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Abstract

When a soft tube is inflated, it may sometimes show a bulge instability wherein a portion of the tube inflates
much more than the rest. The bulge instability is well-understood for hyperelastic materials. We examine
inflation of polyurethane tubes whose material behavior is not strictly hyperelastic. Upon inflating at
constant rate, the tubes deform into a variety of shapes including irregular axisymmetric shapes with
multiple localized bulges, a single axially-propagating bulge, or homogeneous cylindrical shapes. In all
cases regardless of the inflation mode, the pressure first rises to a maximum, and then gradually reduces
towards a plateau. We document numerous differences as compared to hyperelastic tubes. Most notably a
pressure maximum can appear even without bulging, whereas for hyperelastic tubes, a pressure maximum
is necessarily accompanied by bulging. Further, the decrease in pressure beyond the maximum occurs
gradually over timescales as long as an hour, whereas bulging of hyperelastic tubes induces an
instantaneous drop in pressure. We also observe permanent deformation upon deflation, a decrease in the
pressure maximum during a subsequent second inflation, and more severe bulge localization at low inflation
rates. Existing theory of hyperelastic tube inflation cannot capture the observed behaviors, even
qualitatively. Finite element simulations suggest that many of the observations can be explained by
viscoelasticity, specifically that a slow material response allows the pressure to remain high for long

durations, which in turn allows growth of multiple bulges.
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1. Introduction

When a long elastomeric tube such as a rubber hose is inflated without constraining its length, it can exhibit
two limiting behaviors: homogeneous expansion maintaining a cylindrical shape (not shown), or
coexistence between two cylindrical regions one of which is much more inflated than the other (Figure 1a).
The latter behavior is often called a propagating instability because as the tube is inflated, the more-inflated
region propagates axially with no change in pressure or diameter of either region ''!. A third behavior — a
localized bulge that expands to bursting 7*'* — may be regarded as a special case of Figure 1a where the
more-inflated region of the tube ruptures before coexistence between the two states is achieved. These
behaviors can be captured by hyperelastic models of material behavior where the degree of strain hardening
and the tube geometry (i.e. ratio of inner to outer diameter) determine which of these behaviors appear. If
the ends of the tube are constrained, e.g. by providing a fixed axial stretch, the tubes may also buckle upon
inflation ¢, Previous articles by Fu and coauthors have provided a succinct summary of the sequence of

research starting from the 1960s regarding bulging of elastic tubes '*!”.

However, these limiting cases are overly-simplistic and more complex behavior may appear, as illustrated
in Figure 1b-d. Even though all three specimens were cut from the same spool of polyurethane tubing and
inflated identically, they show distinct inflations. These behaviors do not cleanly resemble either
homogeneous inflation or the bulge propagation instability of Figure la; instead, the tubes inflated in an
irregular fashion, sometimes with multiple bulges separated by less-inflated regions. More strikingly than
the irregular inflation, the bulges in the polyurethane tubes grow over timescales of minutes to hours,
whereas in hyperelastic tubes bulge growth is almost instantaneous. These tubes also show rate dependent
inflation behavior, permanent deformation upon unloading, and loading-reloading hysteresis, all of which
will be discussed below. None of these complexities can be captured by existing theories based on
hyperelastic material models because hyperelastic models necessarily require the mechanical behavior to
be captured by the instantaneous strain state with no dependence on deformation rate or deformation

history.

This paper is an experimental study of tube inflation that includes mechanical behaviors beyond
hyperelasticity. We examine the role of inelastic deformation, viscoelasticity, and strain-induced damage
(i.e. permanent changes in properties upon first inflation) on the inflation behavior of polyurethane
clastomer tubes. We document distinct differences as compared to hyperelastic tubes, yet, the bulges are
axisymmetric, which is qualitatively similar to hyperelastic tubes. In later research to be published
separately but available in a thesis'®, we will also examine large deformation inflation of polyethylene
“plastic” tubes which inflate in a non-axisymmetric manner which differ from hyperelastic tubes even

qualitatively "%,
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Figure 1: a. Bulge propagation in a natural rubber tube in which a more-bulged region coexists with
a less-inflated region. As fluid is pumped in, the bulged region propagates axially with no change in
diameter. The pressure-volume curve for this inflation is shown in Figure 8a. b-d. Irregular
expansion of three polyurethane tubes inflated under the same conditions. All three were cut from
the same spool of tubing had similar initial length. Both tubes had uninflated diameter of 0.25”
=6.35 mm. The dark splotches on each tube are ink marks to help visualize the local area changes.

Incidentally we note that even ordinary rubber balloons — which are often cited in the literature on inflation
instabilities of hyperelastic tubes — can sometimes show some of these complexities. For example, inflating
a rubber balloon into the bulge propagation regime such as Figure la and then deflating it induces a
permanent increase in diameter. A second inflation can then yield three coexisting diameters, the smallest
of which corresponds to the portion of the balloon that has never experienced large inflation (Figure S 1).
Such complexities are rarely discussed in the literature. Indeed, experimental papers on inflation

instabilities sometimes mention that they “preconditioned” their samples by stretching them repeatedly
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prior to inflation , and it is only this preconditioning that allows them to be modeled as hyperelastic.

2. Experimental details

Tensile testing: Polyurethane tubes, with an outer diameter of 1/4 inch (6.35 mm) and an inner diameter of
3 5/32 inch (3.97 mm) with the product number of 5648K25, were purchased from McMaster-Carr Supply
Co. The polyurethane has a durometer rating of 95A. The vendor states that the tubing was manufactured
by Freelin Wade, and is a polyether-based polyurethane. The tubes were available in the form of rolled
spools and hence have an intrinsic radius of curvature of 120-130 mm in their stress-free configuration.
This intrinsic curvature had no noticeable effect on the inflation behavior. The rubber tube of Figure la
(outer diameter 1/4 inch, inner diameter 1/8 inch, product number 5546K42) was also purchased from the

same vendor.

