Programming bistability in geometrically perturbed mechanical metamaterials
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Mechanical metamaterials capable of large deformations are an emerging platform for functional
devices and structures across scales. Bistable designs are particularly attractive since they endow
a single object with two configurations that display distinct shapes, properties and functionalities.
We propose a strategy that takes a common (non-bistable) metamaterial design and transforms it
into a bistable one, specifically, by allowing for irregular patterns through geometric perturbations
of the unit cell and by leveraging the intercell constraints inherent to the large deformation response
of metamaterials. We exemplify this strategy by producing a design framework for bistable planar
kirigami metamaterials starting from the canonical rotating-squares pattern. The framework com-
prises explicit design formulas for cell-based kirigami with unprecedented control over the shape
of the two stable states, and an optimization methodology that allows for efficient tailoring of the
geometric features of the designs to achieve target elastic properties as well as shape change. The
versatility of this framework is illustrated through a wide variety of examples, including non-periodic
designs that achieve two arbitrarily-shaped stable states. Quantitative and qualitative experiments,
featuring prototypes with distinct engineering design details, complement the theory and shine light
on the strengths and limitations of our design approach. These results show how to design bistable
metamaterials from non-bistable templates, paving the way for further discovery of bistable systems
and structures that are not simply arrangements of known bistable units.
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The past few decades have ushered in a paradigm shift
in the way structural instabilities are perceived: once
something to avoid, researchers now design mechanical
systems and structures to reversibly buckle as part of
their functionality [1-3]. Bistable systems, possessing
two morphologically-distinct stable states, are pervasive
in nature and attractive in engineering. They are key to
how a venus fly trap collects its prey [4] and a beetle un-
furls its wings [5], and are leveraged in deployable space
structures [6], soft robots [7-9], MEMS devices [10, 11],
and the like. They are even the cornerstone to popular
everyday objects like PopSockets phone holders and toys
like Poplt fidgets and jumping poppers [12, 13].

Bistability comes in a variety of modalities. It is
achieved by purely geometric means through tailoring the
design of thin-wall structures, like arches and shells [14],
or by designing clever ensembles of structural elements
connected by pins or flexural joints [15]. It also emerges
through a combination of geometry and material-induced
rigidity, as in the case of bistable shells made of compos-
ite materials [16], or through prestress, as when multi-
stable shells are obtained from pre-stretched strips [17].
Bistability can even be facilitated by nuanced features
in origami and kirigami, including hinges with lim-
ited motion range [18, 19] and creases with directional
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FIG. 1. Geometrical route to bistability. (A) Rotating-
squares unit cell, with its mechanism motion shaded in light
gray. (B) Periodic and overconstrained version of (A). (C)
Perturbed version of (A). (D) Bistable structure obtained by
tiling perturbed unit cells, in its first and second stable states.

bias [20, 21].

Here we focus on purely geometrical routes to bista-
bility, since design principles in this setting are broadly
applicable to a variety of scales, materials, and manufac-
turing methods. The archetype of a purely geometrical
bistable structure is the von Mises truss [22], featuring
two inclined elastic bars connected at a hinge and con-
strained by pin supports. When this structure is loaded
at its apex, the bars compress and eventually snap into
an inverted tent shape, a second stable state by symme-
try. This basic principle leads to a wealth of bistable sys-
tems. Cleverly arranged von Mises trusses form the basis
for bistable planar lattices [23] and kirigami [15]. Other
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complex multistable systems arise by exploiting snapping
arches and domes [24-31], or more sophisticated bistable
units like the square twist origami cell [32]. The under-
lying philosophy to all these works is the same: the key
designer input to a complex bistable system is a bistable

building block.

Our work seeks to break away from this prevailing phi-
losophy. Towards this goal, it is notable that many mo-
tifs found in origami are bistable even though their basic
building blocks are floppy. Examples include Kresling,
waterbomb and helical tubes [33-35], hypar [36] and the
typical origami flasher [37, 38]. However, as is often the
case with origami, most of these examples have artistic
origins and their bistability is serendipitous. The ques-
tion of what makes them, or any “pattern”, bistable re-
mains largely unexplored.

