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Abstract

Given a matroid M = (E, I), and a total ordering over the elements E, a broken circuit is a circuit
where the smallest element is removed and an NBC independent set is an independent set in I with
no broken circuit. The set of NBC independent sets of any matroid M define a simplicial complex
called the broken circuit complex which has been the subject of intense study in combinatorics.
Recently, Adiprasito, Huh and Katz showed that the face of numbers of any broken circuit complex
form a log-concave sequence, proving a long-standing conjecture of Rota.

We study counting and optimization problems on NBC bases of a generic matroid. We find
several fundamental di�erences with the independent set complex: for example, we show that it is
NP-hard to find the max-weight NBC base of a matroid or that the convex hull of NBC bases of a
matroid has edges of arbitrary large length. We also give evidence that the natural down-up walk
on the space of NBC bases of a matroid may not mix rapidly by showing that for some family of
matroids it is NP-hard to count the number of NBC bases after certain conditionings.
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1 Introduction

A matroid M = (E, I) is consists of a finite ground set E and a collection I of subsets of E,
called independent sets, satisfying:
Downward closure: If S ™ T and T œ I, then S œ I.
Exchange axiom: If S, T œ I and |T | > |S|, then there exists an element i œ T \ S such that

S fi {i} œ I.
The rank of a set S ™ E is the size of the largest independent set contained in S. All maximal
independent sets of M , called the bases of M , have the same size r, which is called the rank
of M .
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40:2 On Optimization and Counting of Non-Broken Bases of Matroids

Sampling and counting problems on matroids have captured the interest of many re-
searchers for several decades with applications to reliability [6], liquidity of markets [19], etc.
A recent breakthrough in this field proved that the down-up walk on the bases of a matroid
mixes rapidly to the (uniform) stationary distribution and can be used to count the number
of bases of a matroid [3, 7], resolving the conjecture of Mihail and Vazirani from 1989 [18].
The down-up walk is easy to describe: Start with an arbitrary base B and repeatedly execute
the following two steps:
1. Choose a uniformly random element i œ B and delete it.
2. Among all bases (of M) that contain B r {i}, choose one uniformly at random.

A central question that has puzzled researchers since then is sampling a non-broken
(circuit) basis (NBC basis) of a matroid [4].

A set C ™ E is a circuit i� C \ {e} œ I for any e œ C. A broken circuit (with respect to
a total ordering O) is a set C \ {e}, where C ™ E is a circuit and e is the smallest element
of C with respect to O. An independent set S ™ E is a non-broken independent set (NBC
independent set) if it contains no broken circuits. The NBC independent sets are closely
related to several interesting combinatorial objects. The number of NBC independent sets of
size k in a graphic matroid is equal to the absolute value of the (n ≠ 1) ≠ k-th coe�cient of
the chromatic polynomial of the underlying graph where n is the number of vertices. As a
corollary the following facts hold:

I Fact 1. The following facts are well-known about the counts of NBC bases/independent
sets of di�erent family of matroids.

The number of all NBC independent sets of a graphic matroid is equal to the the number
of acyclic orientations of the graph [22].
The number of all NBC independent sets of a co-graphic matroid is equal to the number
of strongly connected orientations of the graph (see e.g., [13]).
The number of non-broken spanning trees of a graph is equal to the number of parking
functions with respect to a unique source vertex [4]
The number of NBC independent of sets of linear matroid with vectors v1, . . . , vn is equal
to the number of regions defined by the intersection of the orthogonal hyperplanes (see
e.g., [23]).

We emphasize that although the set of NBC independent sets/bases of a matroid are
functions of the underlying total order O, the counts of the number NBC independent sets
of rank k for any 0 Æ k Æ r are invariant under O [23]. We remark that, to the best
of our knowledge as of this date, none of the above counting problems are known to be
computationally tractable.

Given a matroid M with an arbitrary total ordering O, one can analogously run the
down-up walk only on the NBC bases of M . It is not hard to see that this chain is irreducible
and converges to the uniform stationary distribution. Following the work of [3] it was
conjectured that the down-up walk on the NBC bases of any matroid mixes rapidly 1.

I Conjecture 2. For any matroid M , and any total ordering O of the elements of M , the
down-up walk on the NBC bases of a matroid mixes in polynomial time.

1 In fact, this conjecture was raised an an open problem in several recent workshops UC Santa Barbara
workshop on New tools for Optimal Mixing of Markov Chains: Spectral Independence and Entropy
Decay, and Simon’s workshop on Geometry of Polynomials

https://sites.cs.ucsb.edu/~vigoda/School/
https://sites.cs.ucsb.edu/~vigoda/School/
https://sites.cs.ucsb.edu/~vigoda/School/
https://simons.berkeley.edu/programs/geometry-polynomials/
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It turns out that the above conjecture, if true, would be give a generalization of the result
of [3], because of the following fact.

