

up to 13 points per half window length when the ESA is in Fast‐Survey Mode (32 spins, 96 s, going from the

magnetosheath to the solar wind) or up to 3 points per window when it is in Slow‐Survey Mode (128 spins,

6.4 min, going from the solar wind to the magnetosheath). A total of 3,047 bow shock crossings and 5,228

magnetopause crossings are extracted using these parameters. Bivariate histograms of the (XGSE, YGSE) positions

of these crossings is depicted in Figure 15 alongside a Shue magnetopause (Shue et al., 1998) and Chao bow shock

model (Chao et al., 2002) and show good agreement with respect to both.

For the bow shock crossings, we select the most recent solar wind point relative to the time of crossing and see

how they're distributed in the SOM grid in Figure 16. When cross‐comparing these with the number of counts in

the test set from Figure 8, we see that the two most activated nodes of bow shock crossings are nodes (10,11) and

(12,11). These nodes are responsible for 21.7% of the crossings but only 11.5% (training + testing) of the solar

Figure 9. Top/univariate histograms: Histograms of the log10 density and log10 Alfvén Mach number. The histogram over the entire test set is in black and the

histograms of the three clusters of the test set are represented in color. The magnetosphere is in blue (cluster 0), the magnetosheath is in orange (cluster 1) and the solar

wind is in green (cluster 2). Bottom/bivariate histograms: (XGSE [RE] , YGSE [RE] ) bivariate histograms of cluster occupancy where the sun is on the right. The leftmost

plot shows the histogram over the entire test set and each other plot shows an occupancy histogram for a particular cluster of the test set. The cluster color scheme used is the

same as in Figure 8. A darker shade of color indicates a higher count in the bivariate bin. The solid line is a Shue magnetopause and the dashed line is a Chao bow shock.

The parameters for these models are BZ = 0.15 nT, Dp = 2 nPa, MMS = 6, and β = 2.
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wind classifications. This means that the model could be used such that a solar wind measurement assigned to one

of these nodes could be flagged as having an increased probability of being a solar wind point adjacent to a bow

shock crossing. Additionally, the node with the highest count in the test set for solar wind points, node (11,12), has

only a small number of bow shock crossing points (6.2%) relative to the previous nodes.

We perform a similar analysis for the magnetosheath points relative to the magnetopause crossings. The nodes

with the highest number of counts of magnetosheath points associated with magnetopause crossings are the nodes

(9,5), (8,8), and (8,2). These are responsible for 18.2% of the magnetopause crossings but only 3.0% of the

magnetosheath classifications (training + testing). The node with the largest number of magnetosheath points in

Figure 10. Cluster assignments of Self‐Organizing Map (SOM) nodes over the first three min‐max normalized principal components of the test set. Comparing the plot

of the (0,1) component‐transformed data (center‐left plot) to the biplot over the first two principal components in Figure 4, we observe that the region on the left is the

magnetosphere, the upper right is the magnetosheath, and the lower right is the solar wind. The marginal histograms of all clusters are shown along the diagonal using the

same bin ratio (100 bins for data and 25 for SOM nodes) as in Figure 5.
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Figure 14. Like Figure 9, but analyzing only the magnetosphere cluster of the test set. Bottom/bivariate histograms: The occupancy of cluster 0 (blue) and 1 (orange) are

plotted as bivariate histograms in (XGSE [RE] , YGSE [RE] ). They cover a similar region, but cluster 1 is much less pronounced on the dayside. The solid and dashed lines

are again a Shue magnetopause and Chao bow shock using the same parameters described in Figure 9. Top/univariate histograms: The histograms of log10 density, BZ, and

log10 Alfvén Mach number are plotted in black and the cluster populations are plotted in their respective colors. As could be inferred from Figure 6, cluster 0 is related to

higher subsonic Alfvén Mach number and cluster 1 to lower subsonic values.

