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Mechanicalmetamaterialscapableoflargedeformationsareanemergingplatformforfunctional
devicesandstructuresacrossscales. Bistabledesignsareparticularlyattractivesincetheyendow
asingleobjectwithtwoconfigurationsthatdisplaydistinctshapes,propertiesandfunctionalities.
Weproposeastrategythattakesacommon(non-bistable)metamaterialdesignandtransformsit
intoabistableone,specifically,byallowingforirregularpatternsthroughgeometricperturbations
oftheunitcellandbyleveragingtheintercellconstraintsinherenttothelargedeformationresponse
ofmetamaterials. Weexemplifythisstrategybyproducingadesignframeworkforbistableplanar
kirigamimetamaterialsstartingfromthecanonicalrotating-squarespattern.Theframeworkcom-
prisesexplicitdesignformulasforcell-basedkirigamiwithunprecedentedcontrolovertheshape
ofthetwostablestates,andanoptimizationmethodologythatallowsforefficienttailoringofthe
geometricfeaturesofthedesignstoachievetargetelasticpropertiesaswellasshapechange.The
versatilityofthisframeworkisillustratedthroughawidevarietyofexamples,includingnon-periodic
designsthatachievetwoarbitrarily-shapedstablestates.Quantitativeandqualitativeexperiments,
featuringprototypeswithdistinctengineeringdesigndetails,complementthetheoryandshinelight
onthestrengthsandlimitationsofourdesignapproach.Theseresultsshowhowtodesignbistable
metamaterialsfromnon-bistabletemplates,pavingthewayforfurtherdiscoveryofbistablesystems
andstructuresthatarenotsimplyarrangementsofknownbistableunits.
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Thepastfewdecadeshaveusheredinaparadigmshift
inthewaystructuralinstabilitiesareperceived:once
somethingtoavoid,researchersnowdesignmechanical
systemsandstructurestoreversiblybuckleaspartof
theirfunctionality[1–3]. Bistablesystems,possessing
twomorphologically-distinctstablestates,arepervasive
innatureandattractiveinengineering.Theyarekeyto
howavenusflytrapcollectsitsprey[4]andabeetleun-
furlsitswings[5],andareleveragedindeployablespace
structures[6],softrobots[7–9],MEMSdevices[10,11],
andthelike. Theyareeventhecornerstonetopopular
everydayobjectslikePopSocketsphoneholdersandtoys
likePopItfidgetsandjumpingpoppers[12,13].
Bistabilitycomesinavarietyof modalities. Itis

achievedbypurelygeometricmeansthroughtailoringthe
designofthin-wallstructures,likearchesandshells[14],
orbydesigningcleverensemblesofstructuralelements
connectedbypinsorflexuraljoints[15].Italsoemerges
throughacombinationofgeometryandmaterial-induced
rigidity,asinthecaseofbistableshellsmadeofcompos-
itematerials[16],orthroughprestress,aswhenmulti-
stableshellsareobtainedfrompre-stretchedstrips[17].
Bistabilitycanevenbefacilitatedbynuancedfeatures
inorigamiandkirigami,includinghinges withlim-
itedmotionrange[18,19]andcreaseswithdirectional
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FIG.1. Geometricalroutetobistability. (A) Rotating-
squaresunitcell,withitsmechanismmotionshadedinlight
gray.(B)Periodicandoverconstrainedversionof(A).(C)
Perturbedversionof(A).(D)Bistablestructureobtainedby
tilingperturbedunitcells,initsfirstandsecondstablestates.

bias[20,21].

Herewefocusonpurelygeometricalroutestobista-
bility,sincedesignprinciplesinthissettingarebroadly
applicabletoavarietyofscales,materials,andmanufac-
turingmethods. Thearchetypeofapurelygeometrical
bistablestructureisthevon Misestruss[22],featuring
twoinclinedelasticbarsconnectedatahingeandcon-
strainedbypinsupports. Whenthisstructureisloaded
atitsapex,thebarscompressandeventuallysnapinto
aninvertedtentshape,asecondstablestatebysymme-
try.Thisbasicprincipleleadstoawealthofbistablesys-
tems.CleverlyarrangedvonMisestrussesformthebasis
forbistableplanarlattices[23]andkirigami[15].Other
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complexmultistablesystemsarisebyexploitingsnapping
archesanddomes[24–31],ormoresophisticatedbistable
unitslikethesquaretwistorigamicell[32].Theunder-
lyingphilosophytoalltheseworksisthesame:thekey
designerinputtoacomplexbistablesystemisabistable
buildingblock.

Ourworkseekstobreakawayfromthisprevailingphi-
losophy.Towardsthisgoal,itisnotablethatmanymo-
tifsfoundinorigamiarebistableeventhoughtheirbasic
buildingblocksarefloppy. ExamplesincludeKresling,
waterbombandhelicaltubes[33–35],hypar[36]andthe
typicalorigamiflasher[37,38].However,asisoftenthe
casewithorigami,mostoftheseexampleshaveartistic
originsandtheirbistabilityisserendipitous. Theques-
tionofwhatmakesthem,orany“pattern”,bistablere-
mainslargelyunexplored.

Ourobjectiveistohighlighttheroleofgeometricper-
turbationsasafundamentalingredientforbistabilityand
toshowthatsuchperturbations,whensuitablyapplied
tofairlygenericfamiliesofpatterns,canbeusedasaver-
satileplatformtodesignbistablemetamaterialswitha
widerangeoftargetproperties.Fig.1illustratesthekey
ideasappliedtoaprototypical2Dmorphingmetamate-
rialcalledtherotatingsquarespattern[39,40].Asingle
unitcellofthispattern(Fig.1A)iscapableofchang-
ingitsshapethroughamechanism[41]orfloppymode
[42]givenbycounter-rotatingitspanelsaboutthecentral
slit.Symmetry,inturn,makestheintercellconstraints
redundant:periodictilingofthecell(Fig.1B)yieldsa
patternthatexhibitsthesamesuchmechanism.Break-
ingthedesignsymmetry,however,revealsaninteresting
dichotomy:thecellcontinuestopossessafloppymode
(Fig.1C),buttheoverallpatterndoesnot(Fig.1D).
Theintercellconstraintsaregenericallynolongerredun-
dant. Ourmaininsightisthat,whilegenericperturba-
tionsyieldmonostablepatterns,carefulgeometrictuning
oftheseperturbationscanturnmechanism-baseddesigns
intobistableones(Fig.1D).

Therehasbeenathrustinrecentyearstogobeyond
metamaterialsmadeofcanonicalunitcellsandprovide
optimizationtoolstoexplorethegeometry-propertyre-
lationshipsinthesesystems.SinghandvanHecke[43]
andDengetal.[44]showthatoptimizingthegeometric
featuresofperturbedrotatingsquaresdesignscanyield
arichrangeoftargetelasticproperties. Mahadevanand
colleagues[45,46]useglobaloptimizationframeworks
toproducenon-periodicgeneralizationsofwellknown
origamiandkirigamimetamaterialswithtargetshapes.
Hard-encodingdesignrulesinametamaterial(e.g.,for
thepanelstorotateaboutflexiblehingesorfolds),as
inRefs.[47–51],yieldmarchingalgorithmsthatimprove
theoptimizationschemes,enablingfurtherdemonstra-
tionsofprogrammability.

Ourworkbuildsontheseideasunderthelenseofbista-
bilityandwithparticularemphasisonpractical(reduced-
order)designtoolsthatcanguideexperimentsatthecon-
ceptual/prototypingphaseofdesign. Westartbyshow-
inghowtohard-encodebistabilityinalargeclassof2D

FIG.2. Perturbedrotating-squareskirigamianddesign
recipe.(A)Unitcellinitsfirststablestate,indicatingthe
designvectors,and(B)periodicityconstraint.(C),(D)Sec-
ondstablestatesof(A)and(B),respectively,obtainedby
rotatingeachpanelbyanangleφi.(E)Elasticenergymodel.
From(B),eachpanelisrotatedandtranslatedperiodically
toproduceahomogeneouseffectivedeformationwithBravais
latticevectors 1and 2. Asillustrated,thestoredenergy
iscalculatedassuminglinearspringsbetweentheseparated
panels.(F)Detailsofthetwobottom-leftpanelsof(B)and
(E),indicatingachangeinopeningangle.

periodicmetamaterialscomposedofrepeatingunitcells
ofpanelsandslits,termedplanarkirigamihereinand
elsewhere[45,52,53],asopposedtokirigamithatrely
onout-of-planebuckling[54,55]. Wethenintroducean
optimizationframeworkforbistableplanarkirigamithat
incorporatesareduced-ordermodelfortheelasticenergy,
allowingustotunethedesignstoachievetargetmorph-
ingandelasticproperties. Asuiteofrepresentativeex-
amplesandcorrespondingexperimentsfollows. Weex-
ploreexamplesrangingfromclassicalmonolithicplanar
kirigamiconfigurationstopin-jointedpanelsystemsand
truss-basedanalogstotesttheapplicabilityofourde-
signandoptimizationstrategiesinavarietyofsettings.
Ineachcase,theexperimentsvalidatethebistablebe-
haviorofthepatternsandcertainqualitativefeaturesof
theirelasticproperties,butalsohighlighthowourtheory
canguidebutnotfullyreplacehigh-fidelitymodelsand
prototyping.Finally,weshowcasetheversatilityofour
designapproachbyextendingittonon-periodicsystems
withcomplexshape-change.

DESIGNFORMULASFORBISTABLEPLANAR
KIRIGAMI

Webeginbydevelopingageneralrecipeforbistable
planarkirigamicomprisedofarepeatingunitcelloffour
quadpanelsandfourquadslits,obtainedthroughgeo-
metricperturbationsoftherotatingsquares.Therecipe
amountstoacompactdesignformulaforbistability,
whichweexplainusingFig.2asaguide.Fig.2Ashows
agenericunitcellrepresentingthefirststablestateofa
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quad kirigami design, with the panels and slits labeled by
2D vectors si, ti, ui and vi, i = 1, . . . , 4. Fig. 2B illus-
trates its periodicity using the 2D Bravais lattice vectors
`R1 and `R2 . Fig. 2C shows the unit cell of the second sta-
ble state. Each panel in the cell is rotated in the plane by
a right-hand rotation R(φi) of angle φi, as shown, taking
the initial cell vectors to deformed ones by the transfor-
mations si 7→ R(φi)si, ti 7→ R(φi)ti, ui 7→ R(φi)ui and
vi 7→ R(φi)vi, i = 1, . . . , 4. Finally, Fig. 2D shows 2D
Bravais lattice vectors `D1 and `D2 , quantifying the peri-
odicity in the second stable state. All of these vectors and
rotation angles are subject to a variety of constraints for
a compatible design, including equality constraints that
enforce periodicity and ensure the vectors form closed
loops about each panel and slit, as well as inequality con-
straints that ensure the panels are convex quadrilaterals
that do not overlap. We enumerate all the compatibility
conditions in Supplemental Material, Section S1.A and
manipulate them into forms broadly useful for design in
Supplemental Material, Sections S1.B and C [56].

The key result is a design formula that parameterizes
all the equality constraints. It takes the form

s3

s4

t
u
v

 = D(φ)

s1

s2

`

 , (1)

where t,u and v stack the corresponding ti,ui and vi
design vectors into 8 component arrays, and ` does like-
wise for the four Bravais lattice vectors `R1 , . . . , `

D
2 . The

28 × 12 matrix D(φ), concretely linking these arrays,
is a lengthy nonlinear expression of the rotation angles
φ = (φ1, . . . , φ4). Its explicit formula is provided in
Eq. [S21] of Supplemental Material, Section S1.B [56].

Eq. [1] organizes a wealth of information for designing
and tuning bistable kirigami structures. The right-side
contains the designer inputs. It includes the Bravais lat-
tice vectors, which are the natural descriptors for target
maximum stretch, Poisson’s ratio, and shearing between
the two stable states. It also contains eight additional
degrees of freedom (DOFs) through the four rotation an-
gles φ and design vectors s1 and s2. Each can be tuned to
achieve, for instance, a desirable energy barrier between
the two stable states. The remaining parameters describ-
ing the designs in Fig. 2 are all stacked on the left-side of
Eq. [1] and thus are fully determined from these designer
inputs.

OPTIMIZATION FRAMEWORK FOR ELASTIC
TUNING

An appealing aspect to this characterization is that
it marries naturally with standard optimization tools to
furnish a versatile design framework for tuning bistabil-
ity. Assume a designer has in mind two stable states,
obtained by prescribing the Bravais lattice vectors in

the reference `R1 , `
R
2 and deformed `D1 , `

D
2 configurations.

Since there are eight additional parameters on the right-
side of Eq. [1], the design can be optimized to achieve any
general objective that can be written as a minimization
problem:

min
{
fobj(s1, s2,φ)

∣∣ gineq(s1, s2,φ) ≥ 0
}
. (2)

In this formulation, gineq(s1, s2,φ) lists all the inequal-
ity constraints that are necessary and sufficient for the
pattern to have convex panels and slits in its reference
and deformed stable states. These constraints, which are
written out explicitly in SI Appendix, Section S1.C, are
nonlinear in all their arguments. Thus, Eq. [2] describes
a constrained nonlinear optimization for which Matlab’s
fmincon toolbox provides several well-developed and ef-
ficient numerical tools to find local minimizers. In other
words, this optimization framework is ”ready-made” for
engineering design. See the flowchart in Fig.S3 and Sup-
plemental Material, Section S2.E [56] for additional de-
tails on numerical aspects of this framework.

All that remains now is to prescribe an objective func-
tion for the optimization. We are particularly interested
in objective functions that can assess and optimize a vari-
ety of features of the stored elastic energy of the kirigami
design. The challenge is that calculating an elastic en-
ergy based on high fidelity modeling, like FEM or even
bar-hinge based modeling [57], is not efficient and thus
creates a bottleneck in the optimization process. We in-
stead develop an elastic model that can be implemented
directly into Matlab and evaluated using its fast solvers.

Our approach is formulated in detail in Supplemental
Material, Section S2.A [56] and illustrated in Fig. 2E. We
model the corner points of the kirigami pattern as linear
springs of zero rest length and unit stiffness and allow
the panels to rotate and translate by a periodic motion
that matches a bulk deformation expressed by the Bra-
vais lattice vectors `1, `2 in the figure. This deformation
elongates the springs, generating an elastic energy ex-
pressed in terms of the panel rotations and translations,
and the Bravais lattice vectors.

After minimizing out the translations and lattice vec-
tors in Supplemental Material, Section S2.B [56], we ob-
tain the revealing form for the energy

Espr(η1, η2, η3, η4) =
∑
i=1,...,4 R(ηi)si∑
i=1,...,4 R(ηi)ti∑
i=1,...,4 R(ηi)ui∑
i=1,...,4 R(ηi)vi

 ·G

∑
i=1,...,4 R(ηi)si∑
i=1,...,4 R(ηi)ti∑
i=1,...,4 R(ηi)ui∑
i=1,...,4 R(ηi)vi

 (3)

for an 8 × 8 symmetric and positive definite matrix G
and the four panel rotations R(η1), . . . ,R(η4), as shown
in the figure. The heuristics behind this energy are as
follows. Prior to deformation, the pattern’s four types
of slits satisfy

∑
i=1,...,4 si = 0, . . . ,

∑
i=1,...,4 vi = 0 be-

cause slits form closed loops. However, the deformed
loops

∑
i=1,...,4 R(ηi)si, . . . ,

∑
i=1,...,4 R(ηi)vi are typi-

cally broken (6= 0) under the panel motions. Eq. [3]
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employs these broken loops as the fundamental measures
of elastic strain in the pattern. The matrix G in this
formula quantifies how the slits influence each other elas-
tically. Its components range between values 0 and 1
independent of the krigami design, and are reported in
Eq. [S36] of Supplemental Material, Section S2.B [56].

A final minimization allows us to quantify the elasticity
of a bistable kirigami design in terms of a single kinematic
variable:

Eact(ξ, s1, s2,φ) =

min
η3,η4

{
Espr(0, ξ, η3, η4)

∣∣ s3, s4, t,u,v solve Eq. [1]
}
.

(4)
We call this energy the actuation energy. It depends kine-
matically only on the angle ξ shown in Fig. 2F, describing
the relative rotation between the first and second panel
of each unit cell as the overall pattern is actuated. It
is non-negative and satisfies Eact = 0 when ξ = 0 and
ξ = φ2 − φ1, reflecting the bistability hard encoded by
Eq. [1].

