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ABSTRACT

In a networked anagram game, players are provided letters with possible actions of
requesting letters from their neighbours, replying to letter requests, or forming words.
The objective is to form as many words as possible as a team. The experimental data
show that behaviours among players can vary significantly. However, simulations using
agent-based models (ABM) in the literature often have not incorporated proper uncertainty
quantification methods to characterise diverse behaviours of players. In this work, we
propose an uncertainty quantification framework to build, exercise, and evaluate agent
behaviour models and simulations for networked group anagram games. Specifically,
using the data of game experiments, the proposed framework considers the clustering of
game players based on their performance to reflect players’ heterogeneity. Moreover, we
also quantify uncertainty within each cluster through statistical modelling and inference.
Numerical studies of networked game configurations are conducted to demonstrate the
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merits of the proposed framework.

1. Introduction
1.1. Background and motivation

Anagram games are word formation games and have
been employed in a wide range of research. For exam-
ple, they are used to study individual mental capabil-
ities, and coordination and cooperation within groups.
This is because anagram games are considered to be
non-trivial mental tasks (e.g., Cadsby et al. (2007)).
The anagram games have a unique combination of
features that make them attractive: simple and unam-
biguous directions, minimal space and equipment
requirements to play the game, variable and control-
lable complexity of task (e.g., requiring greater rear-
rangement of letters, requiring words with greater
numbers of letters, giving lesser time to form words),
and straight-forward ways to quantify performance so
that success is clearly defined. See Appendix A for
descriptions of several works.

Anagram games can be divided into two classes,
based on their goal: (i) rearranging scrambled letters
to form a unique word, or (ii) identifying as many
words as possible from a collection of letters. In
a previous work (Cedeno-Mieles et al., 2020), online
networked group anagram games (GrAGs) or experi-
ments were conducted, where players share alphabetic
letters to form words. Using experimental data from
human subjects, an agent-based model (ABM) was
developed to enable simulation of games for condi-
tions beyond those tested (Ren et al., 2018). The

experiments and model are described below as back-
ground. Here, we use the following terms to denote
GrAG game players because they are also agents in
ABMs and nodes or vertices in the game network:
node, vertex, agent, and player.

Figure 1 depicts four consecutive time steps in
a hypothetical GrAG with a simpler network config-
uration to aid the description. Communication chan-
nels are in purple, and on these channels a player may
request letters and reply to letter requests. Overall,
a player may take any of four actions, any number of
times, and in any order during a 5 minute game: (i)
request a letter from a neighbour (request sent), (ii)
reply to a request with the letter (reply sent), (iii) form
a word (form word), and (iv) think or idle (i.e., a no-
op condition).

In our online experiments, human players are
recruited using Amazon Mechanical Turk (AMT)
and these people play the GrAG remotely using
a customised software game platform (Cedeno-
Mieles et al., 2020) that they access through their
web browsers. Each player is initially given three let-
ters (shown in brown, in the black boxes). During the
game, players can request letters from their neigh-
bours, and neighbours can choose to reply with the
requested letters or not. For example, v; requests a e
from v, at time ¢, and v, sends a reply with the e at
time (¢ + 1) so that e gets added to v,’s letter set, with
which it forms words. Received letters are shown in
black. If a player shares a letter with the requestor,
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Figure 1. lllustrative play in a group anagram game (GrAG) among three players v;, 1 < < 3, each with three initial letters in
brown, within a black box. Received letters from neighbours are in black. In the model of these games, a player executes one
action per time step where a time step is one second. The game is described in the text.

then both the requestor and the player replying have
a copy of the letter. A person never loses a letter, even
when they share it with others. This is to encourage
sharing letters and forming more words. Also,
a person may use a letter in any number of words,
and any number of times within a single word. For
example, v; uses s and e in forming sea at time (¢ + 2)
and seem at (t + 3), thus using the single e once in the
first word and twice in the latter word. Games are
played for 300 seconds (5 minutes). Each player typi-
cally forms between 10 and 40 words.

In GrAGs, it is seen that behaviours can vary sig-
nificantly among players. The mean model (Ren et al,,
2018) does not capture this heterogeneity. A baseline
ABM that only captures mean behaviour is proble-
matic because it implies that all agent behaviours will,
over time in one simulation, tend to the same mean
behaviour, and all agent behaviours over many simu-
lation instances will also tend to the same mean beha-
viour. Producing models that contain greater ranges of
player performance more faithfully represents the
ranges in behaviours observed in the games (Cedeno-
Mieles et al., 2020). This underscores the need for
methods to quantify the uncertainty in players’
behaviours.

Moreover, there are limitations to the amount of
experimental data that can be collected. It is well-
known that AMT does not provide an unlimited pool
of candidate players. Additionally, some candidates do
not show up for experiments (Mason & Suri, 2018). We
also constrained our experiments so that a person could
only play the GrAG one time, to obviate learning from
past experience. Consequently, we encountered limita-
tions in the size of our candidate pool, resulting in fewer
completed games than we desired. This produced two
problems to overcome in building ABMs of game
player behaviour: data sparsity and variability.

These challenges motivate the development of
a general uncertainty quantification (UQ) framework
for building ABMs of human behaviour in the net-
worked anagram game. Our primary objective is not
necessarily to generate human-like actions or beha-
viours, but rather to accurately quantify the uncer-
tainty inherent in players’ behaviour based on
experimental data. This uncertainty is then integrated

into agent-based simulations (ABS) to create more
faithful representations of the diversity of players in
the real-world game. The proposed UQ framework is
designed to study human behaviour in various scenar-
ios that might be expensive or practically impossible to
conduct in real-world experiments. The original
experiments, conducted with remote participants
recruited via AMT, were limited in scope and settings.
However, our proposed framework has the potential
to simulate GrAGs with a large number of players and
explore a variety of scenarios, including different net-
work structures and varying numbers of players’
neighbours. This not only allows for the quantification
of heterogeneous behaviours among players but also
provides a more comprehensive understanding of
individual player behaviours. The insights gained
from these simulations can then be used to guide
further experiments and studies. (We use “simulation”
for computations of a simulation, in computing player
actions during a GrAG; we use “modeling” for the
process of constructing models used in simulation.)
We believe that our uncertainty quantification meth-
odology for ABM is also applicable to other types of
experiments that involve human behaviour, such as
Mason and Watts (2012).

1.2. Novelty and contributions

The proposed framework is to design, implement, and
execute a general UQ approach for building ABMs of
human behaviour from networked GrAG game data,
such that different agents can have heterogeneous
behaviours. Based on our best knowledge, it is the
first UQ framework for modelling and analysis of
networked GrAGs. The key novelty is systematically
modelling and simulating the networked anagram
game with the considerations of data uncertainty and
player’s uncertainty. Rigorous hypotheses are con-
ducted to investigate the homogeneity of players with
different numbers of neighbours in the networked
GrAGs. Furthermore, clustering analysis is performed
to refine the quantification of heterogeneous beha-
viours among players. The cluster results provide
a foundation to model player performance based on
the experimental data for players within each cluster,



such that the variability of players’ abilities to play
GrAGs can be better quantified. By using the prob-
abilistic uncertainty of estimated transition probabil-
ities of actions via the asymptotic distribution of the
estimated parameters, we can further accommodate
data uncertainty into the proposed framework.
Incorporating the UQ scheme described above, we
thus build ABMs for simulating networked GrAG
games where each agent can be endowed with differ-
ent transition probabilities of actions to better reflect
the UQ of human behaviours.

