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Convolution identities for divisor sums and modular forms
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We consider certain convolution sums that are the subject of a conjecture by Chester,
Green, Pufu, Wang, and Wen in string theory. We prove a generalized form of their
conjecture, explicitly evaluating absolutely convergent sums

∑

n1∈Zr{0,n}

'(n1, n − n1)�2m1(n1)�2m2(n − n1),

where '(n1, n2) is a Laurent polynomial with logarithms. Contrary to original
expectations, such convolution sums, suitably extended to n1 ∈ {0, n}, do not vanish,
but instead, they carry number theoretic meaning in the form of Fourier coefficients
of holomorphic cusp forms.

modular forms | convolution sums | L-values | graviton scattering

In this paper we establish an identity giving a relationship between convolution sums of
divisor functions �r(n) :=

∑
d |n d

r with r ∈ 2Z≥0 and Fourier coefficients of Hecke

eigenforms. For example, our main result implies that for n 6= 0,

∑

n1 ,n2∈Zr{0}
n1+n2=n

 (n1, n2)�2(n1)�2(n2) = −(�(2)n2+420� ′(−2))�2(n)−
75L(Δ, 6)�(|n|)
8L(Δ, 5)|n|3

,

[1]
where  (n1, n2) = 1

2 ( ̃(n1, n2) +  ̃(n2, n1)) for  ̃(n1, n2) defined as

1

(n1 + n2)3

(
n51
n22

+
35n41
n2

− 1099n31 + 1575n21n2 + (420n31 − 2100n21n2) log | n1n2 |
)
,

and L(Δ, s) is the L-function of the weight 12 cusp form Δ(z) =
∑

n≥1 �(n)e
2�inz .

Such an identity is unexpected, and as far as the authors are aware, the only known
relationship between divisor functions and the Ramanujan � function involves finite sums
of odd index divisor functions (1). Generally, shifted convolution sums are of number
theoretic interest due to their connection to moments of and subconvexity bounds for
L-functions (2–4). However, identities such as [1] would be difficult to discover outside
of their natural context and, in this case, the investigation of the particular weighted
sums is motivated by string theory.

Specifically, sums of the form Eq. 1 appear as part of the low energy expansion of the
4-graviton scattering amplitude as well as related calculations in theN = 4 Super-Yang–
Mills (SYM) gauge theory via the anti-de Sitter/conformal field theory correspondence
(5–10). On the one hand, the appearance of holomorphic cusp forms in this context is
unanticipated as they do not appear in corresponding localized computations (5). On the
other hand, when computing the full integrated correlator, the exact identity established
in Theorem 1 together with Manin’s Period Theorem allows one to see that these cusp
forms exactly cancel. This cancellation suggests that the large-N expansion of certain
integrals of the correlator of superconformal primary operators in the N = 4 stress
tensor multiplet can be written as lattice sums (5).

Our work was originally motivated by a conjecture from string theory of Chester,
Green, Pufu, Wang, andWen in (6, Section C.1(a)) that a particular shifted convolution
sum vanishes, and Theorem 1 proves this conjecture. Explicitly, their conjecture can be
written as

∑

n1 ,n2∈Zr{0}
n1+n2=n

'(n1, n2)�2(n1)�2(n2) =

(
�(2)n2

2
+ 30� ′(−2)

)
�2(n), [2]

where
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'(n1, n2) = −
n21
4n22

−
7n1

2n2
−

n22
4n21

−
7n2

2n1
+

47

2

+

(
15 −

30n1

n1 + n2

)
log

∣∣∣∣
n1

n2

∣∣∣∣ . [3]

Note that, unlike [1], there is no term involving Fourier
coefficients of a cusp form in Eq. 2. This conjecture arose from
the fact that a constant multiple of the summation (plus the
negation of the right side) in Eq. 2 appears in the homogeneous
part of the Fourier expansion of a translation invariant solution
to the equation

(Δ − 12)f (z) = − (2�(3)E3/2(z))
2 , [4]

whereΔ = y2
(
∂2x + ∂2y

)
on SL2(Z)\ SL2(R)/ SO2(R) = Γ\H

and Es(z) is the nonholomorphic Eisenstein series

Es(z) =
∑


∈(B∩Γ)\Γ
Im(
z)s, for Re(s) > 1

for B the Borel subgroup in SL2(R) fixing ∞ ∈ H. Such

solutions f (z) to Eq. 4 give the D6R4 coefficient of the low
energy expansion of the 4-graviton scattering amplitude in
10-dimensional type IIB string theory (8–10). For physical
reasons, it was expected that the homogenous solution should
vanish.

