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ARTICLE INFO ABSTRACT
Keywords: This work constructs the first-ever sixth-order exponential Runge—Kutta (ExpRK) methods for
Exponential RK methods the time integration of stiff parabolic PDEs. First, we leverage the exponential B-series theory
;‘::; Md;" mnd;::";s to restate the stiff order conditions for ExpRK methods of arbitrary order based on an essential

~0rder me

set of trees only. Then, we explicitly provide the 36 order conditions required for sixth-
order methods and present convergence results. In addition, we are able to solve the 36 stiff
order conditions in both their weak and strong forms, resulting in two families of sixth-order
parallel stages ExpRK schemes. Interestingly, while these new schemes require a high number of
stages, they can be implemented efficiently similar to the cost of a 6-stage method. Numerical
experiments are given to confirm the accuracy and efficiency of the new schemes.

1. Introduction

In this paper, we are concerned with time integration of stiff systems of initial value problems of the form
u'(t) = Au(t) + g, u()) = F(t,u@),  uty) = up. (1.1

These problems typically arise from spatial discretization of parabolic partial differential equations (PDEs), such as diffusion—reaction
problems. The stiffness here lies in the linear part, where || A|| exhibits a large norm or even represents an unbounded operator. We
assume that the nonlinearity g(z, u) satisfies a local Lipschitz condition with a moderate Lipschitz constant.

Explicit exponential Runge—Kutta (ExpRK) methods have shown to be highly competitive among the viable time integration
methods for integrating stiff systems (1.1), see, e.g., [1-9]. They were constructed by approximating the true solution of (1.1)
represented via the Duhamel’s formula, leading to the following class of s-stage schemes (see [4,5]):

i-1
Uy =ty + c;hep (¢, RAYF (1, u,) +h Y a,,(hA)D,;, 2<i <5, (1.2a)
=2

5
Uiy =ty + hy (HAF (ty,u,) + b Y bi(hA)D,;, (1.2b)
i=2
where D,; = g(t, + ¢;h, Uy;) — g(t,, w,), Uy = ult, +¢;h), h=1,,, —1t, > 0 is the time step size, and ¢; are nodes. The coefficients g;;(z)
and b;(z) are usually linear combinations of the following functions and their scaled versions

1 i k-1
mz):A e mda, k> 1. (1.3)
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In [1], stiff ExpRK methods with orders up to 4 were derived. Building upon this work, a new stiff order condition theory was
developed in [10], enabling the derivation of a fifth-order ExpRK method in [5]. None of the previously constructed ExpRK methods,
however, satisfies all the required stiff order conditions in the strong form. In particular, many of the order conditions have been
relaxed in order to reduce complexity and minimize the number of stages when solving them. Very recently, new stiff ExpRK methods
of orders 4 and 5 were constructed in [9] by relaxing only one order condition as well as allow for parallel implementation of multiple
internal stages, resulting in improved accuracy and efficiency. Note that ExpRK methods might experience order reduction when
applied to PDEs with inhomogeneous time-dependent (i.e., non-vanishing) boundary conditions. However, this issue can be avoided
by employing a technique recently proposed and used in [11-14] for both linear and nonlinear problems.

Due to the substantial growth in the number of stiff order conditions for ExpRK methods, constructing methods of order higher
than 5 is nontrivial as this further increases the complexity in solving these order conditions (which involve matrix functions). For
example, it was shown in [10, Table 5.2] that the number of stiff order conditions required for ExpRK methods of order 6 is 36,
compared to 9 and 16 conditions for fourth- and fifth-order methods, respectively.

In this work, we leverage the exponential B-series theory [10] to explicitly derive the set of 36 stiff order conditions required for
ExpRK methods of order 6. Notably, we not only achieve the solution to these 36 conditions by weakening just one condition, but
also successfully satisfy all the stiff order conditions in their strong forms, i.e., without weakening any conditions. As a result, we
derive the first-ever sixth-order constructed stiff ExpRK methods. Additionally, while these new schemes require a high number of
stages, they can be implemented efficiently similar to a 6-stage ExpRK method. This is possible because they are designed to have
multiple independent internal stages, allowing for simultaneous or parallel implementation.