I Fact 3 ([5]). For any matroid M one can construct another matroid M
Õ with an ordering O

with only one extra element such that there is a bijection between bases of M and non-broken
bases of M

Õ.

Furthermore, if the above conjecture is true, then since matroids are closed under
truncation, one can also count the number of all NBC independent sets of M , thus resolving
all of the open problems in Fact 1.

A promising reason to expect these problems to be tractable in the first place is the
remarkable work of Adiprasito, Huh and Katz [1] who proved the Rota’s conjecture showing
that the face numbers of a broken circuit complex (see below for definition) of any matroid
forms a log-concave sequence. For comparison, it is well-known that the coe�cients of the
matching polynomial of any graph form a log-concave sequence and the classical algorithm
of Jerrum-Sinclair [15] gives an e�cient algorithm to count the number of matchings of any
graph (although to this date we still don’t know an e�cient algorithm to count the number
of perfect matchings of general graphs).

1.1 Background

The existing analyses of the mixing time of the down-up walk for bases of matroids, crucially
rely on the theory of high dimensional simplicial complxes [3, 17], which has found many
intriguing applications in several areas of computer science and math in the past few years [14].

Simplicial Complex. A simplicial complex X on a finite ground set U is a downwards closed
set system, i.e. if · œ X and ‡ µ · ™ U , then ‡ œ X. The elements of X are called faces,
and the maximal faces are called facets. We say X is a pure d-dimensional complex if all of
its facets are of size d. We denote the set of facets by X(d). A weighted simplicial complex
(X, fi) is a simplicial complex X paired with a probability distribution fi on its facets. The
global walk (down-up walk) P

‚ on the facets of a d-dimensional complex (X, fi) is defined as
follows: starting at a facet · , we transition to the next facet ·

Õ by the following two steps:
1. Select a uniformly random element x œ · and remove x from · .
2. Select a random facet ·

Õ containing · \ {x} with probability proportional to fi(· Õ).

Broken Circuit Complex. For a concrete example, it turns out that the set NBC independent
sets of any matroid M (with respect to any ordering O) form a pure simplicial complex that
is known as the broken circuit complex. We denote this complex by BC(M, O). We state
purity as the following fact.

I Fact 4. For every NBC independent set I, there exists an NBC base B such that I ™ B.

The face numbers of the complex BC(M, O) is the sequence n0, n1, . . . , nr where ni is the
number of NBC independent sets of rank i. As alluded to above this sequence is in variant
over O. The down-up walk over this complex equipped with a uniform distribution over its
facets is the same as the down-up walk over NBC bases we explained before.

The link of a face · œ X is the simplicial complex X· := {‡ \ · : ‡ œ X, ‡ ∏ ·}. For each
face · , we define the induced distribution fi· on the facets of X· as

fi· (÷) = Pr
‡≥fi

[‡ ∏ ÷ | ‡ ∏ · ]. (1)

APPROX/RANDOM 2023



40:4 On Optimization and Counting of Non-Broken Bases of Matroids

Local Walks. For any face · of size 0 Æ k Æ d ≠ 2, the local walk for · is a Markov chain
on the ground set of X· with transition probability matrix P· is defined as

P· (x, y) = 1
d ≠ k ≠ 1 Pr

‡≥fi·

[y œ ‡ | ‡ ∏ · fi {x}]. (2)

for distinct x, y in the ground set of X· .
The following theorem shows that the spectral expansion of the global walk P

‚ on a
simplicial complex can be bounded through bounding the local spectral expansion of the
complex.

I Theorem 5 (Local-to-Global Theorem [10, 17, 9, 2]). Say a d-dimensional weighted simplicial
complex (X, fi) is a (“0, . . . , “d≠2)-local spectral expander if for every face · of size 0 Æ k Æ

d ≠ 2, the second largest eigenvalue of P· is at most “k, i.e., ⁄2(P· ) Æ “k.
Given a weighted simplical complex (X, fid) that is a (“0, . . . , “d≠2)-local spectral expander,

the down-up walk which samples from fi has spectral gap lower bounded by

1 ≠ ⁄2(P ‚) Ø
1
d

d≠2Ÿ

j=0

(1 ≠ “j)

To prove that the down-up walk mixes rapidly on the bases of any matroid, [3] proved
that the independent set complex of any matroid M is a (0, 0, . . . , 0)-local spectral expander.
Building on this, a natural method to prove Conjecture 2 is to show that the broken circuit
complex of any matroid M of rank r and for any total ordering is a (“0, . . . , “r≠2)-local
spectral expander for “i Æ

O(1)

r≠i
.

I Conjecture 6. For any matroid M of rank r and any ordering O the broken circuit complex
of M is a (“0, . . . , “r≠2)-local spectral expander for some “i Æ

O(1)

r≠i

1.2 Our results

Our main result is to disprove Conjecture 6 in a very strong form, namely for the class of
(truncated) graphic matroids.