Uniaxial tests were conducted using an Instron model 34TM-30 tensile testing machine equipped with a 30
kN load cell. The clamp-to-clamp length of the samples was 50 mm, and they were stretched at 25 mm/min
(i.e. a nominal rate of 50% per minute) to various strains. The corresponding tensile data (Figure 2a) give
a tensile modulus of 56 MPa. As with many polymeric materials, the material is strongly strain hardening

at strains exceeding 200%.
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Figure 2: a. Uniaxial tensile testing data for polyurethane tubes during loading and unloading at a
nominal strain rate of 50% per minute up to various values of maximum strain. b. Inelastic strain
obtained from the data in a.

As mentioned in the Introduction, the tubes had readily-visible permanent deformation upon deflation. To

test for inelastic behavior, the same specimens were also unloaded at the same speed. Pronounced loading-
unloading hysteresis was noted, Figure 2a. A signature of inelastic deformation is that the force during
unloading reduces to zero when the nominal strain is still non-zero. By this criterion, significant inelastic

behavior (e.g. permanent strain exceeding 10%) appeared when the true strain exceeded about 50%.

The effect of elongation rate, ranging from nominal rate of 10%/min to 250%/min is shown in
Supplementary Figure S 2. The tensile behavior remains qualitatively similar to that in Figure 2, with a

modest decrease in stress at lower rate.

Inflation testing: The experimental setup is shown in Figure 3a. Tubes were inflated using a constant-flow

rate piston pump (Isco Reaxys LS). A pressure gauge (Ralston LC10-GR2M) was used to continuously
monitor pressure at 1 Hz frequency. The entire inflation process was imaged, either using a video camcorder

(Panasonic HC-V180 operating at 60 frames/s) or a camera (Panasonic DC-FZ80 operating witha 1 - 10 s
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Figure 3: a. The inflation setup which includes water reservoir positive displacement pump,
pressure gauge, and camera. b. Tube connections shown at higher magnification. c& d. Example of
the snapshot and circumferential stretch of the tube at AV=20 mL calculated from tracking markers
on the tube surface.

All tubes were cut to a length of 200 mm, and the water was supplied from the top of the tube, whereas the
bottom was capped. The fittings on both ends were of the push-to-connect type. To reduce the chance of
leakage at the connections, the end section immediately adjacent to the connectors was restrained by snugly
fitting aluminum “cuffs” (Figure 3b). The section within the cuffs could only inflate axially, not radially.
Thus, accounting for the cuff lengths and the length at each end that is inserted into the push-to-connect
fittings, the section of the undeformed tube that could inflate freely was 115 mm long, corresponding to an
undeformed aspect ratio L/R of 52.7, and an initial internal volume of 1.42 mL. Inflation rates ranged from
0.1 to 20 mL/min, with a majority of the experiments being conducted at 2 mL/min. Incidentally, if the
tubes expanded circumferentially uniformly, the rate of 2 mL/s corresponds to an initial expansion rate of

70% per minute on the inner surface of the tube, which is comparable to the tensile testing rate in Figure 2.

All experiments were conducted with a load of 2.44 N suspended from the bottom of the tube, which served
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to keep the tube approximately taut even before inflation was started. While previous experiments and

d 3361528 in fact the axial load used here is

theory show that inflation behavior can change with axial loa
negligible. This may be judged by two criteria. First, the stress corresponding to this load is 0.13 MPa,
which is too small to induce significant axial strain as judged from the uniaxial tensile data (Figure 2a).
Second, typical pressures during inflation are on the order of 3 MPa, which (even using the cross-sectional
area of the uninflated tube diameter) corresponds to an “internal” axial force of 37.7 N, which far exceeds
the 2.44 N weight suspended from the ends. Incidentally we note that past literature has considered inflation
with fixed axial load as well as fixed axial stretch '*!*#**’_We only consider the former situation in this
paper. In fact, we will show that the tubes undergo significant elongation during inflation, and therefore are

expected to buckle if length was fixed. The axial stretch needed to avoid such inflation-induced buckling

would be sufficiently large to induce inelastic effects even without inflation.

Prior to conducting the test, the tube was sprayed with droplets of paint, or with flakes of black “glitter” to
serve as markers for motion-tracking. Subsequently, the displacement of these markers was monitored using
digital correlation software (Blender). The radial and axial stretch of selected regions could then be

calculated from these displacement fields as shown in Figure 3d.

As a measure of sample-to-sample variability, we note that at an inflation rate of 2 mL/min (which was
used for most of the experiments in this paper), a total of 24 experiments were conducted. These showed a
peak pressure of 2.93 MPa with a standard deviation of 0.16 MPa, which corresponds to a 5% variation in
peak pressure. Tests conducted in succession, i.e. from adjacent sections of tubing, tended to show closer
agreement suggesting that at least a part of the variation may be due to small variations or imperfections in

the geometry or in the mechanical properties of the tube over long lengths.

3. Results

Figure 4a illustrates an exemplary inflation of a polyurethane tube at a rate of 2 mL/min, with A}V denoting
the increase in volume of the tube. Figure 4b shows a rise in pressure at low inflation volumes, followed by
a peak at a volume of roughly AV=3 mL and a pressure of roughly 2.8 MPa. Subsequently, the pressure
decreases gradually towards a plateau value of about 1.8 MPa. This decrease in pressure is denoted
pressure-unloading in the rest of this paper. During this inflation, the macroscopic length of the tube
increased monotonically. At the final volume of AV=40 mL, the increase in length corresponds to an
average axial strain of roughly 80% based on the length of the uncuffed tube at the beginning of the

experiment.
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Figure 4: a. Appearance of the tube at various stages during inflation. b. Pressure vs volume during
the same experiment. c&d. Quantification of the two stretches at the four locations marked in one of
the images in a. The vertical red dashed lines in b-d are drawn at the volumes corresponding to the
sequence of images in a.

