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ABSTRACT: Hormones mediate sexual dimorphism by regulating
sex-specific patterns of gene expression, but it is unclear how
much of this regulation involves sex-specific hormone levels versus
sex-specific transcriptomic responses to the same hormonal signal.
Moreover, transcriptomic responses to hormones can evolve, but the
extent to which hormonal pleiotropy in gene regulation is conserved
across closely related species is not well understood. We addressed
these issues by elevating testosterone levels in juvenile females and
males of three Sceloporus lizard species before sexual divergence in cir-
culating testosterone and then characterizing transcriptomic responses
in the liver. In each species, more genes were responsive to testosterone
in males than in females, suggesting that early developmental processes
prime sex-specific transcriptomic responses to testosterone later in life.
However, overall transcriptomic responses to testosterone were con-
cordant between sexes, with no genes exhibiting sex-by-treatment in-
teractions. By contrast, hundreds of genes exhibited species-by-treatment
interactions, particularly when comparing distantly related species with
different patterns of sexual dimorphism, suggesting evolutionary lability
in gene regulation by testosterone. Collectively, our results indicate that
early organizational effects may lead to sex-specific differences in the
magnitude, but not the direction, of transcriptomic responses to testoster-
one and that the hormone-genome interface accrues regulatory changes
over evolutionary time.
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Introduction

Hormones with sex-specific patterns of secretion, such as
androgens and estrogens, mediate the development of sexu-
ally dimorphic phenotypes by facilitating the sex-specific
transcription of a shared autosomal genome (Rinn and
Snyder 2005; van Nas et al. 2009; Partridge et al. 2015;
Cox etal. 2017; Anderson et al. 2020; Oliva et al. 2020; Hale
et al. 2022). Two questions about this hormonal regulation
of gene expression are key to understanding the evolution-
ary dynamics of sexual dimorphism. First, are sex differ-
ences in gene expression achieved primarily through sexual
divergence in hormone levels during maturation, or do the
sexes also differ in their transcriptomic responses to the
same hormonal signal? Second, to what extent are the reg-
ulatory effects of hormones evolutionarily labile across spe-
cies? The first question about the sex-specificity of hormonal
regulation touches on the classic endocrine paradigm of
sex-specific organizational effects of hormones that occur
early in development and thereby shape responsiveness to
activational effects of elevated hormone levels later in life
(Phoenix et al. 1959; Arnold and Breedlove 1985; Arnold
2009; McCarthy et al. 2009; Adkins-Regan 2012; Madison
etal. 2015; McCarthy 2016; Anderson et al. 2022). The sec-
ond question about the species specificity of hormonal reg-
ulation is central to current debate over whether the regu-
latory architecture of hormonal pleiotropy acts primarily
as an evolutionary constraint or instead represents an
adaptable source of evolutionary potential (Ketterson and
Nolan 1999; Hau 2007; McGlothlin and Ketterson 2008;
Cox et al. 2009; Ketterson et al. 2009; Hau and Wingfield
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2011; Lema 2014; Fuxjager and Schuppe 2018; Cox 2020).
In this study, we address both questions by simultaneously
characterizing the sex and species specificity of hormonally
mediated gene expression in the lizard genus Sceloporus, in
which the hormone testosterone is known to mediate many
phenotypic sexual dimorphisms (Quinn and Hews 2003;
Cox et al. 20054, 2005, 2008) and underlying patterns of
gene expression (Robinson et al. 2023).

In many sexually dimorphic species, exogenous testoster-
one is sufficient to induce male-typical phenotypes in fe-
males (Tobias et al. 1991; Rhen et al. 1999; Cox et al. 2005a.
2015; Lahaye et al. 2012, 2014; Lindsay et al. 2016; Rose
et al. 2022). In some of these cases, testosterone has also
been shown to induce similar patterns of genetic covariance
and gene expression in each sex (Cox et al. 2017; Wittman
et al. 2021). Although only a few studies have directly com-
pared transcriptome-wide responses to testosterone be-
tween the sexes, these studies have revealed relatively little
overlap in the specific genes identified as differentially ex-
pressed in each sex (Peterson et al. 2013, 2014; Hale et al.
2022). This apparent sex specificity could occur because
early developmental exposure to androgens, estrogens, and
other factors can mediate the strength of subsequent hor-
monal responsiveness by altering the availability of hor-
mone receptors, transcriptional cofactors, or enzymes for
hormone metabolism (McAbee and DonCarlos 1998; Bodo
and Rissman 2008; Manoli and Tollkuhn 2018; Neubert da
Silva et al. 2019; Gegenhuber and Tollkuhn 2020; Lagunas
et al. 2022). Therefore, early organizational effects can pre-
dispose females and males to different transcriptional re-
sponses to hormones later in life (Fiber and Swann 1996;
Sullivan et al. 2009; Chinnathambi et al. 2013; Peterson
etal. 2013, 2014; Schweitzer et al. 2013), limiting the pheno-
typic space available to each sex (Dufty et al. 2002; Adkins-
Regan 2007). Studies investigating organizational effects of
hormones during embryonic growth have focused on neural
development and the subsequent activation of adult repro-
ductive behaviors (Phoenix et al. 1959; McCarthy et al.
2009; McCarthy 2016), although evidence of organization
has been observed in other tissues and for other phenotypes
(Hews and Moore 1995; Rosa-Molniar et al. 1996; Arnold
2009). Here, we explore whether this framework of sex-
specific organization and activation can be extended to other
tissues and to gene regulatory processes by testing for sex-
specific transcriptomic responses to hormone treatments
that simulate activational levels of testosterone typical of adult
males.