In ref. 11, a formal argument was given for Eq. 2; however, the
argument relied on evaluating a double Dirichlet series outside its
region of convergence, and the authors were unable to make this
argument rigorous. Beyond looking for a rigorous proof of the
conjecture, it is natural to ask whether other convolution sums
similar to Eq. 2 might also hold. Explicitly, we can generate a
family of convolution sums via computing homogeneous parts
of the Fourier expansion of the solutions to differential equations
of the form

(Δ − s(s + 1))f (z) = Ea(z)Eb(z) [5]

for other values a, b, and s in R on Γ\H. Solutions f (z) =
E(s, a, b, z, z̄) to Eq. 5 are sometimes called generalized Eisenstein
series and appear in calculations inN = 4 SYM gauge theory (7)
and physicists wondered whether the corresponding sums also
vanish, giving identities similar to Eq. 2. Numerical evidence
told a surprisingly different story. In fact, instead of vanishing,
these sums yield Fourier coefficients of modular forms as we will
see in the statement of Theorem 1.

To state ourmain result precisely, recall the definition of Jacobi
functions of the second kind [see (12, p. 172) for x ∈ Cr[−1, 1],
(13, section 4.61)]:

Q
(�,�)
d (x) =

(x − 1)−�(x + 1)−�

2d+1

×
∫ 1

−1

(1 − t)d+�(1 + t)d+�dt

(x − t)d+1
, [6]

which we extend to x ∈ (−1, 1) by setting Q
(�,�)
d (x) =

1
2 (Q

(�,�)
d (x+ i0)+Q

(�,�)
d (x− i0)). We will only discussQ

(�,�)
d

for �, � ∈ Z≥0 (more precisely, for �, � ∈ 2Z≥0), in which
case the expression on the right in Eq. 6 is single-valued in the
cut plane C r [−1, 1] and defines an elementary function (see
Proposition 1 below).

Theorem 1. Let d ∈ Z>0 and r1, r2 ∈ 2Z≥0. Then, for any
n ∈ Z>0,

∑

n1,n2∈Zr{0}
n1+n2=n

Q
(r1,r2)
d

(n2 − n1

n1 + n2

)
�r1(n1)�r2(n2)

= (−1)dZ
(r1,r2)
d (n)�r1(n) − Z

(r2,r1)
d (n)�r2(n) +

an

nd
, [7]

where

Z
(�,�)
d (n) =

{
(�−1)!(�+d)!
2(�+�+d)!

�(�)n� +
(d+�

d

) � ′(−�)
2 , � 6= 0,

1
4

(
Hd+� + Hd − log

∣∣4�2n
∣∣) , � = 0,

where Hd is the d-th harmonic number and h(�) :=
∑

m≥1 amq
m

is a cusp form of weight

k := 2d + r1 + r2 + 2

on SL2(Z), given by h =
∑

f �f f , where f runs over normalized

Hecke eigenforms* of weight k and level 1, and

�f =
�(−1)d+r2/2+1

2k

(
k − 2

d

)
L?(f, d + 1)L?(f, r1 + d + 1)

〈f, f 〉
.

Here, 〈f, g〉 :=
∫
Γ\H

f (z)g(z)yk−2dxdy denotes the Petersson

inner product, and L?(f, ·) is the completed L-function of f :

L?(f, s) = (2�)−s
Γ(s)L(f, s).

For n < 0, the identity [7] remains true if we write
a|n|
|n|d instead

of an
nd
.

To see how this statement applies to solutions of differential
equations of the form Eq. 5, we note that for a, b ∈ 1/2 + Z>0

and s large enough, the homogeneous solution to Eq. 5 is given by

∑

n∈Z

�n
√
yKs+1/2(2�|n|y)e2�inx

for Ks(z) the modified Bessel function of the second kind and �n
is a multiple of

∑

n1,n2∈Zr{0}
n1+n2=n

Q
(r1,r2)
d

(n2 − n1

n1 + n2

)
�r1(n1)�r2(n2)

+ (−1)d+1Z
(r1,r2)
d (n)�r1(n) + Z

(r2,r1)
d (n)�r2(n),

where r1 = 2a − 1, r2 = 2b − 1, and d = s + 1 − a − b (see
ref. 14).
In what remains of the introduction, we will discuss other work

related to convolution sums of divisor functions. In Section 1.2,
we give a corollary of Theorem 1 which expresses [7] in terms
of polynomials and logarithms as opposed to Jacobi functions
of the second kind. We will also provide some examples of
identities of the form in Eq. 7 and discuss the ramifications
of Theorem 1 in physics. In Section 2, we will establish properties
of the Jacobi function with integer parameters which we later
use in the proof of our main result. In Section 3, we will first
prove some integral identities involvingWhittaker functions.We
then provide a precise statement of the Holomorphic Projection
Lemma which we will then use to prove Theorem 1.