The evolution of pressure and tube length during inflation is qualitatively similar to that of hyperelastic
tubes undergoing stable propagation of an inflated region, and similar to hyperelastic tubes, the tube
develops a distinct bulge after the pressure maximum. Yet, there are some key differences. First, the
pressure-unloading is gradual, occurring over several mL of volume inflation, i.e. a period of 3-5 minutes.
This is in sharp contrast to the behavior of rubber tubes where the pressure-unloading is nearly
instantaneous®**** (also Figure 8a discussed later). The second is that the inflation is irregular as was
already mentioned in the Introduction. In the case of Figure 4a, the mid-section of the tube inflated less
than the ends, and this was seen most frequently. In some cases, the inflation approximately resembled a
bulge propagation instability where a more-bulged region coexists with a less-inflated region (two examples

shown in Figure 5). Furthermore, although repeated trials on identical specimens had significant variations
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in shape, they all had very similar pressure evolutions suggesting that the pressure is primarily related to

material behavior rather than the geometric details of bulging.

To quantify the irregular deformation, Figure 4c and d shows the circumferential and the axial stretches at
four distinct locations along the tube. Up to A4V of roughly 5 mL, all marker positions show similar
deformation, indicating uniform expansion. Beyond A4V of 5 mL, deformations at the various locations
steeply deviate from each other. Later during the inflation, the least-deformed region does “catch up” with
the more deformed regions, but at the final volume, there is still a difference of almost 0.8 units in the

circumferential stretch of the most vs least inflated region.

Next we examine the role of inflation rate. Tube specimens were inflated at rates ranging from 0.1 to 20
mL/min. Figure 5a shows that the peak pressure and the plateau pressure both increase modestly with
increasing flow rate. At the lowest rates examined, the pressure does not show a true plateau, but instead
continues to reduce gradually with continued inflation. The inflation rate strongly affects the tube shapes,
with low rates promoting a greater degree of localized bulging, and high rates appearing relatively more
homogeneous. It is noteworthy that the volume required for pressure-unloading remains roughly 5 mL
regardless of rate, and by implication, the time required for pressure-unloading increases sharply as the
flow rate reduces. For the lowest flow rate examined, the duration from the pressure peak to the end of the
experiment (when the pressure had still not plateaued) exceeded 1 hour. This long timescale for unloading
can be seen clearly in Supplementary Figure S 4a in which the same data are shown with time on the x-
axis. A remarkable observation from Figure 5 is that despite the diverse inflation behaviors, all cases share
similar pressure-volume curves. Even the cases of 6 mL/min and 20 mL/min, which happen to show nearly
homogeneous inflation, still show a clear maximum in the PV curve followed by pressure-unloading. In
contrast, homogeneous inflation of hyperelastic tubes gives monotonically increasing PV data. This will be

discussed further in Section 4.
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Figure 5: a. Pressure vs volume curve for the various rates listed in the legend (all in mL/min). b.
Images of tubes during deformation. All the images correspond to AV =15 mL except the lowest for
which AV =6.5 mL. Although the tubes were vertical during experiments, images have been rotated
for convenience, with the sequence of images following the sequence of pressure-volume data.

We also examined the extent to which inflation induces irreversible softening (henceforth called strain-
induced damage) of the material such that a second inflation is different from the first. Loading-unloading-
reloading experiments were conducted where tubes were inflated by various volumes A4V; (ranging from
1.5 mL to 15 mL), then deflated to atmospheric pressure, and then reinflated. Figure 6a shows the images
of the samples at three stages: at the volume AV; during the first inflation, at zero pressure after deflation,
and at volume AV; during the second inflation. Figure 6b shows the pressures during the second inflation.

Increasing AV first reduces, and then eliminates, the pressure peak during inflation.

Turning to the tube shapes, at first glance, the first and the second inflation appear similar, i.e. images in
the third row of Figure 6a are almost identical to those in the first row. However closer examination reveals
that for volumes exceeding 6 mL, the regions that were more (or less) inflated after the first inflation become
even more inflated (or even less inflated) during the second. This is quantified Figure 6¢ which shows the

difference in the profile between the first and second inflation for the 6 mL case.

10
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Figure 6: a. Images of samples during inflation-deflation-reinflation experiments. Although the
tubes were vertical during experiments, images have been rotated for convenience. b. Pressure vs
volume curves where green is a sample during its first inflation, and the other colors are samples
being reinflated after deflating from various values of AV; listed in the legend. Arrows indicate the
volumes at which each of the other four samples were deflated. c. A superposition of the profiles of
the tube during the first and second cycle, both at A4V=6 mL. Note that the axes of c are distorted so
that the tube dimensions in the radial direction are magnified 2-fold, and the blue ellipse represents
the initial, undeformed, circular cross section of the tube.

This issue of loading-unloading-reloading behavior was tested more thoroughly elsewhere '®. Briefly, tubes
were repeatedly cycled between two states: inflation by 4V = 6 mL, and zero pressure. Over 10 cycles, the
bulge grew steadily suggesting a slow but incremental damage that caused an increasing degree of bulge

localization.

Finally, we also observed that tubes deflated from a large volume did not return back to their original
diameter, but were distinctly distorted. Accordingly, we examined (see Supplementary Figure S 3) inelastic
deformation in more detail. Briefly, AV values exceeding 10 mL induced significant permanent
deformation. Notably, a AV of 6 mL that completely eliminated the pressure peak (Figure 6b) did not induce

significant permanent deformation, i.e. strain-induced damage precedes inelastic deformation.

11
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4. Discussion

4.1. Interpretation based on theory of hyperelastic tubes

Figure 4-Figure 6, and Figure S 3 show that the inflation behavior of these polyurethane tubes have several
features that deviate from those of hyperelastic tubes. However, before discussing these deviations, it is
useful to consider whether some of the observations can be predicted by existing theory of hyperelastic
tubes. Accordingly, this section proceeds on the assumption that the tubes are hyperelastic, with properties
corresponding to the loading curve measured experimentally (Figure 2). The corresponding predictions for

the pressure and for the deformation can then be compared against experimental measurements.

