Switching of Asymptotically Stable and Uniformly Ultimately Bounded
Systems with Applications to Machine Vision

Ghananeel Rotithor, Tyler Taplin, Ashwin P. Dani, Senior Member, IEEE, Warren E. Dixon, Fellow, IEEE

Abstract—This paper addresses the stability of switching
between a uniformly ultimately bounded (UUB) system and
an asymptotically stable system with asymptotically decaying
perturbation using multiple Lyapunov functions. It is proven
that the switched system trajectories remain UUB if an average
dwell time condition is satisfied, and the perturbation terms
are bounded with a sufficiently small magnitude. The devel-
oped switched system stability results are applied to the state
estimation of the perspective dynamical system in the presence
of intermittent and biased velocity measurements using switched
observers. Numerical simulations demonstrate the advantages
of using the developed switched observer versus the individual
observers.

I. INTRODUCTION

Switched systems are generated by a switching signal
from a collection of dynamical systems such that only a
single subsystem is active at a particular instant. Switching
between multiple dynamical systems can generate desirable
behavior and trajectories, which might not be possible using
a single subsystem. This technical note studies switching
between an asymptotically stable subsystem and a UUB
subsystem. Many systems exhibit asymptotic stability, for
instance, adaptive control with parameter estimation, and
uniformly ultimately bounded (UUB) stability, for example,
systems with uncertainties and external disturbances.

It is well known that arbitrary switching between stable
systems can lead to undesirable and unstable behaviors of
the system [1]-[3]. The concept of average dwell time is de-
veloped in [4] to relax the conservative dwell time condition
established from a stability analysis (e.g., a Lyapunov-based
analysis),. If the average dwell time condition is satisfied, the
switching is sufficiently slow to maintain the boundedness
of the solution trajectories. Many switched system stability
results are developed for linear systems, few of which are
summarized next. A linear matrix inequality-based sufficient
condition is developed in [5] for the analysis and control
synthesis of discrete-time switched systems. An extension of
LaSalle’s invariance principle is provided in [6] for switched
linear systems from multiple Lyapunov functions whose
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derivatives are only negative semi-definite. In [7], the stability
results are surveyed for switched linear systems and the
problem of stabilizability of switched systems is analyzed.

Lyapunov stability analysis tools based on multiple Lya-
punov functions for nonlinear systems are developed in [1].
In [8] invariance-like results for nonautonomous nonlinear
switched systems are presented. Switched and hybrid systems
have proven to be useful in the analysis and design tools
for output feedback control and state observers of nonlinear
systems. In [9] a combined output feedback controller that
switches between locally and globally asymptotically stable
output feedback controllers is developed. A switching method
is developed in [10] for combining local and global observers
of nonlinear systems. The switching results developed so far
for nonlinear systems, for example, [9], [1 1]-[13], require the
individual systems to be exponentially stable, input-to-state
stable (ISS) or input-output-to-state stable (IOSS). Many sys-
tems such as adaptive control or observer design only yield
asymptotic stability. This technical note addresses switched
system stability of two perturbed systems, an asymptotically
stable system and a UUB system. The main contribution of
the paper is to derive conditions under which the switched
system remains stable. Average dwell time conditions are
derived from a Lyapunov-based stability analysis. It is proved
that the asymptotically stable subsystem enters the region
of attraction of the UUB subsystem within a finite time. It
is also proved that if the average dwell time condition is
satisfied, then the switched system trajectories remain UUB.
The switched system conditions are applied to a practical case
of image-based depth observers when the camera velocities
are available and when they are not for stable switching
between two observers.

Switched systems-based analysis is popular in applications
such as biped locomotion, image-based feedback systems
that inherently involve multiple subsystems. For example,
applications of switched system to biped locomotion are
developed in [1 1], [14]. In [1 1] the boundedness of ISS stable
switched systems with multiple equilibria is proven. For
applications in image-feedback systems, an asymptotically
stable visual servo controller is proposed in [!5], which
switches between image-based visual servo (IBVS) control
and position-based visual servo control. A switched controller
for switching between IBVS and dynamic movement prim-
itives is proposed in [16]. A switched controller for active
image-based depth estimation is proposed in [17]. Switched
systems framework is used to tackle the issues of feature
track losses, occlusions, and limited camera field of view for



the image-based target tracking. In [18], [19] the switching
between a state predictor and an image-based observer in
the presence of intermittent image measurements is analyzed
using a common Lyapunov function. In [20], the observer-
predictor framework is used for trajectory tracking in the
presence of intermittent state measurements. For image-
based depth estimation application, although results exist that
use full camera motion [21], [22] and part of the camera
motion information for depth estimation [23], a switched
observer framework can be useful in scenarios when such
measurements are available intermittently due to a faulty
sensor. The switched system analysis result developed in this
paper is applied to the problem of depth estimation using
switched observers when intermittent and biased velocity
measurements are available.