This actuation energy integrates seamlessly with the
optimization framework in Eq. [2], allowing us to effi-
ciently explore and tune elastic properties of the kirigami
design. In this work, we demonstrate this capability by
optimizing the designs based on two properties of Eact

through objective functions of the form

fobj(s1, s2,φ) = cb|Eb(s1, s2,φ)− Etarg
b |2︸ ︷︷ ︸

target energy barrier

+ c1|k1(s1, s2,φ)− ktarg
1 |2︸ ︷︷ ︸

target stiffness

.
(5)

The first term tunes the designs so that the energy bar-
rier between the designed stables states, Eb(s1, s2,φ) =
maxξ∈(0,φ2−φ1)Eact(ξ, s1, s2,φ), is driven towards a spec-

ified target Etarg
b ≥ 0, reflecting the amount of work

needed to actuate the pattern from one stable state
to the other. The second term optimizes for the stiff-
ness k1(s1, s2,φ) = ∂ξ∂ξEact(0, s1, s2,φ)/(λ′(0))2 of the
first stable state with respect to a characteristic stretch

λ(ξ) = |u1−v1+R(ξ)(u2−v2)|
|u1−v1+u2−v2| that takes the value λ(0) = 1

in the first stable state and λ(φ2−φ1) = |`D1 |/|`R1 | in the
second one (see Supplemental Material, Section S2.D [56]
for more details). The designs are tuned by driving this

stiffness towards a specified target ktarg
1 ≥ 0, allowing

us to control whether we want this stable state to be
”locked-in” or have some give at its typical performance
loads. Design tradeoffs are expected. For example, it is
not usually possible to achieve a design that has both a
high stiffness but a low overall energy barrier between
the states. The numerical parameters cb, c1 ≥ 0 express
the desired importance of each term during an optimiza-
tion. Though not done here, terms like the maximum
force and/or the stiffness of the second stable state can
also be included in the objective function.

REPRESENTATIVE EXAMPLE

We illustrate the optimization framework by tuning
kirigami designs to achieve a variety of energy barriers
under a prototypical square-to-rectangle transformation.
In the optimization, the Bravais lattice vectors are set at

`R1 = e1, `R2 = e2 and `D1 = 1.2e1, `D2 = 0.8e2 to encode
the effectively square and rectangular stable states, and
the moduli in Eq. [5] are taken as cb = 1 and c1 = 0 to
focus on optimizing for a target energy barrier. Fig. 3A-
C shows three optimized designs, obtained by prescribing
the target energy barrier from left to right as Etarg

b =
0.001, 0.0015, 0.003 and performing the minimization in
Eq. [2] in each case. A plot of actuation energy Eact(ξ)
versus stretch λ(ξ) in Fig. 3E shows that each design
achieves its target energy barrier. A randomly generated
monostable design in Fig. 3D is included in Fig. 3E as
another point of comparison.

To test the validity of the optimization framework, we
fabricate a series of prototypes for all the aforementioned
designs and examine their elastic energy and bistability
experimentally. In comparing the theory to experiments,
it is important to recognize that our mechanical model
for the actuation energy is based on simplifying assump-
tions that enable us to efficiently optimize over the purely
geometric parameters of the designs to achieve ”some no-
tion” of target elastic properties. The goal is to provide
design guidance in this large parameter space that gets
trends right. Specifically, for a specified fabrication strat-
egy, we expect that the energy barrier of the design in
Fig. 3A is smaller than that of Fig. 3B, which in turn is
smaller than that of Fig. 3C. We cannot, however, say
much more than that: localized buckling, hinge elastic-
ity, friction, viscoelasticity, and out-of-plane deformation
can influence the elastic behavior of these systems, none
of which are accounted for in our model.

We propose three different fabrication strategies that
differ in the way the energy barriers manifest as deforma-
tion, allowing us to explore the interplay between the fine
design details inherent to prototyping and the theoreti-
cal predictions of bistability. In all cases, the specimens
are made of 2×2 unit cells and are tested in tension via a
universal testing system using custom fixtures. Fig. 3F-H
show the raw force-displacement curves for tension tests
of the fabricated samples, as well as their stored energy
curves (obtained by integration of the force curves). The
color scheme for the curves distinguishes the different de-
signs, just as in Fig. 3E. Additional details on the fabri-
cation and experimental procedures, and on the dimen-
sions of specimens, are given in Supplemental Material,
Sections S4, S5 [56]. We only report experimental re-
sults in the main text; Supplemental Material, Section
S7 [56] reports finite-element results that complement
these findings.

In the first incarnation of our designs, we 3D print thick
monolithic specimens made of ”soft” TPU-95, which rep-
resents the most conventional way to fabricate these
metamaterials [15, 40, 45, 58]. Notably, each sample



5

FIG.3.Representativeexampleanddemonstrationofbistability.(A-C)Firstandsecondstablestatesoftheoptimizedpatterns
withenergybarriers0.001,0.0015and0.003,respectively.Eventhoughwerepresentthemin2×2cellversions,thesepatterns
areperiodic.(D)Monostablegeometryobtainedbyrandomlyperturbingtherotatingsquarespattern.(E)Theoreticalenergy
landscapeofthepatternsin(A-D),withhorizontallinesindicatingthetargetenergybarriers;thelegendshownhereisvalid
throughoutthisfigure.(F)Experimentalresultsforamonolithicphysicalrealizationoftherepresentativepatterns,which
involvescomplianthinges;solidlinesareaveragesofthreetensiletests,andshadedareasrepresentthestandarddeviation;
energycurvesareobtainedbynumericallyintegratingtheaverageforce-displacementcurves.(F-1,F-2,F-3)Firststablestate,
snapshotofthedeformationandsecondstablestate,respectively,foramonolithicspecimenwith0.003barrier.(G)Sameas
(F),butforaphysicalrealizationofthepatterninvolvingskeletal,bi-materialpanelsconnectedviaperfectpinsandcapable
ofin-planedeformationviabucklingoftheinternalbeams.(H)Sameas(F),butforaphysicalrealizationinvolvingthin,
pin-jointedmono-materialpanelsthatbendout-of-planeduringdeformation.Scalebar:5cm.

exhibitsnegligibleout-of-planedeformationsduetoits
largethickness,butalsohaselastichingesthatoffer
someresistancetotherelativerotationsbetweenpan-
els.Fig.3F-1showsthespecimenwiththelargest(0.003)
theoreticalenergybarrierinitsfirststablestate;Fig.3F-
2showsasnapshotofitsin-planedeformationprocess
duringatensiontest,withthedistortionsmostlyconcen-
tratedinthehingeregions;Fig.3F-3showsthesecond
stablestate,whichisqualitativelysimilartothetheo-
reticalone,whilefeaturingsomelocalizedbendingnear

thehinges. Thiscaseisclearlybistable —theforce-
displacementcurvedipsbelowzero,resultingintwoclear
energyminima.However,bistabilityisfarfromguaran-
teedbecausehingeelasticitycounteractsthegeometric
energybarriersthatsupportasecondstablestate.In
fact,theothertwocaseswiththesmallertheoreticalen-
ergybarriersof0.001and0.0015arenotbistable,asin-
dicatedbytheirforceandenergycurves.

Oursecondfabricationstrategyeliminatesthehinge
elasticitythatopposesbistability,whilekeepingtheac-
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tuation essentially planar. To do this, we 3D print “skele-
tal” and bi-material panels and assemble them via actual
pin joints. The printed panels are composed of soft TPU
bars and stiff nylon hinge regions to ensure that the defor-
mations concentrate in the bars rather than in the neigh-
borhood of the pin joints. We also place the specimens
between clear acrylic plates during testing to prevent out-
of-plane deformation. Fig. 3G-1 shows the 0.003 design
fabricated in this fashion in its first stable state; Fig. 3G-
2 shows an intermediate state during testing, illustrating
how the deformation within the panels manifests as in-
plane bending and buckling of the bars; Fig. 3G-3 shows
the second stable state, which now matches the theoret-
ical one. The experimental force-displacement curves for
this specimen clearly indicate bistability. Note that the
presence of pin-joints allows the specimen to be stress-
free in its second stable state even though the curve shows
that the energy is non-zero in this state. We attribute
the tilted energy curve to friction and material viscoelas-
ticity, which dissipate energy during the tests. While
this second incarnation is a better candidate to demon-
strate bistability for a broad range of designs, fabrication
proved challenging and time consuming; for this reason,
we only report results for the 0.003 specimen.

The final incarnation also features pin joints, but the
panels are now much thinner and laser cut out of PETG.
As shown in Fig. 3H-1 to H-3 for the 0.003 sample,
these specimens transition between stable states via out-
of-plane bending of the panels. The force and energy
curves show that the patterns behave as expected — all
the theoretically bistable designs are indeed bistable and
the magnitude of their energy barriers trends with that
of the theory. In particular, the energy barrier for the
0.003 specimen is larger than the 0.0015 one, which is
in turn larger than the 0.001 case. Here, significant fric-
tional losses due to the panels pushing against each other
and the rivets during out-of-plane deformation cause the
energy curves to display non-zero values at the second
equilibrium, even though these states are stress-free.

Overall, these case studies validate our purely geo-
metric design and optimization tools, as they showcase
a variety of bistable metamaterials whose shape change
matches the theory and whose energy barriers match the
trends of the theory. We envision that the synergy be-
tween optimization and prototyping can be improved by
introducing “non-universal” features into the objective
function (Eq. [5]) that depend on the choice of fabrica-
tion strategy, although we do not pursue this further.

EXPLORING THE DESIGN AND
OPTIMIZATION SPACE

We now highlight the richness of the design space by
producing bistable kirigami patterns that exhibit a va-
riety of axial and shearing shape changes. All exam-

ples correspond to reference lattice vectors `R1 = e1 and

`R2 = e2 and achieve a second stable state given by one

of two parameterizations of the deformed lattice vectors

axial: `D1 = λ1e1, `D2 = λ2e2.

shear: `D1 = e1 + γe2, `D2 = e2 + γe1,
(6)

Fig. 4A-E show designs obtained by optimizing the en-
ergy barrier using cb = 1, c1 = 0 and Etarg

b = 0.003 for a
variety of λ1,2 and γ.

Fig. 4A, in particular, showcases a suite of designs
corresponding to axial shape morphing with λ1 and λ2

varied uniformly from 0.8 (contraction) to 1.3 (expan-
sion) in a design matrix. The coloring scheme reflects
whether the optimized design achieves the target 0.003
energy barrier. As the coloring indicates, the richness
of the design space depends significantly on the shape-
morphing. Non-auxetic designs where one side contracts
and the other expands appear to be much more amenable
to the large energy barriers than auxetic ones. In fact,
the most extreme auxetic design – the purely dilation one
in the lower right corner of the figure – is only a slight
modification of the purely mechanistic rotating squares
pattern, even though we optimize for a high energy bar-
rier. This observation suggests that the rotating squares
pattern is perhaps the singular template for extreme dila-
tion in quad kirigami. Another interesting point concerns
symmetry and non-uniqueness. As illustrated in the de-
sign matrix, every optimized design in the upper right
quadrant (λ1, λ2) = (x, y) is related to one in the lower
left (λ1, λ2) = (y, x) by a 90o rotation. These rotated de-
signs are shaded in Fig. 4A. In some of the less extreme
cases, however, more than one design achieves the tar-
get energy and shape change. We illustrate this point by
highlighting a (λ1, λ2) = (0.9, 1.2) optimized design that
is distinct from the (λ1, λ2) = (1.2, 0.9) case shown.

Fig. 4B also showcases a suite of designs, this time
for the shear case in Eq. [6], with γ evolving uniformly
from 0.2 to 0.95. Again the design space shrinks as
the shear becomes more extreme, making it harder for
the optimized design to achieve the target energy bar-
rier Etarg

b = 0.003. Note that the maximum shear in
this setting is γmax = 1, since this shape change takes
an effectively square reference domain to a line. Evolv-
ing the shear monotonically to this maximum leads to
panels that degenerate to lines and slits to parallelo-
grams. A curious yet persistent observation in Fig. 4A-B
(and Supplemental Material, Section S2.F [56]) is that
extremal shape change seems always to correspond to
designs with parallelogram slits, i.e., designs known to
always posses a single DOF mechanism [53]. Whether
this observation suggests a universal relationship between
mechanism-based designs and bistable ones remains to be
seen, but it is nonetheless compelling evidence of some
sort of connection.

Returning to prototyping, Fig. 4C-E highlights the de-
sign and fabrication of three examples of extreme shape
change: a shear case, a non-auxetic case, and an aux-
etic, purely dilational case. In all cases, we employ the
third fabrication strategy discussed above with pin-joints
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FIG.4.Designexplorations.(A)Matrixofdesignsoptimizedtoattainaxialshapetransformation(fromasquaretoanother
squareorrectangle)ofvariousdegree,withatargetenergybarrierof0.003. Designsarecolor-codedaccordingtotheactual
valueofthebarrierachievedduringoptimization,asindicatedinthelegendbelow(B).Shadeddesignsinthelowerdiagonal
aresimplyrotationsofthecorrespondingdesignsintheupperdiagonal.(B)Suiteofdesignsthatundergoashear-typeshape
transformation.λ1,λ2andγ,whichcontrolthemagnitudeoftheshapechange,aredefinedinEq.6.(C-E)Firstandsecond
stablestatesofvariouspatterns,withtheirmono-materialphysicalrealizations.(C)Patterndesignedtoundergoextreme
shear-typemorphing,withγ=0.8;(D)Extremenon-auxeticmorphing;(E)Extremeauxeticmorphing.Inallexperimental
images,scalebar:5cm.

andlasercutPETGpanels,sincespecimensmadethis
wayareeasytoproduceandexhibita”clean”perfor-
mance. Asshowninthefigure,eachsampleisbistable
anddisplaysthepredictedshapechange. Thesupple-
mentaryvideoslistedanddescribedinSupplementalMa-
terial,SectionS6[56]providefurtherillustrationsofthe
bistabilityofthesesamples.

Weendthissectionbyshowcasingdesignstunedto
achievemultipleobjectivesatthesametime.Goingback
totheprototypicalsquare-to-rectangulartransformation
studiedpreviously,Fig.5showsdesignsthathavebeen
optimizedforbothatargetenergybarrierandatarget
stiffnessinitsfirststablestate.Specifically,wefixcb=1,
c1=0.002andE

targ
b =0.001andvarythetargetstiff-

nessuniformlyfromktarg1 =0.15to0.50toproduceeight
optimizeddesigns.Astheplotindicates,wehavecontrol
ofboththestiffnessandenergybarrieroverawiderange
oftheparameterspace(fromktarg1 =0.1to0.45).How-

ever,oncektarg1 issufficientlylarge,theenergybarrier

cannolongerbeheldfixed.Insteadittiltsup,reflecting
atradeoffbetweenhighstiffnessandlowenergy.