*We say that a Hecke eigenform is normalized if its first nonzero Fourier coefficient is
equal to 1.
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1.1. Related Results. Before the full theory of modular forms
had been developed, Jacobi, Glaisher (15), and Ramanujan (1)
examined sums involving divisor functions. The formula

N−1∑

n=1

�3(n)�3(N − n) =
1

120
(�7(N ) − �3(N )) [8]

was attributed to Jacobi† (16). In 1885, Glaisher gave expressions
for the first powers of series where the coefficients are the sums of
divisor function (15). Motivated by generalizing [8], Ramanujan
manipulated what would later be known as the Eisenstein series
E2, E4, and E6 to study finite convolution sums of odd divisor
functions (1, pp. 136–162). Later in 1969, Lahiri found identities
involving sums of �1 shifted by pentagonal numbers (17).

Generally, identities similar to Eq. 8 involving finite convo-
lution sums of odd divisor functions can be found using holo-
morphic Eisenstein series by computing the Fourier coefficients
of their products or Rankin-Cohen brackets (18, pp. 18 and 56).
Many other examples of such formulas were derived in a recent
work ofO’Sullivan (19) using holomorphic projection.However,
none of these identities treat even index divisor functions nor
infinite sums of them as in Eq. 7.

Perhaps more closely related to this work, Diamantis proved
that one can express quotients of values of L-functions asso-
ciated to a normalized cusp form in terms of certain shifted
convolution sums (20, Theorem 1.1). The formula in Eq. 7
gives an explicit form of such an expression. Motohashi gives
a representation in terms of spectral data of a weighted sum of
divisor functions

∑∞
n=1 �0(n)�0(n + f )W (n/f ), where f ≥ 1

and W ∈ C∞
0 (R>0) (16, Theorem 3).

1.2. Corollaries andApplications. As they appear in string theory,
it is not obvious that these divisor sums can be expressed in
terms of Jacobi functions. It may be useful to instead think of
these weightings as combinations of polynomials in nj, 1/nj, and
log |nj| for j = 1, 2.

Corollary 1. For r1, r2 ∈ 2Z≥0, d ∈ Z>0 and n > 0, let

'(n1, n2) :=

d−1∑

j=−r1

Ajn
j
1 +

d−1∑

j=−r2

Bjn
j
2

+

d∑

j=0

(
Cjn

j
1 log |n1| + Djn

j
2 log |n2|

) [9]

be such that '(n1, n − n1) = O(n−d−r1−r2−1
1 ) for n1 → ±∞.

Then, for n1 + n2 = n,

'(n1, n2) = Γ
(r1,r2)
d Q

(r1,r2)
d

(
n2 − n1

n2 + n1

)
[10]

and thus

∑

n1+n2=n
n1n2 6=0

'(n1, n2)�r1(n1)�r2(n2) = Γ
(r1,r2)
d

×
[
(−1)dZ

(r1,r2)
d (n)�r1(n) − Z

(r2,r1)
d (n)�r2(n) +

an

nd

]
,

†We were unable to find a primary source for this result.

where Z
(�,�)
d and an are as defined in Theorem 1, and

Γ
(r1,r2)
d := (−1)d+1Cdn

d 2d !(r1 + r2 + d)!

(r1 + r2 + 2d)!
, [11]

where Cd is as in Eq. 9.

Note that the values of the constants Aj, Bj, Cj, and Dj are
fixed by Eqs. 10 and 11.
For r1 = r2 = 0 or r1r2 6= 0, the first two terms on the right-

hand side of Eq. 7 coincide with the ones predicted formally
in ref. 21. In the case when there are no cusp forms of weight
k := 2d + r1 + r2 + 2, the predictions given by the formal
arguments in refs. 11 and 21 are proven by Theorem 1. Explicitly,
when specifying r1 = r2 = 2 and d = 1, since there are no cusp
forms of weight 8, Corollary 1 proves the identity [2] as originally
conjectured in ref. 6.Moreover,Corollary 1 proves the conjectures
in ref. 21 by showing that when r1 = r2 = 0 and d = 1, we have

∑

n1 ,n2∈Zr{0}
n1+n2=n

�0(n1)�0(n2)
[n2 − n1

n
log

∣∣∣∣
n1

n2

∣∣∣∣+ 2
]

= (2 − log
(
4�2|n|

)
)�0(n),

[12]

and, when r1 = r2 = 0 and d = 3, we get that
∑

n1 ,n2∈Zr{0}
n1+n2=n

�0(n1)�0(n2) 1(n1, n2)

=
(
11 − 3 log(4�2|n|)

)
�0(n),

where  1(n1, n2) equals

11 −
60n1n2

n2
−

3n31 − 27n21n2 + 27n1n
2
2 − 3n32

n3
log

∣∣∣∣
n1

n2

∣∣∣∣

for n = n1 + n2.
Furthermore, when analyzing the homogeneous solution to

Eq. 5 for a = b = 3/2 and s = 5, a constant multiple of
∑

n1 ,n2∈Zr{0}
n1+n2=n

 (n1, n2)�2(n1)�2(n2)

for  as in Eq. 2 appears. Using Corollary 1 when r1 = r2 = 2
and d = 3, one sees that [1] holds. As a final example, in the
homogeneous solution to Eq. 5 for a = 3/2, b = 5/2, and
s = 11 involves a constant multiple of the sum