Our objective is to highlight the role of geometric per-
turbations as a fundamental ingredient for bistability and
to show that such perturbations, when suitably applied
to fairly generic families of patterns, can be used as a ver-
satile platform to design bistable metamaterials with a
wide range of target properties. Fig. 1 illustrates the key
ideas applied to a prototypical 2D morphing metamate-
rial called the rotating squares pattern [39, 40]. A single
unit cell of this pattern (Fig. 1A) is capable of chang-
ing its shape through a mechanism [41] or floppy mode
[42] given by counter-rotating its panels about the central
slit. Symmetry, in turn, makes the intercell constraints
redundant: periodic tiling of the cell (Fig. 1B) yields a
pattern that exhibits the same such mechanism. Break-
ing the design symmetry, however, reveals an interesting
dichotomy: the cell continues to possess a floppy mode
(Fig. 1C), but the overall pattern does not (Fig. 1D).
The intercell constraints are generically no longer redun-
dant. Our main insight is that, while generic perturba-
tions yield monostable patterns, careful geometric tuning
of these perturbations can turn mechanism-based designs
into bistable ones (Fig. 1D).

There has been a thrust in recent years to go beyond
metamaterials made of canonical unit cells and provide
optimization tools to explore the geometry-property re-
lationships in these systems. Singh and van Hecke [43]
and Deng et al. [44] show that optimizing the geometric
features of perturbed rotating squares designs can yield
a rich range of target elastic properties. Mahadevan and
colleagues [45, 46] use global optimization frameworks
to produce non-periodic generalizations of well known
origami and kirigami metamaterials with target shapes.
Hard-encoding design rules in a metamaterial (e.g., for
the panels to rotate about flexible hinges or folds), as
in Refs. [47-51], yield marching algorithms that improve
the optimization schemes, enabling further demonstra-
tions of programmability.

Our work builds on these ideas under the lense of bista-
bility and with particular emphasis on practical (reduced-
order) design tools that can guide experiments at the con-
ceptual /prototyping phase of design. We start by show-
ing how to hard-encode bistability in a large class of 2D

FIG. 2.

Perturbed rotating-squares kirigami and design
recipe. (A) Unit cell in its first stable state, indicating the
design vectors, and (B) periodicity constraint. (C), (D) Sec-
ond stable states of (A) and (B), respectively, obtained by
rotating each panel by an angle ¢;. (E) Elastic energy model.
From (B), each panel is rotated and translated periodically
to produce a homogeneous effective deformation with Bravais
lattice vectors £; and £2. As illustrated, the stored energy
is calculated assuming linear springs between the separated
panels. (F) Details of the two bottom-left panels of (B) and
(E), indicating a change in opening angle.

periodic metamaterials composed of repeating unit cells
of panels and slits, termed planar kirigami herein and
elsewhere [45, 52, 53], as opposed to kirigami that rely
on out-of-plane buckling [54, 55]. We then introduce an
optimization framework for bistable planar kirigami that
incorporates a reduced-order model for the elastic energy,
allowing us to tune the designs to achieve target morph-
ing and elastic properties. A suite of representative ex-
amples and corresponding experiments follows. We ex-
plore examples ranging from classical monolithic planar
kirigami configurations to pin-jointed panel systems and
truss-based analogs to test the applicability of our de-
sign and optimization strategies in a variety of settings.
In each case, the experiments validate the bistable be-
havior of the patterns and certain qualitative features of
their elastic properties, but also highlight how our theory
can guide but not fully replace high-fidelity models and
prototyping. Finally, we showcase the versatility of our
design approach by extending it to non-periodic systems
with complex shape-change.

DESIGN FORMULAS FOR BISTABLE PLANAR
KIRIGAMI

We begin by developing a general recipe for bistable
planar kirigami comprised of a repeating unit cell of four
quad panels and four quad slits, obtained through geo-
metric perturbations of the rotating squares. The recipe
amounts to a compact design formula for bistability,
which we explain using Fig. 2 as a guide. Fig. 2A shows
a generic unit cell representing the first stable state of a



quad kirigami design, with the panels and slits labeled by
2D vectors s;, t;, u; and v;, i = 1,...,4. Fig. 2B illus-
trates its periodicity using the 2D Bravais lattice vectors
£ and £5. Fig. 2C shows the unit cell of the second sta-
ble state. Each panel in the cell is rotated in the plane by
a right-hand rotation R(¢;) of angle ¢;, as shown, taking
the initial cell vectors to deformed ones by the transfor-
mations s; — R(¢;)s;, t; — R(¢:)ti, u; = R(¢;)u; and
v; = R(¢;)vi, @ = 1,...,4. Finally, Fig. 2D shows 2D
Bravais lattice vectors £ and £2, quantifying the peri-
odicity in the second stable state. All of these vectors and
rotation angles are subject to a variety of constraints for
a compatible design, including equality constraints that
enforce periodicity and ensure the vectors form closed
loops about each panel and slit, as well as inequality con-
straints that ensure the panels are convex quadrilaterals
that do not overlap. We enumerate all the compatibility
conditions in Supplemental Material, Section S1.A and
manipulate them into forms broadly useful for design in
Supplemental Material, Sections S1.B and C [56].