HETEROGENEOUSSHAPE-CHANGE

Wenowgobeyondperiodicstructuresandshowhow
ourdesignandoptimizationmethodscanbeintegrated
intoasimplerecipetoprogrambistablekirigamimeta-
materialswithtargetheterogeneousshapes. Weexplain
theapproachthroughthesquaretobowtietransforma-
tionshowninFig.6A-C,beforeillustratingitsversatility
throughthecomplexexamplesinFig.6D-E.
InthetransformationinFig.6A,thequadcellsof
thesquare meshare mappedone-to-onetothecells
ofthebowtiemeshthroughthelatticetransformations
R
1(i,j)→

D
1(i,j)and

R
2(i,j)→

D
2(i,j),indexedby

(i,j)asshown. Whilethebowtiemeshisnothomoge-
neous,itslatticevectorsvaryslowlyfromcelltocellto
producetheoverallshape. Weexploittheseslowvari-
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FIG.5. Additionaldesignexplorations. Theoreticalenergy
landscapesofpatternsdesignedtodisplayvarioustargetstiff-
nessktarg1 ,whilemaintainingabarrieraround0.001.Inthe
legend,weshowthefirststablestatesofallsuchpatterns.

ations,andthekeyfactthatthelatticevectorsarede-
signerinputsforbistabilityinEq.[1],toobtainakirigami
patterncapableoftransformingfromthesquaretothe
bowtieshapeatverylittlestress.
Thegeneralideaisasfollows(seeSupplemental Ma-

terial,SectionS3[56]for moredetails). Afteranini-
tializationsteptoseedthedesignofasinglekirigami
cell, weproduceaglobalkirigamipatternthrougha
marchingprocedurethatisfundamentallylocal. At
each(i,j),indicatingcorrespondingquadsinthetwo
meshes,weprescribethelatticevectorsforabistable
designinEq.[1]as = (i,j). Next,wechoosethere-
mainingDOFsinthisequationasasetofminimizers
s1=s1(i,j),s2=s2(i,j),φ=φ(i,j)toEq.[2]with

fobj(s1,s2,φ)=(s1,s2,φ)−(s
prev
1 ,sprev2 ,φprev)

2
,(7)

where(sprev1 ,sprev2 ,φprev)isfromapreviouslycomputed
neighboringcell.Finally,wechooses3=s3(i,j),...,v=
v(i,j)tosolveEq.[1]fortheabove(i,j)designvariables.
Thisrecipefurnishesabistablekirigamicellthattakes
theshapeofthetwo(i,j)-quadsasitsstablestates.It-
eratingonitproducestwoglobalpatterns,onewiththe
desiredoverallsquareshapeandanotherwiththedesired
bowtie.However,eachhassmallgapsbetweenneighbor-
ingunitcellsduetothespatialvariationsofthelattice
vectors(seeFig.S5intheSupplemental Material[56]).
Afinalaveragingstepglueseachpatterntogetherand
furnishesthekirigamidesignsforthetwoshapesshown
inFig.6B.
Theaveragingpartofthedesignprocedureyieldspan-

elsinthebowtiethataredistortedslightlyfromtheir
counterpartsinthesquarepattern, meaningthatthe
transformationisnotstress-free. Toverifybistability,
wesupplementtheprocedurewithatrussbasedmodel
ofthepatternunderloadsinFig.6C,basedonthe
bar-hingemodelofRef.[57]. Themodelassumesthat

thesquarepatternisthestress-freereferenceconfigura-
tion,thatbarsdeformonlyaxially,andthattheirmate-
rialislinearelastic(seeSupplementalMaterial,Section
S7.D[56]). Thepatternisthensupportedbyrollerson
itsleftboundaryandloadedbyauniformsetofhorizon-
talnodalforcesFonitsright(Fig.6C-1). Theoverall
horizontaldisplacement,denotedd,increasessmoothly
underforcecontroluntiltheconfigurationinFig6C-2,
whereitjumpsfromd/|R1|≈1tod/|

R
1|≈1.6onafur-

therincreaseofload.Unloadingafterthejump,thecurve
crossesthezeroforceaxisawayfromtheorigin,provid-
ingademonstrationofbistability.Thebowtieshapeof
Fig.6C-3,showingsmallresidualstrains,isthesecond
equilibriumconfiguration.

Thekeypointisnotthatwehaveidentifiedasquare-
to-bowtiebistabledesign,itisthattheprocedureisex-
ceedinglysimpleandgeneral.Itonlyreliesonthefact
thatwehaveaone-to-one”regular”quadmeshofthe
twostablestateswithlatticevectorsthatvaryslowly
fromquadtoquad(regularmeansthatthemeshescan
bemappedbijectivelytoaconnectedsubsetoftheZ2

lattice).Suchmeshesareeasytoobtainforawideva-
rietyofshapes,soourprocedurecanbeemployedfora
myriadoftargetbistablepatterns.Fig.6D-Eillustrate
twosuchexamples,a”beatingheart”andasquare-to-
disctransformation.

Fortheheart,wemeshthecompactstate(seeFig.S7A
intheSupplemental Material[56])usingthe‘Quasi-
StructuredQuad’settingfromthefreelyavailablesoft-
ware Gmsh[59],anddilatethis meshtoobtainthe
enlarged meshedstate. Thedesignprocedureiterates
throughthecellsinthesemeshestoproducethekirigami
pattern. Wehavestudiedavarietyofdilationfactors
λ≥1.Increasingthisfactormonotonicallyleadstoa
compactstatewheretheslitsdegeneratetolines(closed
slits),andadilatedstatewheretheslitstendtowardsbe-
ingfullyopen.Atsufficientlylargevaluesforλ,thepan-
elsbegintooverlapinthecompactstate,violatingthein-
equalityconstraintsinEq.[2].Fig.6Dshowsaλ=1.25
designobtainedbyourmethods.Thislevelofdilationis
actuallyquiteimpressivegiventheheterogeneityofthe
cellsandcertainbasiclimitationsofquadkirigami.The
rotatingsquarespattern,forinstance,transformsfrom
itsfullyclosedtofullyopenstatebyauniformdilation
ofλrs=

√
2≈1.41,whichlikelysetsthetheoretical

upperboundondilationforthesetypesofpatterns.

Ourlastdemonstrationofheterogeneous morphing
inFig.6Eshowcasesasquare-to-disckirigamipattern.
Thequad meshprecursorsareobtainedbydiscretiz-
ingthesquaredomainuniformlyon(−1,1)2usinga
40×40setofsquarecells,andthendeformingthismesh
smoothlytotheunitdiscbytheEllipticalGrid map-
ping(x,y)→(x 1−y2/2,y 1−x2/2).Thismapping
spreadsthemeshdistortionssmoothlyfromtheinterior
tofoursingularpoints,correspondingtothedeformed
cornersofthesquare(seeFig.S7BintheSupplemen-
talMaterial[56]).Thedesignprocedureaccountsforthis
spreadingbyproducingcellsinthesquarewhoseslitarea
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FIG.6. Heterogeneousdesignsforcomplexshapechange.(A-C)Exampleofapatterndesignedto morphfromasquare
toabowtieshape.(A) Meshgridsofthetwodesiredstablestates,whichgiveinformationonthelatticevectorstobepre-
scribedtoeachunitcell.(B)Optimizedpatterninitsfirstandsecondstablestates.(C)Numericalvalidationofbistability
viaageometrically-nonlineartrussmodel,showingaforce-displacementcurvewitharrowsindicatingthedirectionofload-
ing/unloadingandthreesnapshotsofthedeformation.Inset(C-1)indicatestheboundaryconditionsforthesimulation.(D)
Beatingheartpattern,initsfirstandsecondstablestates.(E)Structuredesignedtomorphfromasquaretoadisc,initsfirst
andsecondstablestates.

increasesdramaticallyfromitscentertoitscorners;the
dichotomyisreversedinthediscstate. Asshownin
Fig.6E,thecornersofthesquareessentiallycollapsein-
ward,closingtheirslits,toachievethediscasthesecond
stablestate.Akeyingredienttothisexample’simpres-
sivedisplayofshapechangeisthescalabilityofourmeth-
ods.Sincethedesignprocedureiscompletelylocal,we
canproducekirigamidesignswithtargetshapesthatin-
volvethousandsofunitcellsinamatterofminutesona
standardlaptop.

CONCLUSIONS

Insummary,wehaveintroducedasetofprinciplesto
rationallydesignandoptimizebistableplanarkirigami
metamaterials,startingfromawellknown,non-bistable
template.Importantly,theoptmizationtoolsincorpo-
rateareduced-orderelasticmodel,enablingon-demand
designguidanceforbistablekirigamiwitharichvariety
ofshapemorphingcapabilitiesandenergylandscapes–
itprovidesexperimentalistsaccesstonewdesignsina
matterofminutes.Optimizedbistabledesignsareexem-
plifiedthroughavarietyoffabricationstrategies,with
experimentalresultsthatlargelymatchtheshapechange
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of the theory and the trends in the target elastic proper-
ties. Open questions remain. The fine details of fabrica-
tion introduce features not present in the current design
framework, e.g., hinge elasticity, beam buckling or panel
bending. One challenge is to adapt the framework to ac-
count for these details, while still remaining an efficient
design tool. Another avenue concerns generality. The ba-
sic ingredients to our framework are geometric perturba-
tions of a unit cell and intercell compatibility constraints.
As these ingredients are found across metamaterial tem-
plates, design formulas that hard encode bistability, like
Eq. [1], are perhaps ripe for discovery in a wide range of
metamaterials.
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S1

SUPPORTINGINFORMATIONTEXTFOR“PROGRAMMINGBISTABILITYIN GEOMETRICALLY
PERTURBED MECHANICAL METAMATERIALS”

S1. THEORYFOR DESIGNINGBISTABLEPLANAR KIRIGAMI

FIG.S1.Perturbedrotating-squareskirigamianddesignrecipe(repetitionofpartsofFig.1fromthemainmanuscript).(A)
Unitcellinitsfirststablestate,indicatingthedesignvectors,and(B)periodicityconstraint.(C),(D)Secondstablestatesof
(A)and(B),respectively,obtainedbyrotatingeachpanelbyanangleφi.

S1.A. Designparametersandcompatibilityconditions

Fig.S1illustratesthe2Dvectorss1,...,v4,
R
1,...,

D
2 and2Drotations

R(φi)=
cosφi−sinφi
sinφi cosφi

, i=1,...,4, (S1)

parameterizingabistableplanarkirigamidesign,justasinthemaintext.Theseparametersaresubjecttoequality
andinequalityconstraintsforacompatibledesign,whichwenowenumeratebasedonvisualinspectionofthefigure.
Thes1,...,v4vectorsmustformclosedloopswhentheyareassociatedtotheboundariesofapaneloraslit.From
Fig.S1AandB,theeighttotalloopconditionsassociatedtothefourslitsandfourpanelsoftherepeatingcellare

s1+s2+s3+s4=0, t1+t2+t3+t4=0, u1+u2+u3+u4=0,v1+v2+v3+v4=0,

s1−t1−u1+v1=0,s2−t2−u2+v2=0,s3−t3−u3+v3=0, s4−t4−u4+v4=0.
(S2)

ThesecondstablestateisobtainedbyrotatingthepanelsaccordingtoFig.S1C.Theserotationtransformthe
s1,...,v4vectorstosi→R(φi)si,ti→R(φi)ti,ui→R(φi)ui,vi→R(φi)vi,i=1,...,4.Thesedeformedvectors
arealsosubjecttoloopcompatibilityconditions.FromFig.S1CandD,theslitloopconditionsforthesecondstable
stateare

R(φ1)s1+R(φ2)s2+R(φ3)s3+R(φ4)s4=0, R(φ1)t1+R(φ2)t2+R(φ3)t3+R(φ4)t4=0,

R(φ1)u1+R(φ2)u2+R(φ3)u3+R(φ4)u4=0,R(φ1)v1+R(φ2)v2+R(φ3)v3+R(φ4)v4=0.
(S3)

ThepanelloopconditionsforthisstatearetriviallyimpliedbytheircounterpartsinthesecondlineofinEq.[S2]
andarethusnotaconstraint.Periodicityimpliesitsownsetofequalityconstraintsontheseparameters. Wededuce
fromFig.S1AandBthatreferenceBravaislatticevectorssatisfy

R
1=u1+u2−v1−v2,

R
2=u1+u4−s1−s4. (S4)

Similarly,fromFig.S1CandD,wededucethat

D
1 =R(φ1)u1+R(φ2)u2−R(φ1)v1−R(φ2)v2,

D
2 =R(φ1)u1+R(φ4)u4−R(φ1)s1−R(φ4)s4. (S5)

Eqs.[S2-S5]completethedescriptionoftheequalityconstraintsgoverningacompatibledesignforbistablekirigami.
Wenowpursueaformulationofallinequalityconstraintsassociatedtosuchdesigns.Thebasicpointisthatwhen
fourvectorsclosealoop,theyneednotalwaysformaconvexquadrilateral. Whethertheydoornotdependson
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how the vectors are oriented in space relative to each other. Our designs require all the panels and slits to be convex
quadrilaterals, hence the need for additional constraints.

The inequality constraints again follow from visual inspection of Fig. S1 (by essentially taking a 2D version of the
cross products associated with the vectors around slits and panels). The convexity conditions for the four slits in the
first stable state are

R(π2 )s1 · s2 > 0, R(π2 )s2 · s3 > 0, R(π2 )s3 · s4 > 0, R(π2 )s4 · s1 > 0,

t1 ·R(π2 )t2 > 0, t2 ·R(π2 )t3 > 0, t3 ·R(π2 )t4 > 0, t4 ·R(π2 )t1 > 0,

u1 ·R(π2 )u2 > 0, u2 ·R(π2 )u3 > 0, u3 ·R(π2 )u4 > 0, u4 ·R(π2 )u1 > 0,

R(π2 )v1 · v2 > 0, R(π2 )v2 · v3 > 0, R(π2 )v3 · v4 > 0, R(π2 )v4 · v1 > 0.

(S6)

The convexity conditions for the four panels in the first stable state are

R(π2 )t1 · s1 > 0, R(π2 )v1 · t1 > 0, R(π2 )u1 · v1 > 0, R(π2 )s1 · u1 > 0,

R(π2 )u2 · s2 > 0, R(π2 )v2 · u2 > 0, R(π2 )t2 · v2 > 0, R(π2 )s2 · t2 > 0,

R(π2 )t3 · s3 > 0, R(π2 )v3 · t3 > 0, R(π2 )u3 · v3 > 0, R(π2 )s3 · u3 > 0,

R(π2 )u4 · s4 > 0, R(π2 )v4 · u4 > 0, R(π2 )t4 · v4 > 0, R(π2 )s4 · t4 > 0.

(S7)

The last set of convexity conditions are for the four slits in the second stable state. These conditions are given by
replacing the s1, . . . ,v4 vectors in Eq. [S6] with their deformed counterparts, i.e.,

R(π2 )R(φ1)s1 ·R(φ2)s2 > 0, R(π2 )R(φ2)s2 ·R(φ3)s3 > 0, R(π2 )R(φ3)s3 ·R(φ4)s4 > 0, R(π2 )R(φ4)s4 ·R(φ1)s1 > 0,

R(φ1)t1 ·R(π2 )R(φ2)t2 > 0, R(φ2)t2 ·R(π2 )R(φ3)t3 > 0, R(φ3)t3 ·R(π2 )R(φ4)t4 > 0, R(φ4)t4 ·R(π2 )R(φ1)t1 > 0,

R(φ1)u1 ·R(π2 )R(φ2)u2 > 0, R(φ2)u2 ·R(π2 )R(φ3)u3 > 0, R(φ3)u3 ·R(π2 )R(φ4)u4 > 0, R(φ4)u4 ·R(π2 )R(φ1)u1 > 0,

R(π2 )R(φ1)v1 ·R(φ2)v2 > 0, R(π2 )R(φ2)v2 ·R(φ3)v3 > 0, R(π2 )R(φ3)v3 ·R(φ4)v4 > 0, R(π2 )R(φ4)v4 ·R(φ1)v1 > 0.
(S8)

Similar to the loop conditions, the convexity conditions of the deformed panels are implied by the reference versions
in Eq. [S7]. While there are most certainly redundancies in the 48 inequalities in Eqs. [S6-S8], this issue is not so
important as to be worth refining the equations.

We now introduce a final set of inequalities to address an important technical issue associated to the designs,
namely that the second stable state should be distinct from the first. This condition is achieved by the four inequality
constraints

(det[R(φ1)−R(φ2)])2 > 0, (det[R(φ2)−R(φ3)])2 > 0, (det[R(φ3)−R(φ4)])2 > 0, (det[R(φ4)−R(φ1)])2 > 0,
(S9)

imposing that rotations of neighboring panels in Fig. S1C are distinct. At first glance, it might appear that we have
assumed too much by these inequalities. However, if two neighboring panels rotate the same, then the corresponding
sides of the central (s1, . . . , s4)-slit are simply reoriented. Using the law of cosines, it follows that the other two sides
of the convex slit must be reoriented in the exact same fashion since they cannot change their lengths. Thus, for a
compatible design, all the panel rotations of the second state are the same if any two adjacent panel rotations are the
same.

Eqs. [S6-S9] enumerate all the inequality constraints associated to a compatible design. Overall, they form a list of
52 nonlinear inequalities of the form

fineq

(
s, t,u,v, `,φ

)
> 0, (S10)

using the notation

s =

s1

s2

s3

s4

 , t =

t1

t2

t3

t4

 , u =

u1

u2

u3

u4

 , v =

v1

v2

v3

v4

 , ` =


`R1
`R2
`D1
`D2

 , φ = (φ1, φ2, φ3, φ4) (S11)

for organizational purposes. This list of inequalities, combined with Eqs. [S2-S5], furnish the necessary and sufficient
conditions for a cell-based quad kirigami metamaterial with at least two stable states of specified lattice vectors
`R1 , `

R
2 , `

D
1 , `

D
2 .
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S1.B. Solving the equality constraints

We now derive the key design formula parameterizing the equality constraints in Eqs. [S2-S5]. First eliminate
v1, . . . ,v4 via the parameterizations

v1 = −s1 + t1 + u1, v2 = −s2 + t2 + u2, v3 = −s3 + t3 + u3, v4 = −s4 + t4 + u4. (S12)

Next observe that the conditions v1 +v2 +v3 +v4 = 0 and R(φ1)v1 +R(φ2)v2 +R(φ3)v3 +R(φ4)v4 = 0 are implied
by the remaining unsolved loop conditions∑
i=1,...,4

si = 0,
∑

i=1,...,4

ti = 0,
∑

i=1,...,4

ui = 0,
∑

i=1,...,4

R(φi)si = 0
∑

i=1,...,4

R(φi)ti = 0
∑

i=1,...,4

R(φi)ui = 0.