Notations: The symbols R and Z. denote the set of non-
negative real numbers and non-negative integers, respectively.
The open ball of radius ¢ around x is defined as B (z,0) =
{2/ € RP ||z — /|| <}, where § > 0 is a constant. For a
constant & > 0 and a continuous nonnegatlve integrable func-
tion (¢), the shorthand G%O (a, (¢ fto e~ =)y (1) dr

and similarly G, ft e Ty (t—7)dr is used.
The symbols pmax ( ) and Pmin ( denote the maximum and
minimum singular values of a matrix.

II. PROBLEM FORMULATION

This section introduces the subsystems in the continuous-
time switched system considered in this paper along with
their stability results.

A. Family of Perturbed Subsystems

Consider the following family of continuous-time subsys-
tems indexed by a finite set P = {1, 2} such that

@(t) = fp (x(t), 1) + gp (x(1), 1) (1)

where z(t) € R™ is the state at time ¢, and p € P
denotes the index of the active subsystem. The functions
f1 : D1XR+ — R™ aIldf2 : D2XR+ — R™ are
piecewise continuous in ¢ € R, and locally Lipschitz on
x € D; and x € D,, respectively where D1 C D,. The terms
g1 : D1 xRy — Gy and g9 : Dy x Ry — Gy are perturbation
terms, which are piecewise continuous in ¢ € R and locally
Lipschitz in x € D; and = € Dy, respectively. The sets
Gy and G- are bounded sets. The perturbations have certain
properties, which will lead to different stability results. In
particular, the perturbation terms that satisfy the following
bounds are considered, ||g1 (z,t)| < o'||z|| + d1, V& €
D1, t >0, and ||g2 (x,t) || < &(t), Vo € Da, t > 0, where
o/, 61 > 0 are constants, £ : Ry — R, is a nonnegative,
continuous, and bounded signal such that sup,~,&(t) < 02
for some &5 > 0. Additionally, the function () satisfies the
asymptotic property lim; ., £ (t) = 0.

B. Stability of Perturbed Subsystems

In this subsection, the stability properties of the individual
perturbed systems are stated using the existing results from

[24]. Let « = 0 be an equilibrium point of the nominal
subsystems given by
&= fp(z,t), peP. ()

The following lemma establishes the stability of the perturbed
dynamical system when the perturbation term is bounded by
the term o'||z|| + d;.

Lemma 1. (Adapted from Lemma 9.2 of [24]) Let © = 0

be an exponentially stable equilibrium point of the nominal

system in (2) for p = 1. Let Vi (z,t) : D1 x Ry — Ry be a
C! (D1,Ry) Lyapunov function that satisfies
allzl® < Vi (z,t) < a2,

o, o

ot i

V (z,t) € Dy x Ry for some c;,é1, 1 > 0 and N} > M/,

8V1

a5 1 @) < =Xl < Mllzll, 3)

where D1 £ B (0,71). Suppose the perturbation term bound
in (1) satisfies 61 < % %rl, YVt > 0, x € Dy, where

A = A =M >0, then Y ||z (to) || < \/ci/cir1, the
Lyapunov function in (3) of the perturbed system in (1) for
p = 1 satisfies the bound

Vi (z(t),t) < Vi (2 (to) , to) e~ (E=10) 4 2; G, (a1,67),
“)
where oy = )y /2¢1. The ultimate bound on ||x(t)|| is given
by limsup ||z (1) || < i—li—lél.
t—00 f1 4

Stability of the system in (1) when the perturbation term
is bounded by a vanishing time varying function & (t) is
considered in the following lemma.

Lemma 2. (Adapted from Lemma 9.5 case Il of [24]) Let
x = 0 be an exponentially stable equilibrium point of the
nominal system (2) withp = 2. Let Vs (x,t) : DoxRy — Ry
be a C' (Dy,R.) Lyapunov function that satisfies

Collxl® < Vala,t) < x|,
OVs oV,
Or

oVy
EORTRE

ot

V (z,t) € Dy x Ry for some cy,C2,)My, Ao > 0, where
Dy, = B(0,73). Suppose the perturbation term satisfies
lg2 (z, ) || < &(t), VE > 0, & € Do, where £(t) satisfies
the asymptotic property, then ¥ ||z(to)|| < +/Cy/Core and
0o < %\/%7‘2, the Lyapunov function of the perturbed
system (1) for p = 2 satisfies the bound given by

t) < =Xllz|%, < Xfzl, 5

Vg(l‘ (t) ’t) < V2($( ) tO) oa(t= t0)+ )\2 Gt <a2552 (t>)
(6)

where aa = \,/2¢2, and the system is asymptotically stable
in the sense that lim; . ||x(t)|| = 0. Furthermore, if all



assumptions hold globally, then (6) and asymptotic stability
are satisfied for any x(to) and any bounded £(t).