Phenotypic responses to hormones can also differ be-
tween closely related populations or species (Kitano et al.
2011; Bergeon Burns et al. 2014; Frankl-Vilches et al.
2015; Rosvall et al. 2016a, 2016b; Cox et al. 2022a; Rob-
inson et al. 2023). However, the evolution of transcrip-
tional responses to hormones and the constraints imposed

by pleiotropic gene regulation by the same hormone (i.e.,
hormonal pleiotropy) are poorly understood (Fuxjager
et al. 2018; Cox 2020; Cox et al. 2022b; Rosvall 2022;
Anderson and Renn 2023; Davidson et al. 2023). Compar-
ing this regulatory architecture across related species
can help assess the evolutionary lability of hormone-gene
couplings that underlie hormonal pleiotropy (Cox et al.
2022b). This evolutionary lability is important because
fitness trade-offs can arise when selection acts on multiple
phenotypes regulated by the same hormone (Stearns
1989; Flatt et al. 2005; Hau 2007; Roff and Fairbairn
2007; Mauro and Ghalambor 2020), causing shifts away
from fitness peaks for some traits if the regulatory effects
of hormones are evolutionarily conserved (McGlothlin
and Ketterson 2016; Dantzer and Swanson 2017; Wittman
et al. 2021; Cox et al. 2022b). This view of hormonal plei-
otropy is known as the evolutionary constraint hypothesis
(Hau 2007). In contrast, the evolutionary potential hy-
pothesis (Hau 2007) proposes that couplings between
hormones and the downstream phenotypes they regulate
are evolutionarily labile, thereby facilitating adaptation
(McGlothlin and Ketterson 2008). For example, the evolu-
tion of testosterone-mediated phenotypes, such as foot-
flagging behavior in frogs (Mangiamele et al. 2016;
Mangiamele and Fuxjager 2018; Anderson et al. 2021),
wing-snap displays in manakin birds (Fuxjager et al.
2015), and locomotor and push-up behaviors in Anolis
lizards (Johnson et al. 2018), result from the evolution of
tissue-specific abundance of androgen receptors. Evolu-
tionary changes in coregulator recruitment and local hor-
mone conversion can also facilitate evolutionary changes
in the hormonal sensitivity of entire tissues or cell types
(Fuxjager and Schuppe 2018; Cox et al. 2022b), but much
less is known about the evolution of hormonal responsive-
ness for individual genes and pathways within these tissues
and cells. Transcriptomes provide data-rich descriptions
of the pleiotropic regulatory effects of hormones (Peterson
etal. 2013; Kitano et al. 2014; Peterson et al. 2014; Fuxjager
et al. 2016; Cox et al. 2017; Finseth and Harrison 2018;
Newhouse and Vernasco 2020; Enbody et al. 2022; Hale
et al 2022; Khalil et al. 2023; Robinson et al. 2023) and
therefore represent a promising framework for assessing
the extent to which hormonal pleiotropy is conserved or
labile across species.

In this study, we manipulated circulating testosterone
levels of juvenile females and males from three species of
Sceloporus lizards to simultaneously test for both sex-
and species-specific effects of testosterone on the liver
transcriptome. We used juveniles to test for effects on
gene expression before pronounced sexual divergence
in circulating testosterone levels during maturation, thereby
avoiding potential confounding effects of sex differences
in endogenous testosterone. We used liver because it



integrates growth and metabolism during development
and exhibits a robust transcriptomic response to testos-
terone in lizards (Cox et al. 2017; Hale et al. 2022). Among
the species we used in this study, S. undulatus and S. virgatus
adults have female-biased sexual size dimorphism, while S.
merriami has male-biased sexual size dimorphism, which
could be associated with evolutionary changes in effects of
testosterone on the expression of growth regulatory genes
in the liver (Duncan et al. 2020). However, our study is
not intended to link transcriptome to organismal pheno-
type, or to directly test the organization activation hypothe-
sis or the evolutionary potential constraint hypothesis per se,
but to provide a framework for assessing the sex and species
specificity of hormonally mediated gene expression in a way
that advances our understanding of each. If the sexes differ
in early organizational effects of hormones or in other reg-
ulatory features that mediate responsiveness to elevated tes-
tosterone later in life, then we predict that (1) females and
males will differ in the number and identity of differentially
expressed genes, (2) transcriptome-wide correlations in the
responsiveness of individual genes to testosterone will be
low between the sexes, and (3) differentially expressed genes
will exhibit sex-by-treatment interactions. If species-specific
patterns of hormonal regulation have evolved, then we pre-
dict that (1) species will differ in the number and identity
of differentially expressed genes, (2) transcriptome-wide
correlations in the responsiveness of individual genes to
testosterone will be low between species, (3) differentially
expressed genes will exhibit species-by-treatment interac-
tions, and (4) these patterns will be most pronounced be-
tween phylogenetically distant species with different pat-
terns of sexual dimorphism.