We adopt the incompressible Ogden model ?® for the constitutive behavior,
M
W= (5 + 257 + 25" - 3) e Eq. |
n=1

where A3 = (1;1,) 7! is prescribed, and the value of M (i.e. the number of terms included in the sum) is
sufficient to capture the measured mechanical behavior. The hat in Eq. 1 denotes that incompressibility is
already incorporated into the constitutive equation. The corresponding true stress under uniaxial tension

can then be calculated to be

M a,
011 = Z (A5 =2, %) Eq.2
n=1

The parameters p,, and a,, can now be obtained by fitting experimental data. Figure 7a shows the same data
as the loading portion of the tensile data in Figure 2, but converted to true stress by multiplying the
engineering stress by the stretch (7+¢g). As a first attempt, we fitted these data to Eq. 1 with no constraints
on U, and a,. Adequate fits were obtained with M =3 (dashed black line in Figure 7a), and the second
column of Table 1 lists the corresponding fitting parameters. These parameters, and the corresponding

predictions, are referred to as unconstrained.

The thin-wall approximation model developed by Kyriakides and Chang ¢ (see Supplementary Section S 2
for a derivation) was then applied wherein the pressure-volume behavior of homogenous inflation regime

is obtained from three equations

. 1 (H) ow
= 21, \®/\ a7, Fa.3

12
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where R is taken as the mean value R, = (R; + R,)/2, H = R, — R;, while H and L are the initial thickness
and length of the tube, respectively. 1y and A, are circumferential and axial stretch, respectively. Since our
experiments are conducted at negligible axial force, F’ can be set to zero in Eq. 4. The model predictions
were then obtained by the following computational sequence. For each value of A4, Eq. 4 was first solved
(with F=0) to obtain A,. Then the pressure and volume were obtained from Eq. 3 and Eq. 5, respectively.

In summary, these calculations predict how P, ¢ and 4, depend on AV/V} if inflation is homogeneous.

Table 1: Parameters in the Ogden model from fitting experimental data.

Unconstrained Constraint of % =0
Uy -10.378 MPa 77.6 MPa
a, 2.8 0.019
U, 141 MPa 0.0165 MPa
a, 3.65 6.24
us  -12.39 MPa -343.1 MPa
a; -4.98 -0.044

The prediction for pressure and A, can be compared against experiments such as Figure 4 directly. The
predictions for the circumferential deformation cannot be compared against experiments directly because
experiments measure the stretch on the outer surface, whereas 14 in the model corresponds to the mean
radial location R,,. (Note that A, is independent of radius, and hence there is no need to distinguish between
the axial stretch at the outer vs the mean radial position.) The circumferential stretch on the outer surface is

related to the stretch at the mean radius by
(A§oA, = D(RSL) = (452, — D) (R},L) Eq. 6

where the subscript o indicates outer. Physically, this equation states that the change in volume, AV, due to

inflation must be the same regardless of which radius is used for normalization. Thus

A5 —1(12/1—1)%+1 Eq.7
6o = 7~ |4z RZ q-
VA o

13
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This model prediction for the circumferential stretch on the outer surface can be compared against

experiment.

Figures 7b-d now compare the predictions for pressure and the two stretches against experiments. The
model significantly overpredicts the initial rise in pressure. Beyond this quantitative error however, a more
significant qualitative discrepancy is that the predicted PV curve has a very weak maximum, indeed the
curve becomes almost flat before rising again, whereas the measured pressure shows a clear maximum
followed by pressure-unloading. The predictions for 44, are also much higher than experiments. Perhaps
the greatest discrepancy is the model predicts A4, < 1, whereas experimentally the tube lengthens upon

inflation.
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Figure 7: a. Fits of the loading portion of the tensile testing data to the Ogden model. All four
datasets corresponding to Figure 2a are shown in light colors, whereas the two fitted models are
shown as the dashed black and solid purple lines. b-d. Comparison of experimental data and
theoretical predictions. In c and d, the green data are the average of the four markers in Figure 4c
and d, wheres the green shaded region encompasses the range spanned by the markers. The inset
in b shows the same pressure-volume graph, but up to higher volumes to show the dashed line
Maxwell construction.

We therefore sought to fit the tensile data with a different set of u,,, a,, parameters that guarantee that the
tube lengthens at the beginning of the inflation. The Supplementary Section S 3 shows that the requirement
that the initial inflation be accompanied by tube lengthening (not shortening) leads to the inequality

M
pnaz =0 Eq. 8

n=1

Applying this inequality constraint when fitting the tensile data gives the parameters listed in the third
column of Table 1, and the corresponding fit is shown as the solid purple curve in Figure 7. This model is
referred to as constrained. It is noteworthy that the fit to the constrained model cannot capture the small-
strain behavior of the uniaxial tensile tests accurately, i.e. no combination of u,, ,, that satisfies Eq. 8 can
reproduce the initial curvature of the stress-strain data. Further, a careful inspection of Figure 7a shows that
the purple curve overpredicts the stress between a stretch of 2 and 2.5. The corresponding prediction for
pressure is shown as the solid purple curve in Figure 7b. While there is still a discrepancy at the earliest
stages of inflation, the value of the maximum pressure is in reasonable agreement with experiments. Figure
7¢ shows a better prediction of the experimental Ag,, although the predicted A, in Figure 7d still remains
lower than experimental values. It must be emphasized that strictly, comparisons of the model are only
reasonable up to the pressure maximum. Beyond that, the model predicts non-homogeneous inflation and

should not be compared against experiments.

The purple PV curve in Figure 7b is shown only to small values of volume. The inset to Figure 7b shows
that at larger volumes, the pressure predicted by the constrained model rises to values above the peak
pressure indicating that the bulge that initiates at the pressure maximum is limited by strain hardening.
Thus, the model predicts that eventually the tube must show coexistence between a bulged and an unbulged
state. The coexistence pressure calculated using the Maxwell construction (inset to Figure 7b) was found
to be 1.76 MPa. This latter value is in remarkably good agreement with the plateau value of the pressure,
even though the experiments do not actually show coexistence between a bulged and unbulged state! The
corresponding stretches are found to be 49=3.45 (corresponding to Ag,=2.8 and 4,=1.97), values that are

larger than the stretches in Figure 4c and d. Thus, as per this interpretation, the stretches in Figure 4 have

15
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not yet reached the limiting values needed for stable coexistence and bulge propagation. Yet the qualitative
behavior of Figure 4 does not suggest stable bulge propagation will be approached at all; instead the tube
already approaches homogeneity by the end of the inflation.