C. Switched System

Let 0 : R® x Ry — P be a state and time dependent,
right-continuous switching signal, which selects one of the
subsystems in the finite set P to be active at time ¢, i.e.,
o(z,t) € P. Consider the resulting switched system

I(t) = fcr(aa,t) (I(t)’ t) + Yo (x,t) (I(t)7 t) ’ (N

whose solution z(t) = o (t,x (tg),o (x(t),t)) is a con-
catenation of the solutions of the individual subsystems
depending on the switching signal. Let {tn}w€Z+ be a set
of strictly increasing switching time instants. Owing to the
continuity of f, (z,t) and g, (x,t) in (1), z (¢) is continuous
between switching instances, i.e., the interval (¢,,, t,1). For
a switching time ¢, the active subsystem f5(;(¢,),1,,) Over
the interval [t,,t,4+1) has the initial condition x (¢,) =
lim; »;, « (t), which establishes the continuity of z (¢) at ¢,,
and thus for all ¢ > 0.

III. STABILITY RESULTS OF THE SWITCHED SYSTEM

In this section, the stability results of the switched system
in (7) for a right continuous switching signal o (z,t) are
presented. To facilitate the stability analysis, the following
definitions are discussed.

Definition 1. (Ch. 3, pp. 58 in [2]) The switching signal
o(x,t) has average dwell time Tp, if there exist two numbers
Ny € Zy and 7p € Ry such that

-1

N, (t, t)<N0+—
D

®)

is satisfied, where Ny > 1 is known as the chatter bound
and N, (t,t) are the number of discontinuities on the interval
[£,1).

Definition 2. (Adapted from [11] and [25]) The system in (7)
is practically stable for the perturbations g1 € G1, g2 € G
and the switching signal o (x,t) with respect to the sets €
and Qo such that Oy C Qo if x (tg) € Qy implies x (t) €
Q, V>t

For analyzing the stability of the switched system using
multiple Lyapunov functions, the following constants are
defined ¢ = minyep c,, ¢ = max,ep &, 1 = <, where ¢
and ¢, are defined in (3) and (5). Additionally, define the con-
stants A = minyep A, A = max,ecp \p. From the definition
of the above constants it is clear that min {ay, s} > \/2¢.
In the following theorems, it will be shown that for suffi-
ciently slow switching on average, the solution trajectories
of the switched system z (t) = o (t,x (to),o (x (t),t)) in
(7) remain bounded. The dwell time bound

In p
(A/20) — €’

D =

©))

where € € (0, 5z ) will be used as a lower bound for
Tp to ensure stable switching and boundedness of the so-
lution trajectories of the switched system. The stability of
the trajectories is subject to a hysteresis-based switching
condition, which is designed to guarantee boundedness and
eliminate the possibility of Zeno behavior, thereby averting
a finite escape time. To prove the stability results, consider
the following Lyapunov functions V), : D, x R, — R for
which the following relations hold V,, < uV,, Vt >0, z €
Dy, Vp, qe P, as Dy =Dy NDy [2].

Theorem 1. Consider the switched system in (7) with the
assumption that there exist C* (Dp,Ry) Lyapunov functions
Vp : Dy x Ry — Ry for each p € P with the properties
described in Lemma 1 and Lemma 2. Further assume that
Dy C Dy and the following sufficient conditions hold

1)V x(t) € Dy \ Dy the switching signal satisfies
o(z(t),t)=2.
2)Ifo(x(t7),t7) =2 then o(x(t),t) =1 ifx(t) €
B (0, k) where k= ———.
uNo

3) The constants r1, 19 and the perturbation bounds satisfy

ro > i—ZmaX {7“1, V07 +5§} . T > 01,
where §; = ”N0+ )\151 and 8y = HNO+1>\252 Then

37p > 0 such that f()r the switching signal o (sc, t) satisfying
Conditions 1, 2 and the average dwell time constraint in (8)

with No > 1, 7p > Tp, and ¥ x (0 EB(O \/62/027“2)
following results hold.

1) 3 Ty (r1,r2,C2,C9, Ag,61) € Ry for €1 > 0 such that
X (Tl) € D.

2) 3Ty (e2) > T for 9 > 0 such that the switched system
(7) is practically stable with respect to Q; 2 B(0, k)
and Qy & Dy such that ¥t > Ty, the solutions x (t) =
Y (t,2(0),0 (x(t),t)) € D.