Figure 15. Bivariate histograms of the magnetopause (left) and bow shock (right) crossings in (XGSE [RE] , YGSE [RE] ). In both
figures, the solid line is a Shue magnetopause and the dashed line is a Chao bow shock. The parameters for these models are

the same as described in Figure 9. Many of the crossings are in line with expectations of magnetopause and bow shock

positions although a handful of errant crossings are evident, such as the magnetopause crossings at (X = −4, Y = 7) and

(X = 5, Y = 25). Nightside bow shock crossings at X < = −10 start to deviate from the Chao model due to the orbital bias of

THEMIS and MMS wherein the bow shock is only crossed due to its compression from higher solar wind dynamic pressure.
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low density and field strength and reduced VX/sunward flows (Omidi et al., 2010, 2020). These properties mean

that these observations could be classified as magnetosheath or magnetosphere. Thus a simple way to identify

possible HFAs and FBs using this model is to track sequential solar wind‐classified data and find gaps in the

classifications. Liu et al. (2022) compiled a list of observations of HFAs and FBs fromMMS1 and THEMIS‐A, 47

of which are from November and December 2017 of MMS1. Using the same 4.5 s resolution data set we pre-

viously prepared, we extract solar wind classification gaps of up to 2 min duration. Allowing an observation to be

within up to 30 s of an identified gap, we find that we can identify 39 of the 47 observations. An example interval

of MMS1 data containing seven HFA/FB observations is shown in Figure 18.

8. Discussion

Ours is not the only model that has attempted to classify spacecraft observations into different plasma regions.

Olshevsky et al. (2021) used a convolutional neural network trained on the ion energy distributions of MMS to

classify them as magnetosphere, magnetosheath, pristine solar wind (PSW), or ion foreshock and Nguyen

et al. (2022) used a gradient‐boosted decision tree trained on magnetic field and ion moments of a variety of

spacecraft to classify them as magnetosphere, magnetosheath, and solar wind classes. Breuillard et al. (2020) also

used a convolutional neural network on MMS measurements of the magnetic field components B and magnitude

B, the ion velocity components V and magnitude V, the ion density, and the parallel, perpendicular, and total ion

temperatures to classify them into PSW, ion foreshock, bow shock, magnetosheath, magnetopause, boundary

layer, magnetosphere, plasma sheet, plasma sheet boundary layer, and lobe.

Olshevsky et al. (2021) created a labeled data set and has comparable classes to our model, so we have made

comparisons with their model and data. They curated two month's worth of MMS1 data, covering November and

December 2017 to the total of 469k points and created two models. One of their models was trained on the

November 2017 data and tested against the December 2017 data and the training and testing were reversed for the

other. They did not use the full data sets for training and instead used about ∼25k points each for November and

December, making sure to evenly sample from the four classes to avoid class imbalances. We use their better

performing model, which was trained on December 2017 and tested against November 2017, as a comparison. We

prepared both magnetic field and ion observations (averaging the magnetic field measurements to the latency of

the ion observations at 4.5 s resolution) and assigned their labels to our prepared data set of 467k points, dis-

carding the 2k unrecognized points. Since their model relied on correctly classifying the ion sky maps, they

anticipated that complex mixing of distributions could occur at the magnetopause and bow shock, and so any data

that indicates distribution mixing was assigned to the class “Unknown,” comprising about 15% of their data set.

We mask these points out when comparing the accuracy of these models.

As explored in a previous section, the hierarchical capability of our model means that we can further derive sub‐

classes from our original classification. To directly compare against the model of Olshevsky et al. (2021), we will

unpack our solar wind cluster into two sub‐clusters and regard one as the PSW and the other as the ion foreshock.