To summarize, the existing theory of thin-walled hyperelastic tubes, simply using the tensile loading curve
to inform the constitutive behavior, is in qualitative and quantitative disagreement with experiments. If an
additional constraint that the tubes must lengthen upon inflation is imposed, the small-strain tensile data are
not well-captured by the constitutive equation. Yet, this ill-fitting model gives reasonable predictions for

the value of the maximum pressure and the stable coexistence pressure.

Finally, note that the above judgements about the accuracy of the hyperelastic model depend on the tube
radius R selected for the analysis. Eq. 3-Eq. 5 show that for =0, the A9 — A, relationship is independent of
the geometry, the magnitude of the predicted pressure scales with H/R, whereas the volume V) used for
normalizing the experimental data scales with R°. Our calculations all used the value of the mean radius R,.
If on the other hand the value of R; was used for the calculations, the predicted pressure curve would increase
by a factor of R,/R=1.3 whereas the value of ¥, would reduce by a factor of (R/R,)*=0.59. Accordingly,
the constrained model (purple curves) would overestimate the peak pressure, but give good predictions for

the value of the 4V/V at the pressure maximum.

4.2. Inelastic effects and one further experiment

We now turn to the two noteworthy aspects of the inflation behavior that strongly differ from past
experiments on rubber tubes >?%3, The first is that multiple specimens cut from the same spool of tubing
show distinct behaviors even under identical inflation conditions. For the inflation rate of 2 mL/min, in
more than 40 experiments, we have observed several examples of tubes with irregular shapes such as in
Figure 1, several examples that approximately resemble bulge propagation, and occasional examples of
nearly-homogeneous inflation. Even tubes that resemble bulge propagation show up to 20% variation in
the diameter of the more-bulged and less-inflated regions. In contrast, hyperelastic tubes can only show
coexistence of two well-defined strain states. Despite this variability in deformation however, all these
specimens show very similar pressure-volume curves. Especially remarkable are two cases in Figure 5
where the inflation proceeds almost homogeneously even though the PV curve shows a prominent
maximum. In contrast, for hyperelastic tubes, a pressure-volume curve with a negative slope is necessarily
unstable and incompatible with homogeneous inflation. This suggests that pressure-unloading is
attributable not just to bulging, but also to material behavior. This notion, that material behavior is a strong
contributor to pressure-unloading is also supported by the observation (Figure 5) that despite a wide

difference in the degree of bulging and a 100-fold difference in experimental timescales, the pressure-
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unloading remains similar, and always requires roughly 5 mL of inflation volume.

A second noteworthy aspect is the simultaneous inflation of two or more bulges along a single tube.
Intuition suggests that once a bulge starts growing, three factors encourage further localization. First, a
bulge has a larger diameter and a thinner wall, both of which increase the local wall stress as per Laplace
equation. This effect is present even in hyperelastic tubes. Second, if the material has a yield point (or
undergoes strain-induced damage), the bulged region becomes more compliant. Third, as a consequence of
the prior two factors, the pressure within the tube reduces, thus making it impossible to initiate new bulges.
Accordingly, we expect that when a single bulge starts growing, the formation or growth of other bulges
must be suppressed. Despite this however, we have noted numerous examples where more than one bulge

grows simultaneously (although one always grows more than the others).

We propose that both these unusual aspects, sample-to-sample variability in bulging behavior and multiple
bulges, are related to the remarkably slow pressure-unloading behavior of these tubes as compared to
hyperelastic tubes. To illustrate this, Figure 8a compares the pressure-volume response of the polyurethane
tubing with natural rubber tubing of similar diameter and wall thickness. The natural rubber tubing (same
sample as shown in Figure 1a) was found to bulge “instantaneously”, i.e. the pressure reduces more steeply
than can be resolved by the 1 Hz data acquisition rate. Such rapid bulging was also reported in previous

studies *?>23

and also appears in our own rubber balloon experiments from ESI Figure S 1. In contrast, the
decrease in pressure of the polyurethane tubing occurs over several tens of seconds in Figure 8a, but might

take over an hour at low flow rates.
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Figure 8: Delayed strain response of polyurethane tubes. a. Comparison of pressure-volume curves
of polyurethane tubes vs natural rubber tubes. Note that the right and left y-axes have different
scales because the natural rubber tube is much softer. The axes were scaled to approximately
superpose the data at small inflation. The green data for the polyurethane tube in a is identical to
Figure 4b. The rubber tube experiment corresponds to Figure 1a. b. The axial strain measured
when a tube is subjected to a rapid increase in axial load from 40 N to 140 N.

Such slow unloading likely results from an intrinsically slow strain response of the polyurethane material
to applied stress. To quantify this, we conducted an experiment where a polyurethane tube was first loaded
with a weight of 40 N for several minutes, and then abruptly (within less than 2 s) the weight was raised to
140 N. This is conceptually similar to a creep experiment except that the force (rather than stress) is held
constant. The strain evolution was obtained from quantitative analysis of images of ink marks on the tube
taken during the experiment. Figure 8b shows that strain increases gradually over tens of minutes before

approaching a stable value.

The consequence of the slow response to load is that in the inflation experiment, the strain in the tube wall
lags behind the instantaneous pressure. Once the pressure reaches the maximum value expected from
homogeneous expansion, the entire tube becomes susceptible to bulging, and at some location (presumably
a small defect), a bulge initiates. However, the crucial point is that because this bulge grows slowly, the
tube stays at high pressure for a long duration. Thus, locations sufficiently remote from the first bulge can
also initiate bulging independently. Only when one or more bulges grows sufficiently does the pressure
reduce gradually, and new bulges are no longer viable; beyond this point a single bulge grows more than
the others. Nevertheless, some of the other bulges can still continue growing gradually. We hypothesize
that this is because strain-induced damage has already rendered these regions softer, and local creep allows

a steady increase in strain with time.