∑

n1 ,n2∈Zr{0}
n1+n2=n

�2(n1)�4(n2) 2(n1, n2), [13]

where

 2(n1, n2) =
7106n71

n7
−

22287n61
n6

+
84626n51

3n5
−

110789n41
6n4

+
33286n31
5n3

−
3893n21
3n2

+
2614n1
21n

−
1727

420
+

n

63n1

+
n2

8190n21
−

22n

63n2
−

11n2

1365n22
−

n3

4095n32
−

n4

180180n42

−
(11n81

n8
−

176n71n2

n8
+

924n61n
2
2

n8
−

2112n51n
3
2

n8
+

2310n41n
4
2

n8

−
1232n31n

5
2

n8
+

308n21n
6
2

n8
−

32n1n
7
2

n8
+

n82
n8

)
log
∣∣∣n1
n2

∣∣∣.
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Using r1 = 2, r2 = 4, and d = 8 in Corollary 1, we get that [13]
is equal to

(
�(4)

180180
n4+

33�(5)

4�4

)
�2(n)+

(
−
�(2)

8190
n2+

�(3)

4�2

)
�4(n)+

an

n8
,

where

∑

n≥1

ane
2�inz =

L(9, f1)

168L(8, f1)

(
−29 +

3551
√
144169

)
f1(z)

+
L(9, f2)

168L(8, f2)

(
−29 −

3551
√
144169

)
f2(z)

and

f1(z) = e2�iz + (540 − 12
√
144169)e4�iz + . . .

f2(z) = e2�iz + (540 + 12
√
144169)e4�iz + . . .

are normalized Hecke eigenforms of weight 24.
One implication of Theorem 1 is that certain linear combi-

nations of generalized Eisenstein series E(s, a, b, z, z̄) arising in
physics have no cuspidal components. Such linear combinations
of generalized Eisenstein series occur when examining the
regularized large N expansion of certain integrated correlators
in SU (N ) N = 4 SYM theory. Specifically, it was recently
understood that the four superconformal primary operators in the
N = 4 stress tensormultiplet are obtained from derivatives of the
partition Z of the mass-deformed SU (N ) N = 4 SYM theory
placed on a squashed four-sphere (22, 23). For the partition

function Z , the N−3-term of ∂4m logZ |m=0,b=1 (6, section 2.13)
is given by

�3 E

(
3,

3

2
,
3

2
, z, z̄

)
+

∑

r=5,7,9

[
�r E

(
r,
3

2
,
3

2
, z, z̄

)

+�r E

(
r,
5

2
,
5

2
, z, z̄

)
+ 
r E

(
r,
7

2
,
3

2
, z, z̄

)]
,

[14]

where �i, �i and 
i are all constants defined in ref. 6, section 2.14.
When r = 5, we expect the terms in the Fourier expansions

of E
(
r, 32 ,

3
2 , z, z̄

)
, E

(
r, 52 ,

5
2 , z, z̄

)
, and E

(
r, 72 ,

3
2 , z, z̄

)
which

correspond to the homogeneous solution to Eq. 5 will contain

L-values and Fourier coefficients of the weight 12 cusp form‡
Δ.

However, the linear combination of these terms appearing
in Eq. 14 vanishes. To see this, let L?(s) := L?(Δ, s) and
L(s) := L(Δ, s) and note that 〈Δ,Δ〉 is a common denominator
in all terms, and thus, we can omit it from the consideration.

Moreover, the Z
(r1,r2)
d terms will vanish as they simply contribute

to the cases when n1n2 = 0. Thus, it suffices to consider the sum

4032

5�4
�5D(2, 2, 3) +

7168

5�2
�5D(4, 4, 1) +

3072

5�2

5D(2, 6, 1),

for

D(r1, r2, d) := (−1)d+
r2
2 +12−(2d+r1+r2+2)

× L?(d + 1)L?(d + r1 + 1)

(
2d + r1 + r2

d

)

‡e.g., in the first case, r1 = r2 = 2, d = 3, and thus, k = 2d+ r1 + r2 + 2 = 12.

and �5 = −
135

52�3
, �5 = −

30375

832�5
, and 
5 = −

42525

832�5
(6, section 2.14). After a substitution, it suffices to check that

−
382725L(2)L(4)

53248�13
−

1148175L(4)L(6)

26624�17
+

3189375L(2)L(6)

53248�15

vanishes, which can be done with the help of ref. 24.
We note that the cuspidal contribution to Eq. 14 also vanishes

when r = 7 and r = 9 confirming physical heuristics. In fact,
in ref. 5, the authors found that for higher-order terms in the
1/N expansion for the integrated correlator, the cuspidal terms
cancel as in ref. 14, implying that these terms can be represented
as lattice sums. This result further suggests that there should be a
more optimal choice than generalized Eisenstein series as a basis
for such computations.