I Theorem 7. There exists an infinite sequence of (truncated) graphic matroids M1, M2, . . .

with orderings O1, O2, . . . , such that for every n Ø 1, Mn has poly(n) elements, and there
exists a face · of the broken circuit complex of X = BC(Mn, O) for which the down-up walk
on the facets of the link X· has a spectral gap of at most n

≠�(n).

In fact, we even prove a stronger statement

I Theorem 8. Given a matroid M = (E, I) and a total ordering O and a set S ™ E, unless
RP=NP, there is no FPRAS for counting the number of NBC bases of M that contain S.

Although this theorem does not refute Conjecture 2, it shows that one probably need
di�erent techniques (or probably a di�erent chain) to sample/count NBC bases of a matroid.
Indeed, one may even need a di�erent proof for the performance of down-up walk to sample
ordinary bases of matroids.

To complement our main results we also prove that, unlike optimization on bases of a
matroid, optimization is NP-hard on the NBC bases of matroids. Moreover, unless NP=
RP, there is no FPRAS for computing the sum of the weights of all NBC bases of a matroid
subject to an external field, while the same computation over the bases of a matroid has a
FPRAS.
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I Theorem 9. Given a matroid M = (E, I) with |E| = n elements, an arbitrary total
ordering O, and weights w1, . . . , wn, it is NP-hard to find the maximum weight NBC basis of
M , where the weight of a NBC basis B is

q
iœB

wi.

I Theorem 10. Given a matroid M = (E, I) with |E| = n elements, a total ordering O,
and weights {1 Æ ⁄e Æ O(n)}eœE, unless NP = RP, there is no FPRAS for computing the
partition function of the ⁄-external field applied to uniform distribution of NBC independent
sets, i.e., there is no FPRAS for computing :

ÿ

B NBC Base

Ÿ

eœB

⁄e.

It is well known that a 0/1-polytope (i.e. the convex hull of a subset S ™ {0, 1}
n) has all

vertices of equal hamming weight r and edges of ¸2 length
Ô

2 i� the polytope is a matroid
base polytope of rank r [12]. Moreover, assuming the Mihail-Vazirani conjecture, there is
e�cient algorithm to sample a uniformly random vertex of a 0/1-polytope with constant
sized edge length [18].

We show that, unlike matroids, the NBC Base polytope, i.e. the convex hull of the
indicator vectors of all NBC bases of a matroid M , has edges of arbitrarily long length.

I Theorem 11. For any n, there exists a graphic matroid M with n elements and a total
ordering O such that the convex hull of all NBC bases of M has edges of ¸2 length at least
�(

Ô
n).

2 Preliminaries

Given a graph G = (V, E), we denote the number of independent sets of size i of G by ik(G)
For every set S ™ V , we define N(S) := {v /œ S : ÷u œ S, {u, v} œ E} as the set of neighbors
of S in G.

I Definition 12 (Conductance). Given a weighted d-regular graph G = (V, E, w), with weights
w : E æ RØ0, for S ™ V , the conductance of S is defined as

„(S) = w(S, S)
d|S|

,

where w(S, S) is the sum of the weights of edges in the cut (S, S). Note that since G is
regular, the weighted degree of every vertex is d. The conductance of G is defined as

„(G) = min
S:|S|Æ|V |/2

„(S).

Given a weighted graph G = (V, E, w), the simple random walk is the following stochastic
process: Given X0 = v œ V , for every u ≥ v, we have X1 = u with probability w{u,v}

dw(v)
and we

let P be the transition probability matrix of the walk.
The following theorem is well-known and follows from the easy side of the Cheeger’s

inequality.

I Theorem 13. For any regular graph G = (V, E) and any set S ™ V and |S| Æ |V |/2

1 ≠ ⁄2(P )
2 Æ „(G) Æ „(S) Æ

|N(S)|
|S|

where 1 ≠ ⁄2(P ) is the spectral gap of the simple random walk on G.

APPROX/RANDOM 2023
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A graphic matroid M = (E, I) is a matroid defined on the edges of a graph G = (V, E) and
its independent sets are all subsets of edges that do not contain any cycle. It is easy to verify
that circuits of M correspond to cycles of G.

I Definition 14 (Matroid Truncation). Let M = (E, I) be a matroid of rank r. The truncation
of M to rank r

Õ
Æ r removes all independent sets of size strictly greater than r

Õ. It is easy to
see that the truncation of any matroid M to any r

Õ
Æ r is also a matroid.

Let M
Õ be the truncation to rank r

Õ of a graphic matroid of rank r defined on the edges
of a graph G. The bases of M

Õ correspond to forests with r
Õ edges and the circuits of M

Õ are
the circuits of G along with all spanning forests of size r

Õ + 1.
The following fact about polytopes follows from convexity.