The organization of the paper is as follows: In Section 2, we present the stiff order conditions for ExpRK methods of any order
based on an essential set of trees only. Additionally, we explicitly provide the 36 order conditions required for stiff ExpRK methods
of order 6. Section 3 presents convergence results for ExpRK methods of order 6. With this, in Section 4 we derive the first two
families of stiff ExpRK methods of order 6, which can be implemented as the cost of a 6-stage method. Finally, a numerical example
is presented in Section 5 to illustrate the theoretical results. The primary contributions of this work are the new stiff order conditions
presented in Table 1 and the construction of the two families of sixth-order stiff ExpRK methods, ExpRK6s15 and ExpRK6s16.

2, Stiff order conditions for ExpRK methods of order 6

We begin by denoting and introducing the following sets of trees:
T,=[o}u{r=(): k=2,3,...}, in which 0 represents « (), and (k) represents u®(r) (k > 2).

T, represents for all the terms involving the time derivatives of g(u(f)) and its elementary differentials, which can be defined
recursively as the smallest set of trees, satisfying the property if 7,,...,7, € T, UT,, then r = [7y,...,7,] € T,. Here, [,-,] is the
commonly used notation for an operation that combines a finite number of trees ry,..., 7, by connecting them to a new shared
black root node -, thereby producing a new tree denoted as r = [r, ..., 7,,]. With this, one can write

Tg =[r=[z, ;1] i ET, UTg, i=1,..,m}. (2.1)
Next, we consider two disjoint subsets of T,, denoted by T} and T, which are given as:

T = v =T ) S5y =0p sy m) =r= [@wn0] tmz 1= . 4 . T (2.2)
1 1 s { f v \i/ W }
m times
that is used to represent for g™ (u))(i/(¢), ... '), m > 1, and
s

m times

T2={r=[r,.....r,,,]:qe{o}unu'_rz,f=1.....m}={}) Y C\/? . E ; } (2.3)

Foratree r € T, U T,, we also use the standard notions such as the order of r, denoted by |z|, and its symmetry coefficient (see,
e.g., [15]), denoted by o(r), which are defined recursively by

1, t=0€T,
|lt| =<k, r= @ eT, (2.4)
1+z:.”:| Inl, ==ty €T,
|=]1, teT,,
o(r) = k : ",,] e (2.5)
Hi:l nleo(h), = [rl s T ]eT,,
where the notation [r;'],....r;"] stands for a tree r = [r),...,1,] which has k distinct branches among 7,...,7,, say 7j,..., 7,
corresponding to the number of occurrences ny, ..., ng, respectively, with n; + -« + np =m.

Using these set of trees and notations, below we present a simplified version of the main result of [10, Theorem 5.1] which is
sufficient to derive stiff order conditions for explicit ExpRK methods of arbitrary order.
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First, we note that since ExpRK methods are invariant under the transformation of (1.1) to its corresponding autonomous version,
i.e., replacing g(t, u) by g(u) (see [5]), the order conditions hold the same for both formats. Therefore, for the sake of simplicity in
presenting the derivation of order conditions, one can consider (1.1) with g(t, u) = g(u).

Lemma 2.1. Assuming that A is the infinitesimal generator of an analytical semigroup e'4 on a Banach space X and the nonlinearity
£:X — X is sufficiently often Fréchet differentiable in a strip along the exact solution, and that u: [ty,1,,4] — X is sufficiently smooth
with derivatives in X (all occiurring derivatives are assumed to be uniformly bounded). Then, the required order conditions for stiff ExpRK
methods (1.2) of order p applied to (1.1) are

# el
Z bj(hA)——— = @, (hA) for dll T € Ty with |t| < p, (2.6a)
R (L BT
Z b(hA)E™ w)(Sy(r))W), ..., Si(z,)w)) =0 for all == [zy,...,1,] € T, with || < p, (2.6b)

i=2
where S;(t;)(u) are the elementary differentials given recursively as

el (1), ifp,=0€T,
) 4 rpo
Si(r)u) = { Veri(hA) g @ (@), ... ' ®), if.=[0,...,0l €T @
_ ¢ times ¢ times
fosn) 5 4y O W(S) @)W, .. Sj (W), I 7 = [y, T ] €T
with
i—1 cz—l
vy i(hA) = g‘aa,-k(mm ~ ¢/ py(c;hA). 2.8)