2. Jacobi Functions with Integer Parameters

We note that in the case �, �, d ∈ Z≥0, the Jacobi functions

Q
(�,�)
d (x) can be expressed in elementary terms and have the

following characterization (compare with (25, equation 5.7)).

Proposition 1. Let �, �, d ∈ Z≥0 and let P
(�,�)
d denote the Jacobi

polynomial defined in ref. 13, section 4.1. For x ∈ Rr {−1, 1}, we
have

Q
(�,�)
d (x) =

(−1)�

2
P

(�,�)
d (x) log

∣∣∣x + 1

x − 1

∣∣∣+ R(x)

(x − 1)�(x + 1)�
,

[15]

where R ∈ Q[x] is a polynomial of degree d +�+�−1. Moreover,
let F be any function of the form

F (x) = P(x) log
∣∣∣x + 1

x − 1

∣∣∣+ R(x)

(x − 1)�(x + 1)�
[16]

with P, R ∈ R[x], and P of degree ≤ d such that F (x) =

O(x−d−�−�−1), x → ∞; then, F must be a multiple of Q
(�,�)
d (x).

Proof: The first claim follows from the integral representation
(13, equation 4.61.4)

Q
(�,�)
d (x) =

(x − 1)−�(x + 1)−�

2

×
∫ 1

−1

(1 − t)�(1 + t)�P
(�,�)
d (t)dt

(x − t)
,

and writing
∫ 1
−1

p(t)dt
x−t = p(x)

∫ 1
−1

dt
x−t −

∫ 1
−1

p(x)−p(t)
x−t dt.

From Eq. 6, it immediately follows that

Q
(�,�)
d (x) ∼ Cx−d−�−�−1 , x → ∞ [17]

for some C 6= 0, so Q
(�,�)
d (x) = O(x−d−�−�−1) as x → ∞.

Now assume that F is given by Eq. 16 and satisfies F (x) =

O(x−d−�−�−1). Any polynomial can be written as a linear
combination of Jacobi polynomials, thus

P(x) =

d∑

j=0

cjP
(�,�)
j (x) [18]

for some cj ∈ R. Consider
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G(x) := F (x) − 2(−1)�
d∑

j=0

cjQ
(�,�)
j (x) ,

where cj are as in Eq. 18. Then, on the one hand, Eqs. 15,

16, and 18 imply that G(x) is of the form (x − 1)−�

(x+1)−� R̃(x) for some polynomial R̃, and on the other hand, the

assumption that F (x) = O(x−d−�−�−1) and Eq. 17 imply that
G(x) = O(x−�−�−1). This can only happen if R̃ vanishes, and

hence G = 0. SinceQ
(�,�)
j (x) ∼ Cjx

−j−�−�−1 for some Cj 6= 0

and F (x) = O(x−d−�−�−1), we also see that cj = 0 for j =

0, . . . , d − 1, and thus, F is a multiple of Q
(�,�)
d , as claimed. �

In view of the above characterization, the polynomial R
from Eq. 15 can be computed from the following identity for
formal Laurent series in X

(1 − X−1)�(1 + X−1)�

2
P

(�,�)
d (X−1) log

(1 + X

1 − X

)

= R(X−1) + O(X ) .

We note that each Jacobi function can be represented in terms
of the hypergeometric function 2F1. More precisely, from ref. 13,
equation 4.61.5 and the symmetry

Q
(�,�)
d (x) = (−1)�+�+d+1Q

(�,�)
d (−x),

we obtain

Q
(�,�)
d (x) =

2d+�+�(d + �)!(d + �)!

(2d + � + � + 1)!(x − 1)�(x + 1)d+�+1

× 2F1

(
d + � + 1, d + 1; 2d + � + � + 2;

2

1 + x

)
,

[19]

where in order to incorporate the extension of Q
(�,�)
d (x) to x ∈

(−1, 1), we set for t > 1

2F1(a, b; c; t) :=
1

2

(
2F1(a, b; c; t + i0) + 2F1(a, b; c; t − i0)

)
.

[20]

We will use this definition of Q
(�,�)
d (x) in terms of hyperge-

ometric functions to compute Mellin transforms of Whittaker
functions in the following section. Thus, we additionally need
some results on the Mellin transform of the hypergeometric
function 2F1. Specifically, by (26, p. 314, equation 2.21.1.2),

∫ ∞

0

Γ(a)Γ(b)Γ(c − a)Γ(c − b)

Γ(c)
2F1(a, b; c; 1 − x)xs−1dx

= Γ(s)Γ(s − (a + b − c))Γ(a − s)Γ(b − s) ,
[21]

from which one also gets

∫ ∞

0

Γ(a)Γ(b)Γ(c − a)Γ(c − b)

Γ(c)
2F1(a, b; c; 1 + x)xs−1dx

= cos(�s)Γ(s)Γ(s − (a + b − c))Γ(a − s)Γ(b − s) ,
[22]

where we define 2F1(a, b; c; t) for t > 1 as in Eq. 20.