3) The trajectories remain uniformly ultimately bounded in
the sense that limsup ||z () || < d1.

t—o0

Furthermore, if Do = R", then Condition 3 and the Results
1 - 3 hold for any x (0) and any bounded & (t).

Proof: The proof is divided into three parts.

Result 1: Consider the Lyapunov function V, : D, x Ry —
R.. If 2 (0) € Dy, then Result 1 holds trivially for 77 = 0.
Using the definition of the limit, there exists a 7y (£1) for ev-
ery 1 € (0,02) such that Vt > Ty (51) ¢ (t) < g1 which im-
plies sup,> 7, £ (t) < e1. If 2 (Ti(e1)) € B (0 \/02/027“2)
D1 and Condition 1 is satisfied for ¢ € [T1(e1),71) that is
o x [Ti(e1),T1) — 2 for some T7 > Ti(e1), then
Va(w) is differentiable on the interval [7;(¢),T}), and the
derivative of the Lyapunov function satisfies

Va(at) < —Agllzl® + € (1) Aallzl| < =Azllz|® + e kel
A\ 21\
< =22V, 0, Yz > 22 e [Tiler), Th)
202 A

(10)



which leads to the bound ||z (t) || < | /£ rse” B (=TiEe),
[ — %, t € [Ti(e1),T1). Choosing
g € (O,min {A2r1/2/\2,62}), it is sufficient to pick

Ty (r1,72,C2,C9, A9, €1) € <T1 (e1) + %ln (\/%%) 7oo)
ensuring x (T1) € D;.

Result 2:  Let N, (t,t) be the number of switching
instants on the interval ¢t € [t,t). Also, let
t = inf{teRy||z(t ||<I€} and let {t,}""  be a
strictly monotonically increasing sequence of switching
times with ¢t; = t. The existence of such a t can be
established using a similar argument as that of Result 1.
Next, a recursion of upper bounds in (4) and (6) using u
is followed to compute an upper bound on V() ().
Without loss of generality, assume that the Subsystem 1
is active on the interval [ty ,t), then the following upper
bound is obtained

(2(8),1) < p™ Vo (w(t), 1) e 50

o No(t,t) R
+ i IuNgfkefﬁ(tfthﬂ)Ginrl (al’(;%)

- k=0
5\2 Ng(t,t
+ =

t)
pNe TR BTG (03,7 (1) (1D)

k=0

vV x € D;, where the arguments of o are dropped for
brevity. Using the fact that G::“ (min {aq, @z}, ) <
Gi:“ (\/2¢,) < GEZ“ (e,-) for any positive function or
constant, the fact N, (¢,t) — k — 1 < N, (t,tx+1), and by
substituting (9), (11) can be simplified and upper bounded as

th(75%)

Vy (z(t), 1) < pNot? (VU (z(t),t) et 4 oY

Hee ).

From (12) it can be concluded

VI VB <

_2
L2

oW (12)

that |z (¢)] <

\/Cy/Cara. Now by
the definition of the limit, there exists a 73(e2)
such that, Vt > Ta(ea), &2(t) < ey for every
g2 € (0,03), which implies that sup,.z, &2 (t) < eo.
Pick e, € go min { /222 (2 —52),53 1) which
leads to |z (t) | < 1 if [|z(T2)|| < k YVt = Ts(ea).
Such an &9

max{%”x (t

> 0 exists from Condition 3. Choose
Ty (e2) = inf{teR|t>Ts(e2),|lz(t)] <k}, which
ensures the practical stability of the switched system with
respect to 1 and Qy, V¢ > Ts (e2).

Result 3: Consider (12) for ¢t € (T3 (e2),00). Evaluating

the term ’\1 Gt L (6,01) = ;‘/\56 (1 — e <(t=T2(=2))) " taking
limit superlor on both sides, using the reverse version of
Fatou’s lemma and the Lebesgue dominated convergence
theorem [26] to obtain limsup, ,, G (e,6(t)) <
G4, (limsup, ., (€,6*(t))) = 0. Result 3 is obtained

using the Lyapunov function bounds for switched system. W

Remark 1. The result of Theorem [ does not establish
the invariance of D1 with respect to the switched system
trajectories. In general for t € [0,Ty), the system trajectories
may exit Dy but are always in the interior of Do given that
the average dwell time condition in (9) and, Conditions 1-3 of
Theorem 1 are satisfied. If the trajectories exit Dy, Subsystem
2 becomes active due to which the vector field is pointing
inwards, forcing the trajectory back into Dy. After time Ts
the perturbation term go (2, t) becomes small enough so that
the trajectories never exit D1. Note that, Ts can be shortened
by picking appropriate ).