Proof. Considering one-step integration (1.2) from ¢, to t,,, = t, + h, we denote &, = @,,; — u(t,,,) as the local error of ExpRK
methods, where i, represents the numerical solution obtained using the initial value &, = u(r,). Using the results of [10, Section
5.2], it is clear that the set of trees {0} UT; UT; introduced earlier constitutes a minimal set of trees required for deriving the stiff
order conditions (2.6). Specifically, by using [10, egs. (5.1)], one can express the local error &,,, as

X frl-1
Epp1 = AT (Y, bi(hA) oy — @1y (BA) ) 8™ () (& ), - ¥ (2))
m ames

i ¥ hm%Z‘ib;(hA)g“"](ﬁ,.)(S,-(rl}(ﬁ,.),....S,-(r,.)(ﬁ,.)) 2.9)

+ Z Al (same weighted coefficients as trees in T} or T, ) X (corresponding elementary differentials).
€T, | (TyUTy)

~
remainder rerms including the trees which have the same order conditions with trees in TyUTy

The assumption on A implies that the semigroup ¢4 can be bounded uniformly (see, e.g., [16,17]) and thus b;(hA),q; j(hA), and
w;(hA) are uniformly bounded as well. Together with the remaining assumptions of Lemma 2.1, one can then truncate (2.9) up to
any stiff order p = |r| which requires the conditions (2.6). []

By using Lemma 2.1, we can explicitly provide the 36 order conditions required for stiff ExpRK methods of order 6 by only
drawing trees in T}, UT, up to order 6 and using (2.6), see Table 1 below. There, we note that the 20 order conditions from No. 17
to 36 are new. With this result, we now present convergence results for ExpRK methods of order 6.

3. Convergence results for sixth-order stiff ExpRK methods

Throughout this section, we denote C as a generic constant that may have different values at different occurrences.

Theorem 3.1. Under the assumptions of Lemma 2.1, an explicit ExpRK method (1.2) applied to the IVP (1.1), that fulfills all the 36
order conditions of Table 1 either strictly in the strong sense (without relaxing any conditions) or with the exception that only condition No.
5

17 holds in a weakened form 3, , b,—(O)% = @g(0) = é, converges with order 6. In particular, its global error e, = u, — u(t,) satisfies the
bound ' '

llewll = lluw, —ut,)|l < Ch® 3.1)

uniformly on time intervals ty < t,, = ty + nh < t,nq with a constant C that depends on t ;4 — to, but is independent of n and h.
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Table 1
Order trees and stiff order conditions for explicit ExpRK methods up to order 6. The variables Z, J, K, L denote arbitrary square
matrices, and B an arbitrary bilinear mapping of appropriate dimensions. The functions y,; are defined in (2.8).