4.3. Simulations of viscoelastic tubes

To flesh out the physical picture from the previous paragraph, finite element simulations were conducted.
The goal was not to reproduce all the physical phenomena quantitatively, but to test whether viscoelasticity
can reproduce the qualitative differences between the inflation of the polyurethane tubes vs the theoretical
expectations of hyperelastic tubes. Accordingly, we adopted the two simplest constitutive models that can
highlight viscoelastic effects without confounding effects. In the first, denoted “hyperelastic”, the material
was taken to be neo-Hookean with a small-strain modulus of p,. The second model, denoted “viscoelastic”,
used the same strain-dependence as the neo-Hookean model, but the shear modulus was now taken to be

time-dependent:
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u(t) = too [(%) exp (— %) + 1] Eq.9

where g < 1. Eq. 9 corresponds to a single-term Prony model and Figure 9a illustrates a spring-dashpot
analog to Eq. 9. In a step strain experiment, this model yields an initial modulus of ps /(1 — g), a final
modulus of i, and a single relaxation time 7. In a step stress (i.e. creep) experiment, this model yields an

initial compliance of (1 — g) /U, a final compliance of 1/, and a retardation time of /(1 — g).

The tube was represented by a shell of radius R with hemispherical ends (Figure 9b). The straight section
(i.e. excluding the hemispherical ends) had length L > R. The inner volume of the tube was increased at a
fixed rate dV /dt. This inflation rate can be represented in non-dimensional terms as follows. Ignoring the
hemispherical ends, the volume of the uninflated tube is V, = mR?L. If the tube expands homogeneously,
V = A31,V,. Since the initial expansion is expected to occur without axial stretching, at the early stages of

expansion, A, remains 1, and hence

W o, Py Eq. 10
e P ar ° 4

In the limiting case when inflation just starts, Ay is also 1, and hence the circumferential strain rate is

dlg 1 dV
dt 2V, dt Eq. 11
This initial circumferential expansion rate can now be rendered non-dimensional as
dAa 1 dv
Wi=T—0=T—— Eq. 12
dt 2V, dt

Here Wi stands for Weissenberg number which is based on the initial deformation rate of the tube. Wi is a

measure of how rapidly the tube is inflated as compared to the relaxation time of the material.

Having defined the constitutive models, we can now pin down the parameters that affect inflation behavior.
Assuming material incompressibility, and L > R, dimensional analysis requires that for the hyperelastic
tube, the non-dimensional pressure P/u,, must depend only on A4V/V, with no further parameters. In
contrast, for viscoelastic tubes, P /. must depend on AV/Vy, g, and Wi. Thus the specific choice of ., T,

L and R are not expected to affect the results when represented in non-dimensional terms.

Simulations were conducted using the Abaqus software with a 3D model of the geometry of Figure 9b,
using 4-node shell elements. The geometric parameters were set to R=2.58 mm (same as the mean value
R,, for the experimental tube) and L=150 mm. p,, was set to be 18 MPa for both the hyperelastic and the
viscoelastic model; this value is close to the measured modulus of the experimental tube. T was set to 1 s.

However, we reiterate that, as per the previous paragraph, these parameter values are not expected to affect
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the non-dimensional pressure P/u,, presented below. The Poisson’s ratio was set to 0.5 to approximate
incompressible behavior. The material parameter g was set to 0.9, and more comments on this are made
below. Volume-controlled inflation was simulated by thermal expansion of a virtual fluid cavity inside the
closed-end tube. The virtual fluid was assigned a thermal expansion coefficient, and a temperature rise was
prescribed with a constant ramp rate. Accordingly, the cavity volume increased linearly with time, and the

resulting pressure within the tube was reported.

n/g Ml

L=150 mm
Mo
d
~0.009 - -
-0.006 __ >
0003 —
s ——

-0.0009 :
0.0006 *

0 1 1 1
0 1 3 3 4-Hyperelastic *
AV/V,

Figure 9: a. Spring dashpot model corresponding to the viscoelastic constitutive behavior of Eq. 9. b.
Geometry of the tube used for simulations. c. Pressure evolution during inflation of tubes at the Wi
values increasing from bottom to top as per the legend on the right of the graph. The lowest curve
corresponds to the hyperelastic model. d. Configurations of each tube at a volume 4V/V} of 3.9 with
Wi values increasing from bottom to top.

Figure 9¢ and d show the evolution of the non-dimensional pressure P/, and the tube configurations
during inflation for the hyperelastic (i.e. neo-Hookean) model, and for the viscoelastic model at various Wi
values. As expected, the neo-Hookean tube inflates homogeneously up to a non-dimensional volume of

AV/Vy of 1.8, upon which a bulged stage appears abruptly, i.e. the pressure-volume curve unloads almost
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discontinuously. The viscoelastic model shows bulge formation only at low Wi, but the bulge initiates at a
larger volume than the hyperelastic tube, and the bulge grows gradually (rather than abruptly) as reflected
in the gradual decrease in pressure with increasing volume. Increasing Wi raises the pressure early during
inflation, and also raises the volume at which the bulge grows; this was also observed in experiments and
simulations of spherical membranes 2**°. These changes are qualitatively consistent with Figure 5. Most
notably, since the bulge initiates at larger volume with higher Wi, at any selected volume, the tube inflation
appears to become more homogeneous as rate increases, in agreement with experiments. Finally, at higher
Wi values, a pressure maximum appears without bulge initiation, i.e. purely due to constitutive behavior of
the material. This is in agreement with previous research on inflation of shells or tubes which also confirm

that viscoelastic effects can give a pressure maximum even while the inflation remains homogeneous *°.
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Figure 10: a. Tube showing defects (in red) where local modulus is lower than the rest of the tube.
Overall tube dimensions are identical to that in Figure 9. b. Pressure evolution during inflation of
tubes with defects. c. Configurations of each tube at selected volumes indicated by the filled points
inb.