I Fact 15. For any polytope P ™ Rd with vertices v1, . . . , vn œ Rd, {vi, vj} is an edge of P

i� there exists a weight function w œ Rd such that

Èw, viÍ = Èw, vjÍ > Èw, vkÍ,

for any k ”= i, j.

3 Results

We start with proving Theorem 11.

I Theorem 11. For any n, there exists a graphic matroid M with n elements and a total
ordering O such that the convex hull of all NBC bases of M has edges of ¸2 length at least
�(

Ô
n).

Proof. Let n be odd. Consider the following graphic matroid M (with n edges), with the
ordering O: 1 < 2 < · · · < n defined by the edges of the following graph:

1

2

3

4

n ≠ 2

n ≠ 1

. . . n

We show that for B = {n} fi {2i ≠ 1 : 1 Æ i Æ
n≠1

2
} and B

Õ = {1} fi {2i : 1 Æ i Æ
n≠1

2
},

{B, B
Õ
} forms an edge in the NBC matroid base polytope denoted as PM . We define a

w œ Rn and then use Fact 15 to prove the statement. Let wn = n+1

2
, and for any 1 Æ i Æ

n≠1

2
,

let w2i = 1 and w2i≠1 = 0. It is easy to check that the function Èw, 1BÍ = Èw, 1BÕÍ = n+1

2

and Èw, 1BÕÕÍ <
n+1

2
for all NBC basis B

ÕÕ
”= B, B

Õ. Therefore {B, B
Õ
} forms and edge in

PM . The statements follows from the fact that Î1B ≠ 1BÕÎ2 =
Ô

n. J

Next, we prove Theorem 9 via a reduction from the MAX-INDEP-SET problem: Given
a graph G = (V, E), a weight function w : V æ RØ0, and an integer k, decide whether G has
an independent set of weight at least k or not.

Note that independent sets of G and independents sets of a BC complex/matroid are two
di�erent notions. To complete the proof we use the following well-known hardness result.



D. Abdolazimi, K. Lindberg, and S. O. Gharan 40:7

I Theorem 16 ([16]). MAX-INDEP-SET is NP-complete.

I Theorem 9. Given a matroid M = (E, I) with |E| = n elements, an arbitrary total
ordering O, and weights w1, . . . , wn, it is NP-hard to find the maximum weight NBC basis of
M , where the weight of a NBC basis B is

q
iœB

wi.

Proof. We prove this by a reduction from MAX-INDEP-SET. Let G = (V, E) be a graph, a
vertex weight function w : V æ RØ0 and k an integer. Construct a new graph G

Õ = (V Õ
, E

Õ)
from G by first copying G and then adding a new vertex z and edges ev = {z, v} for all
v œ V . We define w

Õ : E
Õ
æ RØ0 as w

Õ(ev) = w(v) for every v œ V , and w
Õ(e) = 0 for every

e œ E. Moreover, consider the following total ordering O on E
Õ:

E < {ev : v œ V },

where the ordering within each set is arbitrary. Let M be the graphic matroid defined by
the edges of G

Õ, we will be look at bases/independent sets of BC(M, O).

B Claim 17. There exists an independent set of G of weight at least k i� there exists an
NBC basis of M with weight at least k.

We prove the claim in a straightforward manner. Suppose there is an independent set
I ™ V of G with w(I) Ø k and consider the set I

Õ
™ E

Õ defined by I
Õ = {ev : v œ I}.

By definition, w
Õ(I Õ) Ø k. We argue that I

Õ does not contain any broken circuit. Assume
otherwise that there is a broken circuit C \ {e} ™ I

Õ. Since C corresponds to a cycle in
G

Õ and C \ {e} is contained in I
Õ, it is not hard to see that C \ {e} = {ev, evÕ} for some

v, v
Õ
œ I and e = {v, v

Õ
} is an edge in G. But this is a contradiction with the fact that I is

an independent set of G.
Hence I

Õ is a NBC independent set. Since the broken circuit complex is pure (see Fact 4),
there exists an NBC basis B containing I

Õ which has weight w
Õ(B) Ø w

Õ(I Õ) Ø k.
For the other direction, suppose we have a NBC basis B

Õ
™ E

Õ of weight w
Õ(k) Ø k,

and define I ™ V by I = {v : ev œ B
Õ
}. Since all edges coming from E have zero weight,

w(I) = w
Õ(BÕ) Ø k . To see that I is an independent set of G

Õ, note that if there is an
edge {v, v

Õ
} for some v, v

Õ
œ I, we have ev, evÕ œ B

Õ, then {ev, evÕ} forms a broken circuit
according to the ordering O. Therefore I is an independent set of G of weight at least k.

J

It’s important to note that the above proof works under the crucial assumption that the
order O is chosen carefully based on the weights (and in some sense in the same order of the
weights).

We can amplify the ideas in the previous construction to also argue Theorem 7. This is
done by constructing a Broken Circuit complex for which the down-up walk of a carefully
chosen link has inverse exponentially small spectral gap.