Mo | Order Tree Suiff crder conditions No | Order Tree Stiff order conditions
i o -
1] 2 . L)z bAZ0, = w3l Z) a :
[ 9o " o G e
2| 3 ¥ L85 = 4l 23| 6 . Tl ek BT o, (23 Ky (Z) =0
. c D
3 3 . Eoa bty (£1=0 .
t oo y i
| . 5 . 1 E I-1 oy o
4 4 -n L biZ1E = g2y 24 6 . _! i b Zw K E 0 (21 (2)=0
Y .
5 4 . Fra b Zie Ky i Zy=10 .
ao
Qe
. 3 =] -1
6| 4 H T b (2= L ol b2k 0 0 (207 Eiy 02V w0 2) =0
o 2 Y 0Q 0
: ..
7| a . i b2 Bk a (2w (2) =0 26 6 . T BAZIB ey (), p1y (Z)) = 0
@ 5 W b I\.EZ]'J;: = sl Z} ce
Q - .
oo e 27 6 . iz BAZ)B W (20, B @ (2 s (Z)) =0
9| s . T b7k Ly AZ) = 0 e Zia w220, Zia i 2(2))
(1N - .
oe 1 P T
w | & " B B(2¥ Ky (2) =0 | 6 o Lz s (Zy=0
- 2 Q.
Qe <t L .
11 5 . o b2 K Bk a2y, (Z1 =0 29 6 . T b2 T a (2 Ky (Z) =0
oo o+ ]
. . - o0 e
12 5 Eooa BB gy (20, wy () = 0 v
el 0| 6 . Bl b2 B ey Zie, Ky (Z) =0
13 5 . Tl By (21 =0
L]
- o
Y '] =1 .
| 5 i T biZN T2 0020 Ky (Z) = ) 31| 6 . T (2 i ey (Z0e K T a2 v (Z) =0
B i
L
15 5 B2 B e (M (Zy = 0 . - - 5 : 5
BB RN 2| 6 . T b2 L o (Z) By, ()9 () =0
1 ooo
.
'3 -t “1 L]
18 | 5 A L@ E5 o @) L an@ysa im0 | | g3 & . T 812 Dk a (2w, (2) =0
17| 6 BB E = pd®) o
a .
B . - : .
| 6 Y El M) Kya( @) =0 u| 6 . T 2N B 0120 Bl ap (@i Kuay (@) =0
X . Q0
1% [ . Bl i Ky (£ =0 L4
o .
b * E zl 1 E.r 1
Lo . m = 35 6 . imy BEN B ag (20 F o Z W gy (2= 0
o 6 . T 2K T ey 20w (1 =0 ’ =y o O o
> ¢ 2
oo . .
21 6 ] o e Bl (), o A Z)) =0 :
6o 6
= - " -
2| & v B e K (Z) w0 # 6 . T 02 B (200 B0 (20 B 0 (20w, (2) = 0
Proof. It was shown in [5, Sect. 4.3] that
n—1 n—1
— - (n—jIhA jhA ~
e, =u, —uit,)=h E eV PN (e de+ Y elilE, 4 (3.2)
=il =0

where the operators K; depend on ¢; (as well as b;(hA), a;;(hA), £™()(,...,.)), which can be shown to be bounded on X under the
given assumptions (see [5, Lemma 4.1.]). Let us now consider the first scenario where all 36 stiff order conditions for ExpRK methods
of order 6 are strictly satisfied. In this case, it is clear from (2.9) that, for |z| = 6, the local error &,,, = @(h’). The assumption on
A implies |e™ | y._x < C, t > 0. Therefore, one can bound e, in (3.2) as

n—1 n—1

lleall < b Y’ Cliell + Y, Ch’. (3.3)
j=0 j=0

An application of a discrete Gronwall lemma to (3.3) shows the error bound (3.1) at once.
Finally, we consider the second scenario wherein condition No. 17 is relaxed to be fulfilled with A = 0 only (i.e, w(0) = 0),
while all other conditions are strictly satisfied in the strong sense. In this case, (2.9) can be simplified to

&yy1 = h® (ws(hA) — ws(0)) g (ult ) (i (t) ' (1), 6 (t). 1 (2,),1 (2,)) + OCH). (3.4)

Clearly, one can show that there exists a bounded operator {r(hA) such that yg(hA)—y(0) = (hA)hA. Using this, inserting (3.4) into
(3.2) and employing the parabolic smoothing property of the analytical semigroup (implying the bound ]Frm T et |Iir 450,
one gets |le,|| < hz;;cll Clle;ll + Chb + z;';; Ch’, which again proves (3.1) as done for (3.3). [

Remark 3.1. Similar to the convergence proof for ExpRK methods of order 5 (see [5, Thm. 4.1]), we note that the result stated
in Theorem 3.1 (the error bound (3.1)) also remains valid if all the order conditions of order 6 (from No. 17 to 36) are satisfied
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in a weakened form with b;(0) substituted for 5;(Z). However, we only considered weakening condition No. 17 due to two primary
advantages (similar to the approach presented in [9] for fourth-and fifth-order ExpRK methods). Firstly, No. 17 depends solely on
b;(hA), ¢; and thus relaxing it leads to a scalar algebraic equation for ¢; (which can be solved easily). Secondly, satisfying conditions
from No. 18 to 36 strictly in the strong sense (which, in addition, depend also on a;;(hA)) not only offers better stability when
solving stiff problems but also enables the construction of multiple parallel internal stages U,;, thereby leading to more efficient
schemes (if otherwise, i.e., weakening them results in methods where each internal stage depends on preceding stages, restricting
them to sequential implementation, see e.g., the construction of ExpRK methods of order 5 in [5]).