IV. APPLICATION TO OBSERVER DESIGN FOR
PERSPECTIVE DYNAMICAL SYSTEM

Consider a camera in motion with linear and angular
velocities viewing feature points on a static object. Let
m(t) £ [X(t),Y (), Z(t)]' € X be the Euclidean
coordinates of a feature point belonging to the static object
seen by the camera in the camera reference frame. The set
X C R3 is bounded and closed. Consider the state vector
2(t) 2 [y1 (), y2 (t), y3(t)] € Y such that Y C R3 is a
closed and bounded set, where y; (t) = X (t) /Z (t),y=2(t) =
Y (1) /Z (), yst) = 1/Z (t)

Remark 2. The image plane coordinates yi (t) and yo (t)
are bounded by known constants y, < y1(t) <Y1 and y <
ya(t) < Tz due to the image size. The inverse depth ys3(t)
can be lower and upper bounded using the known constants
0<ys<ys(t) <ys [27]

Assumption 1. The depth of the feature point Z (t) is
invertible in the compact set ).

The state dynamics and the measurement model can be
written as

fm (8)w+ Q7 (s,0) y3
fu (&ZB;%W) (]3)

s(t) = Hz(t) (14)

where H = [ I 0ax1 | is the measurement matrix and
s(t) € S are the measurements of the dynamical system
such that S £ {s € ]R2|y71 <y(t) <7 y2 <we(t) < E}
The velocity vector u () = [v" (t) w' (t)}T eU,v(t) =
[ux (t) vy (t) vz (t)]" € V are the linear velocities and
w(t) = [wx () wy (t) wz ()] € W are the angular
velocities of the camera in the camera body reference frame.
The sets U4 € RS, V ¢ R3 and W C R? are bounded. The
functions, f,, (s) € R? and Q (s,v) € R'*? are defined by

fo(s) = | w2 (L+yi) v
" I+ys  —yiye —m
Q(s,0) = [ Y1vz — VX Y2z — Vy ]

fu (8,93,0,w) = v7Y5 + (yawx — Y1wy) Y3 (15)

Assumption 2. The velocities u (t) can be measured in-
termittently. The intermittent biased measurements of the
velocities are of the form ug (t) = wu (t) + d (t), where d (t)



is an unknown disturbance with sup,~ ||d (t) || < d, where
d > 0.

Remark 3. The intermittent availability of the biased veloc-
ity measurements can be attributed to a faulty motion sensor
such as the inertial measurement unit (IMU).

Assumption 3. The functions fn,(s), Q(s,v), and
fu (8,y3,v,w) are bounded and the observability condi-
tion inf;>0Q (s (t),v (1) Q" (s(t),v(t) > kq is satisfied,
where k1 > 0 [28].

For further development of the observers and respective
stability analysis, the state estimation error is defined as
e(t)=z(t)— 2(t), where Z (t) is the state estimate.

Problem Definition and Solution Approach. Given the fea-
ture point measurements s (¢), and the intermittent and biased
measurements of the velocity w4 (t), the goal is to estimate
the state z (¢) such that ||e (t) | < 6, as t — oco. A switching-
based observer is developed to address this problem, where
an EKF observer is used, which yields locally bounded
estimation error when the biased velocity measurement is
available and an observer, which yields asymptotically sta-
ble estimation error, when the velocity measurement is not
available.

A. Locally Bounded Observer

In this subsection, a full order nonlinear observer is de-
scribed, which is activated when the biased velocity measure-
ments are available. In particular the Extended Kalman Filter
(EKF) is used as a deterministic nonlinear local observer.
Consider the EKF as a nonlinear observer described by the
following equations [29]

2(t)=

ug (1)) +P (t) HT R (s(t)— H2(t))

(16)
(AT (t) +alz) P(t) +P (t) (A(t) + als) + W
—P(t)H 'R 'HP (1) (17

P(t) =

where A (t) = %—f . and W, R are symmetric
z=2(t),ua(t)

positive definite matrices of appropriate dimensions, P (ty) =

Py > 0 and @ > 0. The modified differential Riccati equation

in (17) can be solved together with the state estimator in

(16) using numerical integration method such as Runge-Kutta

method [29], [30].

Assumption 4. The solution P (t) of (17) exists for all
t > 0 and satisfies pls = inf;>q |[P~1(t) |[Is < P71 (t) <
sup>q [P~ (¢ ) |13 = pIs.