(S13)
The first three of these conditions are solved by

s4 = −s1 − s2 − s3, t4 = −t1 − t2 − t3, u4 = −u1 − u2 − u3. (S14)

Substituting this parameterization into the final three loop conditions gives

∆14s1 + ∆24s2 + ∆34s3 = 0, ∆14t1 + ∆24t2 + ∆34t3 = 0, ∆14u1 + ∆24u2 + ∆34u3 = 0 (S15)

using the definitions ∆ij = R(φi)−R(φj). Eqs. [S12] and [S14] turn the Bravais lattices conditions in Eqs. [S4] and
[S5] into equations of the form

`R1 = s1 + s2 − t1 − t2, `R2 = s2 + s3 − u2 − u3,

`D1 = R(φ1)(s1 − t1) + R(φ2)(s2 − t2), `D2 = ∆14u1 −R(φ4)(u2 + u3)−∆14s1 + R(φ4)(s2 + s3).
(S16)

Solving Eqs. [S15] and [S16] completes the description.
Observe that there are 14 total constraints and 30 total DOFs in the 7 remaining 2D vector equations above.

We solve these constraints by prescribing t1, t2,u1,u2, s3, t3,u3 and leaving s1, s2, `
R
1 , `

R
2 , `

D
1 , `

D
2 , φ1, . . . φ4 as free

DOFs. Note that ∆12,∆23,∆34, and ∆41 are all invertible under the inequality constraints in Eq. [S9] necessary for
a compatible bistable design. Thus, Eq. [S15] is solved by prescribing

s3 = −∆−1
34

(
∆14s1 + ∆24s2

)
, t3 = −∆−1

34

(
∆14t1 + ∆24t2

)
, u3 = −∆−1

34

(
∆14u1 + ∆24u2

)
. (S17)

Direct substitution of Eq. [S17] into Eq. [S16] leads to the conditions

`R1 = s1 − t1 + s2 − t2,

`R2 = s2 −∆−1
34

(
∆14s1 + ∆24s2

)
− u2 + ∆−1

34

(
∆14u1 + ∆24u2

)
,

= ∆−1
34 ∆14(u1 − s1) + ∆−1

34 ∆23(u2 − s2),

`D1 = R(φ1)(s1 − t1) + R(φ2)(s2 − t2)

= R(φ1)`R1 −∆12(s2 − t2),

`D2 = ∆14u1 −R(φ4)(u2 −∆−1
34

(
∆14u1 + ∆24u2

)
)−∆14s1 + R(φ4)(s2 −∆−1

34

(
∆14s1 + ∆24s2

)
)

= R(φ3)∆−1
34 ∆14(u1 − s1) + R(φ4)∆−1

34 ∆23(u2 − s2)

= R(φ3)`R2 −∆23(u2 − s2)

(S18)

after standard algebraic manipulations. It follows that the last two equations in Eq. [S18] are solved by

t2 = s2 + ∆−1
12 `

D
1 −∆−1

12 R(φ1)`R1 , u2 = s2 −∆−1
23 `

D
2 + ∆−1

23 R(φ3)`R2 . (S19)

Plugging these formula back into the first two equations in Eq. [S18] and rearranging terms gives

t1 = s1 + s2 − `R1 −
(
s2 + ∆−1

12 `
D
1 −∆−1

12 R(φ1)`R1
)

= s1 + ∆−1
12 R(φ2)`R1 −∆−1

12 `
D
1 ,

u1 = s1 + ∆−1
14 ∆34`

R
2 + ∆−1

14 ∆23(s2 −
(
s2 −∆−1

23 `
D
2 + ∆−1

23 R(φ3)`R2
)
)

= s1 −∆−1
14 R(φ4)`R2 + ∆−1

14 `
D
2 .

(S20)
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The parameterizations in Eqs. [S12], [S14], [S17], [S19] and [S20] can now all be written in terms of the desired free
variables s1, s2, `

R
1 , `

R
2 , `

D
1 , `

D
2 , φ1, . . . φ4 through the system of equations



s3

s4

t1

t2

t3

t4

u1

u2

u3

u4

v1

v2

v3

v4



=



∆−1
34 ∆41 −I−∆−1

34 ∆23 0 0 0 0
−I−∆−1

34 ∆41 ∆−1
34 ∆23 0 0 0 0

I 0 ∆−1
12 R(φ2) 0 −∆−1

12 0
0 I −∆−1

12 R(φ1) 0 ∆−1
12 0

∆−1
34 ∆41 −I−∆−1

34 ∆23 −∆−1
34 R(φ4) 0 ∆−1

34 0
−I−∆−1

34 ∆41 ∆−1
34 ∆23 ∆−1

34 R(φ3) 0 −∆−1
34 0

I 0 0 ∆−1
41 R(φ4) 0 −∆−1

41

0 I 0 ∆−1
23 R(φ3) 0 −∆−1

23

∆−1
34 ∆41 −I−∆−1

34 ∆23 0 −∆−1
23 R(φ2) 0 ∆−1

23

−I−∆−1
34 ∆41 ∆−1

34 ∆23 0 −∆−1
41 R(φ1) 0 ∆−1

41

I 0 ∆−1
12 R(φ2) ∆−1

41 R(φ4) −∆−1
12 −∆−1

41

0 I −∆−1
12 R(φ1) ∆23R(φ3) ∆−1

12 −∆−1
23

∆−1
34 ∆41 −I−∆−1

34 ∆23 −∆−1
34 R(φ4) −∆−1

23 R(φ2) ∆−1
34 ∆−1

23

−I−∆−1
34 ∆41 ∆−1

34 ∆23 ∆−1
34 R(φ3) −∆−1

41 R(φ1) −∆−1
34 ∆−1

41




s1

s2

`R1
`R2
`D1
`D2

 . (S21)

Since each ∆ij = R(φi)−R(φj) depends only on the angles φi, φj , this equation is structurally of the form
s3

s4

t
u
v

 = D(φ)

s1

s2

`

 , (S22)

using the notation in Eq. [S11]. This result is the desired design formula, and is also reported in the main text.

S1.C. Parameterization of the inequality constraints

The parameterization of all inequality constraints in Eq. [S10] can now be simplified given the solution to the
equality constraints as

g0
ineq(s1, s2, `,φ) =

{
fineq(s, t,u,v, `,φ)

∣∣ s3, s4, t,u,v solve Eq. [S22]
}
> 0. (S23)

We optimize kirigami designs subject to these inequality constraints. In the optimization, we consider the Bravais
lattice vectors as a set of specified designer inputs by treating ` = ` as a fixed list. The version of the inequality
constraints introduced in the main text is then

gineq(s1, s2,φ) = g0
ineq(s1, s2, ¯̀,φ)− ε1 ≥ 0 (S24)

where ε1 is a 52 component array with every element taking a small value 0 < ε� 1. The purpose of this modification
is twofold: 1) From a purely numerical perspective, we need to replace the strict ”>” inequality in Eq. [S23] with
one that allows the boundary case ”≥” to formulate a standard constrained optimization problem. 2) A positive
ε also prevents the slits from closing and the panels from converging to a line on optimization; it thus serves as a
simple tuning parameter that can make optimized patterns more amenable to any limitations that might arise from
an experimental fabrication process.

S2. ELASTIC ENERGY AND OPTIMIZATION

S2.A. General setup

This paper tunes the designs of bistable kirigami patterns by optimizing objective functions of the form

min
{
fobj(s1, s2,φ)

∣∣ gineq(s1, s2,φ) ≥ 0
}
. (S25)

Our primary interest is in objective functions that can assess and optimize features of the stored elastic energy of
the kirigami. The challenge is that calculating an elastic energy based on high fidelity modeling, like FEM or even
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FIG.S2. Modelforthestoredelasticenergy. Cornerpointsarereplacedbyspringsandthepatternissubjecttoaperiodic
motioncomposedofrigidrotationsandtranslationsofthepanels.(A)Labelingofpointsxijandsidess1,...,v4priorto
deformation.(B)Themotiondistortseachcellaccordingtolatticevectors 1and 2,whichelongatesthespringsthrougheight
repeatedgijgapvectors.

bar-hingebasedmodeling,isnotefficientandthuscreatesahugebottleneckintheoptimizationprocess. Weinstead
developanelasticmodelthatcanbeimplementeddirectlyintoMatlabandevaluatedusingitsfastsolvers.

OurapproachisillustratedinFig.S2. Wemodelthecornerpointsofthekirigamipatternaslinearspringsofzero
restlengthandunitmodulusandsubjectthepatterntothefollowingsimplifiedfamilyof”elastic”distortions:First,
werigidlyrotateandtranslateeachpanelinanindividualunitcellthroughthe2DrotationsR(ηi)andcorresponding
2Dtranslationsci,i=1,...,4,aslabeled.Then,werepeatthesepanelmotionscellbycellalongasetofBravais
latticevectors1and 2toachieveabulkeffectivedeformationofthepattern.Asaconcreteillustrationconsistent
withthenotationinS2A-B,thefirstpanelinthecellhasitscornerpointsdeformedas

x21→R(η1)x21+c1, x41→R(η1)x41+c1,

x41+t1→R(η1)(x41+t1)+c1,x21−u1→R1(η1)(x21−u1)+c1;
(S26)

thefirstpanelintheadjacentcelltotherighthasitscornerpointsdeformedas

x21+
R
1→R(η1)x21+c1+ 1, x41+

R
1→R(η1)x41+c1+ 1,

x41+t1+
R
1→R(η1)(x41+t1)+c1+ 1,x21−u1+

R
1→R1(η1)(x21−u1)+c1+ 1;

(S27)

andsoon. Fig.S2Bsketchestheoutputafterallthepanelaredeformedbythisprocedure. Gapstypicallyform
betweenadjacentpanelsandarerepeatedperiodicallythroughoutthesample. Theyarequantifiedbyeightgap
vectorsgij,ij∈{12,23,34,14,21,32,43,41},thatsatisfy

gij=






(R(ηi)−R(ηj))xij+ci−cj ifij∈{21,32,34,41},

(R(ηi)−R(ηj))xij+ci−cj+ 1−R(ηi)
R
1 ifij∈{12,43},

(R(ηi)−R(ηj))xij+ci−cj+ 2−R(ηi)
R
2 ifij∈{23,14}.

(S28)
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The stored elastic energy per unit cell due to the assumed spring model is thus

spring energy per cell =
∑

ij∈{21,32,34,41}

|gij |2 + |gji|2

=
∑

ij∈{21,34}

|(R(ηi)−R(ηj))xij + ci − cj |2 + |(R(ηj)−R(ηi))xji + cj − ci + `1 −R(ηj)`
R
1 |2

+
∑

ij∈{32,41}

|(R(ηi)−R(ηj))xij + ci − cj |2 + |(R(ηj)−R(ηi))xji + cj − ci + `2 −R(ηj)`
R
2 |2

= E0
spr(η1, η2, η3, η4, c1, c2, c3, c4, `1, `2).

(S29)
In the remainder of this section, we minimize the excess DOFs above, after accounting for invariances, to develop a
stored elastic energy for the design that is a function of a single actuation angle.

S2.B. Minimizing out the translations and Bravais lattices

First we develop an analytical expression for the solution to the minimization problem

Espr(η1, η2, η3, η4) = min
c1,...,c4∈R2

`1,`2∈R2

E0
spr(η1, η2, η3, η4, c1, c2, c3, c4, `1, `2),

(S30)

leading to the result in Eq. [3] of the main text.
The energy above is quadratic in each variable being minimized. As a result, this minimization problem involves

only the linear algebra of finding a critical point. Observe that

∂E0
spr

∂c1
= 2
[∂g12

∂c1

]T
g12 + 2

[∂g21

∂c1

]T
g21 + 2

[∂g14

∂c1

]T
g14 + 2

[∂g41

∂c1

]T
g41 = 2

(
g12 − g21 + g14 − g41

)
,

∂E0
spr

∂c2
= 2
[∂g21

∂c2

]T
g21 + 2

[∂g12

∂c2

]T
g12 + 2

[∂g23

∂c2

]T
g23 + 2

[∂g32

∂c2

]T
g32 = 2

(
g21 − g12 + g23 − g32

)
,

∂E0
spr

∂c3
= 2
[∂g32

∂c3

]T
g32 + 2

[∂g23

∂c3

]T
g23 + 2

[∂g34

∂c3

]T
g34 + 2

[∂g43

∂c3

]T
g43 = 2

(
g32 − g23 + g34 − g43

)
,

∂E0
spr

∂c4
= 2
[∂g43

∂c4

]T
g43 + 2

[∂g34

∂c4

]T
g34 + 2

[∂g41

∂c4

]T
g41 + 2

[∂g14

∂c4

]T
g14 = 2

(
g43 − g34 + g41 − g14

)
,

∂E0
spr

∂`1
= 2
[∂g12

∂`1

]T
g12 + 2

[∂g43

∂`1

]T
g43 = 2

(
g12 + g43

)
,

∂E0
spr

∂`2
= 2
[∂g23

∂`2

]T
g23 + 2

[∂g14

∂`2

]T
g14 = 2

(
g23 + g14

)
.

(S31)

using the linear dependence of the gap vectors in Eq. [S28] on the variables being differentiated. The minimizers
in Eq. [S30] are given by any collection of vectors c1, . . . , c4, `1, `2 that makes these derivatives vanish. Following a
straightforward manipulation of the right side of Eq. [S31], these six derivatives vanish if and only if the gap vectors
satisfy the five vector equations

g43 = −g12, g23 = −g14, g32 = −g41, g34 = −g21, g12 − g21 + g14 − g41 = 0. (S32)

That there are only five equations to solve for these six derivatives is fully expected, since the elastic energy is invariant
under a translation of the pattern. In pursuit of a solution, observe that

g43 + g12 = ∆η
43x43 + ∆η

12x12 + c1 − c2 − c3 + c4 + 2`1 − (R(η1) + R(η4))`R1 ,

g34 + g21 = ∆η
34x34 + ∆η

21x21 − c1 + c2 + c3 − c4,

g23 + g14 = ∆η
23x23 + ∆η

14x14 + c1 + c2 − c3 − c4 + 2`2 − (R(η1) + R(η2))`R2 ,

g32 + g41 = ∆η
32x32 + ∆η

41x41 − c1 − c2 + c3 + c4,

g12 − g21 + g14 − g41 = ∆η
12(x12 + x21) + 2(c1 − c2) + `1 −R(η1)`R1 + ∆η

14(x14 + x41) + 2(c1 − c4) + `2 −R(η1)`R2
(S33)
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using ∆η
ij = R(ηi)−R(ηj) for short. Setting these equations to zero and rearranging terms gives

`1 =
1

2

(
∆η

12(x21 − x12) + ∆η
43(x34 − x43) +

(
R(η1) + R(η4)

)
`R1

)
,

`2 =
1

2

(
∆η

14(x41 − x14) + ∆η
23(x32 − x23) +

(
R(η1) + R(η2)

)
`R2

)
,

c4 − c1 =
1

8

(
∆η

14(5x41 + x14 − `R1 ) + ∆η
12(x12 + x21 − `R2 ) + ∆η

23(3x32 − x23)−∆η
43(x34 + x43)

)
,

c3 − c4 =
1

8

(
∆η

43(5x34 + x43) + ∆η
23(x32 + x23) + ∆η

12(3x21 − x12 + `R2 )−∆η
14(x41 + x14 − `R1 )

)
,

c2 − c1 =
1

8

(
∆η

12(5x21 + x12 − `R2 ) + ∆η
43(3x34 − x43) + ∆η

14(x41 + x14 − `R1 )−∆η
23(x32 + x23)

)
.