The key result is a design formula that parameterizes
all the equality constraints. It takes the form
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where t,u and v stack the corresponding t;,u; and v;
design vectors into 8 component arrays, and £ does like-
wise for the four Bravais lattice vectors £5%,... £2. The
28 x 12 matrix D(¢), concretely linking these arrays,
is a lengthy nonlinear expression of the rotation angles
¢ = (¢1,...,04). Its explicit formula is provided in
Eq. [S21] of Supplemental Material, Section S1.B [56].

Eq. [1] organizes a wealth of information for designing
and tuning bistable kirigami structures. The right-side
contains the designer inputs. It includes the Bravais lat-
tice vectors, which are the natural descriptors for target
maximum stretch, Poisson’s ratio, and shearing between
the two stable states. It also contains eight additional
degrees of freedom (DOF's) through the four rotation an-
gles ¢ and design vectors s; and so. Each can be tuned to
achieve, for instance, a desirable energy barrier between
the two stable states. The remaining parameters describ-
ing the designs in Fig. 2 are all stacked on the left-side of
Eq. [1] and thus are fully determined from these designer
inputs.

OPTIMIZATION FRAMEWORK FOR ELASTIC
TUNING

An appealing aspect to this characterization is that
it marries naturally with standard optimization tools to
furnish a versatile design framework for tuning bistabil-
ity. Assume a designer has in mind two stable states,
obtained by prescribing the Bravais lattice vectors in
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the reference £1%, £8 and deformed £P, €2 configurations.
Since there are eight additional parameters on the right-
side of Eq. [1], the design can be optimized to achieve any
general objective that can be written as a minimization
problem:

min { fobj(s1,82, @) | Gineq(s1,82, $) > 0}. (2)

In this formulation, gineq(s1,S2, @) lists all the inequal-
ity constraints that are necessary and sufficient for the
pattern to have convex panels and slits in its reference
and deformed stable states. These constraints, which are
written out explicitly in SI Appendix, Section S1.C, are
nonlinear in all their arguments. Thus, Eq. [2] describes
a constrained nonlinear optimization for which Matlab’s
fmincon toolbox provides several well-developed and ef-
ficient numerical tools to find local minimizers. In other
words, this optimization framework is "ready-made” for
engineering design. See the flowchart in Fig.S3 and Sup-
plemental Material, Section S2.E [56] for additional de-
tails on numerical aspects of this framework.

All that remains now is to prescribe an objective func-
tion for the optimization. We are particularly interested
in objective functions that can assess and optimize a vari-
ety of features of the stored elastic energy of the kirigami
design. The challenge is that calculating an elastic en-
ergy based on high fidelity modeling, like FEM or even
bar-hinge based modeling [57], is not efficient and thus
creates a bottleneck in the optimization process. We in-
stead develop an elastic model that can be implemented
directly into Matlab and evaluated using its fast solvers.

Our approach is formulated in detail in Supplemental
Material, Section S2.A [56] and illustrated in Fig. 2E. We
model the corner points of the kirigami pattern as linear
springs of zero rest length and unit stiffness and allow
the panels to rotate and translate by a periodic motion
that matches a bulk deformation expressed by the Bra-
vais lattice vectors £1, €5 in the figure. This deformation
elongates the springs, generating an elastic energy ex-
pressed in terms of the panel rotations and translations,
and the Bravais lattice vectors.