I Theorem 7. There exists an infinite sequence of (truncated) graphic matroids M1, M2, . . .

with orderings O1, O2, . . . , such that for every n Ø 1, Mn has poly(n) elements, and there
exists a face · of the broken circuit complex of X = BC(Mn, O) for which the down-up walk
on the facets of the link X· has a spectral gap of at most n

≠�(n).

Proof. Take the complete bipartite graph G = Kn,n = (A, B, E = A ◊ B) , with |A| = |B| =
n. Also, let V = A fi B. Let ¸ Ø 1 be a parameter that we choose later, and construct a new
graph

G
Õ = (V Õ = V fi {y, z} fi {zv,i : v œ V, i œ [¸]}, E

Õ = E fi {e0} fi {ev,i, fv,i : v œ V, i œ [¸]})

APPROX/RANDOM 2023
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z y
e0

zv,1 zv,¸

ev,1 ev,¸

. . . zu,1 zu,¸

eu,1 eu,¸

. . .

G

v

fv,1 fv,¸

u

fu,1 fu,¸

. . .

Figure 1 A schematic of the graph GÕ in the proofs of Theorem 7 and Theorem 8 where G = Kn,n

is the complete bipartite graph in the former and it is a hard instance of ˘INDEP-SET-INC(7, 2
19 )

in latter.

where e0 = {y, z}, ev,i = {z, zv,i}, fv,i = {zv,i, v} (see Figure 1). For a sanity check, note
that |V | = 2n and |V

Õ
| = 2¸n + 2n + 2.

Let M = (EÕ
, I) be the graphic matroid defined by G

Õ truncated to rank 2¸n + n + 1, i.e.,
the bases of M are forests of G

Õ with exactly 2¸n + n + 1 edges. Now, consider the following
total ordering O on E

Õ:

e0 < E < {ev,i : v œ V, i œ [¸]} < {fv,i : v œ V, i œ [¸]},

where the ordering within each set is arbitrary.
Moreover, let X := BC(M, O), and define

· = {ev,i : v œ V, i œ [¸]}.

For simplicity of notation, let FA := {fv,i : v œ A, i œ [¸]} and FB := {fv,i : v œ B, i œ [¸]}.

B Claim 18. For any facet S of X· , either S fl FA = ÿ, or S fl FB = ÿ,

This follows from the fact that G is a complete bipartite graph and edges in E are smaller
than ev,i’s and fu,j ’s; so if S fl FA, S fl FB ”= ÿ, then it has a broken circuit.

Therefore, the set of facets of X· can be partitioned into 2n + 1 sets (fin

i=1
SA,i) fi

(fin

i=1
SB,i) fi S0, where SA,i is the set of all facets S with |S fl FA| = i, SB,i is the set of all

facets S with |S fl FB | = i, and S0 is the set of all facets with |S fl (FA fi FB)| = 0. Let
SA := fi

n

i=1
SA,i and similarly define SB. We show that |N(SA)|

|SA| Æ n
≠�(n), where N(SA)

is the set of neighbors of SA in the down-up walk P
‚
·

on the facets of · . WLOG we can
assume that |SA| is at most half of all facets. Applying Theorem 13, this would imply that
1 ≠ ⁄2(P ‚

·
) Æ n

≠�(n).
First, note that for every facet S œ SA and T œ SB r SB,1, we get P

‚(S, T ) = 0
since |S�T | > 2. So, N(SA) ™ SB,1 fi S0. First, notice |S0| Æ

!|E|
n

"
Æ n

2n. Furthermore,
|SB,1| Æ

!
n

1

"
¸
! |E|

n≠1

"
Æ ¸n

2n.
This follows from the fact that any facet in SB,1 can be written as {fv,iv } fi {e0} fi K for

some v œ A, iv œ [¸], and subset K ™ E of size n ≠ 1.
Lastly, |SA| Ø |SA,n| = ¸

n. This is because every choice of {iv}vœA corresponds to a set
in SA,n whose sets are of the form {fv,iv : v œ V } fi {e0}. These sets all don’t contain a
broken circuit because the circuits introduced through truncation are exactly the forests with
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2¸n + n + 2 edges. However, any proper superset of {fv,iv : v œ V } fi {e0} must include e0,
so looking at the circuit introduced by the superset, the corresponding broken circuit will
always remove e0. Putting it all together,

1 ≠ ⁄2(P ‚
·

) Æ
|N(SA)|

|SA|
Æ

n
2n(1 + ¸)

¸n
Æ

assuming ¸Øn3
n

≠�(n)

as desired. J

We prove Theorem 10 and Theorem 8 by a reduction from ˘INDEP-SET-INC(7,
2

19
),

defined as the following.

I Definition 19 (˘INDEP-SET-INC(7,
2

19
)). Given a 7-regular graph G = (V, E) that

satisfies ik(G) Æ iÂ 2|V |
19 Ê(G) for any k < Â

2|V |
19

Ê, where ik(G) are the independent sets of G of
size k, count the number of independent sets of size Â

2|V |
19

Ê.