The error dynamics after a Taylor expansion around Z (t)
and ug (t) can be written as

=(A—PH'R'H)e+
= file(),t)+91 (%)

A (27 2, u»ud) + Q (§’ QS) d
(18)

where A (2, z,u,uq) = A1 (2, 2, u,ug) + Ao (2, 2, u,ug) 1
function due to the higher order terms. The matrix @ (8,
in (18) is defined as

is a
gs)

(1 0 s o —(1+37) 92

Q(3,93)=| 0 —gs Gtz 1+73 —11 52 —i
0 0 93 0203 —1193 0

(19)

The separation of A into A; and A, is based on

the fact that F' is differentiable with respect to z at
most twice almost everywhere (a.e.) and only once a.e.
with respect to u for the particular case of the PDS.
The function A; contains terms from afj?z ejer and
%qekdl and A, contains the terms from af 5 € idi,
where Vi,j,k=1,--- ,3and VI =1, --- 6. Letf1 (e, t)
(A(t)-P(t)H"R'H)e(t) + A1 (2,2z,u,uq) and let
g1 (t) = Ao (2, 2,u, uq) +Q (8, y3) d. The terms for the case
of the PDS are bounded as A; (2,2, u,uq) < Aqlle]|® +
Allel2d] < (D1 + Ad) lel® and [ Az (2, 2 u,ua) +
Q(8,95)d] < < Agllelllldl] +vlld]l < Agdllel] +vd. ¥ Jle]] <
. lld|| < d,u € U for appropriate rj,d > 0, im-
plying that 2 € B(z,7}), where A;, Ay, 74 > 0 and
v & SUD2e3( - g ) Prmax (Q (8,93)). Consider the Lyapunov
function V; : D; x Ry — R, defined as

Vi(e,t)=e P71 (t)e

(20)

2 i g, Dm0
where Dy =B (0,71) such that 7y =min {rl, 4(A1+A’1d)p}'

Given the form of the Lyapunov function it is clear that ¢; =
p, C1 = D, 61 = vd and \; = 2p. In the next lemma, it is
proved that the estimation error of the EKF remains bounded.

Lemma 3. Suppose the disturbance term satisfies d <

\/% %%TUI , and the adjustable parameter is chosen according

. . _ 458 2d—p? prain (W)

to the sufficient condition & > max {O, Z—B}

then ¥ |le(to)|l < \/%7“1, the Lyapunov function in (20)
satisfies the bound

Vi(e(t). 1) < Vi (e (to) to) e 10) AlG;(lﬁ@

2D

where oy = )\, /2p. Furthermore, the ultimate bound on

.. . 525
lle(t)]| is given by h?lsup lle (t)] < \/gfél.
—0c0 =

Proof: Under Assumptions 3 and 4, the Lyapunov func-
tion in (20) satisfies

plel® < Vi (e.1) < ple
A% dV;
e hen<-xilel | <l @

Ve € Dy, where A| = 0.5p% prin (W) + 2ap > 0 [29]. Then
using Lemma 1 A 2 N — 2pAsd > 0 and it is required
that &, < /252

d can be obtained. Then (21) and the ultimate bound follow
from Lemma 1. |

L. Given the expression of ¢, the bound on



B. Asymptotically Stable Observer

In this subsection, a full order nonlinear observer is de-
scribed, which is activated when the velocity measurements
are unavailable. Consider an observer of the form

[ Fr () @+ QT (5,0) s+ T (s — H2)

E5 | Y (5,09, 0,0) + ko (s,0) (s — HZ) | P

where I' € R?*2 is symmetric, I' > 0 and ky > 0 are
suitable observer gains. The estimate of the velocity 4 ()
is obtained using the method in [31]. It is assumed that four
image feature points, which can be tracked across frames, are
available for the velocity estimator along with the knowledge
of the initial rotation between the camera and object frame
and constant coordinates of one feature point in the object
frame. The estimation error of the velocity is defined by
U (t) = u(t)—u(t). The velocity observer in [31] guarantees
that the velocity estimation error remains bounded and the
velocity is identified asymptotically, i.e., ||@(t)] — O as
t — oo. Using the definition of the velocity estimation error,

the observer error dynamics can be written as
é=fale,t) + g2 (e 0t) 24

where e(t) € R3 and

B -T Q7 (s,v) 0
f2_[k2f2(s,v) 0 }”{ ;(e,t)]’
92 = (Q(5,93) + k2B (e, 8)) u (t) (25)
such that
_ O2x6
Be.s) = [ —e1 —ez yier +y2e2 Oixs } , (26)

e1(t) = yi(t) — 91(t), e2(t) = y2(t) — y2(t) and ful(e,t) =
fu (3, Ys, v, W)_fu (57 g?)a v, w) and ||f (67 t) H < Lnyg—’ggH
for the Lipschitz constant L > 0 when §3() is bounded.

Remark 4. The estimate Z(t) of (23) can
be projected on the convex hypercube Z =
{2€R3’%7L§2iSE+L,i:1,2,3} using the

Lipschitz projection law in [22] where 1 > 0.