(S34)

Substituting this parameterization back into the gap vectors gives the minimizing vectors

g12 = −g43 =
1

8

(
∆η

12(3x12 − x21 + `R2 )−∆η
14(x41 + x14 + 3`R1 ) + ∆η

43(x34 − 3x43) + ∆η
23(x32 + x23)

)
=

1

8

(
2
∑

i=1,...,4

R(ηi)si −
∑

i=1,...,4

R(ηi)ti − 3
∑

i=1,...,4

R(ηi)ui + 4
∑

i=1,...,4

R(ηi)vi

)
,

g21 = −g34 =
1

8

(
∆η

12(−3x21 + x12 − `R2 ) + ∆η
43(3x34 − x43) + ∆η

14(x41 + x14 − `R1 )−∆η
23(x32 + x23)

)
=

1

8

(
− 4

∑
i=1,...,4

R(ηi)si + 3
∑

i=1,...,4

R(ηi)ti +
∑

i=1,...,4

R(ηi)ui − 2
∑

i=1,...,4

R(ηi)vi

)
,

g14 = −g23 =
1

8

(
∆η

14(3x14 − x41 + `R1 )−∆η
12(x12 + x21 + 3`R2 ) + ∆η

23(x32 − 3x23) + ∆η
43(x34 + x43)

)
=

1

8

(
3
∑

i=1,...,4

R(ηi)si − 2
∑

i=1,...,4

R(ηi)ti − 4
∑

i=1,...,4

R(ηi)ui +
∑

i=1,...,4

R(ηi)vi

)
,

g41 = −g32 =
1

8

(
∆η

14(−3x41 + x14 − `R1 ) + ∆η
12(x12 + x21 − `R2 ) + ∆η

23(3x32 − x23)−∆η
43(x34 + x43)

)
=

1

8

(
−

∑
i=1,...,4

R(ηi)si + 4
∑

i=1,...,4

R(ηi)ti + 2
∑

i=1,...,4

R(ηi)ui − 3
∑

i=1,...,4

R(ηi)vi

)
,

(S35)

where the second equality in each formula is the result of a careful manipulation using the correspondence between
design vectors s1, . . . ,v4 and points xij in Fig. S1A and Fig. S2A, as well as the loop conditions in Eq. [S2].

This derivation reveals an analytical expression for the minimization in Eq. [S30] of the form

Espr(η1, η2, η3, η4) =


∑
i=1,...,4 R(ηi)si∑
i=1,...,4 R(ηi)ti∑
i=1,...,4 R(ηi)ui∑
i=1,...,4 R(ηi)vi

 ·


15
16I − 3

4I − 3
4I 11

16I
− 3

4I 15
16I 11

16I − 3
4I

− 3
4I 11

16I 15
16I − 3

4I
11
16I − 3

4I − 3
4I 15

16I


︸ ︷︷ ︸

=G


∑
i=1,...,4 R(ηi)si∑
i=1,...,4 R(ηi)ti∑
i=1,...,4 R(ηi)ui∑
i=1,...,4 R(ηi)vi

 , (S36)

specifically, by combining the first line of the definition of E0
spr in Eq. [S29] with the gaps formulas in Eq. [S35].

Eq. [S36] is Eq. [3] in the main text. The matrix G ∈ R8×8 defined above is symmetric and positive definite.

S2.C. Actuation energy and the energy barrier between stable states

The elastic energy in Eq. [S36] is formulated in terms of four angle variables, corresponding to the four panel
rotations of each unit cell. We now formulate an elastic energy for the pattern’s motion between the two stable states
through a combination of invariances and further energy minimization. This energy is written in terms of a single
generalized displacement variable called the actuation angle.

Assume that Eq. [S21] holds for the design vectors s1, . . . ,v4 and angles φ1, . . . , φ4. The energy in Eq. [S36] has
the following properties

(invariance under rigid motion:) Espr(η1 + η, η2 + η, η3 + η, η4 + η) = Espr(η1, η2, η3, η4), η, η1, . . . , η4 ∈ R,
(first designed stable state:) Espr(0, 0, 0, 0) = 0,

(second designed stable state:) Espr(φ1, φ2, φ3, φ4) = 0.

(S37)
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Thus, one of the four angles is redundant on energy minimization since it describes an overall rotation of the pattern.
We therefore fix the first angle to set this overall rotation and define the actuation energy as

Eact(ξ) = min
η3,η4∈R

Espr(φ1, φ1 + ξ, η3, η4). (S38)

The actuation angle ξ is the relative rotation angle between the first and second panel of a unit cell, after minimizing
out all other DOFs under the assumed panel motions. It thus provides a quantitative measure for how the slits are
opening/closing during the actuation from one stable state to another. Mathematically, Eact(ξ) = 0 when ξ = 0 and
when ξ = φ2 − φ1, reflecting the two designed stable states. The interval between these angles furnishes the energy
barrier to actuation via

Eb =


max

ξ∈(0,φ2−φ1)
Eact(ξ) if φ2 − φ1 > 0

max
ξ∈(φ2−φ1,0)

Eact(ξ) if φ2 − φ1 < 0.
(S39)

After imposing the bistability constraint in Eq. [S21] and prescribing a shape change through ` = `, the energies
E0

spr, Espr, Eact and Eb depend on the design variables s1, s2 and φ, in addition to the kinematic variables noted in
their derivation. We can tune these variables, and thereby the bistable kirigami design, by optimizing an objective
function of the form

fobj(s1, s2,φ) = |Eb(s1, s2,φ)− Etarg
b |2 (S40)

for a specified target energy barrier Etarg
b . The main text presents a detailed example of such tuning.

S2.D. Optimizing for stiffness

Another natural quantity to tune, beyond the energy barrier between the two stable states, is the stiffness of these
states. For simplicity, we focus on the stiffness of the first stable state, as the other can be obtained by analogous
reasoning.

A typical stiffness measure is formulated with respect to some strain or stretch measure. In this exposition,
we consider the stiffness with respect to a simple characteristic stretch λ(ξ), defined as follows. First note that a
characteristic length of a kirigami cell in it first stable state is

|`R1 | = |u1 − v1 + u2 − v2| (S41)

per Eq. [S4]. Its counterpart in the second stable state is

|`D1 | = |u1 − v1 + R(φ2 − φ1)(u2 − v2)| (S42)

per Eq. [S5]. The ratio of these two quantities defines a stretch relating the stable states. Moreover, the actuation
angle ξ is zero in the first stable state and φ2 − φ1 in the second. Consequently, we take the characteristic stretch to
be

λ(ξ) =
|u1 − v1 + R(ξ)(u2 − v2)|
|u1 − v1 + u2 − v2|

(S43)

during the actuation from ξ = 0 to ξ = φ2 − φ1.
The stiffness with respect to this stretch is as follows. Set Êact(λ(ξ)) = Eact(ξ) and observe that

E′act(ξ) = Ê′act(λ(ξ))λ′(ξ), E′′act(ξ) = Ê′′act(λ(ξ))(λ′(ξ))2 + Ê′act(λ(ξ))λ′′(ξ). (S44)

As the first stable state corresponds to (ξ, λ(ξ)) = (0, 1) and is a minimizer of Eact(ξ), we conclude that the desired
stiffness is

k1 = Ê′′act(1) = (λ′(0))−2E′′act(0) (S45)

provided that λ′(0) is nonzero. To derive an explicit formula for k1, we first Taylor expand the spring energy in
Eq. [S36] about the first stable state to obtain the leading order quadratic form associated to the spring energy in a
neighborhood of this state. We then link these quadratic forms to the second derivatives of the actuation energy and
supply a formula for λ′(0) to complete the derivation.
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The loop conditions in Eqs. [S2] imply that, on Taylor expansion, the first stable state satisfies
∑
i=1,...,4 R(δηi)si∑
i=1,...,4 R(δηi)ti∑
i=1,...,4 R(δηi)ui∑
i=1,...,4 R(δηi)vi

 =

R(π2 )s1 R(π2 )s2 R(π2 )s3 R(π2 )s4

R(π2 )t1 R(π2 )t2 R(π2 )t3 R(π2 )t4

R(π2 )u1 R(π2 )u2 R(π2 )u3 R(π2 )u4

R(π2 )v1 R(π2 )v2 R(π2 )v3 R(π2 )v4


δη1

δη2

δη3

δη4


︸ ︷︷ ︸

=δη

+O(|δη|2).
(S46)

A Taylor expansion of the spring energy around this state gives that

Espr(δη1, . . . , δη4) =

δη1

δη2

δη3

δη4

 ·
s1 s2 s3 s4

t1 t2 t3 t4

u1 u2 u3 u4

v1 v2 v3 v4


T

G

s1 s2 s3 s4

t1 t2 t3 t4

u1 u2 u3 u4

v1 v2 v3 v4


︸ ︷︷ ︸

= 1
2K1

δη1

δη2

δη3

δη4

+O(|δη|3).
(S47)

As a result, the actuation energy near the first stable state is

Eact(δξ) = min
δη3,δη4∈R

Espr(0, δξ, δη3, δη4) = min
δη3,δη4∈R

1

2

 0
δξ
δη3

δη4

 ·K1

 0
δξ
δη3

δη4


+O(δξ3). (S48)

To organize the calculation, we introduce the scalar, vector, and matrix defined as

k0
1 = [K1]22, k0

1 =

[
[K1]23

[K1]24

]
=

[
[K1]32

[K1]43

]
, K0

1 =

[
[K1]33 [K1]34

[K1]34 [K1]44

]
, (S49)

where [K1]kl indicates the kl component of the K1 matrix. Minimizing out the last two variables in the quadratic
form leads to

Eact(δξ) = min
δη3,δη4∈R

1

2

 δξδη3

δη4

 · [k0
1 (k0

1)T

k0
1 K0

1

] δξδη3

δη4

+O(δξ3) =
1

2

(
k0

1 − k0
1 ·
(
K0

1

)−1
k0

1

)
δξ2 +O(δξ3). (S50)

Thus E′′act(0) = k0
1 − k0

1 ·
(
K0

1

)−1
k0

1, which in terms of the design vectors s1, . . . ,v4 is

E′′act(0) = 2

s2

...
v2

 ·G
s2

...
v2


︸ ︷︷ ︸

=k01

− 2

[
sT3 · · · vT3
sT4 · · · vT4

]
G

s2

...
v2


︸ ︷︷ ︸

=k0
1

·

2

[
sT3 · · · vT3
sT4 · · · vT4

]
G

s3 s4

...
...

v3 v4



−1

︸ ︷︷ ︸
=(K0

1)−1

2

[
sT3 · · · vT3
sT4 · · · vT4

]
G

s2

...
v2


︸ ︷︷ ︸

=k0
1

.

(S51)
To complete the derivation, we provide a formula for λ′(0) in terms of the design vectors. Observe that

λ(δξ) =
|u1 − v1 + u2 − v2 + δξR(π2 )(u2 − v2) +O(δξ2)|

|u1 − v1 + u2 − v2|
= 1 + δξ

(u1 − v1) ·R(π2 )(u2 − v2)

|u1 − v1 + u2 − v2|2
+O(δξ2) (S52)

on Taylor expansion, since |v + δv| = |v|+ |v|−1v · δv +O(|δv|2). So we conclude that

λ′(0) =
(u1 − v1) ·R(π2 )(u2 − v2)

|u1 − v1 + u2 − v2|2
. (S53)

The formulas in Eq. [S51] and Eq. [S53] furnish an explicit description of the stiffness k1 = (λ′(0))−2E′′act(0).
Since this stiffness is subject to the bistability constraint in Eq. [S21], it depends only on the tuning variables s1, s2

and φ after applying this constraint to the above formulas for a fixed shape change ` = `, i.e.,

k1 ≡ k1(s1, s2,φ). (S54)

In the main text, we present examples where we optimzie both for stiffness and a target energy barrier by considering
objective functions of the form

fobj(s1, s2,φ) = cb|Eb(s1, s2,φ)− Etarg
b |2 + c1|k1(s1, s2,φ)− ktarg

1 |2, (S55)

for a specified target stiffness ktarg
1 ≥ 0 in the first stable state and target energy barrier Etarg

b ≥ 0. The weights of
the parameters cb ≥ 0 and c1 ≥ 0 are carefully assigned to best achieve the multiple objectives.
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FIG.S3. Flowchartofnumericalaspectstotheoptimizationframework.

S2.E. Numericalimplementation

Thenumericalframeworkfortheconstrainedoptimizationproblememploysthefmincontoolboxtoperforma
sequentialquadraticprogramming(SQP)algorithminMatlab(R2023a).Aflowchartoftheprocedureisillustrated
inFigS3.Toenabletheoptimization,weprescribetheBravaislatticevectors fortwostablestatesandconstrain
thedesignvectorss3,...,vaccordingtoEq.(S22). Theeightremainingvariables —thedesignvectorss1ands2
andfourrotationanglesinthearrayφ—arethenoptimizedbasedonanassignedobjectivefunction fobj(s1,s2,φ)
(forinstanceEq.(S55))andtheinequalityconstraintsgineq(s1,s2,φ)inEq.(S24). Beginningwithaninitialguess
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x0=(s
0
1,s
0
2,φ

0),thesevariablesundergoiterativeupdatexi=(s
i
1,s
i
2,φ

i)usingtheSQPalgorithmuntilalocal
minimumoftheenergyisachieved.Thisproceduretransformsthekirigamigeometryfromitsinitialguessx0toan
optimaldesignxopt=(s

opt
1 ,s

opt
2 ,φ

opt)thataccomplishesthetargetpropertiesandmeetsthenonlinearconstraints.

Giventhenon-convexnatureoftheobjectivefunctionsandconstrainedsets,theoptimizedgeometryobtainedby
eachsimulationisdependentuponthechoiceofthestartingpointx0.AsillustratedbywayofanexampleinFig.4A
(maintext),differentinitialguessesforthedesigncanyielddifferentoptimizeddesignsthatachievethespecified
overalldeformationandtargetenergybarrier. Also,insomeofthecasesofextremeshapechangeinFig.4A-B
(maintext),wearenotabletoachievethetargetenergybarrier,sowetestseveralinitialguessestoensurethatthe
deviationfromthetargetisrobust. Wehavealsoexploredotherobjectivefunctionsconsistentwithminimizingthe
sameobjective,e.g.,byreplacing|·|2termswith|·|terms,andfoundthatsuchmodificationscansometimeslead
toimprovementsinthealgorithmsabilitytofinddesignsthatgetclosertotheoverallobjective. Toavoidadhoc
procedures,weonlypresentresultsforcaseswheretheobjectivefunctionanditsfittingparametersareconsistent
acrossalloptimizeddesignsbeingcompared.

S2.F. Supportinginformationonthedesignexploration

Themaintextexploresthedesignspaceofbistablekirigamibyfeaturingawiderangepatternsthatexhibitaxial
andshearingshapechanges. Oneofthemoreintriguingfindingsisthatextremebistabledesignsseemtolimitto
mechanism-baseddesignswithparallelogramslits,eventhoughweoptimizeforafiniteenergybarrier.Herewelend
furtherevidencetothisfinding.

Focusingontheaxialsetting(parameterizedbytheaxialstretchesλ1andλ2fromthemaintext),wefixλ2and
progressivelyincreasethevalueofλ1togenerateoptimizedpatternsuntilthealgorithmisunabletofindadesign
thatmeetsthegivenconstraints.FigS4A-Cpresentsdesignsobtainedinthissettingbyoptimizingtheenergybarrier
usingcb=1,c1=0andE

targ
b =0.003. Thecoloringschemereflectstheenergybarrierofthedesignachievedon

optimization. Weseethat,onincreasingλ1fromitslargestvalueinmaintext(λ1=1.3)toitsapproximatemaximum
atafixedλ2,amechanism-baseddesignwithparallelogramslitsemerges.Thisobservationaddsfurthercredenceto
thesuggestionthatthereisperhapsanon-trivialuniversalrelationshipbetweenbistabledesignsandmechanism-based
ones.Informally,ourbasicconjectureisthattheboundaryofthesetofallbistableplanarkirigamidesignsisaset
ofmechanism-baseddesigns.

FIG.S4.Pushingourdesignexplorationtothelimit. Designsobtainedbyincreasingλ1,keepingλ2constantandequalto:
(A)λ2=0.9,(B)λ2=1.0,(C)λ2=1.1.
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S3. HETEROGENEOUS SHAPE CHANGE

S3.A. The design procedure

This section develops a numerical method to obtain bistable planar kirigami designs with specified heterogeneous
shape change. We use the example of a ”square-to-bowtie” transformation in Fig. S5 to illustrate the method. We
also present the details in four distinct steps.

• Step 1: Creating a quad mesh for the two stable states. The initial step entails creating a one-to-one,
regular quad mesh mapping from the reference state to the deformed state in 2D. The left part of Fig. S5A
shows an example of this type of meshing for the square-to-bowtie transformation. Such meshes can be achieved
for a wide variety of target shapes. For a suitable meshing of the two states, we label the mesh points in the
first state as x̃(i, j) such that neighboring (i, j) pairs correspond to neighboring x̃(i, j) points. We also assume
that the mesh points of the second state, labeled ỹ(i, j), can be described by a sufficiently smooth mapping of
the x̃(i, j) points, i.e., that ỹ(i, j) = ϕ(x̃(i, j)) for all (i, j) for some sufficiently smooth 2D vector field ϕ(x).
These assumptions simply formalize what is more-or-less the intuitive way to relate the two meshes bijectively.
We then define the lattice vectors as

`R1 (i, j) = x̃(i+ 1, j)− x̃(i, j), `R2 (i, j) = x̃(i, j + 1)− x̃(i, j),

`D1 (i, j) = ỹ(i+ 1, j)− x̃(i, j), `D2 (i, j) = ỹ(i, j + 1)− x̃(i, j).
(S56)

Fig S5A-D highlight various aspects of the labeling of these meshes.