After minimizing out the translations and lattice vec-
tors in Supplemental Material, Section S2.B [56], we ob-
tain the revealing form for the energy

Egpr(111,m2,m3,M4) =

Dici A R(m:)s; Zi:l,...A R(m:)s;
>iot,.a Rt | G Sicr ARt | (3)
Zi:l,.,,A R(n:)u; Zi:1,..,,4 R(ni)w;
Zi:l7 A R(m)vi Zizl,...A R(’?i)vi

for an 8 x 8 symmetric and positive definite matrix G
and the four panel rotations R(n1),...,R(n4), as shown
in the figure. The heuristics behind this energy are as
follows. Prior to deformation, the pattern’s four types
of slits satisfy >, _; ;8 =0,...,> ., ,v; =0 be-
cause slits form closed loops. However, the deformed
loops >,y JRMi)sis... >y 4 R(mi)vi are typi-
cally broken (# 0) under the panel motions. Egq. [3]



employs these broken loops as the fundamental measures
of elastic strain in the pattern. The matrix G in this
formula quantifies how the slits influence each other elas-
tically. Its components range between values 0 and 1
independent of the krigami design, and are reported in
Eq. [S36] of Supplemental Material, Section S2.B [56].

A final minimization allows us to quantify the elasticity
of a bistable kirigami design in terms of a single kinematic
variable:

Eact(§7 S1,82, d)) =
min {Espr((),f,ng,m) | Ss3, 84, t,u, v solve Eq. [1]}

73,M4

(4)
We call this energy the actuation energy. It depends kine-
matically only on the angle £ shown in Fig. 2F, describing
the relative rotation between the first and second panel
of each unit cell as the overall pattern is actuated. It
is non-negative and satisfies E,.t = 0 when £ = 0 and
& = ¢o — ¢1, reflecting the bistability hard encoded by
Eq. [1].

This actuation energy integrates seamlessly with the
optimization framework in Eq. [2], allowing us to effi-
ciently explore and tune elastic properties of the kirigami
design. In this work, we demonstrate this capability by
optimizing the designs based on two properties of F,.
through objective functions of the form

fObj(517527¢) = Cb|Eb(Sl,SQ,¢) _ EZarg‘Q

target energy barrier
t
+ Cl|k1(slv S2, d)) - klarg|2 .

target stiffness

(5)

The first term tunes the designs so that the energy bar-
rier between the designed stables states, Fj(s1,S2, ) =
MaXee(0,ps—y) Lact (€, 51,82, @), is driven towards a spec-

ified target E,**® > 0, reflecting the amount of work
needed to actuate the pattern from one stable state
to the other. The second term optimizes for the stiff-
ness k1 (s1,82, @) = O¢O¢ Euct (0, 81,82, ) /(N (0))? of the
first stable state with respect to a characteristic stretch
M) = it REOMa—vo)| 4104 takes the value A(0) = 1

[lup—vi+uz—va|

in the first stable state and A\(¢2 — ¢1) = [£]/|€E] in the
second one (see Supplemental Material, Section S2.D [56]
for more details). The designs are tuned by driving this
stiffness towards a specified target k{*® > 0, allowing
us to control whether we want this stable state to be
”locked-in” or have some give at its typical performance
loads. Design tradeoffs are expected. For example, it is
not usually possible to achieve a design that has both a
high stiffness but a low overall energy barrier between
the states. The numerical parameters c;,c; > 0 express
the desired importance of each term during an optimiza-
tion. Though not done here, terms like the maximum
force and/or the stiffness of the second stable state can
also be included in the objective function.

REPRESENTATIVE EXAMPLE

We illustrate the optimization framework by tuning
kirigami designs to achieve a variety of energy barriers
under a prototypical square-to-rectangle transformation.
In the optimization, the Bravais lattice vectors are set at
LR = e, 8 = ey and £ = 1.2e1, £2 = 0.8e, to encode
the effectively square and rectangular stable states, and
the moduli in Eq. [5] are taken as ¢, = 1 and ¢; = 0 to
focus on optimizing for a target energy barrier. Fig. 3A-
C shows three optimized designs, obtained by prescribing
the target energy barrier from left to right as E;*'® =
0.001,0.0015,0.003 and performing the minimization in
Eq. [2] in each case. A plot of actuation energy E,q;(€)
versus stretch A(§) in Fig. 3E shows that each design
achieves its target energy barrier. A randomly generated
monostable design in Fig. 3D is included in Fig. 3E as
another point of comparison.

To test the validity of the optimization framework, we
fabricate a series of prototypes for all the aforementioned
designs and examine their elastic energy and bistability
experimentally. In comparing the theory to experiments,
it is important to recognize that our mechanical model
for the actuation energy is based on simplifying assump-
tions that enable us to efficiently optimize over the purely
geometric parameters of the designs to achieve ”some no-
tion” of target elastic properties. The goal is to provide
design guidance in this large parameter space that gets
trends right. Specifically, for a specified fabrication strat-
egy, we expect that the energy barrier of the design in
Fig. 3A is smaller than that of Fig. 3B, which in turn is
smaller than that of Fig. 3C. We cannot, however, say
much more than that: localized buckling, hinge elastic-
ity, friction, viscoelasticity, and out-of-plane deformation
can influence the elastic behavior of these systems, none
of which are accounted for in our model.