I Theorem 20. Unless NP = RP, there is no randomized algorithm with constant approxim-
ation ratio for ˘INDEP-SET-INC(7,

2

19
).

We leave the proof of this for the appendix.
Now, we are ready to prove Theorem 8. The high-level structure of the proof is similar

to the proof of Theorem 7 where we apply a similar gadget to graphs on which it is hard to
count independent sets (as opposed to the complete bipartite graph).

I Theorem 8. Given a matroid M = (E, I) and a total ordering O and a set S ™ E, unless
RP=NP, there is no FPRAS for counting the number of NBC bases of M that contain S.

Proof. For simplicity of notion, let – := 2

19
. We prove by a reduction from

˘INDEP-SET-INC(7,
2

19
). Take any arbitrary 7-regular graph G = (V, E) whose num-

ber of independent sets of size Â–|V |Ê is at least the number of its independent sets of size k

for any k < Â–|V |Ê. Let n := |V | and N be the number of independent sets of size Â–nÊ of
G. Also, define ¸ Ø 1 to be a parameter that we choose later.

Now, construct a new graph

G
Õ = (V Õ = V fi {y, z} fi {zv,i : v œ V, i œ [¸]}, E

Õ = E fi {e0} fi {ev,i, fv,i : v œ V, i œ [¸]})

where e0 = {y, z}, ev,i = {z, zv,i}, fv,i = {zv,i, v} (see Figure 1). Let M = (EÕ
, I) be the

graphic matroid defined by G truncated at rank ¸n + Â–nÊ + 1, i.e., the bases of M are forests
of G

Õ with exactly ¸n + Â–nÊ + 1 edges. Now, consider the following ordering O on E
Õ:

e0 < E < {ev,i : v œ V, i œ [¸]} < {fv,i : v œ V, i œ [¸]},

where the ordering within each set is arbitrary. Moreover, let X := BC(M, O), and define

· = {ev,i : v œ V, i œ [¸]}.

We claim that the number of facets of X· is at least ¸
Â–nÊ

N and at most 2¸
Â–nÊ

N . So, a
1.5-approximation to the number facets of X· , i.e., the number NBC bases of M that contain
· , gives a 3-approximation to N , the number of independent sets of size Â–nÊ of G.

We use the following crucial observation:

B Claim 21. For any facet S of X· , {v : ÷fv,i œ S} is an independent set of G and for any
fv,i, fv,j œ S we have i = j.

Conversely, for any S ™ {fv,i : v œ V, i œ [¸]}, such that the set {v : ÷fv,i œ S} is an
independent set of size Â–nÊ of G, and fv,i, fv,j œ S =∆ i = j, we have S fi {e0} is a facet
of X· .

APPROX/RANDOM 2023
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The proof simply follows from the fact that edges of E are smaller than ev,i’s, and f
Õ
u,j

s in
O. By the second part of the claim, we can write

|X· (Â–nÊ + 1)| = ¸
Â–nÊ

N + |{S œ X· (Â–nÊ + 1) : S fl E ”= ÿ}| Ø ¸
Â–nÊ

N. (3)

Define ik := ik(G) as the number of independent sets of size k of graph G. By the first part
of the above claim we can write,

|{S œ X· (Â–nÊ + 1) : S fl E ”= ÿ}| Æ

Â–nÊ≠1ÿ

k=0

¸
k

· ik ·

3
|E|

Â–nÊ ≠ k

4
(4)

Æ

Â–nÊ≠1ÿ

k=0

¸
k

· ik · |E|
Â–nÊ≠k (5)

Æ
using ikÆN

N |E|
Â–nÊ

Â–nÊ≠1ÿ

k=0

(¸/|E|)k (6)

Æ
assuming ¸Ø2|E|

N |E|
Â–nÊ(¸/|E|)Â–nÊ

Æ N¸
Â–nÊ (7)

Putting these together with (3) concludes the proof. J

I Theorem 10. Given a matroid M = (E, I) with |E| = n elements, a total ordering O,
and weights {1 Æ ⁄e Æ O(n)}eœE, unless NP = RP, there is no FPRAS for computing the
partition function of the ⁄-external field applied to uniform distribution of NBC independent
sets, i.e., there is no FPRAS for computing :

ÿ

B NBC Base

Ÿ

eœB

⁄e.