Remark 5. Since s (t), v (t) are bounded, the perturbation

term can be bounded as ||g2 (e,t) ]| < d4)|a(t)|| = £ (¢)

with & = SUD  pmax (Q (5,93) + B (e,5)) > 0,
e€Dy,2€B(z,r2)

E(t) — 0 ast — oo and 5y = Shsup,sg || (t)

Dy £ B(0,72) is a domain.

, Where

Consider the Lyapunov function V5 : Do — R, with an
arbitrarily large ro defined as

Vo (e) = 1ete, 27)

2
where e (0) is contained in Ds. Given the form of the
Lyapunov function it is clear that ¢, = ¢2 = 1/2 and Ao = 1.
In the next lemma, asymptotic stability of the error dynamics
in (24) using the Lyapunov function in (27) is proven.

Lemma 4. Under Assumption 3, the Lyapunov function in
(27) satisfies

dVs

%ﬁ(@vt) < _A2||€||27 (28)

Ve(t) € Da, where Ay =min {pmin (I, E;:f?%; ki — Lf} >
0. If the velocity estimation error satisfies the sufficient

condition

sup [ (6)| < 2 (29)
>0

then ¥ ||e(to)|| < re the Lyapunov function in (27) satisfies
the bound

Vale (6) = Vale (t))e™ 210+ G, (a2, € (1)) G0)
222

where oy = Ay and the system is asymptotically stable in the
sense that lim;_, . |le(t)|| = 0.

Proof: The proof of (28) follows from [21] and by
applying the Schur Complement Lemma. The results in (30)
and the asymptotic stability follow from Lemma 2. |

Remark 6. The conditions of Lemma 4 can be satisfied by
initializing 1 (0) sufficiently close to u (0).

C. Switching between UUB and Asymptotically Stable Ob-
servers

In this subsection the switching between the UUB observer
of Section IV-A and the asymptotically stable observer of
Section IV-B is discussed based on the framework outlined in
Section II-C when intermittent and biased velocity measure-
ments are available. Consider the switched error dynamics
generated by switching between the error dynamics in (18)
and (24) of the UUB observer and the asymptotically stable
observer, respectively, and denoted by

€= fa(e,t) (6, t) + o (e,t) (6, t) ; (3D
where o : R® x R, — P is a suitable switching signal
with P = {1,2}. The corresponding stability result is
described first based on the result presented in Section
IIl. Later a switching strategy is discussed for the two
observers. To facilitate the analysis, consider the following
constants ¢ = max{g,%}, c = max{ﬁ,%}, n = g, A=
min {\,, A}, A = max{2p,1}, where )\, and )\, are
defined according to the convergence rates of the UUB
and the asymptotically stable observers defined according to
Lemma 3 and Lemma 4, respectively. The following corollary
establishes the stability of the switched observer error system
in (31) when the average dwell time condition is satisfied.

Corollary 1. Let the switched observer error dynamics in
(31) satisfy the conditions of Lemma 1-4 and Theorem 1
along with Assumption 4. Then the Results 1 and 2 of
Theorem 1 hold for some €1, €2 > 0 if the average dwell



time condition in (8) is satisfied. Additionally, the estimation
error is uniformly ultimately bounded in the sense that

2uNotl
limsup [le (¢) || < — pud.
t—o0 AEC

Proof: The proof follows the proof of Theorem 1. MW

The corollary states that the estimation error remains

bounded with an ultimate bound, which is proportional to
the disturbance bound d under a suitable switching signal.

(32)

Remark 7. Suppose the velocity measurements are available,
then the EKF in the switched observer can be used. The
EKF is robust to measurement noise [30], but can only be
used when the velocity measurements are available. When
the velocity measurements are not directly available from the
motion sensor, the asymptotically stable observer in Section
IV-B can be used to estimate the system state by estimating
the velocities using camera images. However, in practice ve-
locity estimation requires the computation and decomposition
of the homography matrix from noisy feature points, which
can affect the velocity estimation. In addition, the velocity
estimation errors affect the convergence bound of the asymp-

: 1 E3(t)
qup%;—g ,Va (t/)} , for

some time ' as seen from the Lyapunov analysis. Thus, the
switched observer is a preferred strategy, which uses EKF
when the velocities can be measured from the sensor and
asymptotically stable observer when the velocities are not
available. The switched observer is also stable over a larger
domain than the EKF.

totically stable observer, i.e., 65 € (

Remark 8. The EKF cannot be used in its original form of
Section IV-A in the absence of the velocity measurements. If it
is used with a zero order hold (ZOH) for velocities, the state
estimates become unstable as demonstrated in simulations.