Figure 2 illustrates two new models, the CWM
model and the CWUQ model, in comparison with
the baseline model (Ren et al., 2018). For the baseline
model, players with the same degree will exhibit the
same behaviour. In contrast, after grouping players by
degree (d <2 and d > 3), the cluster-wise mean
(CWM) model considers player behaviours to be dif-
ferent within each group. Then for each group, players
are partitioned into four clusters, ¢ = 1 through 4,
based on their performance. Thus, the CWM model
considers four different levels of player behaviours for
each degree range. Hence, while the degree d is solely
based on network structure, the cluster is specified as
an external input that governs players’ performance.
The cluster-wise uncertainty quantification (CWUQ)
model is an extension of the CWM model to account
for game data variability within each cluster (indicated
by the error bars around each blue data point). These
models are formally described and evaluated in
Sections 3 and 4. The models are then used to build
ABMs and conduct simulations of the anagram game
for different numbers of game players and connectiv-
ity among them, and different agent performances.

The contributions of the proposed UQ framework
are as follows. First, a key contribution is to system-
atically quantify the uncertainty of the game data

Baseline
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through the CWM and CWUQ models. Combining
hypothesis testing, statistical analysis, and clustering,
player behaviours from games are partitioned by skill
level in terms of (a) numbers of interactions with
neighbours and (b) numbers of words formed. This
immediately provides a way to specify agent models in
terms of player performance: through the computed
clusters. It also provides meaningful distinctions
between poor- and good-performing agents. For mod-
elling the GrAG, a per-player logit-model is con-
structed to determine a player’s next action at time
(t + 1) based on the player’s most recent action at
time ¢ and on a vector of parameters that describe
the history of the player’s actions and interactions
with other players. Moreover, the extension of the
CWM model to the CWUQ model enables the quan-
tification of uncertainty within a cluster by accounting
for variability of behaviour within it. This is achieved
by sampling from distributions of model parameter
values in the logit-model at each time during
a simulation. Thus, this model incorporates two levels
of uncertainty: that from clustering, and uncertainty in
model parameters.

The second contribution is incorporating the UQ
into ABM simulation of the networked GrAGs. An
agent-based modelling and simulation (ABMS) soft-
ware platform was constructed that executes both of
the agent CWM and CWUQ models for arbitrary
game configurations and for user-specified assign-
ment of players to clusters (which dictates their per-
formance). An in-depth evaluation of the CWM and
CWUQ models, as seen in Section 4, can greatly
enhance the interpretation of ABM results. Thus, the
proposed framework achieves a good balance among
model explainability, model flexibility, and model
complexity, e.g. (Baker, 2016; Pearl & Mackenzie,
2018). An ABM of human behaviour is expected to
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Figure 2. lllustrations in contrasting different ABMs constructed from GrAGs. (LEFT) The ABM of Ren et al. (2018) where
a behaviour model is specified for an agent based on a player’s (node’s) degree in the networked anagram game, with values
2,4, 6,and 8. (CENTER) The first of two new models is called the cluster-wise mean model, CWM. A behaviour model for an agent is
specified by the pair [g, c|, where g = 1 if the agent has degree d < 2 in the network and g = 2 if d > 3, and where c is the cluster
number 1, 2, 3, or 4. Clusters represent different levels of performance of agents in the game. (RIGHT) The second of two new
models is called the cluster-wise uncertainty quantification model, CWUQ. This model is similar to CWM, but now within each
cluster, the uncertainty of behaviour is quantified. It is through the last two models that heterogeneous agent behaviours are

realized in simulations.
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satisfy one or more criteria such as: (1) explainability
of human behaviour, (2) sufficient model complexity
of human behaviour, (3) a favourable framework for
UQ with consideration of computational cost, and (4)
other considerations based on specific problems. We
demonstrate outcomes that illustrate some of these
criteria with the next contribution below.

Our third contribution is the insightful evaluation of
the models in the context of ABM for human group
behaviour. There are the following insights: (i)
Variability in model predictions of numbers of words
formed are dependent on clusters. Representative simu-
lation results indicate that the number of words formed
by one player in a game can vary by factors of 5 to 10.
These ranges are consistent with the variability in the
game data. (ii) Variability in interactions between
players is much less than that for numbers of words
formed because bounds on the number of interactions
of a player are dictated by a player’s degree in the
network and the number of letters that a player has.
(iii) For each of the CWM and CWUQ models, varia-
bility across agents endowed with the same cluster
behaviour generally is less than the variability within
a single player and is less than the variability across
clusters. The latter point is particularly true when com-
paring the behaviour of cluster 4, which has the greatest
performance compared to the other three clusters. (iv)
We find that the CWUQ model generates at least as
much variability in results as does the CWM model. In
many cases, the variability for the two models is com-
parable. These differences are smaller than the differ-
ences produced by changes in behavioural clusters.

1.3. Paper organization

This paper is an extension of preliminary work in Hu
et al. (2021). In that work, simulations were conducted
using the CWUQ model and a 5-node star-4 network.

Section 2: Baseline Model

Overview of human subjects
experiments on which models
are based

=
One average behavior model over all
experimental data

Section 4: Model Evaluation

Player performance data clustering

Behavioral models per cluster

In this work, we run simulations using both models on
the star-4 network and an 18-node graph of four
connected cliques. The 18-node graph is designed to
address variability of behaviours across agents and
across subgraphs of different sizes, significantly
extending the conditions evaluated with the star-4
graph. We compare the models and simulation pre-
dictions from them on the two networks.

The remainder of the paper is organised as follows,
using Figure 3. We first present the formalism for the
baseline model in Section 2, which provides a point of
departure for our new work, and makes the document
self-contained. Then we present the two new models in
Section 3, which includes the clustering method for
players and quantifying uncertainty for model para-
meters. The simulation system is also defined. Model
evaluation is in Section 4. In Section 5, we provide
simulation studies using both models on two networks.
A discussion concludes the work in Section 6. Related
work comprises Appendix A. Appendix B contains
results for a 5-player star game configuration; these
results supplement those in Section 5. Appendix
C shows the hypothesis testing results to demonstrate
the variability of CWM and CWUQ models.

2. Experimentation and baseline model

The anagram game played by a group is described in
Section 1.1 and shown in Figure 1. At any time during
a game, a player executes one of the actions from the
action set A provided in Table 1. In the online experi-
ments, most players spend the majority of their time
taking no action (i.e., not requesting a letter, not
replying to a letter request, and not forming a word).
Hence, in models, we refer to this time as occupied in
thinking, or otherwise idle. Over all 243 experiments,
it is exceedingly rare for a player to take two or more
actions within one second of time; therefore, in our

Section 3: Proposed UQ Framework

Clustering methods of player data

Two behavioral models (CWM and
CWUQ) per cluster

Agent-based simulation model

Section 5: Agent-Based Simulations

Two game configurations

Two agent-based models

Figure 3. Technical sections of this manuscript, with arrows showing dependencies between them. Section numbers are given for
topics. Section 2 is previous work and is provided as a point of departure for the current work, and to make this manuscript self-
contained. Sections 3 through 5 contain our new work and contributions.
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Table 1. The four actions of players in the GrAG and model. The set a of actions is A = {a1,d,0d3,d4}.