3. Proof of the Main Result

Let W�,� denote Whittaker’s W -functions as in ref. 27,
Eq. 13.14.1 or (28, p. 386). It will be convenient to extend
W�,� to a function defined on R r {0} as follows

W�,�(y) :=
Γ(1/2 + � − sgn(y)�)

Γ(1/2 + � − �)
Wsgn(y)�,�(|y|) , y 6= 0 .

[23]
Next, we will need two results aboutW�,�.

Lemma 1. For �,� ≥ 0 and Re(s) > � − 1/2 we have

∫ ∞

0
W�,�(t)e

−t/2t s−1dt =
Γ(s − � + 1/2)Γ(s + � + 1/2)

Γ(s − � + 1)
[24]

and for � ≥ Re(s) > � − 1/2 we have

∫ ∞

0
W�,�(−t)et/2t s−1dt

=
cos(�(� − �))

�
Γ(s − � + 1/2)Γ(s + � + 1/2)Γ(� − s) .

[25]

Proof: The first equation is a special case of (28, section 6.9
and Eq. 8). The second equation is (28, section 6.9 and Eq. 7)
together with the functional equation for the gamma function.
[Note that there is a typo in ref. 28, section 6.9 and Eq. 7,
compare with (27, Eq. 13.23.5).] �

Lemma 2. Let k1, k2, m1, m2 ∈ Z≥0 satisfy mi ≤ ki and m1 +
m2 < k1 + k2, and set

` := k1+k2−m1−m2−1 and q := k1+k2+m1+m2−1.

Then, for any a, b ∈ R such that a + b = 1 and ab 6= 0, one has

∫ ∞

0
Wk1,m1(ay)Wk2,m2(by)e

−y/2yk1+k2−2dy

=
2(−1)k1−m1q!`!

�
|a|m1+1/2|b|m2+1/2Q

(2m1,2m2)
` (b−a) .

Proof: We first consider the case a ∈ (0, 1) and define I1(x) for
x > 0 by

x−m1−1/2

∫ ∞

0
Wk1,m1(xy)Wk2,m2(y)e

−(1+x)y/2yk1+k2−2dy .

To prove the lemma in this case, it suffices to show that

I1(x) = 2(−1)k1−m1`!q!
Q

(2m1,2m2)
` ( 1−x

1+x )

�(1 + x)q+1
. [26]

Using [24] and (28, section 6.1 and Eq. 13) we obtain that
for 2m1 < Re(s) < k1 + k2 +m1 −m2, the Mellin transform of
I1(x) is equal to

M(I1, s) =
Γ(s − 2m1)Γ(s)Γ(` + 2m1 − s + 1)Γ(q − s + 1)

Γ(s − m1 − k1 + 1/2)Γ(k1 + m1 − s + 1/2)

=
1

�
cos (�(s − k1 − m1))Γ(s − 2m1)Γ(s)×

× Γ(` + 2m1 − s + 1)Γ(q − s + 1).
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With the help of Eq. 19, we write

C1 ·
Q

(2m1,2m2)
` ( 1−x

1+x )

(x + 1)q+1

=C1 ·
Γ (q − 2m2 + 1)Γ (q − 2m1 + 1)

2Γ(2k1 + 2k2)

× 2F1 (q − 2m2 + 1, q + 1; 2k1 + 2k2; 1 + x) . [27]

By Eq. 22, the Mellin transform of Eq. 27 is equal to

C1 ·
cos(�s)Γ(s)Γ (s − 2m1)

2Γ (` + 1)Γ (q + 1)

× Γ (−s + q − 2m2 + 1)Γ (−s + q + 1) .

In order for the expression above to coincide with M(I1, s),
we must require that

C1 =
2Γ (` + 1)Γ (q + 1) cos (�(−k1 − m1 + s))

� cos(�s)
.

Thus, we obtain for k1 + m1 ∈ Z that I1(x) is equal to

2

�
Γ (` + 1)Γ (q + 1) cos (�(k1 + m1))

Q
(2m1,2m2)
` ( 1−x

1+x )

(x + 1)q+1
.