Figure 16. For each magnetopause (bow shock) crossing, we select the most recent magnetosheath (solar wind) point. Each

point maps to, or “activates,” some node in the Self‐Organizing Map. The distribution of these counts is shown for the

magnetosheath points for the magnetopause on the left and the solar wind points for the bow shock on the right. For the

magnetosheath points, the most activated nodes are at positions (9,5), (8,8), and (8,2) and are together responsible for 949

crossings. For the solar wind points, the most activated nodes are at positions (10,11) and (12,11) and are responsible for 660

crossings.
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although the node's position in the grid is unusual, it corresponds well with magnetosheath observations. We

believe this node's population being dominated by MMS observations is primarily due to the difference in time

resolution between MMS and THEMIS observations. The MMS data set we prepared has a higher time res-

olution, 4.5 s resolution averaged down to 1 min, than the THEMIS data set, 1.5 min in higher temperature

plasmas (magnetosphere, magnetosheath, and sometimes ion foreshock) and 6.5 min in colder plasmas (solar

wind). The mode change is not done immediately upon crossing the bow shock but rather after consecutive

observations showing higher/lower temperatures. Since these data are formed from either 32‐spin/1.5 min (on

the outbound passes where the spacecraft are going from the magnetosheath to the solar wind) or 128‐spin/

6.5 min (solar wind to magnetosheath) averages, the magnetosheath observations that correspond to this node

could be more uncommon for THEMIS observations. These data are somewhat uncommon magnetosheath

observations as seen in the node distributions relative to the distributions of the magnetosheath and solar wind

classified data in Figure A1 in which they tend toward ends of the VY and temperature distributions. Overall,

this uniqueness in MMS observations for this particular node could be due to the higher time resolution that is

unavailable to THEMIS.

Node (6,2) is another topologically isolated magnetosheath node that also possesses a very high U‐Matrix

value, except that this one is surrounded by magnetosphere‐classified nodes. It is responsible for only

about 7.7k (0.35%) points of the magnetosheath‐classified data of the test set and is almost evenly split by

spacecraft with 56% points belonging to THEMIS and 44% to MMS. The empirical probability distributions

of all magnetosheath‐classified and magnetosphere‐classified data in the test set are plotted alongside the

observations mapped to this node in Figure A2 and multiple distinctions can immediately be made: data

mapping to this node exhibit more magnetosheath characteristics in velocity, density, and temperature and

also possess high magnetic field magnitudes. It seems correct that this node is classified as magnetosheath and

the sparsity of points mapping to this node is understood in the context that magnetosheath observations

possessing such large magnetic field magnitudes is relatively rare. The large U‐Matrix value is justified with

these observations.

Node (8,12) is diagonally topologically adjacent to the magnetosheath cluster but otherwise surround by solar

wind nodes. This SOM uses a square topology, so this diagonal proximity does not factor into its U‐Matrix value.

It maps 68k (3.1%) points from the magnetosheath‐classified data of the test set with 11% being THEMIS ob-

servations and 89% being MMS. The VX, VY, log10 temperature, and log10 density empirical probability

distributions of the data mapping to this node are shown in Figure A3 alongside all magnetosheath‐classified and

solar wind‐classified test data. They indicate magnetosheath observations with respect to the VX and VY dis-

tributions, but the log10 temperature and log10 density distributions somewhat resemble a blend of solar wind and

Figure A1. The VX, VY, log10 density, and log10 temperature empirical probability distributions of all magnetosheath‐classified test data are plotted along the top row

in blue. Similar features but for all solar wind‐classified test data are plotted along the bottom row, also in blue. The empirical probability distribution of all test data that

maps to node (12,12) is plotted in all plots as the orange distribution. The probability distributions are plotted here because of the large size differences between the

number of magnetosheath observations (2.17 million) and solar wind observations (883k) of the test set and number of data mapping to node (12,12) (33k).
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magnetosheath. This lack of uniform agreement across these features can explain why node (8,12) is adjacent to

solar wind‐classified nodes but the VX and VY distributions in particular indicate that it is correct to classify it as

a magnetosheath node.