The previous section hypothesized that multiple bulges appear because the pressure remains high for long
periods, and hence can initiate other bulges. To test this hypothesis, separate simulations were conducted
where the tube was endowed with two axisymmetric defects lengths of 0.46R,, and 0.39R,, separated by a

tube length of 24.4R,, (Figure 10a). Both defects had a local modulus that was 5.5% smaller than u,, and
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hence can serve as bulge initiation sites. In the hyperelastic case, the longer of the two defects initiated a
bulge at a 4V/V, value of 1.7, which is close to that of the defect-free tube in Figure 9. This single bulge
abruptly reduced the pressure (Figure 10b), thus suppressing growth of a second bulge, and only one bulge
grew (Figure 10c, lowest frame). The simulation was repeated with the viscoelastic model, inflated at a Wi
value of 0.006. In this case, the pressure remained high for an extended period after bulge initiation and —
even though the longer defect initiated a larger bulge — both bulges started growing. Only later during the
inflation did the larger bulge grow faster, causing the smaller bulge to disappear (Figure 10c, second frame
from bottom). Raising the Wi value caused the second bulge to grow less and disappear sooner, until at Wi
= (.06, the tube expanded almost homogeneously ignoring the defects altogether disappear (Figure 10c,
topmost frame). A video comparing all three simulations is available as Supplementary Information. In
summary, simulations supports the physical picture that multiple bulges can grow because viscoelasticity

causes the pressure to remain high for relatively long durations.

Limited simulations with shorter tubes show that, consistent with previous research’, the pressure unloading
becomes more gradual as the tube length reduces, but qualitatively, the effects of increasing Wi remain the
same. Simulations were also conducted with the same tube geometry at three other g values: 0.75, 0.8 and
0.95. As g approaches 1, the initial modulus increased as po, /(1 — g) and hence at any given Wi value, the
pressure rose to a larger extent during the early, homogeneous phase of the expansion. The bulging behavior
(ESI Figure S 5) remained qualitatively similar, except that when compared at fixed Wi, low g values

caused the bulge to appear at a lower 4V/V, value.

Although viscoelastic simulations are in qualitative agreement with the results, viscoelasticity alone cannot
fully describe the experiments. In the simulations, the bulge develops over the same timescale independent
of the inflation rate. This is seen more clearly when the data of Figure 9c are plotted in the form of pressure
vs time (Supplementary Figure S 4b). As a consequence, when plotted as a pressure-volume curve, the
pressure-unloading appears increasingly sharp as rates reduces, e.g. compare the Wi values of 0.0006 and
0.0015 in Figure 9c. In stark contrast, Figure 5 shows that the pressure unloading occurs over a similar
range of volumes, which corresponds to timescales as short as few ten seconds and as long as tens of minutes
(Supplementary Figure S 4a). A possible reason for the discrepancy may be that strain-induced damage
plays a significant role so that significant pressure unloading happens only once the material has reached a
certain minimum strain, an effect that is not captured by the linear viscoelastic model. Finally we note that
inelastic deformation is not incorporated into the model, and hence the permanent diameter change noted

experimentally (Figure S 3) is not captured.
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5. Summary and conclusions

To summarize, this paper explores the inflation behavior of tubes whose material behavior deviates from
strict hyperelasticity. Hyperelastic tubes inflated under volume-controlled conditions are known to inflate
along three possible pathways: tubes that are sufficiently strain-hardening inflate uniformly, maintaining
their cylindrical shape. Tubes that have insufficient strain-hardening develop a bulge, which may either
inflate to failure with a monotonic decrease in pressure, or propagate axially at constant pressure. This paper
explores how the inflation behavior changes when the material comprising the tube wall has inelastic

behaviors such as rate-dependent mechanical properties, strain-induced damage, and plastic deformation.

Experiments with polyurethane elastomer tubes inflated at fixed flow rate show that the pressure within the
tubes first rises to a maximum, and then reduces towards a plateau. While this behavior is qualitatively
similar to that of hyperelastic tubes undergoing axial bulge propagation, in fact there are major differences.
First, the decrease in pressure from its peak value towards a plateau value can take from tens of seconds to
tens of minutes, depending on the inflation rate. In contrast, rubber tubes inflate almost instantaneously
they bulge. Second, the polyurethane tubes deform into a variety of shapes: uniform inflation maintaining
cylindrical shape, irregular axisymmetric shapes with multiple bulges, or axial propagation of a bulge. In
all these cases — even when tubes inflate uniformly — the pressure shows a maximum value followed by
unloading. In contrast, for hyperelastic tubes at fixed axial force, a peak in pressure is a necessary and
sufficient condition for bulge formation. Third, if tubes are reinflated a second time, the pressure-volume
curve does not show a maximum, indicating that the first inflation induced damage, i.e. a permanent change
in mechanical properties due to strain. Finally, after sufficient inflation, tubes are left permanently deformed
indicating plastic deformation. One observation that underpins some of these behaviors is that the
polyurethane material responds to an applied load relatively slowly, on the order of many minutes. We
propose that it is this slow response that causes the pressure to remain high for a long duration during
inflation, and hence allow multiple bulges to grow. In contrast, since a single bulge instantaneously reduces
the pressure in hyperelastic tubes, growth of multiple bulges is suppressed. This physical picture is
supported by finite element simulations using a linearly viscoelastic constitutive model with a single-

relaxation time.

We also tested the extent to which existing theory of hyperelastic models of tube inflation can predict the
first-inflation behavior of the tubes. The first-loading uniaxial tensile testing data were fitted to the Ogden
model, and the corresponding predictions were tested against the observed behavior. The theory was found
to underpredict the pressure and the deformations. More significant than the quantitative discrepancy, the
theory does not predict a maximum in pressure, and predicts that the tubes shorten when inflated, contrary

to experiments. We show that the Ogden model can make more reasonable predictions, but only at the cost
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of poorly-fitting the initial portion of the uniaxial tensile testing data.

Broadly, we conclude that the tube-inflation characteristics noted in this paper appear from a complex
coupling of all four phenomena: bulge formation, strain hardening, time-dependent relaxation of the
material, and strain-induced damage. The first of these is a purely geometric effect, whereas the other three
are material behaviors. The latter two phenomena are (by definition) absent in hyperelastic models. An
especially interesting qualitative result from this paper is that a pressure peak followed by a pressure plateau
— a signature of bulge initiation and propagation in hyperelastic tubes — may appear without bulge
formation, and due to mechanical properties alone. While this article is fundamental in nature, it may guide
the design of actuators, e.g. used in soft robotics. In those applications, fully-reversible behavior of
inflatable is critical to consistently-repeatable actuation and any inelastic effects may build up over time to
reduce reproducibility. In addition, a large deformation even for a brief period (e.g. exposure to high

pressure, local kinking) may permanently change their behavior.