Item Action Name Description Iltem  Action Name Description
1 a idling Thinking (a no-op). 3 as request  Requesting a letter from a neighbour.
2 a; reply Replying to a neighbour with a requested letter. 4 ay word Forming and submitting a word.
models and simulations, we advance time in one- ﬁ(i)T ﬁ(li)l /351)2 /351)5
second intervals over the 300-second game, with %i)T 0 ol @
each pl lecti i h d of oo | B | 2| P Poa B
player selecting one action at each second o BY = = )
a simulation. )
. . ; (hHr (@) (i) (i)
The network configuration for each experiment Ba Bit Bix By

was a random regular graph, meaning that each
player in one game had the same number d of
neighbours. Edges between pairs of players were
placed randomly to meet this goal. A network
was fixed during an experiment. Experiments
were run with d =2, 4, 6, and 8. Each player in
each game was assigned three initial letters.
Additional game details are in Ren et al. (2018).
Note that players evenly split the total earnings
from a game, where the earnings are proportional
to the total number of words formed by the team.
Thus, our networked anagram game is
a cooperative game (Deutsch, 1949).

Using game data from experiments, Ren et al.
(2018) constructed a multinomial logistic regres-
sion model to predict a player’s action at time
(t+1) based on the player’s action at time t and
the values of four temporal variables provided in
Table 2. Let z:(I,ZB(t),ZL(t),ZW(t),Zc(t))sTxl.
Note that Zc(t) is used to ensure agents do not
stagnate in thinking; this parameter forces agents
to have a finite deliberation period before acting.
Then the multinomial logistic regression to model
mj—the probability of a player taking action a; at
time (¢ + 1), given that the player took action a; at
time t—can be expressed as

 exp(zB)
SL exp(z?B)”)

where /j’](i) = ([3](’1) b ,ﬁ;}ig)gxl. For a given i (the index

i on action g;), the parameter set is

ﬂij ) la] - 17273747 (1)

Table 2. The four temporal variables of players v € V in the

GrAG  and model. The temporal vector s
2= (1,Z5(1), Z0(t), Zw(8), Zc(1) )5,
Item Variable Description

1 Zg(t)  Size of the buffer of letter requests that vy has yet to

reply to at time t.

2 Z(t)  Number of letters that player v has available to use
at t to form words.

3 Zw(t)  Number of valid words that v, has formed up to t.

4 Zc(t)  Number of consecutive time steps that v, has taken

the same action.

Game players in the GrAG data are grouped by their
degrees d in the network G. To estimate the parameter
sets BY), Ren et al. (2018) used maximum likelihood
estimation across the experimental observations for
each d = 2, 4, 6, and 8. Suppose that there are n observa-
tional data having the same “most recent” action a; and
number of neighbours d, denote as Dg), then the next
action for observation /, namely y;, has a multinomial
distribution with corresponding probability 71, 7y, 713,
and 74 (71 is the 717 in Equation (1) for observation I).
The probability of observing outcome y; is
SnIBY,2) = miy x i x s x m,

where y;; indicates whether the next action of observa-
tion lis a; or not. y; = 1 if y; = j, otherwise, it equals 0.
Then, they conduct parameter estimation by finding
the B that maximises the log-likelihood function

g(i) = arg max logL(B(i)|Df;)) = arg max log [1/(»B(7))
BU BY !

3)

using the Broyden - Fletcher — Goldfarb - Shanno
(BFGS) algorithm of the quasi-Newton optimisation
method (Broyden, 1967).

Based on the estimation from the multinominal
logistic model, Cedeno-Mieles et al. (2020); Ren et al.
(2018) presented an ABM of the GrAG, where the
game is modelled as a discrete-time process. At each
time step, a player executes one of the actions from the
action set. They considered the set V' of players and the
set E of their communication channels (edges) as an
undirected graph G(V,E). Here all agents with the
same number of neighbours d in the network G are
assigned the same coefficient matrix. Thus, these agents
will have the same behaviour in expectation. However,
we would like agents to exhibit heterogeneous
behaviour. Consequently, we devise a method to pro-
duce variability in actions among agents with the same
degree d. This is the subject of the next section.

3. The proposed uncertainty quantification
framework

In this section, we detail the proposed UQ framework.
Section 3.1 focuses on clustering for players based on
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their activity in a game, such that one can better
quantify their heterogeneity. Section 3.2 describes the
UQ for model parameters estimated by the multino-
mial logistic model for each cluster. Section 3.3 details
the ABM simulation using the obtained UQ for
GrAGs.

3.1. Clustering methods for players

To quantify the uncertainty of player behaviours, a key
goal is to partition players based on their activity. The
number of letters a player requests, the number of letter
requests a player replies to, and the number of words
a player forms in a game are used to quantify a player’s
activity. We define two variables, engagements and
words. Engagements is the sum of the number of
requests and number of replies of a player, and words
is the number of words a player forms in a game. The
engagements and words are used to partition players.

In experiments, the number of neighbours that
a player had was either d =2, 4, 6, or 8. All players
had the same number of neighbours in one game so that
they could gather multiple sets of data on players with
the same d. We want to study whether players should be
partitioned based on their number of neighbours since
a player with more neighbours can request more letters
and reply to more letter requests. Figure 4 shows the
numbers of engagements and words for players with
different numbers of neighbours. It is shown that
engagements increase with the number of neighbours,
but become saturated when the number of neighbours is
greater than four. The numbers of words are nearly the
same for different numbers of neighbours. In summary,
game data for players with d = 4, 6, and 8 neighbours
are observed to be similar, and these data are different
from those of players with d = 2 neighbours.

To determine whether we can divide players into
separate groups, we conduct hypothesis testing of two-
sample t-tests on engagements and words:

% Engagement

=)

jon - o
) .

IEEN ! .
& -

< .

7] — \

é’

o O | ‘ L | '

e~ =4 :

e ; !

o\ ; e e —
5 o

O O o o o
E T T T T
= 2 4 6 8
Z

Number of neighbors

rseng . eng __  eng r.s.eng  eng eng
Hy ™= o= = p® vs Hyom e = 3 U0,

rsword | word __  word r,s,word | word word
HO . Hr - Aus vs. Hl . Aur # !’45 ’

r,s =2,4,6,8, and r<s,

where pt;”g and ‘ugord for d =2,4,6,8 are the mean
engagements and words for players with d neigh-
bours, respectively. We also denote pjs and pl%?
as the mean numbers of engagements and words for
players with either 4, 6, or 8 neighbours, respec-
tively, and perform hypothesis testing on players
with 2 neighbours and players with 4, 6, or 8

neighbours:

eng . eng _  eng eng . eng eng
Hy® o opy® = pygg vs- H " 0y F flyggs

word , word __  word word ., word word
Hy™ 0y = phyeg v HO 0y F g

After partitioning players into two groups based on
their number of neighbours, we use the k-means clus-
tering method (Hartigan & Wong, 1979) in each
group to quantify the variability in players’ abilities.
Before clustering players, the engagement and words
are standardised first, so no variable would dominate
the clustering. To determine the number of clusters in
the k-means clustering, we use the Bayesian
Information Criterion (BIC) as our criterion (Li
et al., 2016). Based on the BIC and the size of data,
we select four clusters, which gives the smallest BIC
values. After clustering players in each group, we

denote the formed clusters as DE‘?C], i=1,2,3,4 for

data with initial action a;, where g = 1,2 is the group
number and ¢ = 1, 2, 3, 4 is the cluster number.

3.2. Quantifying uncertainty for model
parameters

In the mean multinomial logistic regression model
(Cedeno-Mieles et al., 2020) of Section 2, the next

Words
(=]
a [
j72}
=R °
S =-
(-
A :
2 = R S
= o | E ,+\ ! '
o _ |
ZO_%_—;l_‘_l =
T T T T
2 4 6 8

Number of neighbors

Figure 4. Boxplots of engagements and words; data come from experiments. The left plot shows engagements of each player in
games with d = 2, 4, 6, 8 neighbours. The right plot shows number of words of each player in games with 2, 4, 6, and 8

neighbours.



player action depends on the parameter matrix B
and input vector z by mapping them to a probability

vector m; = (7T,'1,7T,'2,7T,‘3,7T,‘4)T through Equation (1).