We propose three different fabrication strategies that
differ in the way the energy barriers manifest as deforma-
tion, allowing us to explore the interplay between the fine
design details inherent to prototyping and the theoreti-
cal predictions of bistability. In all cases, the specimens
are made of 2x2 unit cells and are tested in tension via a
universal testing system using custom fixtures. Fig. 3F-H
show the raw force-displacement curves for tension tests
of the fabricated samples, as well as their stored energy
curves (obtained by integration of the force curves). The
color scheme for the curves distinguishes the different de-
signs, just as in Fig. 3E. Additional details on the fabri-
cation and experimental procedures, and on the dimen-
sions of specimens, are given in Supplemental Material,
Sections S4, S5 [56]. We only report experimental re-
sults in the main text; Supplemental Material, Section
S7 [56] reports finite-element results that complement
these findings.

In the first incarnation of our designs, we 3D print thick
monolithic specimens made of ”soft” TPU-95, which rep-
resents the most conventional way to fabricate these
metamaterials [15, 40, 45, 58]. Notably, each sample
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FIG. 3. Representative example and demonstration of bistability. (A-C) First and second stable states of the optimized patterns
with energy barriers 0.001, 0.0015 and 0.003, respectively. Even though we represent them in 2x2 cell versions, these patterns
are periodic. (D) Monostable geometry obtained by randomly perturbing the rotating squares pattern. (E) Theoretical energy
landscape of the patterns in (A-D), with horizontal lines indicating the target energy barriers; the legend shown here is valid
throughout this figure. (F) Experimental results for a monolithic physical realization of the representative patterns, which
involves compliant hinges; solid lines are averages of three tensile tests, and shaded areas represent the standard deviation;
energy curves are obtained by numerically integrating the average force-displacement curves. (F-1, F-2, F-3) First stable state,
snapshot of the deformation and second stable state, respectively, for a monolithic specimen with 0.003 barrier. (G) Same as
(F), but for a physical realization of the pattern involving skeletal, bi-material panels connected via perfect pins and capable
of in-plane deformation via buckling of the internal beams. (H) Same as (F), but for a physical realization involving thin,
pin-jointed mono-material panels that bend out-of-plane during deformation. Scale bar: 5em.

exhibits negligible out-of-plane deformations due to its  the hinges. This case is clearly bistable — the force-
large thickness, but also has elastic hinges that offer  displacement curve dips below zero, resulting in two clear
some resistance to the relative rotations between pan- energy minima. However, bistability is far from guaran-
els. Fig. 3F-1 shows the specimen with the largest (0.003) teed because hinge elasticity counteracts the geometric
theoretical energy barrier in its first stable state; Fig. 3F- energy barriers that support a second stable state. In
2 shows a snapshot of its in-plane deformation process  fact, the other two cases with the smaller theoretical en-
during a tension test, with the distortions mostly concen- ergy barriers of 0.001 and 0.0015 are not bistable, as in-
trated in the hinge regions; Fig. 3F-3 shows the second  dicated by their force and energy curves.

stable state, which is qualitatively similar to the theo-

! h ) . ) Our second fabrication strategy eliminates the hinge
retical one, while featuring some localized bending near

elasticity that opposes bistability, while keeping the ac-



tuation essentially planar. To do this, we 3D print “skele-
tal” and bi-material panels and assemble them via actual
pin joints. The printed panels are composed of soft TPU
bars and stiff nylon hinge regions to ensure that the defor-
mations concentrate in the bars rather than in the neigh-
borhood of the pin joints. We also place the specimens
between clear acrylic plates during testing to prevent out-
of-plane deformation. Fig. 3G-1 shows the 0.003 design
fabricated in this fashion in its first stable state; Fig. 3G-
2 shows an intermediate state during testing, illustrating
how the deformation within the panels manifests as in-
plane bending and buckling of the bars; Fig. 3G-3 shows
the second stable state, which now matches the theoret-
ical one. The experimental force-displacement curves for
this specimen clearly indicate bistability. Note that the
presence of pin-joints allows the specimen to be stress-
free in its second stable state even though the curve shows
that the energy is non-zero in this state. We attribute
the tilted energy curve to friction and material viscoelas-
ticity, which dissipate energy during the tests. While
this second incarnation is a better candidate to demon-
strate bistability for a broad range of designs, fabrication
proved challenging and time consuming; for this reason,
we only report results for the 0.003 specimen.