4. Derivation of sixth-order stiff ExpRK methods

Based on Theorem 3.1, we now derive two families of sixth-order ExpRK methods. While there exist many solutions, our aim is
to construct efficient schemes which allow groups of parallel stages, i.e., internal stages that are independent of each other.

In [9], it has been shown that solving the first 16 conditions for fifth-order parallel stages ExpRK methods requires s = 10 stages
(with relaxing one condition, namely, No. 8) and s = 11 stages (without relaxing any conditions). To satisfy the 20 additional
conditions (from No. 17 to 36) for order 6, a value of s > 11 is thus necessary. Applying a similar approach to the order conditions
outlined in [9], it can be verified (but extremely tedious) that using s = 11, 12, 13, 14 is not sufficient to fulfill all the order conditions
of Table 1 in the context of Theorem 3.1. We omit the details. On the other hand, it is indeed possible to satisfy all the conditions
in the strong sense with s = 16 and if condition No. 17 is relaxed, one can use s = 15. We will first show the latter case.

For convenience, we use the following abbreviations b; = b;(hA), a;; = a;;(hA), @; = @i(hA), @;; = @;(c;hA).

4.1. A family of sixth-order parallel-stage ExpRK schemes with s = 15

L and will solve for the remaining

In this case, we assume that condition No. 17 can be relaxed to ::52 b,—(O)';—’j = @s0) = i
35 condjt_ions in Table 1. First, using (2.8) for j = 2,...,5 and the fact that {@;) are linearly independent, one can show that
Wja = ”‘E“Pj,? # 0, and that y; 3, ¥;4, ;s cannot be zero for all j = 2,...,5. Thus, in order for later satisfy consider conditions 3,
5, 6,9, 10, 12, 13, 18, 19, 21, 22, 26, and 28 (which involve the matrix functions y;;(Z), j = 2,...,5) in the strong sense (with
arbitrary square matrices Z, J, K, L), it strongly suggests to choose b, = 0 (i = 2,..., 11). Using this, we next solve conditions 1, 2,
4, 8, and 17 (in weakened form) and get the unique solution

- —cjere @y + 2(cicp + €56 + ey dps — 6le; + € + ¢y + 2495
! cile; — e — eple; — ¢p)

where j kI € [12,13,14,15},j # k # I # i and nodes ¢, 3, ¢4, €15 > 0 are distinct and satisfy the following relation

, i=12,13,14,15 (4.1)

15 15 15 15
1 1 1 1 1
3 Ze,-—z Z c,-cj+§ E c,-cjck—il-[c,-= re 4.2)

i=12 iyj=I12 ijk=I12 =12
#f i#iEk

Since byy, b3, b4, b5 # 0, one has to enforce v = 0fori=2,..,5,j=12,...,15 to strictly satisfy conditions 3, 5, 6, 9, 10, 12, 13,
18, 19, 21, 22, 26, and 28. Using this, requiring y; ; =0 for i = 2,3,4;j = 8, ..., 11, and choosing g;; =0fori =12,...,15; j=2,...,7,
one can fulfill conditions 7, 15 and 33 in the strong form and have the stages {U,;};-12_. 15 that are independent of {U,;};=5 7.
With all the requirements above, conditions 11, 14, 20, 23, 24, 27, 29, 30, 32 are automatically fulfilled.

When solving the linear system yy; =0 (j = 12,...,15), several a;; can be taken as free parameters and we choose g;; = 0 for
i = 13,14,15; j = 12,13,14 in order to have the four parallel stages [U,;};_2, 15, and thus the remaining a;; appearing in this
system can be then uniquely solved as

_ —c‘.zcdckc;qoz‘j + 26‘?({?d O+ cqc + e — t’:cf'(cd + e +opdpy; + 24cha5_,-

¥ €jle; = calej = ee)ej = ¢p)
with j,k,I,d € {8,9,10,11},j # k # [ # d and cg, ¢y, ¢y, ¢1; > O are distinct nodes.