The uncertainty in the estimated B" matrix results in
different probabilities 7;;, therefore, leading to diver-
sity in outcome actions. To quantify these uncertain-
ties, we use two approaches, the CWM and CWUQ
approaches from Figure 2, which are described next.

3.2.1. Method 1: Within-cluster mean CWM
approach

We apply the multinomial logistic regression to each
cluster, and parameter matrices BEZC] are estimated for
each cluster in each group. In this approach, uncer-
tainty quantification depends on clustering players,

and the BE,)C] matrix will be the same for all players

in the same cluster. Thus, they will have the same
probability vectors given the same set of z vector
values. We compare this approach with the approach
below, which quantifies the uncertainty of model
parameters.

3.2.2. Method 2: Within-cluster uncertainty
quantification (UQ) CWUQ approach

In order to study the heterogeneous behaviour of
players in the same cluster, we utilise the asymptotic
normality property of MLE to quantify the uncertainty
for parameter matrix B, . In this way, different BE‘;?C]
matrices can be sampled from the asymptotic normal
distribution, representing different behaviours of
players. Without loss of generality, we omit the sub-

script [g, ¢] in parameter matrix B[i')-c} and transform it

to the parameter vector
p=p"= (B, B B (Action idling a; is

treated as a reference group so ﬁgi) will not show up
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in the parameter vector, leaving the other three 5 x 1

vectors ﬁg), ﬂgi), and ﬁii) in B). Then we use the
asymptotic property of MLE (Sweeting, 1980). That
is, as sample size increases, the maximum likelihood

estimator /;’mle of parameter f approximates
a multivariate normal random variable
~ d 1
ﬁmle—>MN(/3’E:I(/3> /T’l), (4)

where I(-) is the Fisher information matrix (Fisher,

1922) and # is number of observations in DE?.:]' We

can estimate 3 with the MLE Bmle
matrix ¥ with I(8,,,) "' /n. Then, we directly draw
samples from the asymptotic normal distribution in
Equation (4). Consequently, we can calculate the
corresponding probability vector based on the

and covariance

sampled [5, again using Equation (1). Note that the
use of asymptotic normal distribution requires
a large sample size. In our data, there can be situa-
tions with small sample sizes for certain pairs of
actions. For instance, among 311 observations in
group 1 cluster 2, where the initial action is request
(as), only two observations transition to reply (a,),
three observations transition to request (a;) again,
and there are no observations that transition to form-
ing words (a4). The remainder of the transitions is to
idle (a;). When the pair of actions occur infrequently,
we avoid the use of the asymptotic distribution and
instead utilise point estimators.

3.3. Simulation models

The simulation system models the GrAG of
Figure 1. Simulation input parameters are provided
in Table 3. This table also thereby provides much
of the configuration of a simulation. The para-
meters are divided into three sections by three

Table 3. Summary of parameters and their values used in simulations of GrAGs. The first section contains variables that are
physical entities that map directly to a GrAG. The second section contains model parameters that prescribe node (i.e., player,
agent) behaviours. The third section contains the simulation parameter. Sections are delineated by three horizontal lines.

Parameter

Description

Networks G(V, E).
Number n, of owned letters.
Initial letters L.
Word corpus C¥.

Two networks: (i) the star graph of Figure 7 and (ii) the group of cliques in Figure 8.

The number of owned letters initially assigned to a player.

The set of initial n, letters assigned to a player v.

The corpus of 1015 3-letter words is taken from http.//www.wordfind.com/3-letter-words/, accessed January 12

2018. (At the time of this writing, eight words have presumably been removed, since the web page shows
1007 words.) Only 3-letter words are considered in simulations.

Duration of GrAG t,.
Group, g.

GrAG duration is fixed at t; = 300 seconds.
There are two groups: g = 1 corresponds to nodes with degree d < 2 in the game network and g = 2

corresponds to nodes with degree d > 3.

Cluster, c.

Group-cluster [g, c|.

Behaviour classes C.
a behaviour class.

Game player behaviour models M.

Player actions a.

Number of iterations njgers.

For each group g, there are four clusters (c): ¢ = 1 through 4.
The group-cluster pair [g, ¢| determines the behaviour regime for each node.
There are two behaviour classes: the CWM model C, and the CWUQ model Cg. Each node is assigned

Each player in a GrAG is assigned a behaviour model M, which consists of the triple M = [C, g, ].
The set A of actions a is given in Table 1.
Each simulation is composed of njrs = 50 individual dynamics instances, where each instance starts from time

t = 0, with initial conditions reset, and then the dynamics of the system are executed for ¢, discrete time

steps.
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horizontal lines. The first section contains physical
parameters of the game. The second section con-
tains parameters of behaviour models that simulate
player actions in a GrAG. These are produced from
the methods described in this section. The third
section of the table, with only one value, is purely
a simulation parameter: the number of simulation
instances to perform in order to address stochasti-
city of the models. Details on parameter selections
are given in Section 5.1 on the simulations; the
purpose here is to list the parameters because
they support the simulation models. All parameters,
including the word corpus, can easily be changed
through configuration files to run additional
simulations.

Equation (1) provides the key computations of
the ABM in generating the probabilities 7; of an
agent vi taking action aj, j € {1,2,3,4}, at time t
given its most recent action g; at time (¢t —1),
where actions are given in Table 1. This equation
is used for each of the CWM and CWUQ models
(the BY) matrices vary between models). Game
behaviour data for players in each cluster ¢ are
used to fit a per-cluster model. Further, the net-
work structure defines the group g to which each
agent belongs. Thus, in total, a game player
behaviour model M is given as M =[C,g,d],
where C is the behaviour class, g is the group,
and ¢ is the cluster number. Hence, the CWM
model is M, =[C,,g,c] and the CWUQ model
is Mg = [Cg, g,

A simulation is composed of a collection of simula-
tions instances (also called iterations or runs). An itera-
tion is a sequence of simulation steps from time ¢t = 0
to t, seconds, in one-second time steps, such that
actions of all players are computed at each t. The state
of the system at t = 0 constitutes the initial conditions
for a simulation instance. Within one simulation, all
instances have the same initial conditions. These initial
conditions and properties (see Table 3) are read from
various input files. The processes of forming words and
sharing letters in an iteration are shown in Figure 1.

In each iteration, the letters that a player can
share with her neighbours are her owned (i.e.,
initially assigned) letters. There may be duplicate
letters between pairs of players, including neigh-
bours of an agent v,. A player vy that receives
a letter from a neighbour v; cannot then share
that letter with a different neighbour v,. This is in
accordance with the experiment rules. Table 4
defines internal variables used in the algorithms
of the simulation system.

Algorithm 1 provides the overall simulation struc-
ture: reading inputs, initialising variables, and iterat-
ing over simulation iterations, time, and agents
vk € V. Algorithm 2, invoked from Algorithm 1 on

step E.2.i.c., provides the steps for computing the next
action a;(t) for node or agent or game player v, at
each (iteration, time) pair.

Algorithm 1: Algorithm NETworRKEDGROUPANAGRAMGAME.

1 Input: Data in Table 1 through 3.

2 Output: (i) aj; (ii) pac; (iii) z; and (iv) n. Each of these outputs is
prefaced with the iteration number jter, time t, and node or player or
agent ID vg.