Lastly, we analyze the magnetosphere‐classified nodes at positions (10,6), (10,5) and (10,4) that occur topo-

logically within the magnetosheath cluster. Together, these nodes account for 46k (0.75%) of the 6.1 million

magnetosphere‐classified points of the test set with 76% being THEMIS observations and 24% belonging to

MMS. Their VX, VY, log10 density and log10 temperature empirical probability distributions are plotted in

Figure A4 along with the distributions of all three clusters in the test set. The data that map to these nodes are

unusual in that the node distributions do not fully overlap with all of the distributions for any cluster. These data

Figure A2. The VX, B, log10 density, and log10 temperature empirical probability distributions of all magnetosheath‐classified test data are plotted along the top row in

blue. Similar features but for all magnetosphere‐classified test data are plotted along the bottom row, also in blue. The empirical probability distribution of the 7.7k

magnetosheath‐classified observations of node (6,2) are plotted in orange for each feature. The VX, log10 density, and log10 temperature distributions for this node all

align more with the magnetosheath data than that classified as magnetosphere whereas the B distribution reflects high magnitude observations. Overall, this node has

captured data with magnetosheath characteristics in velocity, density, and temperature, but also possessing high field magnitudes.

Figure A3. The VX, VY, log10 density and log10 temperature empirical probability distributions of all magnetosheath‐classified data from the test set are plotted in blue

along the top row. The solar wind‐classified test data are plotted in blue along the bottom. The empirical probability distribution of the 68k magnetosheath‐classified

observations of node (8,12) are plotted in orange for each feature. The log10 density and log10 temperature distributions of the data from this node have sizable mixing

between both magnetosheath and solar wind observations whereas the VX and VY distributions are more distinctly magnetosheath than solar wind.
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are classified as magnetosphere, but exist along the extrema of all the magnetosphere distributions shown. They

resemble the VY, log10 density, and log10 temperature distributions of the solar wind, but the VX would be quite

low for solar wind. The VX, VY, and log10 temperature distributions match up well with the magnetosheath

distributions, but the log10 density is conspicuously low. Across all of the clusters, the measurements have much

more in common with magnetosheath observations than magnetosphere or solar wind and are likely mis-

classifications. A time series of MMS1 observations containing many points that map to one of these nodes is

shown in Figure A5. The magnetosheath plasma is of relatively low density, reflective of how these nodes are

misclassified as magnetosphere. These nodes are responsible for 0.50% of the total test set.

Overall, the magnetosheath cluster has nodes in several aberrant positions in the SOM grid in which they were

surrounded by nodes belonging to other clusters. Investigating these nodes in detail, however, has shown that the

data correspond well with magnetosheath observations and are deserving of being classified as such. It was also

seen that three magnetosphere‐classified nodes are likely misclassified and should be recognized as magneto-

sheath. These three nodes contain few points (46k points, or 0.50% of the test set), together containing slightly less

than the average number of test points per node (47k), and so do not significantly impact the strength of the

results. Furthermore, it should be noted that such a misclassification occurred between the magnetosheath and the

magnetosphere and that the separation between solar wind and magnetosphere plasma is quite distinct in the

cluster solution seen in the top left of Figure 8.

Figure A4. The VX, VY, log10 density and log10 temperature empirical probability distributions of all magnetosheath‐, magnetosphere‐, and solar wind‐classified test

data are plotted in blue along the top, middle, and bottom rows, respectively. All test data that map to nodes (10,6), (10,5) and (10,4) are collectively plotted here as the

orange empirical probability distributions. These data are anomalous and exhibit characteristics found in all magnetosheath, magnetosphere, and solar wind

observations. The VY, log10 density, and log10 temperature align well with the solar wind distributions, but the VX distribution is far too low. The VX, VY, and log10

temperature distributions correspond with magnetosheath observations, but there are very low densities. All of these distributions seem to have the least in common with

the magnetosphere cluster, being along the extrema in all cases.
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