Methods
Experimental Design and Sample Collection

We characterized responsiveness to testosterone in three
Sceloporus species: closely related S. undulatus and S.
virgatus, which diverged ~12 million years ago, and
more distantly related S. merriami, which diverged from
the other two species ~30 million years ago (Wiens 1999;
Leaché et al. 2016; Ossip-Drahos et al. 2016). We collected
wild juveniles at approximately 1 month of age in the late
summer or early fall (for sampling locations and dates,
see table S1; tables S1-S16 are available online), depending
on the reproductive phenology of each species. Although
the timing of sexual maturity varies across species, it is
not achieved until the following spring at the earliest, with
some individuals and species delaying maturity until their
second spring (Dunham 1981; Ballinger and Ketels 1983;
Haenel and John-Alder 2002). After 1 month of acclima-
tion in captivity, females and males of each species were
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split into two treatment groups. One treatment group re-
ceived an intraperitoneal Silastic implant containing 100 ug
of crystalline testosterone that was designed to consis-
tently elevate circulating testosterone levels for the duration
of the experiment, and the other treatment group received
an empty implant as a control. Implant construction and
surgical procedures followed previous studies (Cox et al.
2015, 2017; Wittman et al. 2021; Robinson et al. 2023)
and are described in the supplemental PDF. Because our ex-
periment was designed to simultaneously assess androgen-
mediated growth regulation and development of coloration
as part of separate studies (e.g., Robinson et al. 2023), we
allowed animals to grow for 8 weeks under experimental
conditions (for details on animal husbandry, see the supple-
mental PDF). Hormone implants can lead to unintended
physiological consequences as hormonally mediated feed-
back loops adapt to chronic elevation of the hormone
(Fusani et al. 2007; Fusani 2008; Gerald et al. 2022). For ex-
ample, elevated androgen levels can up- or downregulate
androgen receptor expression in a tissue-dependent man-
ner (Hunter et al. 2018), resulting in increased or decreased
androgen sensitivity. While previous work in other lizard
species suggests that our implant method induces many
of the same patterns of gene expression that characterize
natural age and sex differences in the liver transcriptome
(Cox etal. 2017; Hale et al. 2022), it is still important to note
that long-term transcriptomic effects of chronically elevated
testosterone may differ from short-term effects induced by
natural diel cycles or acute experimental manipulations.

After 8 weeks, we euthanized each animal via decapita-
tion and immediately collected blood to confirm treatment
effects on circulating testosterone levels via radioimmuno-
assay (see the supplemental PDF). We also immediately
collected liver samples into RNAlater stabilization solution
(ThermoFisher Scientific) on ice, refrigerated them for 24 h
at 4°C, and stored them at —80°C until RNA extraction.
We focused on gene expression in the liver because it re-
sponds to testosterone and androgen-mediated signals,
such as growth hormone, and has been shown to diverge
between the sexes in response to androgens across ontog-
eny (Cox et al. 2017; Hale et al. 2022).

RNA Extraction and Sequencing

We extracted RNA from livers of 72 juvenile lizards
(median n = 6 per treatment per sex per species; for ex-
act sample sizes in each group, see table 1) using illustra
RNAspin mini RNA isolation kits (GE Healthcare) fol-
lowing manufacturer specifications, with detailed proce-
dures and slight modifications described in the supple-
mental PDF. Library preparation and sequencing were
carried out by the Georgia Genomics and Bioinformatics
Core (University of Georgia, Athens, GA). RNA quality
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Table 1: Sample sizes for analysis in each species, sex, and treatment group

Control Testosterone
Species Females Males Total Females Males Total Genes retained
Sceloporus undulatus 6 6 12 6 7 13 13,891
S. virgatus 6 6 12 6 6 12 13,772
S. merriami 6 5 11 5 5 10 13,036

Note: We extracted RNA from liver from 72 individuals, but two S. merriami libraries in the testosterone treatment group (one female,

one male) were removed from analyses (not included here) because they were subsequently determined to have implants that were

exhausted. The number of genes retained for analysis after filtering for low expression is indicated for each species.