If `, q ∈ N0 and k1+m1 ≡ k1−m1 mod 2,we get exactly [26].
It remains to prove the result for a < 0 (the case b < 0 follows

by symmetry). For x > 0, we define I2(x) as

∫ ∞

0
x−m1−1/2Wk1,m1(−xy)Wk2,m2(y)e

−(1−x)y/2yk1+k2−2dy,

and again using Lemma 1 and (28, section 6.1 and Eq. 13), we
calculate M(I2, s) is equal to

cos(�(k1 − m1))

�
Γ(s − 2m1)Γ(s)Γ(k1 + m1 − s + 1/2)

×
Γ(` + 2m1 − s + 1)Γ(q − s + 1)

Γ(k1 + m1 − s + 1/2)

with the same fundamental strip as before. With the help of
Eq. 19, we write

C2 ·
Q

(2m1,2m2)
` ( 1+x

1−x )

(1 − x)q+1

= C2 ·
Γ (q − 2m2 + 1)Γ (q − 2m1 + 1)

2Γ(2k1 + 2k2)

× 2F1 (q − 2m2 + 1, q + 1; 2 (k1 + k2) ; 1 − x) .

[28]

By Eq. 21, the Mellin transform of Eq. 28 is equal to

C2 ·
Γ(s)Γ (s − 2m1)Γ (−s + q − 2m2 + 1)Γ (−s + q + 1)

2Γ (` + 1)Γ (q + 1)
.

In order for the expression above to coincide with M(I2, s),
we must require that

C2 =
2

�
cos (� (k1 − m1))Γ (` + 1)Γ (q + 1) .

Thus, I2(x) is equal to

2

�
cos (� (k1 − m1))Γ (` + 1)Γ (q + 1)

Q
(2m1,2m2)
` ( 1+x

1−x )

(1 − x)q+1
.

If we assume k1 − m1 ∈ Z and `, q ∈ N0, then we obtain

I2(x) = 2(−1)k1−m1`!q!
Q

(2m1,2m2)
` ( 1+x

1−x )

�(1 − x)q+1
, [29]

which is easily seen to imply the claim of the lemma for
a < 0. �

Finally, we recall the holomorphic projection lemma from
ref. 25 (we restrict to the case of SL2(Z)).

Lemma 3 [Holomorphic Projection Lemma]. Let Φ̃ be a
nonholomorphic modular form of weight k > 2 for SL2(Z) with a
Fourier expansion Φ̃(z) =

∑
m∈Z

am(y)e2�imx , and suppose that

for some " > 0 we have Φ̃(z) = O(y−") as z → i∞. Define

am =
(4�m)k−1

(k − 2)!

∫ ∞

0
am(y)e−2�myyk−2dy , m > 0 .

Then, the function Φ(z) =
∑

m>0 ame
2�imz is a holomorphic

cusp form of weight k for SL2(Z) and moreover 〈f,Φ〉 = 〈f, Φ̃〉 for
all f ∈ Sk(SL2(Z)).

Proof of Theorem 1: With our notation forW�,� the completed
nonholomorphic Eisenstein series E∗

2k(z, s), k ∈ Z≥0, has the
following Fourier expansion [cf. (29, p. 210), (30, section 3)]

E∗
2k(z, s) = ck,s(y) + (−1)k

∑

n6=0

�2s−1(n)

|n|s
Wk,s−1/2(4�ny)e

2�inx .

Here,

ck,s(y) =





�k(s)y
s + �k(1 − s)y1−s

for s > 1/2 ,
Γ(k+ 1

2 )√
�

(
 
(
k + 1

2

)
+ 2
 + log(y/�)

)√
y

for s = 1/2 ,

where �k(s) = �−s
Γ(s+k)�(2s),  (z) is the digamma function,

and 
 denotes the Euler–Mascheroni constant.Denotemi = ri/2
and let

Φ̃(z) = E∗
2k1

(z, m1 + 1/2)E∗
2k2

(z, m2 + 1/2)y−k1−k2 ,

where we choose the integers k1 and k2 to satisfy 2k1 + 2k2 =
k = r1 + r2 + 2d + 2 and ki ≥ mi. Expanding the product
of the Fourier expansions of the two Eisenstein series we see
that the coefficients of the holomorphic projection of Φ̃ can be
calculated as

an =
∑

n1+n2=n

an1,n2 ,

where for n1n2 6= 0 we have

an1,n2 =
(4�n)w−1

(w − 2)!

(−1)k1+k2�r1(n1)�r2(n2)

|n1|m1+1/2|n2|m2+1/2

×
∫ ∞

0
Wk1,m1(4�n1y)Wk2,m2(4�n2y)e

−2�nyyk1+k2−2dy

= 2(−1)k2+m1(4�)k1+k2nd�r1(n1)�r2(n2)

×
d !(d + r1 + r2)!

�(2d + r1 + r2)!
Q

(r1,r2)
d

(n2 − n1

n

)
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by Lemma 2. The boundary terms can be calculated from
Lemma 1 as

an,0 = (−1)k2
(4�n)k−1

(k − 2)!