Proof. For simplicity of notion, let – := 2

19
. The proof is similar to the proof of Theorem 8 by

a reduction from ˘INDEP-SET-INC(7,
2

19
). Take any arbitrary 7-regular graph G = (V, E)

with n := |V | vertices whose number of independent sets of size Â–|V |Ê is at least the number
of its independent sets of size k for any k < Â–|V |Ê. Construct a new graph

G
Õ = (V Õ = V fi {y, z}, E

Õ = E fi {e0 = {y, z}} fi {ev = {v, z} : v œ V })

Let M = (EÕ
, I) be the graphic matroid given by G

Õ truncated to rank Â–nÊ + 1 and consider
the following ordering O on E

ÕÕ:

e0 < E < {ev : v œ V },

where as usual the ordering within each set is arbitrary. Define weights ⁄ : E
Õ

æ RØ0 as
follows:

⁄e =
I

¸ if e = ev for some v œ V ,

1 o.w.
,

for some ¸ that we choose later. We argue that

⁄
Â–nÊ

N Æ

ÿ

B

Ÿ

eœB

⁄e Æ 2⁄
Â–nÊ

N.

where here (and henceforth) the sum is over B’s that are NBC bases of M , and therefore a 1.5-
approximation to the partition function, i.e., the quantity in the middle, is a 3-approximation
to N . Similar to the previous theorem we have the following claim.
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B Claim 22. For any NBC base B of M , we have {v : ev œ B} is an independent set of G.
Conversely, for any independent set I of G of size |I| = Â–nÊ, {e0} fi {ev : v œ I} is a NBC
base of M .

So,
ÿ

B

Ÿ

eœB

⁄e =
ÿ

B:BflE ”=ÿ

Ÿ

eœB

⁄e +
ÿ

B:BflE=ÿ

Ÿ

eœB

⁄e (8)

=
ÿ

B:BflE ”=ÿ

Ÿ

eœB

⁄e + ¸
Â–nÊ

|{S ™ V : S independent set of G, |S| = Â–nÊ}|

Define ik as the number of independent sets of size k of graph G. We have

ÿ

B:BflE ”=ÿ

Ÿ

eœB

⁄e Æ

Â–nÊ≠1ÿ

k=0

¸
k
ik

3
|E|

Â–nÊ ≠ k

4
Æ

using ikÆN,

assuming ¸Ø2|E|

¸
Â–nÊ

N

where the last inequality follows from the same calculations as in Equation (4). J
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A Proof of Theorem 20

In this section we prove Theorem 20. We use a reduction from the problem of computing the
partition function of the Hardcore model when the fugacity is above the critical threshold.
Define ˘HC(�, ⁄) as follows: given a �-regular graph G = (V, E), compute the partition
function ZG(⁄) =

q
I

⁄
|I|, where the sum is taken over the family of independent sets I ™ V

of G. The critical threshold is defined as ⁄c(�) := (�≠1)
�≠1

(�≠2)� .

I Theorem 23 ([20, 21, 11]). The following holds for any fixed ‘ > 0, integer � Ø 3 and
⁄ > ⁄c(�): unless NP=RP, for any ⁄ > ⁄c(�) there is no polynomial-time algorithm for for
approximating ˘HC(�, ⁄) up to a 1 + ‘ multiplicative factor.

We give a polynomial-time algorithm that given a e
±‘/2-approximation for

˘INDEP-SET-INC(7,
2

19
) (see Definition 19), approximates ˘HC(7,

2

3
) up to a

e
±‘-multiplicative error. Since 2

3
> ⁄c(7) = 6

6

57 Ø 0.6, this finishes the proof of Theorem 20.
Our reduction is a modification of Theorem 16 in [8].

I Theorem 24. There exists a polynomial-time algorithm that for any given ‘ Æ 1, satisfies
the following properties:
1. Given an instance G = (V, E) of ˘HC(7,

2

3
), the algorithm constructs an instance G

Õ =
(V Õ

, E
Õ) of the problem ˘INDEP-SET-INC(7,

2

19
) with size polynomial in |G|.

2. Given a e
±‘/2-multiplicative approximation to the number of independent sets of size

Â
2|V Õ|

19
Ê of G

Õ, a e
±‘-approximation of ZG( 2

3
) can be computed in polynomial time.

Proof. Given a 7-regular graph G = (V, E), we define G
Õ as the disjoint union of G with

r := c
2
n

2

‘
copies of the complete graph K8, where n = |V |, for some c > 1 that we choose

later. For simplicity of notation, let N := |V
Õ
| = n + 8r, – := 2

19
, ⁄ := 2

3
. It is enough to

show that G
Õ is an instance of ˘INDEP-SET-INC(7,

2

19
) and

e
≠‘/2

iÂ–NÊ (GÕ)!
r

Â–NÊ
"
8Â–NÊ Æ ZG(⁄) Æ e

‘/2
iÂ–NÊ (GÕ)!

r

Â–NÊ
"
8Â–NÊ , (9)

https://arxiv.org/abs/2304.10106
https://doi.org/10.1137/0218077
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/3366423.3380276
https://doi.org/10.1145/3366423.3380276
https://doi.org/10.1016/0012-365X(73)90108-8


D. Abdolazimi, K. Lindberg, and S. O. Gharan 40:13

where as usual ik(G) is the number of independent sets of size k in G, and
3

r

Â–NÊ

4
8Â–NÊ = iÂ–NÊ(rK8).