• Step 2: Initializing the design. The second step involves seeding the kirigami design starting from an initial
cell. In the example in Fig. S5A, we seed the first cell from the lower left corner quad with the Bravais lattice

vectors `Ri = `Ri (0, 0) and `Di = `Di (0, 0), i = 1, 2. To do so, we solve the minimization problem in Eq. [S25],
wherein we typically use the objective function fobj(s1, s2,φ) = −|Eb(s1, s2,φ)|2 with the goal of producing an
optimized cell design with a high energy barrier between the two states. (The objective function can be defined
differently if needed, to help facilitate the design of a particular set of target shapes.) Once the optimization
is solved, we use the optimized variables s1(0, 0), s2(0, 0), φ(0, 0) to construct the two stable states of the
cell as follows: Let s3(0, 0), . . . ,v4(0, 0) denote the design vectors obtained from the compatibility conditions in
Eq. [S21] for the now given s1(0, 0), s2(0, 0), φ(0, 0), `R1,2(0, 0) and `D1,2(0, 0). A direct comparison of the notation
of a single cell in Fig. S1 and that of Fig. S5 furnishes a parameterization of the four corner points of the lower
left panel in the cell as

in the first state:{
x̃(0, 0), x̃(0, 0) + v1(0, 0), x̃(0, 0) + u1(0, 0), x̃(0, 0) + u1(0, 0)− s1(0, 0)

}
,

in the second state:{
ỹ(0, 0), ỹ(0, 0) + R(φ1(0, 0))v1(0, 0), ỹ(0, 0) + R(φ1(0, 0))u1(0, 0), ỹ(0, 0) + R(φ1(0, 0))[u1(0, 0)− s1(0, 0)]

}
.

(S57)

The other three panels of the cell are prescribed in an analogous fashion. The two stable states of the kirigami
cell are emphasized in Fig. S5A.

• Step 3: Marching to obtain the overall design. The next step involves generating a complete preliminary
pattern of the two target shapes by marching from cell-to-cell and solving a local optimization problem for each
unit cell. In this procedure, we choose to minimize the difference in design variables between neighboring cells by

introducing an objective function fobj(s1, s2,φ) =
∣∣(s1, s2,φ) − (sprev

1 , sprev
2 ,φprev)

∣∣2, where (sprev
1 , sprev

2 ,φprev)
is the optimized result computed from a neighboring cell in the previous iteration. The goal is to produce cell
designs whose parameters vary slowly from cell to cell. In the square-to-bowtie example in Fig. S5B, we march

along the rows as indicated. At a given (i, j) cell in the interior of the domain, we input the lattice vectors as `Rk =

`Rk (i, j) and `Dk = `Dk (i, j), k = 1, 2, and set (sprev
1 , sprev

2 ,φprev) = (s1(i−1, j), s2(i−1, j),φ(i−1, j)). (For a cell
in the left most column, the input for (sprev

1 , sprev
2 ,φprev) is the (i, j−1) cell parameters.) The optimization then

furnishes s1(i, j), s2(i, j),φ(i, j), while Eq. [S25] furnishes the remaining design variables s3(i, j), . . . ,v4(i, j).
We construct the two stable states of the cell exactly as we did for the intialized one. Specifically, we take the
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FIG.S5. Marchingalgorithmforbistablekirigamiwithtargetshapechange.(A-B)Startingwithbijectivepairofquad
meshes,kirigamicellsarefillediniterativelyusingthecelllevelpointsandlatticevectorsin(C-D)anddesignvariablesfrom
thepreviouslycomputedcell.(E)Intercellincompatibiltiesduringthemarchingprocessleadtogapsoroverlapsbetweencells.
(F)Thefinaldesignisobtainedbyaveragingouttheincompatibilites.
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four corner points of the lower left panel in this cell as

in the first state:{
x̃(i, j), x̃(i, j) + v1(i, j), x̃(i, j) + u1(i, j), x̃(i, j) + u1(i, j)− s1(i, j)

}
,

in the stable state:{
ỹ(i, j), ỹ(i, j) + R(φ1(i, j))v1(i, j), ỹ(i, j) + R(φ1(i, j))u1(i, j), ỹ(i, j) + R(φ1(i, j))[u1(i, j)− s1(i, j)]

}
,

(S58)

and so-on for the other three panels. Iterating over the entirety of the quad meshes produces the two preliminary
patterns that achieve the target shapes.

• Step 4: Averaging gaps by gluing together. Although we have identified overall patterns with the desired
shapes, the procedure is completely local and cell-based. As a result, the panels within each cell are perfectly
compatible, but there are intercell incompatibilities in the form of gaps or overlaps between neighboring unit
cells. Fig. S5E shows examples of these incompatibilites for the square-to-bowtie transformation. The final
step of the procedure is to average the intercell incompatibilities to produce the two planar kirigami states
that approximate the target shape with a fully connected set of panels and slits. Fig. S5F shows the two state
obtained after averaging for the square-to-bowtie transformation.

Let’s assume that the first state is the manufactured one and thus stress free. Averaging the intercell incom-
patibilities in the last step leads to panels in the second state that are not necessarily rigid deformations of their
counterparts in the first, and thus incur panel strain not present in the periodic setting of bistable designs. Even so,
certain heuristics suggest that these patterns should still be bistable in the typical case. Specifically, our meshing
and optimization is designed to produce variables `R1,2(i, j), `D1,2(i, j), s1(i, j), s2(i, j), and φ(i, j) that vary slowly from
cell to cell. Our previous work homogenizing mechanism-based planar kirigami [53] shows that slow variations very
similar to the type in this procedure lead quantitatively to average panel strains that scale as O(l/L), where L is the
characteristic length of the total domain and l is that of a single unit cell. Thus, for fine meshes with many slowly
varying quad cells, we expect the strain in the second designed state to be very small (albeit not zero). This suggests
that the second state, or something very nearby to it, should be stable.

It is also possible to numerically investigate whether or not the patterns obtained by this procedure are geometrically
bistable through bar-hinge modeling. By way of illustration, we have performed such an investigation for the square-
to-bowtie transformation in Fig. S5 and verified its bistabiltiy. As anticipated, the second stable state takes a bowtie
shape and is slightly internally stressed (see the main text for a more detailed discussion). The bar-hinge model used
for the verification is an ”in-house” Matlab code formulated in Section S7.

S3.B. Robustness to marching strategy

This section discusses the robustness of examples of heterogeneous shape change to the choice of marching strategy.
One strategy entails starting from lower-left unit cell and marching in a zig-zag fashion as depicted in Fig. S6-A.
Another involves initializing the algorithm from the central cell and marching by spiraling out as shown in Fig. S6-B.
In the case of the square-to-bowtie transformation, we have investigated both ways of marching, keeping all other
details of the procedure fixed. The right part of Fig. S6 shows the examples that emerge from these two ways marching.
The design variables do change slightly from cell-to-cell, as indicated by the table below. However, the overall designs
are qualitatively quite similar to each other. This result suggests that the marching algorithm is robust to small
changes in the way the algorithm is initialized. In other words, the design space for heterogeneous shape change
seems to be highly constrained rather than highly degenerate.

Design variables max
{i,j}

|xA(i,j)−xB(i,j)|
|xA(i,j)|

x = [s1, s2,φ] 1.057%

S3.C. Supporting information on examples

This section provides additional details about two complex heterogeneous examples of shape change, namely, the
”beating heart” pattern and the square-to-disc pattern from the main text.
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FIG.S6. Twomarchingalgorithmproceduresandthecorrespondingheterogeneousconfigurationresults(Letters’S’inred
and’E’inbluedenotethestartingandendingcell).(A)Fromthelower-leftcornertotheupper-right(algorithmshowninthe
previoussection).(B)Spiralmarchingfromthecentertowardstheright-bottomcorner.

•Beatingheartpattern.Tosimulatetheexpansionoftheheart,wefirstdrawouttheboundaryoftheheart
designviathe2Dimplicitfunction(x2+y2−1)3−x2y3=0. Wethenmeshthisdomainviathe‘Spline’
optioninthemeshingsoftwareGmsh(version4.11.1),selectinginthe‘Tools’optionthe‘Quasi-Structured
Quad(experiment)’2Dalgorithmsinceitexclusivelymeshestheshapeusingquadrilateralelements.Bytuning
the‘Elementsizefactor’and‘Subdivisionalgorithm’intheoptions,wecangeneratemesheswithdifferentlevels
ofrefinementandnumberofelements.Insomecases,themeshesobtainedmaynotbesuitableforthemarching
algorithmtocreateanoptimaldesignbecausetheyarenotwell-arrangedforfurtheriterativeoptimization.
Hence,wegenerateafeasiblemeshbyutilizingthe‘Refinebysplitting’methodinGmsh.Applyingthisapproach
ensuresthatthequadrilateralmeshesarewell-organizedinrowsandcolumns,thusprovidingeachunitcellwith
specificneighboringcellsthatfacilitatetheimplementationofourmarchingalgorithm.Fig.S7(top)displaysa
feasiblemeshgeneratedinthisfashion,whileFig.S7(middle)illustratesthemeshusedforthefirststablestate
oftheheartinthemaintext.Thelattermeshismodifiedfromtheauto-generatedformeronetoexcludethe
outerlayer,asthislayerhassignificantvariationsintheneighboringlatticevectorsandproveddifficultforour
marchingalgorithmtohandle.Thesecondstablestateisobtainedbydilatingthemodifiedmeshbyafactorof
1.25,asshowninFig.S7(bottom).Havinggeneratedthequadmeshforthetwostablestates,weproceedwith
thesameprocedureasthesquare-to-bowtietransformation,therebyobtainingthewholedesignforthebeating
heartpresentedinthemaintext.

•Square-to-discpattern. TheEllipticalgridmapping(x,y)→ (x 1−y2/2,y 1−x2/2)isonetypeof
transformationthatcansquarethedisc. Weusethismappingtogenerateaone-to-onequadmeshbetweenthe
twostatesandthecorrespondinglatticevectorsnecessaryforthemarchingalgorithm.Specifically,wecreatethe
desiredmeshforthesquarereferenceusinga40×40setofsquareunitcellsuniformlydistributedon(−1,1)2.
Wethenapplytheellipticalgridmappingtothismeshtoobtainthesecondstablestateofquadcells.Fig.S7-B
presentstheone-to-onequadmeshmappingbetweenthefirstandsecondstablestates. Theelementsinthe
centerexperiencetheleastdistortion,whereasthequadsnearthefourcornersofthesquarecollapsethemost,
resultingintheformationoffourcirculararcsinthedeformedplane. Themappingsmoothlydistributesthe
meshdistortionsfromtheinteriortotheexteriorlayers. Thelatticevectorsarerepresentedbytheadjacent
sidesineachquadrilateral.Thefullkirigamidesignisgeneratedfromtheselatticevectorsusingthemarching
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FIG.S7.Heterogeneousquadmappingfortwoexamplespresentedinthemaintext.(A)Fromtoptobottom,originalmesh
grid,tailoredmeshgridofthefirststablestateandofthesecondstablestateofthe”beatingheart”pattern.(B)Meshgrids
ofthetwostablestatesofthe”squaretodisc”pattern.

algorithminapproximately50secondsonastandardlaptop.

S4. FABRICATION

Inthissection,weprovideadditionaldetailsonthedesignandfabricationofalltypesofspecimensusedinthiswork,
fromthemonolithicandbi-materialones,designedforin-planemorphing,totheout-of-planemorphingmono-material
ones.

S4.A. Monolithickirigami

Planarkirigamifoundintheliteraturearetypicallymonolithic,andfeaturepanelsconnectedviaelastichinges.
Acommonwaytofabricatesuch metamaterialsisbylasercuttingrubber. Whilethisstrategyworkswellfor
metamaterialsfeaturinglowenergymodesofdeformation,itdoesnotworkwellforbistablemetamaterials;infact,
thereisalimittohowthickofarubbersheetonecanlasercut,andthinsheetscanleadtolowout-of-planestiffness
and,potentially,tolossofbistability.Thus,weadoptastrategypreviouslyemployedby WuandPasini[58],where
thickmonolithicmetamaterialsare3Dprintedoutofthermoplasticpolyurethane(TPU).Inparticular,weusea
TPU-95AfilamentonanUltimaker2+printer,sincethisisthesoftestmaterialoftheUltimakermaterialpalette.
Thestepswefollowtodesignandfabricatethesespecimensarereportedbelow. Welet R

1 =|
R
1|and

R
2 =|

R
2|

characterizethelengthsofthephysicalspecimens.

•Step1: Weimportthecoordinatesoftheverticesofeachpanelofaunitcell(Fig.S8A)inMatlab,andscaleit
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FIG.S8.Designworkflowformonolithicspecimens.(A)Unitcellfromthetheoreticaldesignprocess,withitslatticevectors.
(B)Superpositionofthetheoreticalunitcellwithamodifiedunitcell,whereweintroduceagapateachcorner,asshownin
thedetail.(C)Assemblyoffourcellsastocreatetheoutlineofoneofourspecimens.(D)CADdrawingofthespecimentobe
printed.

tothedesireddimensions(R1=
R
2=7cmforallspecimens).Inordertointroduceelasticconnectorsbetween

panels,weduplicateeachcornernodeofeachpanel,andseteachcoupleofnodesapartbyadesireddistance
(Fig.S8B).Inalloursamples,wesetthisdistancetoR1/100. Wethenexportthegeometryoutlineoffourunit
cells(Fig.S8C).

•Step2: WeimportthegeometryoutlineinAutoCADandextrudethepattern,settinganout-of-planethickness
of1cm(Fig.S8D).ThewholestructureisexportedasaSTLfile.

•Step3: WeimportthefileintoUltiMakerCura. Weprintusinga0.4mmnozzleandsetupthefollowing
printingparameters:i)alayerheightof0.1mm;ii)awallthicknessof0.8mm;iii)atopandbottomthickness
of1.2 mm;iv)100%infilldensity;v)a“lines”infillpattern;andvi)Ultimaker-presetvaluesforprinting
temperature,buildplatetemperature,andprintspeed.Onceprinted,thespecimensarereadytobetestedand
donotrequireadditionalpost-processing.

S4.B. Bi-materialkirigami

Toavoiddealingwithhingeenergy,whichcanpreventpatternsfromexhibitingbistability,weresorttoadesign
forkirigamiwherepanelsareconnectedviaactualpinjoints.Totryandcreatespecimensthatdeforminplane,we
considerrelatively-thickspecimenswhereeachpanelisskeletalinnature,i.e.,wereplaceeachpanelbyanassembly
ofeightbarsandfivehinges.Tomakesurethatdeformationsarenotlocalizedatthehingesandtoavoidexcessive
dissipationcausedbypinsrotatingagainstsoftmaterials,wefabricatehingeregionsoutofstiffNylonandbarsout
ofsofterTPU-95A.Eachpanelisfabricatedinasingleshot,leveragingthedual-extrusionnatureofourUltimaker3
printer.Thestepswefollowtodesignandfabricatethesebi-materialspecimensarereportedbelow.

•Step1: Weimportthecoordinatesoftheverticesofeachpanelofaunitcell(Fig.S8A)inMatlab,anddraw
theoutlineofaskeletalversionofeachpanel,whichfeatureshingeregions(outerradius=5mm,innerradius
=1.5mm)ateachvertexlocationandatthecenterofthepanel,andbars(width=2.4mm)connectingthese
hinges(Fig.S9A).Atthisstage,wedonotyetworryaboutthefactthatouralgorithmsdonotproducea
continuousoutlineofeachpanel.

•Step2: WemanipulatethesefilesinInkscapetoremovesomeoverlappingpathsandcreateanactualpanel
outline(Fig.S9B),andscalethegeometrytothedesiredexperimentalsize(R1=

R
2=10cm).

