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Software
= Review Summary
= Repository &7
s Archive &2 UltraDark.jl is a Julia package for the simulation of cosmological scalar fields. Scalar fields

are proposed solutions to two of the fundamental questions in cosmology: the nature of dark
matter and the universe’s initial conditions. Modeling their dynamics requires solving the
Gross-Pitaevskii-Poisson equations, which is analytically challenging. This makes simulations
essential to understanding the dynamics of cosmological scalar fields. UltraDark.jl is an
open, performant and user friendly option for solving these equations numerically.
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Figure 1: Growth of density perturbations in a scalar field in an expanding background, as the universe's
scale factor growths from a = 1.0 to @ = 100.0. The density is measured in units of the universe's
critical density p,,;.. This scenario is similar to that in (Musoke et al., 2020), in which the scalar field is
an inflaton fragmenting after the end of primordial inflation.
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Statement of need

Scalar fields are ubiquitous in physics, as solutions to partial differential equations describing
the spatial variation of physical quantities. As dark matter candidates, scalar fields including
axion-like particles (ALPs) would explain the nature of the missing 85% of the universe's
matter (Adams et al., 2022; Ade & others, 2016; Hu et al., 2000; Matos et al., 2000). As
inflaton candidates, scalar fields are proposed to cause a phase of accelerated expansion that
sets the stage for big bang nucleosynthesis (Albrecht & Steinhardt, 1982; Amin et al., 2012;
Guth, 1981; Linde, 1982). In each case, a scalar field 9(¢,x) represents the density of particles
as a function of space and time.

Subject to reasonable conditions, a cosmological scalar field 1) whose particles have mass m
obeys the Gross-Pitaevskii equation for the scalar field,

R

coupled to the Poisson equation for the gravitational potential ®

_ 4G 2
Ve = mmhﬂ ; (2)

where a(t) is the scale factor characterising the expansion of the universe.

These equations are difficult to solve analytically — even static equilibrium solutions do not
have a closed form — and necessitate the use of computer simulations. There are codes which
solving Equation 1 and Equation 2 with different methods and in different domains, including
PyUltralLight (Edwards et al., 2018), a code written in Chapel (Padmanabhan et al., 2020),
AxioNyx (Schwabe et al., 2020), SCALAR (Mina et al., 2020), i-SPin 2 (Jain et al., 2023; Jain
& Amin, 2023); see Zhang et al. (2018) for an overview.

UltraDark. jl solves Equation 1 and Equation 2 with a pseudo-spectral symmetrized split-step
method, in which each time step consists of four sub-steps:

b — exp (—i%@) . 3)

Yy F {exp (—mk;) 7 {¢}} (a)
d=5"1 {4%7{@\2}} 5)

¥ exp (—igcp) ¥, (6)

where & is a Fourier transform, k are the corresponding frequencies, and h is the time step.
UltraDark. jl has adaptive time steps which allow it to accelerate simulations while preserving
numerical convergence. This is particularly useful in an expanding universe, where the time step
is roughly h oc a®. Such time steps result in orders of magnitude speedups when simulating
collapse of an inflaton field in the early universe (Musoke et al., 2020).
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Figure 2: Wall time for a single time step, as a function of number of CPUs. The points represent
measured times and the lines represent theoretical 1/#CPU scalings. The circles and solid line are for
grids constructed from Arrays and the triangles and dashed lines are for MPI-distributed PencilArrays.

Julia (Bezanson et al., 2017) has seen increasing use in scientific computing; see for example
Eschle et al. (2023) and Roesch et al. (2021) for overviews of its use in high energy physics
and biology. The use of Julia is one of the choices that separates UltraDark. jl from similar
codes. UltraDark.jl uses Julia's rich parallelism capabilities. The Threads.@threads macro
provides simple parallelisation of for loops. Folds.jl enables simple parallelisation of reduction
operations (Arakaki, 2020). In a cluster environment, PencilArrays.jl and PencilFFTs.jl
enable straightforward cross-node parallelism, a capability that is challenging to reproduce
in Python (Polanco, 2021a, 2021b). The scaling of this two approaches to parallelism is
demonstrated in Figure 2.

The features described above have allowed collaborators and | to produce results presented in
4 publications, each exploring an aspect of the small scale structure of ultralight dark matter.
We have used UltraDark.jl to explore tidal disruption in dark matter halos comprised of
self-interacting ALPs (Glennon et al., 2022), the effects of self-interactions on dynamical
friction (Glennon et al., 2024), perform the first simulations of multi-species ALPs with intra-
and inter-species interactions (Glennon, Musoke, & Prescod-Weinstein, 2023b) and discover a
novel mechanism for vortex stabilisation in scalar dark matter (Glennon, Mirasola, Musoke, et
al., 2023a). More sample output can be found in Glennon, Mirasola, Musoke, et al. (2023b),
Glennon, Musoke, & Prescod-Weinstein (2023a), and Glennon, Musoke, Nadler, et al. (2023).
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