was assessed using an Agilent 2100 BioAnalyzer. Com-
plementary DNA libraries were prepared from total RNA
(~500 ng per sample) using KAPA Biosystems (Wilmington,
MA) RNA library preparation chemistry with poly(A) selec-
tion. Libraries were sequenced on an Illumina NextSeq 2000
(2 x 100 bp paired-end sequencing) using P3 high-output
flow cells. We assessed read quality and trimmed reads
using Fastp (Chen et al. 2018), then aligned reads to the
S. undulatus genome (Westfall et al. 2021; GCA_01917
5285.1, SceUnd_vl1.1) using subread-align (Liao et al.
2013), with S. undulatus transcripts as an alignment guide
(GCF_019175285.1). Although the proportion of reads
from other species that map to the S. undulatus genome
declines with phylogenetic distance, this should not intro-
duce any systematic bias to our estimation of sex or treat-
ment differences in gene expression, since any mapping
issues would be common to either sex or treatment group
of a species. Following alignment, we assigned uniquely
mapped fragments to annotated S. undulatus genes using
featureCounts (Liao et al. 2014) to generate a matrix of
read counts. We summed counts for each gene across
paired and unpaired reads within each library. Many genes
on the S. undulatus X chromosome (chromosome 10 in
Westfall et al. 2021) have consistently higher expression in
females than in males (M. D. Hale, C. D. Robinson, R. M.
Cox, unpublished data). Therefore, we excluded all genes
from chromosome 10 and unplaced scaffolds to focus on
the effects of testosterone on autosomal genes that are present
in equal doses in both sexes. Reads are available under acces-
sion number PRJNA1051777 at the National Center for Bio-
technology Information Short Read Archive.

Analyses of Gene Expression

We excluded two S. merriami individuals in the testos-
terone treatment group (one female, one male) from
our gene expression analyses because their plasma tes-
tosterone levels were no longer elevated at the time of
tissue collection, suggesting that their implants had
exhausted (see the supplemental PDF). To test for sex,
treatment, and species effects on gene expression, we
conducted differential gene expression analyses on read

counts using the package edgeR (ver. 3.38.4; Robinson
et al. 2010) in R (R Core Team 2022). Unless otherwise
noted, we processed data independently for each species.
To remove genes with low expression, we used filterByExpr
in edgeR, retaining between 13,036 and 13,891 genes for
each species (table 1). We then used robpca in the rospca
package (ver. 1.0.4; Reynkens 2018) to conduct principal
components analyses to test for outlier libraries, of which
there were none. We normalized read counts using trimmed
mean of M values normalization, then used glmQLFit in
edgeR to fit a negative binomial model to our data, specify-
ing robust = TRUE to reduce the influence of hypervariable
genes (Phipson et al. 2016). We then used glmQLFTest to
calculate quasi-likelihood F-tests for paired contrasts (e.g.,
control vs. testosterone treatment, female vs. male). We
identified differentially expressed genes (DEGs) for each
contrast as those with a Benjamini-Hochberg-corrected
P < .05 (Benjamini and Hochberg 1995).

To characterize natural sex differences in gene expres-
sion, which are typically minor in juvenile lizards (Cox
et al. 2017, 2022a; Hale et al. 2022; Robinson et al. 2023),
we first identified genes that were differentially expressed
between control females and control males of each species.
We view these comparisons as descriptions of natural sex
differences in gene expression, not as tests of our primary
hypotheses. For comparison, we also identified genes that
were differentially expressed between testosterone-treated
females and testosterone-treated males of each species.

To test for sex differences in transcriptomic responses to
testosterone in each species, we first identified genes that
were differentially expressed between control and testoster-
one treatments within each sex. We then used x? tests with
1 degree of freedom to test whether females and males of
each species differed in the number of genes upregulated
by testosterone, downregulated by testosterone, and either
up- or downregulated by testosterone. Next, we combined
both sexes into a single model for each species and used
glmQLFTest in edgeR to identify genes with a main effect
of treatment on expression and to test for genes in which
the response to testosterone in one sex was different from
the response to testosterone in the other, as indicated by a
sex-by-treatment interaction. As a measure of the overall
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Figure 1: Volcano plots of the —log,, P value for the effect of testosterone on gene expression against the log, fold change (FC) between
testosterone and control groups for males (A-C) and females (D-F) in three species: Sceloporus undulatus (left), S. virgatus (middle), and S.
merriami (right). Each plot represents output from sex- and species-specific models. Points represent individual genes, and positive values
along the x-axis represent genes that are more highly expressed in the testosterone group (upregulated by testosterone), whereas negative
values represent genes that are more highly expressed in the control group (downregulated by testosterone). Colored points represent genes
that are significantly differentially expressed between treatment groups after P value correction, and the number of significantly up- and
downregulated genes is presented in the upper corners of each plot. G-I show x” tests for sex differences in the total number of differentially
expressed genes alongside quantitative summaries of the number of up- and downregulated genes in each sex.

similarity of testosterone-mediated gene expression between
the sexes, we regressed log, fold change (the fold difference
in mean expression between testosterone and control
groups; hereafter, log, FC) in females against the same
measure of log, FC in males, each estimated from sex-
specific models. We interpreted the correlation coefficients
from these regressions as measures of the overall similarity
of transcriptomic responsiveness to testosterone between
sexes.