�r1(n)

|n|m1+1/2

×
∫ ∞

0
Wk1,m1(4�ny)ck2,m2+1/2(y)e

−2�nyyk1+k2−2dy,

[30]

that is,

an,0 = (−1)k2
2k�

k
2−1 cos (�m2)

(k − 2)!
nd�r1(n)

×
(
nr2� (r2)Γ (r2)Γ (d + 1)Γ

(
k
2 + m1 − m2

)

+ � (−r2)Γ (−r2)Γ
(
k
2 − m1 + m2

)

× Γ (r1 + r2 + d + 1)
)
,

where r2 6= 0 and, similarly,

a0,n = (−1)k1
2k�

k
2−1 cos (�m1)

(k − 2)!
nd�r2(n)

×
(
nr1� (r1)Γ (r1)Γ (d + 1)Γ

(
k
2 − m1 + m2

)

+ � (−r1)Γ (−r1)Γ
(
k
2 + m1 − m2

)

× Γ (r1 + r2 + d + 1)
)

[31]

when r1 6= 0. When r2 = 0, an,0 can be obtained by taking a
limit r2 → 0 in Eq. 30 due to the absolute convergence of the
respective integrals:

an,0 =
(−1)k22k−1�

k
2−1n

k
2−m1−1

Γ

(
k
2 − m1

)
Γ

(
k
2 + m1

)

(k − 2)!

×
(
Hk/2−m1−1 + Hk/2+m1−1 − log(4�2n)

)
�r1(n),

where Hd =  (d + 1) + 
 and

a0,n =
4d+m1+1�d+m1 cos (�m1) n

d−m1�0(n)

(2 (d + m1))!

× (Γ(d + 1)2n2m1� (r1)Γ (2m1)

+ � (−r1)Γ (−r1)Γ (d + 2m1 + 1)2)

Similarly, when r1 = 0, a0,n can be obtained by taking a limit
r1 → 0 in Eq. 31. When r1 = r2 = 0, we obtain

a0,n = an,0 =
22d+1(−1)d�dndΓ(d + 1)2

(2d)!

×
(
2Hd − log

(
4�2n

))
�0(n).

By the result of Diamantis and O’Sullivan (31, Prop. 2.1), for
any normalized Hecke eigenform f ∈ Sk(SL2(Z)) we have

〈f, Φ̃〉 = 2(−1)k2�kL?(f, d + 1)L?(f, r2 + d + 1)

= 2(−1)k2+m2−m1−d−1�kL?(f, d + 1)L?(f, r1 + d + 1) ,

from which, in combination with the above formulas for an1,n2 ,
we recover [7]. �

Proof of Corollary 1: We recall n > 0. We use the substitution
n1 = n

2 (1 − x), n2 = n
2 (1 + x) so that '(n1, n2) becomes

a function of n and x, call it 'n(x). The summation in 'n
containing logarithms becomes

log | x+1
x−1 |Pn,2(x) + log |x − 1|(Pn,2(x) + Pn,3(x)),

where Pn,2(x) and Pn,3(x) are polynomials in x with the degree at

most d . The growth condition'(n1, n−n1) = O(n−d−r1−r2−1
1 )

for n1 → ±∞ and fixed n implies thatPn,2(x)+Pn,3(x) vanishes.
After substitution, we get

'n(x) =
Pn,1(x)

(1 − x)r1(1 + x)r2
+ Pn,2(x) log | x+1

x−1 |,

where Pn,1(x) is a polynomial in x of degree at most r1 + r2 +
d − 1. Thus, by Proposition 1, the function 'n(x) (considered as
a function of x while keeping n fixed) is a constant multiple of

Q
(r1,r2)
d (x). We recall that the coefficient of Q

(r1,r2)
d ( n2−n1

n1+n2
) in

front of log |n1| is equal to

(−1)r1+1

2
P

(r1,r2)
d

(
n2 − n1

n1 + n2

)

=
(−1)r1+1

2(n1+n2)d

d∑

s=0

(−1)s(d + r1)!(d + r2)!n
s
1n

d−s
2

s!(d − s)!(s + r1)!(d − s + r2)!
.

Changing the variables n2 = n − n1, we obtain a polynomial
in n1

n with leading coefficient

(−1)r1+1

2

d∑

s=0

(−1)d
(d + r1)!(d + r2)!

s!(d − s)!(s + r1)!(d − s + r2)!

=
(−1)r1+d+1

2

(r1 + � + 2d)!

d !(r1 + r2 + d)!

(n1
n

)d
.

Comparing the leading coefficients of 'n(x) and Q
(r1,r2)
d (x)

we see that

'n(x) = (−1)r1+d+1Cdn
d 2d !(r1 + r2 + d)!

(r1 + r2 + 2d)!
Q

(r1,r2)
d (x).

The expression above also fixes Aj, Bj, Cj, and Dj. �

Data, Materials, and Software Availability. There are no data underlying
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