The polyurethane tubes studied here showed relatively modest deviations from hyperelastic behavior. They
retained one key feature of hyperelastic tube inflation, viz. the inflated tubes remain axisymmetric. In
contrast, if the tubes have a relatively large yield stress, non-axisymmetric deformations appear. These will

be explored in a separate publication.
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Figure S 1: A long rubber balloon during two cycles of inflation-deflation with air. After the first
deflation (image c), the portion of the balloon that had bulged is permanently deformed. The second
inflation (image d) shows three coexisting diameters, the smallest of which corresponds to the
portion of the balloon that has never experienced large inflation, and the largest corresponds to the
portion of the balloon that has bulged in both cycles. Black marks are ink marks to visualize the
deformation.

a No previous inflation

Elnﬂation cycle 1 (5roiaiationi

¢ Deflation after cycle 1
e e
d Inflation cycle 2

€ Deflation after cycle 2
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Figure S 2: Uniaxial tensile testing data for polyurethane tubes during loading and unloading at
nominal strain rates of 10% per minute to 250% per minute.

Figure S 3: Inelastic deformation of tubes after being inflated at 2 mL/min to the volumes listed
alongside each figure. The ruler at the bottom is 150 mm long. The undeformed specimen (uppermost
image) appears bent due to the intrinsic curvature of the tube (see Section 2 in the main text).
Significant permanent deformation appears for AV >10 mL, both as a gradual straightening of the
tube, as well as a permanent change in diameter. Deflation after AV =6 mL (far above AV =2.5 mL at
the pressure maximum) induces only slight permanent deformation. This is consistent with Figure 2
and Figure 4 in the main text: at AV =6 mL, the axial stretch is less than 1.25 (Figure 4d), and the
circumferential stretch is less than 1.6 (Figure 4c), values at which permanent deformation is modest
(Figure 2b).
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Figure S 4: a. Same data as Figure 4 in the main paper, but with time on the x-axis. Legend lists the
various flow rate experiments listed in the legend (all in mL/min). b. Same data as Figure 9 in the main
paper, but with nondimensional time in the x-axis. The double arrows (all 50 units wide) indicate that the
timescale for pressure-unloading is approximately equal at all Wi values.
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Figure S 5: Effect of the parameter g on tube inflation at one single Wi value of 0.006. b.
Corresponding profiles of tubes at the same g values (increasing from bottom to top), at a single
AV/Vyvalue of 6.
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Section S 2: Hyperelastic tube inflation model

R
—

Figure S 6: External force and internal pressure induces axial and circumferential stress as the
following equations.

Chang and Kyriakides '? examined the homogeneous inflation of thick-walled tubes, and then derived Eq.
3 and Eq. 4 in the main text in the limiting case of a thin-walled tube. Here we rederive the same equations,
but more directly for a thin-walled tube. Consider the inflation of a thin-walled tube of undeformed radius
R, undeformed wall thickness H, and undeformed length L, with an external axial force, /' (which might be
zero). The internal pressure causes both axial and circumferential stresses, whereas the external force causes
axial stress only. Assuming homogeneous inflation, a force balance then leads to:

F Pr
%= 2k T 2n
Pr
Gp = Eq.S.2

Here 7 and 4 are deformed radius and deformed wall thickness of the tube, respectively.

The deformed and undeformed tube dimensions can be related by incompressibility of the tube walls, i.e.
by setting ZRHL = zrhl, thus giving:

A,vth = RH Eq.S.3
where A, is axial stretch of the tube. It is useful to rewrite this in the form

h 1RH_1HR2 1H1

i 2re_ a2 Eq.S. 4
r A, r?2 A,Rr? A, R13 ~
Stress components based on derivatives of strain energy function, i. e. W, can be written as:
L l aﬂ‘l

Accordingly, Eq. S. 1 and Eq. S. 2 can be combined with Eq. S. 4 and Eq. S. 5 to give:
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F Pr ow
=1

— = Eq.S.7
ook T 2h M an,

ow  Pr ow Ao ow
= F= 2nrh|A = 27R — —

291, 2h| 91, 21, 0Ag

These correspond to Eq. 3 and Eq. 4 in the main text, and also to the equations derived by Chang and
Kyriakides "'>. We have used these equations (setting F=0) to calculate the homogeneous inflation response
in the main paper.
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Section S 3: Condition to guarantee lengthening when a thin-walled Ogden tube
inflates homogeneously

As mentioned in the main text, the experiments show that the tubes stretch when they are inflated,
whereas the unconstrained fit to the Ogden model predicts 1, < 1. Here we will derive the condition that
guarantees that the initial portion of the inflation (i.e. when the inflation just starts) induces lengthening of
the tube.

The Ogden model (Eq. 1 in the main text) is substituted into the force equation (Eq. 4 in the main text).
The resulting expression is then expanded to first order in 1, — 1 to obtain an expression of the form :

F=fg)+ g(1)(1, — 1) Eq.S.8
Setting =0, the axial stretch can be written as
A=1- f(35) Eq.S.9
g(Ag)

For circumferential stretch close to one (i.e. at the early stages of inflation), it can be shown that the first

.0, )
derivative # is always zero. L.e. regardless of the values of the Ogden equation parameters, for small
o

inflations with zero axial force, the tube neither lengthens nor shortens. We must therefore examine the
second derivative, which can be shown to be

0y Ag=1 3 Xn=1Hnln 3u
where the denominator y is the shear modulus.
Lengthening is guaranteed by
2
0%z _ 4 Eq.S. 11
015 —
Since the shear modulus is necessarily positive, Eq. S. 11, gives the final criterion
M
Z a2 =0 Eq. S. 12
n=1

This last equation is identical to Eq. 8 in the main text.
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