To test whether the transcriptomic effects of testosterone
are conserved across species, we used an omnibus differen-
tial gene expression model that simultaneously analyzed
read counts from all three species. Therefore, we repeated

gene filtering, normalization, fitting of a negative binomial
model, and calculations of quasi-likelihood F-tests for all
70 libraries. This method retained 15,234 genes for analysis.
For each species, we estimated the log, FC between control
and testosterone groups for each gene retained in the om-
nibus model, then regressed log, FC values estimated from
one species against those estimated from another species.
We interpreted the correlation coefficients from these re-
gressions as measures of the overall similarity of transcrip-
tomic responsiveness to testosterone between species. Next,
we tested for effects of testosterone on gene expression be-
tween species pairs by pooling data from two species and
testing for differential gene expression between control
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Figure 2: A-C, Volcano plots of the —log,, P value for the effect of testosterone on gene expression against the log, fold change (FC) be-
tween testosterone and control groups for Sceloporus undulatus (A), S. virgatus (B), and S. merriami (C). Each plot represents output from
species-specific models where sexes are combined. Points represent individual genes, and positive values along the x-axis represent genes
that are more highly expressed in the testosterone group (upregulated by testosterone), whereas negative values represent genes that are
more highly expressed in the control group (downregulated by testosterone). Colored points represent genes that are significantly differen-
tially expressed between treatment groups after Benjamini-Hochberg correction, and the number of significantly up- and downregulated
genes is represented in the upper corners of each plot. D-F, Relationship between male and female response to testosterone (log, FC)
for S. undulatus (D), S. virgatus (E), and S. merriami (F), where the log, FC for each sex is estimated from sex-specific models. Blue
and red points represent autosomal genes that have a significant effect of testosterone across sexes (same colored points from A-C). No
genes have a significant sex-by-treatment interaction. G-I, Bars representing the proportion of genes that are significantly upregulated (blue)
or downregulated (red) by testosterone out of the total number of differentially expressed genes (DEGs) for S. undulatus (G), S. virgatus (H),
and S. merriami (I). TEST = testosterone implant; CONT = control implant.

and testosterone groups, constituting a main effect of treat-
ment. We conducted a second analysis to test for differential
gene expression with respect to the interaction between spe-
cies and treatment. Combining these analyses allowed us to
identify genes with an overall main effect of treatment (i.e.,
up- or downregulated by testosterone), genes with an inter-
action between species and treatment (i.e., genes differen-

tially regulated by testosterone in each species), and genes
with both a main effect and an interaction (ie., genes in
which the main effect of testosterone is driven by its respon-
siveness in only one species). We conducted each of the
above analyses separately for each sex and again with sexes
pooled. We used a three-proportions Z-test to examine
whether the proportion of genes exhibiting a significant
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Table 2: Correlation coefficients for the effects of testosterone on differential gene expression (log, fold change) es-
timated between sexes of a species or between species (estimated separately for females, males, and both sexes pooled)

Between sexes

Between species

Species r Species pair r in females r in males r in both
Sceloporus undulatus 461" S. undulatus vs. S. virgatus 1317 178" 285"
S. virgatus 450" S. undulatus vs. S. merriami 1417 1727 2027
S. merriami 551" S. virgatus vs. S. merriami .015 154" 1417

P <.001.

species-by-treatment interaction differed between species
pairs, with pairwise, two-proportion Z-tests with Holm cor-
rection (Holm 1979) as post hoc tests. To explore the func-
tions of testosterone-responsive genes, we used gene ontol-
ogy analysis (see the supplemental PDF).

Results
Treatment Effects on Circulating Testosterone

Implants elevated plasma testosterone concentrations (treat-
ment: F, 5 = 192.2, P < .001; fig. S1, available online),
with no effect of species (F,ss = 0.546, P = .582) or sex
(F.,ss = 0.895, P = .348) and no two- or three-way inter-
actions (supplemental PDF). This suggests that any ob-
served differences in testosterone-mediated gene expres-
sion were largely driven by how the sexes and species
responded to testosterone and not by differences in their
induced testosterone levels.

Sex Differences in Gene Expression

Sex differences in juvenile gene expression were almost
entirely absent when comparing control males and females
in Sceloporus undulatus (one DEG), S. virgatus (zero DEGs),
and S. merriami (zero DEGs). Likewise, we did not de-
tect any sex-biased genes when comparing juvenile females
and males that received testosterone implants in each
species.