Here, rK8 is a shorthand for the graph which is a disjoint union of r copies of K8. We first
show that Equation (9) holds. Note that

iÂ–NÊ (GÕ) =
nÿ

j=0

ij(G)iÂ–NÊ≠j(rK8) = iÂ–NÊ(rK8)
nÿ

j=0

ij(G)
iÂ–NÊ≠j(rK8)
iÂ–NÊ(rK8) .

Thus, to show Equation (9), it is enough to prove that for every 1 Æ j Æ n,

e
≠‘/2

·
iÂ–NÊ≠j(rK8)
iÂ–NÊ(rK8) Æ ⁄

j
Æ e

‘/2
·

iÂ–NÊ≠j(rK8)
iÂ–NÊ(rK8) . (10)

We can write

iÂ–NÊ≠j(rK8)
iÂ–NÊ(rK8) =

!
r

Â–NÊ≠j

"
8Â–NÊ≠j

!
r

Â–NÊ
"
8Â–NÊ = 1

8j

j≠1Ÿ

i=0

Â–NÊ ≠ i

r ≠ Â–NÊ + j ≠ i
. (11)

To prove the upper bound, first note that

–N

r ≠ –N + j
Ø

–NØ8–r

8–r

r(1 ≠ 8–) + n
=

n=
Ô

‘r/c

–=2/19

16

3

A
1

1 + 19
Ô

‘

3c
Ô

r

B
. (12)

This implies that –N

r≠–N+j
Ø 1. So, –N

r≠–N+j
Æ

Â–NÊ≠i

r≠Â–NÊ+j≠i
for every i < r ≠ Â–NÊ + j. Thus,

1
8j

·

j≠1Ÿ

i=0

Â–NÊ ≠ i

r ≠ Â–NÊ + j ≠ i
Ø

1
8j

·

3
–N

r ≠ –N + j

4j

Ø
Equation (12)

jÆn=
Ô

‘r/c

1
8j

· ( 16

3
)j

A
1

1 + 19
Ô

‘

3c
Ô

r

BÔ
‘r/c

Ø ( 2

3
)j

e
≠‘/2 = ⁄

j
e

≠‘/2
,

for a large enough c > 1. Combining this with Equation (11), we get the upper bound in
Equation (10).

To prove the lower bound, note that

1
8j

·

j≠1Ÿ

i=0

Â–NÊ ≠ i

r ≠ Â–NÊ + j ≠ i
Æ

j≠iØ0

1
8j

·

3
Â–NÊ

r ≠ Â–NÊ

4j

Æ

Â–NÊ=Â 16r
19 +

2Ô
‘r

19c Ê

1
8j

·

Q

a
16r

19
(1 +

Ô
‘

8c
Ô

r
)

3r

19
(1 ≠

2
Ô

‘

3c
Ô

r
)

R

b
j

Æ ( 2

3
)j

e
‘/2 = ⁄

j
· e

‘/2
,

for a large enough c > 1. Combining this with Equation (11), the lower bound in Equa-
tion (10), thus (9) follows.

It remains to show that G
Õ is an instance of ˘INDEP-SET-INC(7,

2

19
), i.e. ik(GÕ) Æ

iÂ–NÊ(GÕ) for any k < Â–NÊ.
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For any k < Â–NÊ, and any independent set S in the original graph G, let TS,k be the
set of all independent sets of size k of G

Õ whose intersection with the vertices of G is S.
It is enough to show that there exists a constant n0 such that if n Ø n0, then we have
|TS,k| Æ |T

Õ
S,Â–NÊ| for every independent set S ™ V of G and k < Â–NÊ. We prove a stronger

statement that there exists a constant n0 such that if n Ø n0, then for any fixed independent
set S ™ V , |TS,k| is increasing as a function of k for all k Æ Â–NÊ. It is enough to show that

|TS,k|
|TS,k≠1| Ø 1 for any |S| Æ k Æ –N . Note that |TS,k| =

!
r

k≠|S|
"
8k≠|S|. So we have

|TS,k|

|TS,k≠1|
=

!
r

k≠|S|
"
8k≠|S|

!
r

k≠1≠|S|
"
8k≠1≠|S| = 8 ·

r ≠ k + |S| + 1
k ≠ |S|

Ø 8 ·
r ≠ k

k
Ø 8

3r

19
≠ n

16r

19
+ n

,

where the last inequality comes from the fact that k Æ
2N

19
= 2

19
(8r + n) Æ

16r

19
+ n. But since

r = c
2
n

2

‘
, there is a constant n0 such that for n Ø n0, we have

3r
19 ≠n

16r
19 +n

Ø
1

8
. This shows that

|TS,k|
|TS,k≠1| Ø 1, which finishes the proof. J
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