3 Steps:

# Read inputs from files.
A. G(V,E), and compute N[k] for each agent v, € V.
B. C", Nigers, and t,.
C.foreach v, e V:
1L, C, g, ¢, and p.
2.C g, coverall C € {Cy, G}, g € {1,2},and c € {1,2,3,4}.
D. Set L' with all LI for all v; € N[k].
# Do simulations over iterations and over time and over nodes/
agents.
E. for iter = 1 0 Njers:
1. for each (v € V): Reset L' = LI, z =0, B} =, B2 = 0,
Wy = 0.
2.fort=1toty
i. for each v, € V:

a. Receive all letter requests from neighbors N[k] of v,
sent to vk at the previous time (t — 1), and put in
buffer B}.

b. Receive all letter replies from vi's neighbors that are
in response to v's letter requests, sent to vy at the
previous time (t — 1), and put in LZ’; mark this letter
request in B as fulfilled.

¢. Call Algorithm 2, (verTex AcTION), computing vk's next
action.

d. Write next action and other variables in Output
section above.

Algorithm 2: Algorithm Vertex Action for vertex vy.

1 Input: t, vi, a;(t — 1), z, Nk], L'y, LI, CY, Wy, B}, B2, M = [C,g,d],
and p.

2 Output: g;(t), z, LI, W, B}, B2 as appropriate.

3 Steps:

A. Using the property index for v, from p, retrieve properties for M
from values [C, g, c]. Compute all 1, j € {1,2,3,4} from
Equation 1), yleldlng Pact = (IT,'1 , 1Mo, 71,'3,71,‘4).

B. Uniformly draw a random number r € [0, 1] to determine the
next action a;(t) for vy using pact.

C.if a;(t) equals a; do ## Action g;(t) is think/idle.

i. Do nothing.
D. else if g;(t) equals a, do ## Action a;(t) is reply (with letter).
i. If there is a letter request from a neighbor of v in B}, that is
waiting to be fulfilled, then send a letter reply using FIFO
ordering, and mark the request in B} as fulfilled. Otherwise,
do nothing.

E. else if g;(t) equals a3 do ## Action a;(t) is send letter request.

i. If there is a letter € € L'y that is not in the buffer of letter
requests BZ for v, choose letter € at random, send a letter
request to the appropriate neighbor that possesses ¢, add
the letter to the request buffer B2, and mark the request as
sent. Otherwise, do nothing.

F. else g;(t) equals a, do ## Action w(l‘) is form word.

i. Select randomly a word w € C", where w ¢ W and can be
formed with letters in L. Add w to W. If there is no such
w € %, do nothing.

G. Return updated variable values in Qutput section for vertex v.

4, Model evaluation

We evaluate the UQ method of Section 3, and in
Section 5, we use these evaluation results to reason
about ABS output.
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Table 4. Summary of additional parameters used in the simulation algorithms. Most of these evolve in time during a simulation.

Parameter Description
Neighbours of a node N[k].  Set of neighbours of a node vy in a graph G.
Mapping p. Map of agent v, for each v, € V, to its model M.

Action probabilities pgct.
Letters in hand L.
Neighbouring letters L.
Buffer of letters Bj.
Buffer of letters B.
Words W.

Numbers of actions n.

The set of words already formed by v.

The vector of probabilities of taking actions, computed for each vy at each t, pae = (11, M, i3, 7ia) per Equation (1).
The set of letters that a player v, has, at any time t during a game (superscript ih is for ‘in hand’).

The set of letters of the neighbours of vk that v can request.

The buffer of letter requests that v, has received.

The buffer of letter requests that v, has made to neighbours.

The counts of actions for each v and each t, N = (Myords > Mregsent > Mreqrec k> Mrepisent s Mrepiec ) Which are, respectively,

the number of words formed, number of requests sent, number of requests received, number of replies sent, and

number of replies received.

Table 5. Pairwise comparisons of engagements and pairwise
comparisons of words. The numbers are p-values of two-sided
two-sample t-tests.

Engagements Words

number of
number of neighbours  p-value neighbours p-value
2vs. 4 8.286e-13 2vs. 4 2.151e-03
2vs. 6 8.386e-05 2vs. 6 0.236
2vs. 8 1.418e-04 2vs. 8 0.210
4vs. 6 0.269 4vs. 6 0.589
4vs. 8 0.641 4vs. 8 0.967
6vs. 8 0.202 6vs. 8 0.749
2 vs. 468 5.009e-18 2 vs. 468 3.231e-03

4.1. Clustering players

Table 5 shows the p-values of two-sample t-tests. For
engagements, the p-values show that 2 neighbours is
significantly different from 4, 6, and 8 neighbours,
while pairs of values among 4, 6, and 8 neighbours
are not significantly different. For words, the p-values
show that 2 neighbours is significantly different from 4
neighbours, while, again, pairs of values among 4, 6,
and 8 neighbours are not significantly different.
Though 2 neighbours is not significantly different
from 6 and 8 neighbours, respectively, 2 neighbours
is significantly different from 4, 6, and 8 neighbours
together. This means that we can collect players into
two groups: those players with 2 neighbours [group
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(a) Cluster plot for 2 neighbors

g = 1] and those players with 4, 6, or 8 neighbours
[group g = 2].

Figures 5(a,b) show the clustering results using the
k-means method. The left plot is for 2 neighbours, and
the right plot is for 4, 6, and 8 neighbours. Different
clusters are marked with different colours and num-
bers, 1 through 4. In Figure 5(a), the black cluster is
the least active, and the blue cluster is the most active.
In Figure 5(b), the blue cluster is the least active, and
the green cluster is the most active. Figure 6 provides
the same data, but the mean and median points within
each cluster are shown.

4.2. Quantifying uncertainty for model
parameters

Table 6 shows one set of z values, for the group
g =1, and we use these z values to generate het-
erogeneous probability vectors. Table 7 shows gen-
erated probability vectors sampled from the

asymptotic normal distribution of f3 for group
g = 1. The four clusters correspond to clusters in
Figure 5(a). In each cluster, the first row provides
the probability vector from the CWM model, and
the bottom four rows provide generated probability
vectors from the CWUQ model. Players in cluster
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Figure 5. Data from human subject anagram games, showing results of k-means clustering. Scatter plots of number of words
formed against number of replies and requests (engagements). Each data point represents one game player. Data points in
different clusters are denoted in different colors and are numbered, 1 through 4. (a) Data for d = 2 neighbours [group g = 1]. (b)

Data for d = 4, 6, and 8 neighbours [group g = 2].



514 (&) Z. HUETAL.

2 Number of Neighbors: 2
5

g~ 3

- A e 4 ® Mean
S 2 Ao A Medi:
Sl A edian
Lo

53 1

Eey g

° « 4

5

Fg < - T T T T T T T
£ 0 10 20 30 40 50 60

Number of words
(a) Cluster center plot for 2 neighbors

2 Number of Neighbors: 468
5

= ® Mean
2 & 3 .

§ | 2 4 A Median
9 2 A o

"o | 4

g~ 1

R

5]

Fg < - T T T T T T I
E 0 20 40 60 8 100 120

Number of words

(b) Cluster center plot for 4, 6, and 8 neighbors

Figure 6. Data from human subject anagram games, showing results of k-means clustering. Center plots of number of words
formed against number of replies and requests (engagements). (a) Data for d = 2 neighbours [group g = 1]. (b) Data ford = 4, 6,

and 8 neighbours [group g = 2].

Table 6. z vector values of Zg(t), Z;(t), Zw(t), and Z(t).

Number of
Initial state neighbours  buffer  letter word  constant
ay (idle) 2 0 3 1 5

4 have lower to-idle (a; — a;) transition probabil-
ity than players in other clusters, so players in
cluster 4 are the most active ones in group g =1,
which can be confirmed in Figures 5(a).