Sex Differences in Effects of Testosterone
on Gene Expression

In all three species, significantly more genes were differ-
entially expressed in response to testosterone in males
than in females (fig. 1; table S2). However, the overall di-
rection of transcriptomic response to testosterone was
highly concordant between sexes in each species (fig. 2),
with significant correlations in log, FC between females
and males (all r > 0.45, all P < .001; table 2). While the
total numbers (fig. 2A-2F), relative proportions (fig. 2G-
I), and individual identities of up- and downregulated
genes differed across species, no genes exhibited a signif-

icant sex-by-treatment interaction in any species, indicat-
ing that female and male conspecifics responded similarly
to testosterone (fig. 2D-2F). Within a species, 48%-62%
of genes that were responsive to testosterone in females
were also responsive to testosterone in males (table S3).

Species Differences in Effects of Testosterone
on Gene Expression

In each species pair, testosterone consistently up- or
downregulated hundreds of genes in the same direction
for both species (67%-93% of all DEGs; fig. 3). However,
in contrast to between-sex comparisons, between-species
comparisons also revealed many genes that responded
differently to testosterone (i.e., species-by-treatment in-
teractions, 7%-33% of all DEGs; fig. 3). Some of these
genes retained a main effect of treatment, indicating a
species difference primarily in the magnitude of the re-
sponse to testosterone (3%-13% of all DEGs; fig. 3),
while others exhibited an interaction with no main ef-
fect, indicating a species difference in the direction of
the response to testosterone (3%-21% of all DEGs;
fig. 3). The number and proportion of DEGs exhibiting
species-by-treatment interactions were relatively low
between closely related S. undulatus and S. virgatus but
high in either pairwise comparison involving more dis-
tantly related S. merriami (three-proportions Z-test: x* =
307.66, P < .001; fig. 3; table 3). Likewise, transcriptome-
wide correlations for responsiveness to testosterone were
much lower for between-species comparisons (all < 0.29)
than for between-sex comparisons (all r > 0.45; table 2).
These correlations were higher between closely related S.
undulatus and S. virgatus than between either of these two
species and more distantly related S. merriami (fig. 3; ta-
ble 2). Across species pairs, only 14%-26% of genes respon-
sive to testosterone in one species were similarly responsive
to testosterone in the other (table S8). Species also differed in
the number of genes that were differentially expressed in re-
sponse to testosterone, both within sexes (fig. 1) and when
pooling sexes (fig. 2), although the biological reasons why
S. merriami exhibited a stronger response than S. virgatus
and S. undulatus are unclear.
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Figure 3: Relationship between experimentally induced gene expression across pairwise combinations of species, assessed for males (A-C),
females (D-F), and both sexes (G-I). Phylogenies above each column represent the relationships among species, with species names in bold
indicating the two species included in the pairwise comparison represented in that column. For all axes in A-I, log, fold change (FC) rep-
resents the log, FC of gene expression of individuals receiving a testosterone implant relative to individuals receiving a control implant from
an omnibus model containing all three species. Positive values indicate that a gene is upregulated by testosterone, while negative values
indicate that a gene is downregulated by testosterone. Genes with a significant main effect of treatment or a species-by-treatment interaction
after P value correction are represented by colored points. The line represents the slope from a linear regression, showing the relationship of
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Table 3: Results from post hoc analyses after a significant three-proportions Z-test examining whether the proportion of genes
exhibiting a significant species-by-treatment interaction differed between species pairs

Species pair 1 Pair 1 DEGs Species pair 2 Pair 2 DEGs X’ P

Sceloporus undulatus vs. S. virgatus 92 (.067) S. undulatus vs. S. merriami 375 (.286) 211.63 <.001
S. undulatus vs. S. virgatus 92 (.067) S. virgatus vs. S. merriami 579 (.330) 300.94 <.001
S. undulatus vs. S. merriami 375 (.286) S. virgatus vs. S. merriami 579 (.330) 6.63 .010

Note: The number of differentially expressed genes (DEGs) with a significant interaction is represented in the “Pair 1 DEGs” and “Pair 2 DEGs” columns.
Values in parentheses represent the proportion of genes with an interaction out of the total number of genes with a significant main effect or interaction. x
values are from post hoc two-proportion Z-tests, and P,y represents the adjusted P value after Holm correction.

Discussion

Exogenous testosterone induced significantly more DEGs
in juvenile males than in juvenile females in each of three
Sceloporus lizard species. Yet the overall effects of testoster-
one on the liver transcriptome were highly concordant be-
tween sexes. Furthermore, no gene exhibited a significant
sex-by-treatment interaction in any species, suggesting that
testosterone regulates autosomal gene expression similarly
in juvenile females and males, albeit to a greater degree in
males. In contrast, many genes exhibited significant species
differences in their response to testosterone, particularly be-
tween distantly related species, indicating that the regu-
latory coupling of testosterone to gene expression has evolved
across species. These results suggest that early organizational
effects may predispose males to (or prevent females from)
enhanced transcriptomic responsiveness to testosterone
later in life and that the evolutionary lability of hormonally
regulated gene expression may facilitate phenotypic diver-
sification in closely related species. We note that, because
treatment effects on circulating testosterone levels were
equivalent between sexes and across species, any observed
sex or species differences in treatment effects on the
transcriptome likely reflect differences in tissue sensitivity
and gene regulatory mechanisms, rather than differences
in circulating testosterone levels.