Next, using all the above constraints, one can show that conditions 16 and 35 can be fulfilled in their strong forms if requiring
a; = 0fori =8,...,11; j = 234and yp; = y3; = 0 (j = 5,6,7). Similarly, we then choose free parameters a;; = 0 for
i =910,11; j = 8,9,10 to have four parallel stages (U, 11~ With this, conditions 25, 31 and 34 are now automatically

i} =8
njij=8,...
fulfilled. The system v = 0fori=2,3,4;j=8,...,11 is then solved with the unique solution

a , §=12,13,14,15 (4.3)

e2eperpy ;s — 267 (e + +6ctp,
- GNP GO DOU VNP _gy40,10:7, b LENS 6,71 ] ARLT, il &5, b,y 00 AAIBEE (4.4)
cjle; — ¢ e; — )
Finally, we solve the only remaining condition 36 by taking into account all the above findings. It can be satisfied in the strong
sense by enforcing a;; = 0 (k= 5,6,7) and v, 3 = y 4 = 0. This linear system and the above y; ; = w3; =0 (j = 5,6,7) can be solved
by requiring ay; = a5 = a5 = a7 = 0 to have two more groups of parallel stages {U,;];—s¢s7 and {U,;} =3 4, resulting in

ij

¥4 3 2

—cie -4 2¢; . for
ay= KT TP o i=5,6,7; jk € (3,4), j#kand gy = g, fori=3,4j=2. (4.5)

cj(cj—ck) ¢

5
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Putting altogether, we obtain the following family of sixth-order 15-stage stiff ExpRK methods, which will be called ExpRK6s15:

Upy = ty + @1 (c2hA)y A F (1, uy),

Upe =y + @1({.‘;!!}1)6;’!}?“", u,) + haﬂ(hA)Dnz, =34
Uy = iy + @A) AF (g, t4y) + A(ay3 D3 + Gy Dps), m=5,6,7
4 ) 7
Upg = tty + @1 (¢ hA)c hF (ty,uy) + h Y @j(cihA)e] Y pyiDy, g=8,...,11
j=2 i=5
5 ) 11
Upge = iy + @y (cphA)e  hF (2, 1,) + h Z @;(cchA)e, E 1 Dy, k=12,...,15
j=2 i=8
5y 15
Uy = Uy, + @y (RARF (t,,u,) + 1 Y, @,(hA) Y D,
j=2 i=12
TG o
Sty i—9 eile—eg Ne—ep Me—ep)” §=2
c,{c[zr,)(r,-—rk}‘ J Hegextegg +epg ) j=4
where p; = % i=3 (G.,k1 € (567}, i#k#I),and u; = ‘f“*:%%lffiﬁﬁl{f{_c’) Lk with i € (8,9,...,15} for
e B j=4 eile—eq Ne—cxMe—ep)” $5=
cile—ep Hey—eg)” L j=5

d k1€ {80910,11}, i#Fd#k#1.

As observed, while ExpRK6s15 uses s = 15 stages, it can be implemented with the cost of a 6-stage method since it has 4 groups
of parallel stages {U,;) =34, {Uyj}j=s67> {Unj}j=s,.. 11> and {Uy;};=12. .15 which can be computed simultaneously or in parallel.
s For our numerical experiments in Section 5, we take ¢ = ¢3 = ¢5 = 7,¢4 =¢g = ¢j3 = %.65 =5 = %,07 = %,c‘s = %,cm =cy=

o= %,clz = %,r,s = %, which satisfy the constraint (4.2) due to relaxing condition 17.
4.2. A family of sixth-order paradllel-stage ExpRK schemes with s = 16

When s = 16, it becomes feasible to solve all 36 stiff order conditions strictly using a very similar approach to the s = 15 case.
We note that in this case such a restriction on the nodes ¢; like (4.2) is no longer required. While we omit the specific details, we
present the final result for the following family of sixth-order 16-stage stiff ExpRK methods, which will be referred to as ExpRK6s16:

Upp =ty + q’l(c?.hA)c'ZhF(fm“n)-

U,, = u, + @, (c;hA)chF(t, 1) + ha,,(hA)D ,, £=3,4
Uy = tty + @ A)ey hF (1, ty) + 123D 3 + g Dpa), m=5,6,7
4 7
U,, = u, +@y(c,hA)c,hF(t, u,) + h Z @,(c,hA)c] Z 2;iDyis g=8,...,11
j=2 1=3
5 y 11
Upie = thy + @1 (cch A hF (1, 1) + h Y, @(cchA)e] Y. pyi Dy, k=12,...,16
j=2 i=8
6 16
gy = iy + @1 (RAVRF (ty, 1) + 1 Y. @;(hA) Y 6Dy,
j=2 =12
—{'dfl-l.:r . —
WU *; j=2 cile—ege—exle—er)’ $=2
c[((!i;;',}fc!—}(‘k]‘ egey-+egertexe) j=
= + 5 & . i &= —g)" s
where p; = {7 Ao, j=3 (Lk1 € (5,67}, i # k # D, 4y = v P el gt G,d, k! € {8,9,..,11}],
) =

— . j=4 cile—cae—ade—a)’
cile—erlei—cg )’ . i=5
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Similarly, ExpRK6s16 also has 4 groups of parallel stages {U,;};-34, (Unjlj=567> {Unjlj=s_.11> and {Uy;};_12,..16- This again
offers a great advantage is that it can be implemented with the cost of a 6-stage method. For our numerical experiments, we choose
1 i 1 1
C=C3=C=Cg=Cp=7,0=C =C5= 5.6 =Cg=C3= 5,67 =Cg=C4= 3,¢6= L.
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Fig. 1. Order plots (left) and total CPU times (right) of ExpRK6s15 and ExpRK6s16 when applied to Example 5.1,

5. Numerical experiments

In this section, we demonstrate the sharpness of the error bound in Theorem 3.1 when applying the two newly constructed sixth-
order schemes ExpRK6s15 and ExpRK6s16. We also compare their efficiency when implemented with and without the simultaneous
computation of parallel stages. To implement the new schemes, we use the code phipm_simul_iom.m, see [9,18].

Example 5.1. Consider the following semilinear parabolic PDE in X = L([0, 1]) (see [1]) for u(x,1), x € [0,1],1 € [0, 1], subject to
homogeneous Dirichlet boundary conditions,

oulx,1)  ou(x,1) _ 1
at ax2  14u(x1)

With a suitable choice of the source function @(x, t), the exact solution is u(x, f) = x(1 — x)e’.

+ D(x,1). (5.1)

For a spatial discretization of (5.1), we use standard second order finite differences with 200 grid points, leading to a very stiff
system (with ||A|| =~ 1.6 x 105) of the form (1.1). The resulting system is then integrated on the time interval [0, 1] using constant
step sizes h = 5,%.%,% 5 The errors are measured in a discrete L2 norm at the final time tend = 1.

As seen from Fig. 1, the left diagram clearly shows that they fully achieve order 6 even at large time steps, thereby verifying
the sharpness of our error bound in Theorem 3.1. With the same set of step sizes, ExpRK6s16 exhibits slightly higher accuracy
compared to ExpRK6s15, while both schemes require similar CPU times. As anticipated, the simultaneous computation of parallel
stages significantly reduces the CPU times for the same level of accuracy, as shown in the right diagram.

When considering the PDE in Example 5.1 with inhomogeneous boundary conditions, our experiments show that, depending
on each specific case, ExpRK6s15 and ExpRK6s16 might or might not suffer from an order reduction. For instance, with the time-
dependent boundary values u(0) = ¢, u(l) = t + | (e.g., corresponding to u(x,t) = x(1 — x)¢’ + x + t), we do not observe any order
reduction. However, with u(0) = cos(t), u(1) = cos(t+1) (e.g., corresponding to u(x,t) = x(1—x)e'+cos(x+¢), where the solution involves
oscillating components), we observe significant order reduction in both 6th-order integrators. Interestingly, this phenomenon is not
observed with lower-order (< 3) ExpRK schemes which strictly satisfy all the stiff order conditions. Since studying order reduction
for ExpRK methods is not the primary focus of this work, we do not elaborate further details here, but instead refer to some recent
results [11-14].

Data availability
No data was used for the research described in the article.
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