•Step3:InAutoCAD,weusethepresspullcommand,startingfromthepaneloutlines,toextrudethebars
andhingestoaheightof6.35mmwhilemaintainingheightclearanceatthehingeswhereeachpanelconnects
withanotherpanel(Fig.S9C). Wealsoextruderectangularsectionsonthesidesofthehingesandcreate
subsequentcutoutsattheendsofthebarstoaccommodatefortheprotrusion,asillustratedintheexploded
viewofFig.S9D;thisisdonetoimprovebondingbetweenthetwomaterialphases.Oncethe3Dmodelisready,
weexporthingesandbarsasseparateSTLfiles.
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FIG.S9. Designworkflowforbi-materialspecimens.(A)Outlineofatheoretically-designedpanel(grayquadrilateral)and
Matlab-generated“rough”outlineoftheskeletalversionofthesamepanel(blueandredlines);notethepresenceofunwanted
redlinesatthebottom-righthinge.(B)ActualpaneloutlineaftercleanupinInkscape.(C)Bi-materialpanelfeaturingnylon
hingesandTPUbars,ascreatedinAutoCAD.Notethattheheightofthehingesishalfofthebars’height,sothatthestructure
hasaconstantthicknesswhenassembled.(D)Explodedviewofthepanel,showinghowthehingesprotrudeintothebarsto
improveadhesion.(E)Assemblyofaunitcellfromfourpanelswithpinsandcaps.

•Step4: WeimportthesefilesintoUltiMakerCura,wherethehingesandbarsareautomaticallymatchedup,
andsetthefollowingprintingparameters:i)alayerheightof0.15mm,thesmallestrecommendedvaluefor
TPU;ii)awallthicknessof0.4mm;iii)zerothicknessfortopandbottomlayers,sincedelaminationbetween
thesetoplayersandtheinfilllayersoccurswhentheselayershaveanon-zerovalue;iv)100%infilldensity;v)
a“zigzag”infillpattern,foritsabilitytofillthemostinbetweentheoutlineofthewallsofthebars;andvi)
Ultimaker-presetvaluesforprintingtemperature,buildplatetemperature,aswellasprintspeed.

•Step5:Onceallthepanelsare3Dprinted,weclearthemofanyfilamentresidueandassemblefourofthem
intooneunitcellusingmetalliccaptivepins(McMaster-Carrpartnumber:95648A350)andcaps3Dprintedout
ofPLA(Fig.S9E). Whenallfourunitcellsareassembled,weconnectthemtogethertoforma2x2structure.

S4.C. Mono-materialkirigami

Ourfinalphysicalincarnationofthetheoretically-designedbistablepatternsfeaturesthinmono-materialpanels
lasercutoutofPETGandassembledwithpush-inrivets. WechoosePETGsinceitprovidestherightamountof
compliancewithrespecttomoreclassicallasercuttablepolymerslikeacrylic;thethicknessischosentobesmallto
avoidhighstressesthatcouldleadtobreakingofthepanelsneartherelatively-weakhingeregions.Thesespecimens
aredesignedtobendoutofplaneastheytransitionbetweenstablestates,andthestepswefollowtodesignand
fabricatethemarereportedbelow.

•Step1:SameasStep1forthebi-materialspecimensbut,inthiscase,theMatlabscriptgeneratesready-to-cut
paneloutlines(Fig.S10A).

•Step2:InInkscape,wereplacetheinnercirclesofallhinges–astepthatisnecessarysincethecirclescreated
inMatlabarenotactualcircularpathsbutassembliesofshortstraightlines.

•Step3: Weusethesedrawingstolasercuttheindividualpanels(Fig.S10B)outofa1.3mm-thickPETGsheet
(McMaster-Carrpartnumber:9513K92). Wesetour80Wlasercutter(EpilogFusionPro30)to30%power,
10%speedand100%frequency.

•Step4: Whenallthepanelsofaunitcellarelasercutandready,weassemblethemusingpush-inrivets
(Fig.S10C,McMaster-Carrpartnumber:90136A630)asillustratedinFig.S10D.Keytothisassemblyprocess
ismakingsurethatcellsareassembledontwo-layersonly. Onceallfourunitcellsareassembled,weconnect
themtogetherusingthepush-inrivetstoforma2x2structureasshowninFig.S10E.
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FIG.S10.Designworkflowformono-materialspecimens.(A)Outlineofatheoretically-designedpanelandMatlab-generated
outlineofthepin-jointedversionofthesamepanel.Illustrationof(B)oneofthepanelsand(C)oneofthepush-inrivets.(D)
Howfourpanelsareassembledinaunitcellviarivets;notethatpanelsarearrangedontwolayersonly.(E)Assembled2x2
structure.

S5. EXPERIMENTALSETUPANDPROCEDURES

Allofourquantitativeexperiments(usedtoobtainforce-displacementcurvesanddemonstratebistability)are
carriedoutusinganInstron68FM-100UniversalTestingSystem(UTS)equippedwitha10kNloadcellandby
actuatingthespecimensintension,viacustomfixtures,atarateof1mm/s.Inthissection,weprovidedetailsonthe
customfixtures,whichhavedistinctfeaturesdependingonthephysicalincarnationofkirigamistructurestheyare
usedfor.Inallcases,wechoosetoapplyboundaryconditionsandloadingathingelocations;specifically,wealways
anchorthespecimenattheleftmosthinge(connectingthetop-leftandbottom-leftunitcells),andalwayspullonthe
specimenfromtherightmosthinge(connectingthetop-rightandbottom-rightunitcells).

S5.A. Monolithickirigami

Theexperimentalsetupforthe monolithicstructureisconstructedbyassemblingthecomponentsshownin
Fig.S11A,B.(1):3Dprinted2x2structure;(2):50 mmlong metallicdowelbar(McMaster-Carrpartnumber:
91595A353);(3):smallpiecesofrubbertube(McMaster-Carrpartnumber:9776T26)(4):anchoringandactuation
fixturesbuiltfrom3mmthickacryliclasercutpieces;(5):1.5mmthickrubberpads. Lasercutpiecesareused

FIG.S11.Experimentalsetupformonolithickirigami.(A)Explodedviewofthespecimenandofthepartsthatmakeupthe
fixtures.Specificpartsinclude:(1)specimen;(2)metaldowelbars;(3)rubberstopperstokeepthebarsandspecimeninplace;
(4)laser-cutacrylicpartsthatmakeupthefixturestoholdthedowelbarsandconnectthemtotheUTS;and(5)natural
rubberpads.(B)Experimentalsetupafterthefixturesareassembled.(C)Photoofthespecimenandfixtures,mountedon
theUTS,withdetailofhowthehingeislooselygrippedbytwofree-to-translatedowelbars.

toconstructC-shapedfixtures,whichareconnectedtothespecimenviadowelbars. Rubberstoppersareusedto
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keep the dowel bars in place while allowing them to rotate freely. The fixtures are connected to the UTS grippers via
rubber pads, to improve contact and avoid slippage.

Since our specimens feature elastic hinges, fixtures are designed to loosely grip these hinges, while trying not
to obstruct the natural deformation of each pattern. For this reason, we design a gripper such that the hinge is
sandwiched between two dowel bars. The metallic bars’ motion is guided by slots located on the T-shaped laser cut
pieces, as shown in the detail of Fig. S11C, which determine their minimum and maximum relative distance; this detail
is necessary since the shape of the hinge region, and the fact that this shape changes drastically during deformation,
makes it challenging to design fixed grippers that don’t obstruct the natural deformation of the patters. As an
unwanted consequence, our grippers provide complex boundary conditions that are difficult to simulate, as discussed
Section S7. Additionally, since these rods will move differently for all specimens due to large shape differences near
the hinge regions, they will effectively provide different boundary conditions for each specimen. Thus, the comparison
between energies computed from experiments on different samples should be taken with a grain of salt.

S5.B. Bi-material kirigami

The experimental setup for the bi-material specimens is simpler than the previous one. In fact, specimens with
pin-jointed panels can be actuated by inserting actuating rods in place of selected pins. This specific setup is built by
assembling the components shown in Fig. S12A,B. (1): assembled and pinned 2x2 structure; (2): 30 mm- and 50 mm-
long, 2 mm-diameter metallic dowel bars (McMaster-Carr part number: 91595A043 and 91595A353); (3): acrylic
confining plates (292.5 mm x 292.5 mm) and other acrylic parts for anchoring; (4): actuation fixture built from
various 3 mm thick acrylic laser cut pieces; (5): 1.5 mm thick rubber pads. Laser cut pieces are used to construct

FIG. S12. Experimental setup for bi-material kirigami. (A) Exploded view of the specimen and of the parts that make up the
fixtures. Specific parts include: (1) specimen; (2) metal dowel bars; (3) laser-cut acrylic parts and confining plates to anchor
the specimen to the bottom gripper of the UTS, and to prevent out-of-plane deformation; (4) laser-cut acrylic parts that make
up the actuation fixture, then connected to the top gripper of the UTS; and (5) natural rubber pads. (B) Experimental setup
after the fixtures are assembled. (C) Photo of the specimen and fixtures, mounted on the UTS.

a C-shaped actuation fixture, connected to the specimen via a dowel bar and secured by rubber stoppers, and an
anchoring fixture which also prevents out-of-plane displacements. The anchoring fixture features two confining acrylic
plates; these plates have 2.5 mm-diameter holes to keep the anchoring dowel pin in place, and 2.2 mm-wide slots to
allow the actuating fixture to move along a straight line. These fixtures, connected to the UTS grippers via rubber
pads, subject the specimen to a pin boundary condition at one end and to a roller boundary condition at the other
end.

S5.C. Mono-material kirigami

The experimental setup for the mono-material structures is very similar to the one for the bi-material ones, and
is constructed by assembling the components shown in Fig. S13A,B: (1): assembled and riveted 2x2 structure; (2):
50 mm long metallic dowel bars; (3): small pieces of rubber tube (McMaster-Carr part number: 9776T26); (4):
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anchoring and actuation fixtures built from 3 mm thick acrylic laser cut pieces; (5): 1.5 mm thick rubber pads.
Here, the only difference with the bi-material case is that we use laser cut pieces to construct identical actuating and

FIG. S13. Experimental setup for mono-material kirigami. (A) Exploded view of the specimen and of the parts that make up
the fixtures. Specific parts include: (1) specimen; (2) metal dowel bars; (3) rubber stoppers to keep the bars and specimen in
place; (4) laser-cut acrylic parts that make up the fixtures to hold the bars and connect to the UTS; and (5) natural rubber
pads. (B) Experimental setup after the fixtures are assembled. (C) Photo of the specimen and fixtures, mounted on the UTS.

anchoring fixtures, and that we do not use constraining plates but rather embrace out-of-plane deformations. The
rubber stoppers allow some out-of-plane rotation of the panels at the anchoring points, as discussed more in detail in
Section S7.

S6. ADDITIONAL IMAGES AND VIDEOS OF EXPERIMENTAL RESULTS

Here, we show additional images of our specimens in their first and second (if present) stable states. We feel that
this is needed to emphasize how, in those cases where our specimens do display a second stable state, the morphology
of this second stable state closely resembles or is even identical the one predicted by theory. These images are displayed
in Fig. S14.

Monostable specimens do not display a second stable state regardless of their physical realization. As discussed in
the main text, monolithic specimens are not always bistable. In fact, only the one with target energy barrier 0.003
displays clear bistability; in the other cases we fabricated (target energies 0.001 and 0.0015), the hinge energies are
too high and prevent the specimens from displaying a second stable state. In the monolithic case that displays a
second stable state, we can see that the morphology of the second stable state is very close to the theoretical one but
not identical. In particular, one can notice that the most slender panels display some bending (as shown in the inset),
thus indicating that this state is not stress-free.

To provide further information on the behavior of all specimens, we report videos of their actuation. A brief
description of each video is given in the following:

• ActuationVideo_Monolithic_0d001.MOV : Video of the monolithic, 0.001 barrier specimen. The specimen is
clearly not bistable.

• ActuationVideo_Monolithic_0d0015.MOV : Video of the monolithic, 0.0015 barrier specimen. The specimen
seems to display some bistability initially but then returns to its original state.

• ActuationVideo_Monolithic_0d003.MOV : Video of the monolithic, 0.003 barrier specimen. This specimen
shows clear and ”long term” bistability.

• ActuationVideo_Bimaterial_0d003.MOV : Video of the bi-material, 0.003 barrier specimen. Note how the
beams buckle in plane as the specimen is actuated, and how the specimen is clearly stable in its second state.

• ActuationVideo_Monomaterial_Monostable.MOV : Video of the mono-material, monostable specimen. When
actuated, the specimen deforms out of plane and even buckles, but does not display a stress free second stable
state.



S22

FIG.S14.Summaryofthefirstandsecondstablestates(ifpresent)ofallspecimensfabricatedinthisstudy.Someofthese
imagesarenotshowninthemaintext.
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•ActuationVideo_Monomaterial_0d001.MOV:Videoofthemono-material,0.001barrierspecimen.Thespeci-
menisclearlybistable.

•ActuationVideo_Monomaterial_0d0015.MOV:Videoofthemono-material,0.0015barrierspecimen.Thespec-
imenisclearlybistable.

•ActuationVideo_Monomaterial_0d003.MOV:Videoofthemono-material,0.003barrierspecimen.Thespeci-
menisclearlybistable.

•ActuationVideo_Monomaterial_ExtremeShear.MOV:Videoofamono-materialspecimendesignedtoundergo
anextremeshear-likeshapetransformation. Whilethespecimenisclearlybistable,sincethepanelsbend
betweenstress-freestablestates,theenergybarrierisnotverysignificant,asisthecaseformostextreme
designs.

•ActuationVideo_Monomaterial_ExtremeRectangle.MOV:Videoofamono-materialspecimendesignedtoun-
dergoanextremesquare-to-rectangleshapetransformation.Thespecimenisclearlybistable.

•ActuationVideo_Monomaterial_ExtremeAuxetic.MOV:Videoofamono-materialspecimendesignedtoun-
dergoanextremeauxeticshapetransformation. Thisspecimenisbistablebutchallengingtoactuate,and
requiresadjustingthepositionofoneofthecornerpanelstoavoidself-intersection.

S7. NUMERICALSIMULATIONS:ADDITIONALRESULTSANDDETAILS

Inthissection,weprovidenumericalinsightintosomeofourexperimentalresultsviahigh-fidelityfiniteelement
simulations(usingthesoftwareAbaqus).Byshowcasingthechallengesencounteredinmodelingthenuancedbehavior
ofourfabricatedstructureswithhighfidelity,webelievethatwestrengthenthecasefortheuseofsimplifiedenergy
metricsattheearlystagesofdesign.Inthissection,wealsoprovidedetailsonthereduced-ordertrussmodelsused
tovalidatethebistabilityoftheheterogeneouspatterns.

S7.A. Numerical modelfor monolithicspecimens

OurmonolithicspecimensaresimulatedinAbaqususingtwo-dimensionalplane-strainquadrilateralelements(S8R),
astocreateanensembleofcontinuouslyconnectedpanels.ThegeometryofourmodelisshowninFig.S15A,where
wealsoshowadetailofthestructuredmeshatoneoftheelastichinges. Themeshisgeneratedbyaddinglines

FIG.S15. Numerical modelingof monolithicspecimens.(A)Oneofthe modeledstructures,withdetailsontheapplied
boundaryconditionsandwithazoom-inofthemeshatoneoftheelastichinges.(B)Measuredstress-straincurveofadogbone
specimen3DprintedoutofTPU-95,whichweusetocalibratethenonlinear material modelinAbaqus.(C)Comparison
betweenexperimentalandnumericalresultsintermsofforce-displacementcurves,forspecimenswiththreetargetenergy
barriers.

separatingthepanelsateachhinge,andby“seeding”thoselineswithadesirednumberofelements(herechosento
be10afterameshconvergencestudy).Boundaryconditions(apinattheleftandahorizontalrollerattheright,
plusaconcentrateddisplacementdattherightroller)arethenappliedtothecentralnodesofthetwohingesmarked
inFig.S15A.Theanalysisiscarriedoutindisplacementcontrolmode,allowingforgeometricnonlinearity. The
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displacement-control mode is needed to capture the negative stiffness parts of the force-displacement curve. Due to
the high strain expected in the elastic hinge regions, we also consider a nonlinear material model and fit an Ogden
potential of order 3 to the experimental stress-strain curve shown in Fig. S15B, obtained by testing a 3D printed
dogbone specimen made of TPU-95A. We then run a displacement-control, static, geometrically-nonlinear analysis
using a 0.0002 stabilization magnitude and an adaptive damping ratio of 0.05.

A comparison between numerical and experimental results for the theoretically-bistable patterns with target energy
barriers 0.001, 0.0015 and 0.003 is shown in Fig. S15C. We immediately notice that the numerical curves present
lower forces with respect to the experimental ones. We ascribe this discrepancy to the material properties we used
in our numerical model. In fact, the slope of the curve in the linear regime of Fig. S15B amounts to ≈ 25 MPa,
which is much lower than the 67 MPa given in Ultimaker material data sheets, possibly due to filament degradation
throughout our experimental campaign. Despite this discrepancy, we notice that the numerical model captures the
experimental trends quite well: the specimen with 0.003 barrier is the only clearly-bistable one, while the 0.0015
is borderline bistable and the 0.001 one is not bistable at all. Another sign of the accuracy of our simulations is
the fact that the displacement corresponding to the second stable state, for the specimens that display bistability,
matches the theoretical value, highlighted by vertical, color-coded dashed lines in Fig. S15C. Please note that a one-
to-one comparison between the experimental curves to the numerical ones is not appropriate, due to the complex
boundary conditions imposed by our fixtures and reflected in our experimental results. Finally, we also observe that
the numerical curves display sudden vertical jumps in the low stiffness region; this is most likely due to localized
buckling mechanics that get smoothened out in our experiments due to viscoelasticity.