In each Sceloporus species, we found that significantly
more genes were both up- and downregulated by testoster-
one in males than in females. A similar sex difference in the
number of DEGs was observed in the liver transcriptome of
another lizard, Anolis sagrei, following treatment of juveniles
with exogenous testosterone (Hale et al. 2022). In A. sagrei,
exogenous testosterone masculinizes juvenile female pheno-
types (Cox et al. 2015), statistical patterns of phenotypic and
genetic covariance (Cox 2020; Wittman et al. 2021), and un-
derlying gene expression (Cox et al. 2017; Hale et al. 2022).
Likewise, in Sceloporus, treatment of juvenile females with

testosterone masculinizes ventral coloration (Cox et al.
2005b) and induces the transcription of underlying genes
for melanin synthesis in the ventral skin (Robinson et al.
2023). Collectively, these studies indicate that phenotypic
and transcriptomic effects of testosterone are broadly simi-
lar in juveniles of either sex but that a larger portion of the
transcriptome is responsive to testosterone in males (i.e.,
more genes are differentially expressed). Moreover, the
between-sex correlation in overall transcriptomic responsive-
ness to testosterone was high in each Sceloporus species (ta-
ble 2), and no genes exhibited sex-by-treatment interactions
(fig. 3). This stands in contrast to results from testosterone
manipulation in dark-eyed juncos (Junco hyemalis), where
hundreds of genes exhibited sex-by-treatment interactions
in brain, liver, and muscle (Peterson et al. 2013, 2014).
Whereas we treated juvenile females and males with identi-
cal doses of testosterone that approximated levels in adult
males, adult female and male juncos were treated with dif-
ferent doses that approximated the respective adult maxima
for each sex. Therefore, Peterson et al. (2013, 2014) observed
sex-specific transcriptomic responses to testosterone when
using sex-specific doses in sexually dimorphic adults, whereas
we observed broadly concordant transcriptomic responses
when using identical doses before the development of pro-
nounced sexual dimorphism in juveniles.

Several mechanisms could explain why transcriptomic
responses to testosterone are greater in juvenile males than
in juvenile females in Sceloporus. For example, sexes could
differ in androgen receptor density, transcriptional cofactor
availability, binding globulins, or chromatin accessibility in
the liver and other tissues (Cox 2020). Such sex differences
in hormonal sensitivity could arise through early organiza-
tional effects of hormones that shape transcriptomic re-
sponses to testosterone later in life (Phoenix 1959; Dufty
et al. 2002; Adkins-Regan 2007; Anderson et al. 2022). Typ-
ically, investigations into the organizing effects of sex hor-
mones focus on behavior (Phoenix et al. 1959; McCarthy

testosterone-induced gene expression across the entire liver transcriptome in pairwise comparisons. A-C represent models that include only
males, D-F represent models that include only females, and G-I represent models that include both sexes. Values in A-I represent the num-
ber of genes with that effect. Genes with a significant main effect and interaction are not numerically represented in A-I. All regression lines
are significant at P < .001 except in F (P = .059, dashed line). J-L summarize the proportion of differentially expressed genes (DEGs) for
each statistical effect from all nine comparisons.
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etal. 2009; McCarthy 2016). Although not linked to any spe-
cific organismal phenotype, our transcriptomic data suggest
that similar organization may predispose males to stronger
activational effects of testosterone, relative to females. Al-
though our data do not clarify the underlying mechanisms
that mediate this sex-specific sensitivity to testosterone or
conclusively demonstrate that it arises from organizational
effects of hormones per se, our results suggest that tran-
scriptomes provide a promising means of directly testing
for organizational and activational effects of hormones in
future work.