5. Agent-based simulation results from
networked group anagram games

In this section, we present simulation scenarios and results
and explanations from the simulations. Note that the simu-
lation process of the game follows very closely the actual
experimental procedures, by design, so that experimental
data could be used to develop agent models of player
behaviours for the agent-based simulations (ABSs). The
simulation models are presented in Section 3.3.

Group 1 (4 leaf nodes)

1 2
0 Group 2
4 3

Figure 7. Star network used for simulations. Nodes are game
players and edges represent communication channels that can
be used to share letters. The centre node (hub) has degree
d = 4 and hence is in group g = 2 and the four leaf nodes
each have degree d = 1 and so are in group g = 1.

5.1. Simulation scenarios

We analyse two anagram game configurations of players.
Figure 7 is a star-4 graph, with a hub node 0 and four leaf
nodes. This network was analysed in Hu et al. (2021). We
include new results for it in Appendix B. The second
graph is a graph on 18 nodes consisting of four clique
subgraphs (K3, Ky, Ks, and K), where Kj is a clique on j

Table 7. Sampling from the asymptotic normal distribution ofﬁ, where the initial state is a; (idle) and the group g = 1. The top left
part is for cluster 1, the top right part is for cluster 2, the bottom left part is for cluster 3, and the bottom right part is for cluster 4.
One can see these clusters in Figures 5(a). Each row is a probability vector for next actions. The first row (mean) is from the cluster-
wise mean model (CWM), and the bottom four rows are four samples from the cluster-wise uncertainty quantification model
(CWUQ). a; — g; means transition from g; to g;, so the value under each column represents the probability of next action (e.g.,

idling, replying with letter, requesting letter, and forming words).

Cluster 1 Cluster 2
a; — a — ay a; — as ay — ds a — a a; — ay a; — as a; — dg
Mean 0.957 0.006 0.014 0.022 mean 0.942 0.010 0.031 0.017
Sample 1 0.955 0.008 0.014 0.023 sample 1 0.944 0.009 0.028 0.019
Sample 2 0.957 0.006 0.015 0.023 sample 2 0.944 0.010 0.029 0.018
Sample 3 0.958 0.009 0.013 0.019 sample 3 0.941 0.010 0.031 0.018
Sample 4 0.951 0.006 0.019 0.024 sample 4 0.942 0.008 0.031 0.019
Cluster 3 Cluster 4
a; — a a — ay a; — as ay — dg a — a a; — ay a, — as a; — dg
Mean 0.917 0.018 0.043 0.023 mean 0.880 0.020 0.051 0.049
Sample 1 0.923 0.017 0.040 0.020 sample 1 0.868 0.019 0.060 0.054
Sample 2 0.922 0.018 0.040 0.020 sample 2 0.868 0.019 0.057 0.056
Sample 3 0912 0.020 0.046 0.022 sample 3 0.874 0.023 0.053 0.050
Sample 4 0914 0.018 0.047 0.022 sample 4 0.869 0.022 0.060 0.050
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Figure 8. Network of four connected cliques (K3, K3, Ks, and Ks)
used for simulations. Nodes are game players and edges
represent communication channels that can be used to share
letters. Nodes 0 and 1 are the only nodes with degree d < 2 so
are in group g = 1. All other nodes have degree d > 3 and
hence are in group g = 2.

nodes. These four cliques are connected in a circle
arrangement. See Figure 8.

These two graphs are motivated by the following
considerations. First, our two groups (¢ = 1 and 2) are
based on the degrees of nodes. Hence, we devised one
graph that had multiple nodes of degree d = 1 so that
these nodes are in g = 1. This is the star graph. We
devised the second graph that had multiple nodes of
degree d > 3 so that these nodes are in ¢ = 2. This is
the 4-clique graph. Second, we want multiple nodes in
a graph to have the same degrees and neighbourhoods
so that we can assess variability in behaviours across
nodes. For this goal, we have four nodes with degree
d =1 in the star graph, and we have multiple similar
nodes in each clique of the 4-clique graph. Third, for
the 4-clique graph, we want multiple cliques, of differ-
ent sizes, so that we can assess differences in agent or
node behaviours as degree increases. Also, these net-
work configurations are different from those used in
experiments, thus illustrating the ability of simulations
to address a wide range of player interaction patterns.

This section uses the 4-clique graph because it is
larger and more nuanced, enabling more detailed ana-
lyses. Many simulations are performed on each game
configuration where input parameters are varied.

Numbers n¢ of letters are specified and specific
letter assignments are made so that players (agents)
can form words when they choose this action. Four
letters are used per player in the star graph, since some
players have only one neighbour, and three letters are
used per player in the cliques graph because each node
has more neighbours. One goal in these simulations is
to determine how many words a player can form.
Consequently, the initial letter assignments to players
are done by human decision-making, to ensure that
a sufficient number of vowels and that often-occurring
consonants are either owned by players or can be
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requested from neighbours. At the other end of the
spectrum, we can assign players very poor letters (e.g.,
X, ¥, Z, q) so that no matter the model, a player cannot
form words. We have not done this in this work
because we want to understand model behaviours.
The game duration is the same as that used in experi-
ments, and a word corpus is used to determine valid
words that agents form.

In this work, each simulation is comprised of
Niers = 50 iterations, and results are presented as time
point-wise averages over all 50 instances and as box-
plots that also account for the data of all 50 iterations.
Fifty iterations provide mean results consistent with
those for simulations between 30 and 50 iterations.

5.2. Simulation results

5.2.1. Basic time history results

Figure 9 shows variability in results across all 50 runs or
instances of one simulation, for the CWM model and
various values of group g and cluster ¢, i.e, [g, c]. The
results are number of words formed by node (i.e.,
player) 5 as a function of game time. The four plots
correspond to node 5 of the 4-clique network with
behaviour models assigned according to [g, c] = [2,1],
(2, 2], [2, 3], and [2, 4], respectively, where g =2
because node 5 has degree d > 3, i.e., d5s = 3. In each
plot, the 50 gray curves are results from the 50 runs, the
magenta curve is the time point-wise average with +
one standard deviation, and the black curve is the time
point-wise median value. The results show that the
individual curves (i.e., simulation instance results in
gray) across the 50 runs can vary considerably, with
the largest variations occurring for [2,4] in Figure 9(d):
the range in numbers of words at t = 300 seconds is
from 20 to 110 words. Also, the cluster-to-cluster dif-
ferences can be large, particularly when comparing with
the behaviour of cluster 4. These ranges of variability
can change with C and [g, ], i.e., with model M, and
result from the variability in the data of Section 4.

5.2.2. Comparisons of time histories of similar
nodes over all player actions

We focus on the Ks clique of the graph in Figure 8 and
specifically, the behaviours of nodes 12 through 14.
Figure 10 shows the time histories for the five types of
events: number of letter replies received (replRec) in
response to this player’s requests for letters from its
neighbours; number of letter replies sent (replSent) in
response to letter requests that it receives; the number
of requests for letters that the node receives from neigh-
bours (reqRec); the number of requests for letters that
this player sends to neighbours (reqSent); and the num-
ber of words (words) that this player forms. Each plot is
data for one node. The first column of plots is for the
CWM model M, =][C,g,c=][C,2,2], and
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Figure 9. Agent-based simulation results for node 5, for a game configuration of a 4-clique graph (see Figure 8). Plots are the
number of words formed by this player as a function of game time. Each plot has 50 gray curves of numbers of words formed as
a function of time; one curve for each simulation run or instance. The magenta curve is the time point-wise average over the 50
instances, with error bars for + one standard deviation. The black curve is the median time point-wise average for the 50
instances. In all simulations, the two degree d = 2 nodes have C of CWM class and [g, c| = [1, 2]. All 16 nodes with d > 3 use the
same class C and [g, c] according to: (a) [2,1]; (b) [2,2]; (c) [2,3]; and (d) [2,4]. These results demonstrate that the cluster ¢

assigned to node 5 results in different behaviours.