D. Switching Strategy

In this subsection, a switching strategy is developed to
switch between the observers in Section IV-A and Section
IV-B. The three criteria considered for switching between
the observers are:

o The norm of the estimation error is less than a given
bound, i.e., |le(t) | < k.

o The availability of the biased velocity measurements i.e.,
Uqg (t)

« Satisfaction of the average dwell time constraint 7p.
The first condition implies that the local observer, i.e.,
the EKF, should only be activated when the norm of the
estimation error is sufficiently small as per Condition 2
of Theorem 1. However, the norm of the estimation error
cannot be computed directly. An alternative is to estimate
the norm of the estimation error from output data [10], [32],
[33] if sup,~; || (¢) || is sufficiently small for some suitable
> 0. A norm estimator of the form b = —\yb + ky||s — 5|2
with b(0) € R, which approximates V5, is used to detect
when |le|| < &/, where &' € (0,k). It can be shown that

if the velocities are available, the first switch to EKF
after starting with the global observer occurs in finite
time. Let ¢ £ inf{t' e R |£(t) <&, Vt>1t}, where

’ AQN/ Az E/2 5/2 5/2
S 6(0, .FOrkbe 0,7 @’7_@

, W €

V2
and ¢ € w,“;—%}, the switch occurs for
A2
t > t + iln C,bf’w , where bp % b(f’z € Ry,
such that Vo (e(t)) < w, Vt > t > t and the
detection condition is b(t) < . If (3,t) € S &

{(2,6) € ZXRAIE(E) < &',b(E) < 1t > tuvg, 0 (e,8) = 2}
and the velocity measurement is available, the observer
switches to the EKF, where t,y, = 7p (N (t,0) — No). The
convergence rate of & (¢) can be determined empirically for
implementation purposes. After time 75, defined in Theorem
1, only the second and third conditions are required for
switching due to the practical stability of the switched
system. The asymptotically stable observer and the norm
estimator run at all time steps as a safeguard similar to [10].

V. SIMULATION RESULTS

A simulation study is performed to test the performance of
the switched observer compared to the individual observers
in Sections I'V-A and IV-B. Since, the EKF observer requires
velocity measurements, a ZOH is assumed for velocities
when they are unavailable. The initial state for simula-
tion is selected as z = [0.2,0.3,0.2]"7 and the velocities
are v = [0.4c(ZL),0.55(ZL), —0.4c(%) +0.3s(%L)] T, w =
[0,0.1s(%), 0.10(’%)]1 where ¢ = cos and s = sin. White
Gaussian noise with a mean of 0.001 and standard deviation
0.005 is added to the velocities and zero mean white Gaussian
noise with standard deviation 0.01 is added to the state
measurements. Ten randomly sampled times from [0, 25]s are
chosen for the availability of velocity measurements. The
initial estimate is selected as Z(tg) = [0.2,0.3,1.5]T. The
constants 7 = 5.4 with In(u) = 6.53, (\/2¢) —e = 1.2, k, =
0.01, the EKF gains @ = 1.3, R = 0.00315, W = 213 and the
asymptotic observer gains I' = 2.6 I, ko = 0.93 are tuned
empirically to obtain the best performance. The estimation
is started with the asymptotically stable observer and only
switches to the EKF when the velocity measurements are
available, b (t) < 1.5, and the average dwell time condition
is satisfied. The above condition for b(t) is empirically
chosen since determining the region of convergence of the
EKF is non-trivial. Fig. 1(a) shows faster convergence of the
switched observer, which converges at ¢ = 9.1s in compar-
ison to the asymptotically stable observer, which converges
at ¢ = 26.3s. It is also observed that the EKF with ZOH
for velocity measurements becomes unstable at the switching
instant when the velocities are available. In Fig. 1(a), the EKF
with ZOH error norm (solid green line) coincides with the
switching dashed line as it becomes unstable. The dashed
gray lines show the switching instants with the EKF active
between ¢ = [5.1,8.3)s and ¢ = [17,30]s for the switched
observer. Fig. 1(b) shows the evolution of the state estimate
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Figure 1. Simulation Results showing (a) Comparison of observers based
on error norm. (b) State estimation using switched observer.

compared to the ground truth using the switched observer.
The steady state RMSE for the switched observer is 0.0028
and that of the asymptotically stable observer is 0.0074
demonstrating the robustness of the switched observer to
measurement noise.

VI. CONCLUSION

The problem of switching between the UUB system and
the asymptotically stable system with asymptotically decay-
ing perturbation is considered in this paper. The multiple Lya-
punov function-based stability analysis yields UUB stability
of the switched system when an average dwell time condition
is satisfied. The developed stability results are used for state
estimation of the PDS using switched observers based on
the availability of velocity measurements. Switching between
the observers is shown to be UUB if the observability and
average dwell time conditions are satisfied.
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