Phenotypic diversification often involves the alteration of
interactions between developmental regulators and genes
(Carroll 1995, 2008; Chen and Rajewsky 2007; Prudhomme
et al. 2007; Streisfeld and Rausher 2009; Romero et al. 2012;
Sackton et al. 2019). Such regulatory changes can break phe-
notypic and genetic correlations, facilitating trait evolution
(McGlothlin and Ketterson 2008; Rabinowitz and Vokes
2012; Tsuboi et al. 2018; Cox 2020; McGlothlin et al. 2022).
The evolutionary constraint hypothesis proposes that
tight coordination between hormones and the phenotypes
they regulate limits diversification, while the evolutionary
potential hypothesis proposes that downstream regulatory
nodes of endocrine networks can evolve independently to
limit the disruption of downstream phenotypes with shared
regulatory components (Hau 2007). Although the dominant
trend in our study was for genes to respond similarly to tes-
tosterone across Sceloporus species, we also observed many
genes with species-specific responses to testosterone, sug-
gesting that the relationship between testosterone and gene
expression is evolutionary labile. Pairwise comparisons with
distantly related S. merriami exhibited the highest propor-
tion of genes with significant treatment-by-species interac-
tions, as expected if changes in hormonal regulation accrue
with evolutionary divergence. Because our treatments re-
sulted in similar effects on circulating testosterone in each
species (fig. S1), we can infer that species differences in
transcriptomic responses to testosterone are not due to dif-
ferences in circulating hormones but instead likely reflect
the evolution of hormone-genome interactions (Cox et al.
2022b). In Onthophagus dung beetles, horn development
involves doublesex (Kijimoto et al. 2012), Hedgehog signal-
ing (Kijimoto et al. 2016), insulin signaling (Snell-Rood and
Moczek 2012; Casasa and Moczek 2018), and serotonin sig-
naling (Schwab et al. 2020). Interactions among these ele-
ments have evolved to result in novel transcriptomic reg-
ulation (Kijimoto et al. 2014; Leddén-Rettig and Moczek
2016; Ledon-Rettig et al. 2017) and different patterns of
sexually dimorphic horn development (reviewed in Casasa
et al. 2017). This illustrates how the principles of the evolu-
tionary potential hypothesis extend beyond vertebrate-
specific hormones such as testosterone to include other fa-
miliar examples in which relationships among the various

nodes in a pleiotropically regulated endocrine network can
evolve.

In Sceloporus, evolutionary changes in sexual dimorphism
for phenotypes such as body size and coloration are associated
with species differences in how underlying physiological
processes such as growth and melanin synthesis respond to
testosterone (Quinn and Hews 2003; Cox and John-Alder
2005; Cox et al. 2005b; John-Alder and Cox 2007). In the case
of coloration, these species differences in sexual dimorphism
have been directly linked to underlying species differences in
the expression of melanin-synthesis genes in response to tes-
tosterone (Robinson et al. 2023). Although we do not link
patterns of testosterone-mediated gene expression in the liver
to organismal phenotypes, our results suggest that under-
lying changes in the response to testosterone can evolve for
many individual genes, which may facilitate the evolution
of phenotypic sexual dimorphism. For example, testosterone
promotes growth and stimulates the expression of insulin-
like growth factor genes IGFI and IGF2 in the liver of an
Anolis lizard species that exhibits pronounced male-
biased sexual size dimorphism (Cox et al. 2017), whereas
it inhibits growth and reduces the expression of IGFI in
Sceloporus species that exhibit female-biased sexual size
dimorphism (Cox and John-Alder 2005; Cox et al. 2005a;
Duncan et al. 2020). Direct comparisons of monomor-
phic and dimorphic Anolis species also reveal sex-by-
species interactions for IGFI and IGF2 expression in the
liver (Cox et al. 2022a), analogous to the treatment-by-
species interactions we observed for many genes in the
Sceloporus liver. Although many biosynthetic and meta-
bolic processes were enriched for genes with opposite re-
sponses to testosterone in S. merriami (males larger) rel-
ative to S. undulatus and S. virgatus (females larger; see
“Supplementary Methods and Results” in the supplemen-
tal PDF; tables S15, S16), further work is required to ex-
plore whether these divergent transcriptomic responses
to testosterone are associated with the evolution of sexu-
ally dimorphic phenotypes such as growth and body size.

The development of sexual dimorphism requires regula-
tory mechanisms that permit sex-specific expression of a
shared autosomal genome, and the evolution of sexual di-
morphism requires that these regulatory mechanisms can
be modified in species-specific ways. While much previous
work has focused on how sexual dimorphism arises from
sex differences in circulating hormone levels, ours is one
of the few studies to test whether the sexes also respond dif-
ferently to the same hormonal signal (Peterson et al. 2013,
2014; Mittal et al. 2021). Our results suggest that early de-
velopmental processes prime the sexes for differences in
the magnitude, but not the direction, of transcriptomic re-
sponse to testosterone, as expected if early organizational
effects set the boundaries for responses to later activational
effects of sex steroids (Dufty et al. 2002). Likewise, previous



studies indicate that evolutionary changes in the magnitude
of sexual dimorphism can be achieved by species-specific
changes to circulating hormone levels (Husak and Lovern
2014; Swanson and Dantzer 2014; Karagic et al. 2022),
but ours is one of the few studies to directly test whether spe-
cies differ in their transcriptomic response to the same hor-
monal signal (Robinson et al. 2023). We find that species
differences in the response to testosterone increase with
phylogenetic distance and when comparing species with dif-
ferent patterns of sexual size dimorphism. Although we can-
not distinguish the relative contributions of these two factors,
either would be consistent with the interpretation that many
of the regulatory couplings between hormones and genes
evolve, thus indicating considerable evolutionary lability
in the transcriptomic architecture of hormonal pleiotropy.
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