the second column of plots is the corresponding data
for the CWUQ model Mg = [C,g,c] = [Cg,2,2]. (The
two low degree nodes in the 4-clique graph use the
same two models M, and My, with [g,c] = [1,2].)
Nodes 12 through 14 have the same properties and
same connectivity (i.e., the same neighbours), so
their behaviours should be the same, modulo sto-
chasticity. We see that for both models, the beha-
viours of these nodes can vary node-to-node. Nodes
13 and 14 have differences in numbers of letter
requests received (magenta, reqRec) and of letter
replies sent (orange, replSent). The differences are
greatest for node 12, in both models, where the
magenta and orange curves are concave down; the
corresponding curves for nodes 13 and 14 are less
distinctive. Across all nodes, the time histories of
letter requests sent (brown, reqSent) and letter replies
received (blue, replRec) are similar. The average
number of words formed varies between 11 and 24
across nodes. These data indicate that variability in
results can be generated due to the stochasticity of

each behaviour model, per Section 4. However, the
error bars cover these differences in average values. It
is also observed that replies sent (in response to letter
requests, orange) lags the letter requests received
(magenta) for all nodes.

Examining general trends in the behaviours of all
models and conditions, we observe the following.
Players request letters throughout the game. They
reply to letters throughout the game. That is, they do
not request all neighbouring letters at the outset of
a game, which is one strategy; the game data do not
exhibit this behaviour and hence neither do our models.
Generally, simulation results show that players request
all neighbour letters during a game. In a game, the
number of letter requests that can be made of neigh-
bours (reqSent) is bounded by the number of letters
a player originally possesses and by the number of
neighbours. This, in turn, affects all other sharing
types of actions: letter requests received (by
a neighbour), letter replies sent, and letter replies
received. Hence, the variability in these quantities is
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Figure 10. Agent-based simulation results for game configuration of the 4-clique network. Curves are mean time point-wise data
for nodes 12 through 14; all nodes are in the Ks clique. The first column of results are for the CWM model M, and the second
column contains corresponding results for the CWUQ model M. All nodes have [g, c] = [2,2]; g = 2 since all degrees are d > 3.
The magenta curves for (letter) requests received (legend: reqRec) must be greater than or equal to the orange curves for (letter)
replies sent (legend: replSent), and similarly the brown curve must be greater than or equal to the blue curve because a player
must send at least as many (letter) requests sent (legend: reqSent) as (letter) replies received (legend: replRec).

lesser than that for words formed. There is no practical
limit on the number of words a player can form and
hence variability is greater. This is why we focus on
numbers of words formed in subsequent results.

5.2.3. Comparisons of time histories of nodes from
cliques using models that incorporate behaviours
from different clusters

In this section, we examine the time histories of
numbers of words formed for eight nodes of the
4-clique graph of Figure 8. For each of the four

cliques, we chose two nodes: the unique node that is
connected to two other cliques and one of the
remaining nodes that is only connected to other
nodes of the particular clique. Node IDs are given
in the plot legends. Of the eight nodes, seven are high
degree nodes, i.e., degree d > 3, and so are in group
g = 2; only node 0 is low degree, i.e., degree d < 2,
and so is in group g = 1. We intentionally select
combinations of clusters for high and low degree
groups to demonstrate wide range of behaviours
that can be produced with the models.
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Figure 11. ABS results for the CWM model M, and the 4-clique network of Figure 8. In each plot, results for the same eight nodes
are provided. Two nodes come from each of the four cliques, where one node is connected only to other nodes of the clique, and
the other node is also connected to two other cliques in the overall network. The values plotted are mean time point-wise
averages, + one standard deviation, of numbers of words formed across all 50 instances of a simulation. The results for nodes 2
through 17 in each plot are similar (to within stochastic variation) because all of these nodes are in group g = 2 since each has
degree d > 3. Thus, as the cluster for the high degree nodes changes across plots, the cluster is constant for each plot, so all of
these nodes are assigned the same behaviour model. Only node 0 is in group g = 1 because it has degree d = 2 < 2. The g, (|
pairs for low degree (Id) and high degree (hd) nodes are given under each plot. The plots show that different combinations of [g, c|
for Id and hd nodes can have large effects on the number of words formed in the game. For example, compare the blue curve

versus the high-degree node curves in each of (b) and (d).

Figure 11 provides time histories for the eight
chosen nodes for different combinations of clusters
for group g =1 low degree and group g =2 high
degree nodes, for the CWM model M. In the first
plot, low degree (1d) nodes have [g, c] = [1, 1], while
high degree (hd) nodes have [g,c] = [2,1]. The blue
curve for node 0 is in mid-range compared to the
curves for other nodes. In the second plot,
Figure 11(b), the only change is that the lone group
g = 1 node is now assigned cluster 4 behaviour. The
number of words formed by this node greatly
increases (by 4x), while those for the high degree
nodes remain similar to those in the first plot. In the
third plot, Figure 11(c), the behaviour clusters for low
degree and high degree nodes are 3 and 2, respec-
tively. The numbers of words formed by each node
are greater than those in Figure 11(a). The last com-
bination of clusters in Figure 11(d) results in node 0
forming as many words as it did in Figure 11(b), but

now nodes 2 through 17 roughly form 2x to 3x the
number of words that are formed by node 0.

These results indicate that the behaviours of
agents can change markedly when the clusters
assigned to low and high degree agents change.
Further, it demonstrates the efficacy of clustering
player behaviours, by engagement and by words in
Section 3, to capture differences in player perfor-
mance. Clearly, heterogeneity in player behaviours
is achieved.

5.2.4. Comparisons of time histories and end-of-

game data between the CWM and CWUQ models

As noticed in Figure 10, the average curves are similar
between the two models M, and M. However, there
are differences: (i) the average number of words formed
by each of nodes 12 and 13 are different between the two
models; and (ii) the variability of results (quantified by



standard deviation) are greater for the CWUQ model
M. To the first point, in Figures 10(a,b), the average
number of words formed are 14 and 24, respectively, for
node 12. That is, My generates more words than does
M, To the second point, in comparing these same two
figures, the standard deviation is much greater for the
M model-generated results.

To examine the variability of median behaviours in
numbers of words formed for nodes between the two
models M, and Mg, we continue to look at the eight
nodes studied in Figure 11 for the 4-clique graph. The
new results that we address here are provided in
Figure 12 and we focus on high degree (i.e., group
g = 2) nodes. Each plot shows on the x-axis two values
of each node ID. Red boxplots are for Mg and blue
boxplots are for M,,. Again, because nodes 2 through 17
all have degree d > 3 (i.e., are denoted hd for high
degree nodes), they all correspond to group ¢ = 2 and
hence are assigned the same behaviour model. In
Figures 12(a,b), the clusters assigned to high degree
(hd) and low degree (Id) nodes produce behaviours
such that the red bars for My show greater variability
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in median numbers of words formed across nodes 2
through 17 than does M,,.

However, note that not all combinations of clus-
ters generate more variability in median numbers
of words formed in the CWUQ model. In
Figure 12(c), M, and Mg produce comparable
variability in median values across nodes. In
Figure 12(d), too, M, and My generate similar
median values that vary across nodes. The main
result is that the CWUQ model (Mp) produces at
least as much variability as does the CWM
model (M,).