S7.B. Numerical model for bi-material specimens

The bi-material structures are simulated in Abaqus using beam elements, to replicate the skeletal structure of the
panels shown in Fig. S9 at a reduced computational cost. The geometry of the model for the 0.003 barrier pattern
is shown in Fig. S16N-0, together with the boundary conditions and an arrow indicating the direction of the applied
displacement d. To capture the fact that hinge regions are stiff, we place cross bars at each hinge location. We define
linear elastic materials TPU-95 (Young’s Modulus = 67 MPa, Poisson’s Ratio = 0.37) and Nylon (Young’s Modulus
= 2336 MPa, Poisson’s Ratio = 0.4) and assign appropriate sections to the bars and hinges, respectively. Note that
the material properties are taken from Ultimaker data sheets. We assign connector sections with properties join and
rotation at each hinge location to simulate the in-plane rotation of the structure; to bias the structure towards in-plane
rotation, we assign large values to all other rotational and translational stiffnesses at the joints. In particular, the
connector rotational stiffnesses are set to D11 = 1, D22 = 1, and D33 = 1× 10−6, where Dii is to be interpreted as
the rotational stiffness about ei. We mesh the model using B31H elements and mesh size 5 × 10−4. We then run a
displacement-control, static, geometrically-nonlinear analysis using a 0.0005 stabilization magnitude and an adaptive
damping ratio of 0.05.

The simulation results for the structure with 0.003 target energy barrier are presented in Fig. S16 and compared with
the experimental ones. From the force-displacement curves in Fig. S16A, we can see that results agree well in terms
of critical force and in terms of the displacement corresponding to the second stable equilibrium point (≈ 60 mm).
However, other features of the curves are less similar. To clarify these discrepancies, we compare numerical (Fig. S16N-
1-N-3) and experimental deformed shapes (Fig. S16E-1-E-3), at various displacement values labeled in Fig. S16A. In
Fig. S16N-1 and E-1, we can see that the beams that buckle are consistent between experiments and numerics, as
indicated by the arrows. As we reach a displacement near 47 mm, we can see that the numerical curve experiences a
vertical jump, while the experimental one does not. By looking at Fig. S16E-2 and comparing the deflected shape to
the one in N-2, we can see that this jump is associated with the appearance of a higher order buckling mode in the
numerics that is not seen in the experiments (see the shape of the beams in the highlighted regions). Beyond this
displacement, experiments and numerics follow two different paths but meet again at the second, stress-free equilibrium
point (illustrated in Fig. S16N-3 and E-3). These results highlight that the challenge in modeling kirigami structures
made of such skeletal panels is that these panels have a rich array of buckling modes, and that understanding which
buckling mode to expect is far from simple.

S7.C. Numerical model for mono-material specimens

Finally, the mono-material specimens are also simulated in Abaqus, this time by means of S4R shell elements. The
geometry of the model for the 0.003 barrier structure is shown in Fig. S17N-0, together with the boundary conditions
and an arrow indicating the direction of the applied displacement d. Panels are created in Abaqus without the holes
for the rivets, while we preserve the circular regions at the panels’ corners. Overlapping circles from neighboring
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FIG.S16. Numericalmodelingofbi-materialspecimens.(A)Comparisonbetweentheexperimentalandnumericalresults
intermsofforce-displacementcurves,forthesamplewitha0.003energybarrier.(N-0)-(N-3)Numericalsnapshotsofthe
deformationatafewkeypointsmarkedin(A).(E-0)-(E-3)Experimentalsnapshotsofthedeformationatafewkeypoints
markedin(A).Thecircledregionsofthesnapshotsareintendedtohighlightdiscrepanciesbetweennumericalandexperimental
results.

panelsareconnectedviaconnectorelementsattheircentralnodes.Inparticular,wesetrotationalstiffnessesD11=
1,D22=1andD33=1×10−6forthejoints.Thematerialisconsideredtobelinear,withaYoung’smodulusof≈1
GPa,extractedfromourownexperimentsonPETGdogbonesamples.Again,thegeometricallynonlinearanalysisis
performedindisplacement-controlmodewith0.0002stabilizationmagnitudeanddampingfactorstabilizationmethod.

Fromtheexperiments,itisclearthatmono-materialstructuresbuckleoutofplaneduringthetransitionbetween
stablestates,butwedonotknowaprioriwhichshapetheyaresupposedtoassume. Thus,weperformaninitial
linearbucklinganalysisstepandextractthefirsttensilebucklingmodeforthespecimen,illustratedinFig.S17N-
Buckling.Theeigenvectoristhenprovidedasseedforthegeometricallynonlinearanalysis. Wechoosetoonlyuse
asinglebucklingmodesincechoosingmultipletensilebucklingmodesdidnotcauseourresultstovarysignificantly,
andsincewewereunsureontheweighttobeassignedtoeachmode.

Acomparisonbetweenexperimentalandnumericalresultsforthe0.003specimenisshowninFig.S17;inparticular,
force-displacementcurvesareshowninFig.S17A.Numericalandexperimentalcurvesshowasimilartrend,including
asimilarchangeinslopeinthenegativestiffnessregion. Moreover,numericalandexperimentalcriticalforcesare
similarinmagnitude,andthedisplacementscorrespondingtothesecondequilibriumcoincidewiththetheoretical
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FIG.S17.Numericalmodelingofmono-materialspecimens.(A)Comparisonbetweentheexperimentalandnumericalresults
intermsofforce-displacementcurves,forthesamplewith0.003energybarrier. (N-0)-(N-3)Numericalsnapshotsofthe
deformationatafewkeypointsmarkedin(A).(N-Buckling)indicatesthefirsttensilebucklingmode,whoseeigenvectoris
usedasseedforourpost-bucklinganalysis.(E-0)-(E-3)Experimentalsnapshotsofthedeformationatafewkeypointsmarked
in(A).

prediction.However,thecurvesalsoshowsomediscrepancies,discussedinthefollowing.Theinitialstiffnessofthe
sampleismuchlargerinthenumericalsimulationthantheexperiments. Weascribethisfacttosomeunavoidableplay
attherivetsintheexperimentalsample.Thefactthattheexperimentalcurveshowshigherforcesthroughoutthe10
to60mmregioncanbeascribedtothepresenceofsignificantfrictionbetweenrivetedpanels,whichisunavoidable
asthepanelsundergolargeout-of-planebendingandpushontheheadandtailoftherivet.
Toprovideadditionalinsight, wecomparenumerical(Fig.S17N-1-N-3)andexperimentaldeformedshapes

(Fig.S17E-1-E-3),atvariousdisplacementvalueslabeledinFig.S17A. Wecanseethattheseshapesaresimilar,
especiallyatthelargedeformationlevelcorrespondingtosnapshotsN-2andE-2.Fromthezoom-ininE-2wecan
alsoseethatourfixturesallowsomerelativerotationsbetweenpanelsaboutthee1axis,somethingthatourmodel
doesnotcaptureandthatcouldrepresentanadditionalsourceofdiscrepancies.

S7.D. Bar-hinge modelforheterogeneouskirigami

Toverifythebistabilityoftheheterogeneouskirigamidesigns,weperform2Dsimulationsofasimplifiedtruss
model,alsocalleda”bar-hinge”model,basedontheorigami-focusedworkofLiuandPaulino[57]. Wechoosethis
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reduced-order model since heterogeneous designs comprise a large number of unit cells for which Abaqus simulations
would be highly computationally intensive and impractical. Our truss model for kirigami treats each panel as an
assembly of pin-jointed bars that can only undergo tension, compression and finite rotations and translations. One
such panel, featuring 5 nodes and 8 bars, is illustrated in Fig. S18A; an assembly of panels that form a unit cell is
shown in Fig. S18B, while an entire structure is shown in Fig. S18C. It is important to note that, unlike classical
bar-hinge models, ours does not feature any rotational stiffness at the hinges and is only appropriate for structures
that do not feature pure mechanism modes of deformation.

FIG. S18. Bar-hinge modeling details. (A) A single panel of our kirigami structures, made of 5 hinges and 8 bars. (B) Unit
cell and (C) entire heterogeneous “bowtie” structure. (D) A single bar in its reference and deformed configurations, with all
the geometrical quantities of interest.

Our model is based on bar elements whose matrices are derived from a Green strain-based formulation. In the
following, we show how to obtain formulas for the tangent stiffness matrix and internal force vectors used in our
codes, drawing inspiration from the book of Crisfield [MA Crisfield, Non-linear finite element analysis of solids and
structures, volume 1: Essentials (1991)] and the work of Liu and Paulino [57]. Note that the notation used in this
section is independent from the rest of the article.

We consider a single bar element of initial length Le and cross sectional area Ae in its reference and deformed
configurations, as illustrated in Fig. S18D. Its nodes are labeled i and j. In the figure, we define both a global (Xi

with i = 1, 2) and a local coordinate system (xi with i = 1, 2), with the latter being aligned with the element itself.
The virtual internal work for the element can be written as

δWint e =

∫
Ve

SeδEe dV, (S59)

where Ee is the Green-Lagrange strain for the bar element, and Se is its work conjugate, the second Piola-Kirchhoff
stress; both quantities are scalars in these one-dimensional elements. The δ symbol indicates virtual quantities. Ve is
the bar volume in its reference configuration. Leveraging the one-dimensional nature of the element, we can rewrite
the energy as

δWint e =

∫ Le

0

AeSeδEe dx1. (S60)

Differential expressions for Ee and δEe can be found by considering an infinitesimal slice of bar and by tracking its
elongation in the local coordinate system. In particular, calling `0 the initial length of the slice and ` its length in the
deformed configuration, and by replacing these lengths with the coordinates indicated in Fig. S18D, it follows that

Ee =
`2 − `20

2`20
=
du1

dx1
+

1

2

(
du1

dx1

)2

+
1

2

(
du2

dx1

)2

. (S61)

In turn, the virtual work can be computed by taking the first variation of this quantity. Recalling that Ee = Ee(u1, u2),
this first variation can be computed by replacing u1 and u2 with u1 + αδu1 and u2 + αδu2 in Eq. S61, where α is a
constant, by taking a derivative with respect to said α and by finally setting α = 0:

δEe =

[
dEe (u1 + αδu1, u2 + αδu2)

dα

]
α=0

. (S62)
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This operation yields

δEe =
dδu1

dx1
+
du1

dx1

dδu1

dx1
+
du2

dx1

dδu2

dx1
. (S63)

Prior to substitution in Eq. S60, we introduce a finite element discretization with linear shape functions, such that
displacement variables are written as

u1 =
[
1− x1

Le

x1

Le

] [u1i

u1j

]
= N u1e, u2 =

[
1− x1

Le

x1

Le

] [u2i

u2j

]
= N u2e, (S64)

where N is a matrix of shape functions, and their derivatives are written as

du1

dx1
=
[
− 1
Le

1
Le

] [u1i

u1j

]
= B u1e,

du2

dx1
=
[
− 1
Le

1
Le

] [u2i

u2j

]
= B u2e, (S65)

where B contains derivatives fo the shape functions. We can then combine these expressions into compact ones
capturing all displacements and their derivatives:

u =

[
u1

u2

]
=

[
1− x1

Le
0 x1

Le
0

0 1− x1

Le
0 x1

Le

]u1i

u2i

u1j

u2j

 = Neue, (S66)

du

dx1
=

[
du1

dx1
du2

dx1

]
=

1

Le

[
−1 0 1 0
0 −1 0 1

]u1i

u2i

u1j

u2j

 = Beue, (S67)

where Ne and Be capture shape functions and their derivatives for all discrete degrees of freedom in a bar. We also
apply the same discretization to virtual quantities. For convenience, we also define the derivative of u1 as a function
of the vector of all nodal displacements:

du1

dx1
=

1

Le

[
−1 0 1 0

] u1i

u2i

u1j

u2j

 = B1ue. (S68)

We can now substitute these expressions into the definition of strain, such that

Ee =
du1

dx1
+

1

2

(
du1

dx1

)2

+
1

2

(
du2

dx1

)2

=
du1

dx1
+

1

2

(
du

dx1

)T
du

dx1
= B1ue +

1

2
uTe BT

e Beue. (S69)

In Liu and Paulino, the matrix in the second term is compactly defined as B2 = BT
e Be, such that

Ee = B1ue +
1

2
uTe B2ue. (S70)

Similarly, the virtual strain can be discretized as follows:

δEe =
dδu1

dx1
+
du1

dx1

dδu1

dx1
+
du2

dx1

dδu2

dx1
= δuTe BT

1 + δuTe B2ue, (S71)

where the first term of the last expression has been transposed for convenience.
Plugging Eq. S71 into Eq. S60, and by noticing that discrete variables don’t depend on the axial coordinate, we

obtain

δWint e =

∫ Le

0

AeSeδu
T
e

(
BT

1 + B2ue
)
dx1 = δuTe AeSeLe

(
BT

1 + B2ue
)
, (S72)

where we can identify the internal force vector for the element in the local coordinate system:

fint e = AeLeSe
(
BT

1 + B2ue
)
. (S73)



S29

The definition of tangent stiffness matrix comes from the linearization of the nonlinear equilibrium equation with
Newton-Raphson or any other root finding algorithm, and can be found by taking derivatives of the internal force
vector. For a single element, in the local coordinate system, we can write

kte =
dfint e

due
= AeLe

(
dSe
due

(
BT

1 + B2ue
)T

+ Se
d
(
BT

1 + B2ue
)

due

)
. (S74)

Completing this differentiation requires the definition of a material model. In our case, we use a St. Venant-Kirchhoff
material (a linear material model in a nonlinear mechanics framework), such that Se = CEe and dSe

due
= C dEe

due
.

Differentiating Eq. S70, substituting it in the stress expression and computing the derivatives in Eq. S74, yields

kte = CAeLeB
T
1 B1 + CAeLe

(
BT

1 (B2ue)
T

+ (B2ue) B1

)
+ CAeLe(B2ue)(B2ue)

T + SeAeLeB2. (S75)

The definitions of internal force vector and tangent stiffness matrix in Eq. S73 and S75 still refer to the local
coordinate system. In order to appropriately assemble vectors and matrices for the whole structure, we first need to
express such quantities in a global coordinate system. To perform this conversion, we rotate the local displacement
vector ue for the whole element as to obtain its counterpart in the global coordinate system, Ue. Calling θe the angle
between the local and global coordinate systems, we can write

ue =

u1i

u2i

u1j

u2j

 =

 cos θe sin θe 0 0
− sin θe cos θe 0 0

0 0 cos θe sin θe
0 0 − sin θe cos θe


U1i

U2i

U1j

U2j

 = TeUe. (S76)

By making this substitution in Eq. S72 and by carrying out the same computations shown above, we derive

Fint e = AeLeSe

(
(B1Te)

T
+ TT

e B2Teue

)
= AeLeSe

(
(B1Te)

T
+ B2ue

)
, (S77)

and

Kte = CAeLe (B1Te)
T

(B1Te)+CAeLe

(
(B1Te)

T
(B2ue)

T
+ (B2ue) (B1Te)

)
+CAeLe(B2ue)(B2ue)

T +SeAeLeB2.

(S78)

In Liu and Paulino, B1Te is defined as B̃1 and is written as an explicit function of the position vectors of the nodes
of the element:

B̃1 =
1

L2
e

[
− (X1j −X1i) − (X2j −X2i) X1j −X1i X2j −X2i

]
. (S79)

By assembling the internal force vectors Fint e and tangent stiffness matrices Kte for each element, we form the
total internal force vector Fint and tangent stiffness matrix Kt for the whole structure. After imposing the required
boundary conditions, we use a full Newton-Raphson solution technique to obtain the force-displacement curve of the
structure. This force-controlled procedure, chosen over arc length procedures to avoid the convergence issues we expect
in such complex-shaped bistable structures, does not allow to trace negative-sloped portions of the force-displacement
curve. Thus, to identify the presence of a second stable equilibrium configuration, we load the specimen beyond the
critical load and, when a desired force value is reached, we apply an incremental negative force to simulate unloading
and verify whether the unloading curve crosses the zero-force axis at a point different from the origin – which we
interpret as a sign of bistability.
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