Hypothesis tests are conducted to demonstrate
the variability of CWM and CWUQ models (see
results in Appendix C). First, we test if there is no
difference between mean number of words formed
by nodes with high degrees. The results in Table C1
show that in Figures 12(a,b), nodes assigned the
CWM model have no difference in the mean num-
bers of words formed, while nodes assigned the
CWUQ model have significant differences in the
mean numbers of words formed. In Figures 12(c,d),
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Figure 12. Simulation results of word counts for game configuration of a 4-clique graph. Results are provided for the same eight
nodes (two nodes per clique) across all plots: one node in a clique that is only connected to other nodes in the clique, and the one
unique node that is also connected to two other cliques. Each plot assigns to low degree (Id) and high degree (hd) nodes different
clusters ¢ as part of their behaviour models; the two clusters are fixed in each plot. The plots (a) and (b) have combinations of [g, c|
for Id and hd nodes that result in greater variability in median values of numbers of words formed across nodes for the CWUQ
model (Mg, in red) compared to that for the CWM model (M,, in blue). However, there is not always such a difference. In (c), M,
and Mg produce similar variability. Similar variabilities between models are observed in (d). In all cases, there is always at least as
much variability in numbers of words formed for Mj as for M,,.
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both CWM and CWUQ models show significant
differences among mean numbers of words by
nodes.

5.2.5. Comparisons of CWM and CWUQ model
behaviours within and across cliques
Comparisons are now made between the two models,
M, and Mg, for all nodes of the 4-clique network and
for all four clusters of behaviour for the high degree
nodes. We focus on the number of words formed by
each node at the end of the game, i.e., at time ¢ = 300
seconds. Data for all 50 runs of a simulation are pre-
sented as boxplots. Data for the CWM model are
provided in Figure 13 and the corresponding data for
the CWUQ model are given in Figure 14. Plots are for
different model clusters ¢, and the boxplots of nodes
are colored for the clique to which they belong.
Figure 13 shows four plots of number of words
formed for each of the 18 nodes. The change in the
plots is the cluster ¢ = 1, 2, 3, and 4, assigned to the 16
high degree nodes. The cluster, of course, changes the
behaviour model for the nodes, and this is observed in
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the median values of numbers of words for all nodes,
which increase as the cluster number increases from 1
to 4. The variability for each node also increases as
cluster number increases. The point of interest is the
variability of these results within cliques and across
cliques, viewing each plot separately. In Figure 13(a-c),
it is seen that the median values do not change appre-
ciably within cliques, nor across cliques. For cluster 4,
the last plot, there is variability in median values
among nodes within K, and within Ks, but not across
cliques. Note that we do not expect massive variability
in this case because all nodes of all cliques Ky, Ks, and
K use the same g = 2 models; the increased degree of
nodes in Kg, compared to the degrees of nodes in Ky,
for example, play no discriminating role because this
model holds for all nodes with degree d > 3. Hence,
the conclusion is that the CWM model does not pro-
duce great levels of variability across nodes.

Also, it is observed that the 16 nodes with g =2
have increasingly different behaviour from those of
nodes 0 and 1, where degree d =2 and therefore
g =1, as cluster ¢ increases from 1 to 4. This again
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Figure 13. ABS results of final number of words formed per agent in the 4-clique network for the CWM behavioural model
My = [Cy, g, ¢ (these are the number of words formed through the 300 second game). Each plot shows boxplots of words
formed for every node in the network along the x-axis. The y-axis range varies across the plots. The difference across plots is the
cluster used for the high degree (hd) node behaviour, which varies in [g = 2, ¢]: (a) [2, 1]; (b)[2, 2]; (c) [2, 3]; and (d) [2, 4]. The low
degree nodes—only nodes 0 and 1—are M, = [C, g, c] = [C,, 1, 1]. The boxes in each plot are color coded by the clique in which
a node resides. The boxes of one color are nodes in one clique. We focus on cliques K, Ks, and Kg because each agent in each
clique has the same model, so we can compare the node behaviours of each clique. There is little variability in the median values,
within and across cliques, for clusters ¢ = 1, 2, and 3. There is greater variability within cliques for cluster 4, but there is little
variability across cliques.
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Figure 14. ABS results of final number of words formed per agent in the 4-clique network for the CWUQ behavioural model
Mg = [Cg,g,c| (these are the number of words formed through the 300 second game). Each plot shows boxplots of words
formed for every node in the network along the x-axis. The y-axis range varies across the plots. The difference across plots is the
cluster used for the high degree (hd) node behaviour, which varies in [g = 2, c]: (a) [2, 1]; (b) [2, 2]; (¢) [2, 3]; and (d) [2, 4]. The low
degree nodes—only nodes 0 and 1—are Mg = [C, g, c] = [Cg, 1, 1]. The boxes in each plot are color coded by the clique in which
a node resides. We focus on cliques Ky, Ks, and Kg because each agent in each clique has the same model, so we can compare the
node behaviours of each clique. The greatest variation of the median values of words generated for nodes in each cluster occurs
for clusters 2 and 4. There is some variability in clusters 1 and 3.

points to the efficacy of partitioning game player
behaviour into different clusters, to form separate
models for them - this enables greater diversity of
player behaviours in simulations.

Turning now to Figure 14 for the CWUQ model My,
the same four types of plots are shown as in Figure 13.
Some of the same trends hold as in the previous plot:
numbers of words formed increases as c¢ increases, the
differences between the behaviours of nodes with g = 1
and g = 2 increases as ¢ increases for the 16 g =2
nodes, and the variability in results per node increases
as ¢ increases.

But there are differences between these two sets of
plots. The variability in results across nodes in
Figure 14(a) for Mg is 18.6% greater compared to that
in Figure 13(a) for M. Figure 14(b) shows a 16% greater
variability compared to Figure 13(b). The variability dif-
ference is reduced in comparing Figures 14(c) and 13(c),
but it still exists. Both Figures 14(d) and 13(d) exhibit
variability across nodes in cliques. Hence, we conclude
that variability in behaviours, via node-by-node results

comparisons, are greater for CWUQ model My com-
pared to the CWM model M,,.

6. Discussion

This work presents and evaluates two methods to quan-
tify uncertainty and build ABMs of human behaviour.
Based on the data from group anagram games, the
proposed methods provide a comprehensive uncer-
tainty quantification framework for agent-based mod-
elling and simulation. Such a frame is not limited to
modelling anagram games, but can be widely applicable
to other systems. Motivation, novelty, and contribu-
tions of our uncertainty quantification approach and
ABMs are provided in Section 1. The methods work
best when a data set can be partitioned along natural
parameter dimensions as is the case in this work.
Through the comparison of model outputs via
simulations of two networked GrAGs, we find that
the CWUQ model can better quantify and generate
uncertainty than the CWM model. Note that in
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some cases, the uncertainty generated from the two
models is comparable in Section 5. A possible
explanation is that some results reported in
Section 5 are based on averaging data over 100
simulations at each time step of the 300-second
game. The overall behaviour of the two models
across many simulation instances could be end up
being similar, indicating that the variability may be
averaged over the entire game in the CWUQ
model.

There are several directions for future research. Note
that the multinomial logistic regression used in this
work assumes a linear parametric form, which may
not be satisfied in some sophisticated social experi-
ments. However, we can modify the parametric statis-
tical model (i.e., multinomial logistic regression) by
some nonparametric statistical model such as general-
ised Gaussian process. Moreover, we can explore
Bayesian approaches for modelling and uncertainty
quantification (van de Schoot et al., 2021) to alleviate
extreme value problems caused by data scarcity in the
asymptotic normal distribution. The proposed method
can also be extended beyond the situation of three-letter
words by adjusting the word corpus to include words of
varying lengths.
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