The final incarnation also features pin joints, but the
panels are now much thinner and laser cut out of PETG.
As shown in Fig. 3H-1 to H-3 for the 0.003 sample,
these specimens transition between stable states via out-
of-plane bending of the panels. The force and energy
curves show that the patterns behave as expected — all
the theoretically bistable designs are indeed bistable and
the magnitude of their energy barriers trends with that
of the theory. In particular, the energy barrier for the
0.003 specimen is larger than the 0.0015 one, which is
in turn larger than the 0.001 case. Here, significant fric-
tional losses due to the panels pushing against each other
and the rivets during out-of-plane deformation cause the
energy curves to display non-zero values at the second
equilibrium, even though these states are stress-free.

Overall, these case studies validate our purely geo-
metric design and optimization tools, as they showcase
a variety of bistable metamaterials whose shape change
matches the theory and whose energy barriers match the
trends of the theory. We envision that the synergy be-
tween optimization and prototyping can be improved by
introducing “non-universal” features into the objective
function (Eq. [5]) that depend on the choice of fabrica-
tion strategy, although we do not pursue this further.

EXPLORING THE DESIGN AND
OPTIMIZATION SPACE

We now highlight the richness of the design space by
producing bistable kirigami patterns that exhibit a va-
riety of axial and shearing shape changes. All exam-

ples correspond to reference lattice vectors £5* = e; and
£E = ey and achieve a second stable state given by one

of two parameterizations of the deformed lattice vectors

axial: @ = )\161, @ = )\262. (6)
shear: @ =e; + ey, @ = e + veq,

Fig. 4A-E show designs obtained by optimizing the en-
ergy barrier using ¢, = 1,¢; = 0 and E;*® = 0.003 for a
variety of A 2 and 1.

Fig. 4A, in particular, showcases a suite of designs
corresponding to axial shape morphing with A\; and As
varied uniformly from 0.8 (contraction) to 1.3 (expan-
sion) in a design matrix. The coloring scheme reflects
whether the optimized design achieves the target 0.003
energy barrier. As the coloring indicates, the richness
of the design space depends significantly on the shape-
morphing. Non-auxetic designs where one side contracts
and the other expands appear to be much more amenable
to the large energy barriers than auxetic ones. In fact,
the most extreme auxetic design — the purely dilation one
in the lower right corner of the figure — is only a slight
modification of the purely mechanistic rotating squares
pattern, even though we optimize for a high energy bar-
rier. This observation suggests that the rotating squares
pattern is perhaps the singular template for extreme dila-
tion in quad kirigami. Another interesting point concerns
symmetry and non-uniqueness. As illustrated in the de-
sign matrix, every optimized design in the upper right
quadrant (A1, A2) = (z,y) is related to one in the lower
left (A1, A2) = (y,x) by a 90° rotation. These rotated de-
signs are shaded in Fig. 4A. In some of the less extreme
cases, however, more than one design achieves the tar-
get energy and shape change. We illustrate this point by
highlighting a (A1, A2) = (0.9, 1.2) optimized design that
is distinct from the (A1, A2) = (1.2,0.9) case shown.

Fig. 4B also showcases a suite of designs, this time
for the shear case in Eq. [6], with 7 evolving uniformly
from 0.2 to 0.95. Again the design space shrinks as
the shear becomes more extreme, making it harder for
the optimized design to achieve the target energy bar-
rier E;™® = 0.003. Note that the maximum shear in
this setting is Ymax = 1, since this shape change takes
an effectively square reference domain to a line. Evolv-
ing the shear monotonically to this maximum leads to
panels that degenerate to lines and slits to parallelo-
grams. A curious yet persistent observation in Fig. 4A-B
(and Supplemental Material, Section S2.F[56]) is that
extremal shape change seems always to correspond to
designs with parallelogram slits, i.e., designs known to
always posses a single DOF mechanism [53]. Whether
this observation suggests a universal relationship between
mechanism-based designs and bistable ones remains to be
seen, but it is nonetheless compelling evidence of some
sort of connection.

Returning to prototyping, Fig. 4C-E highlights the de-
sign and fabrication of three examples of extreme shape
change: a shear case, a non-auxetic case, and an aux-
etic, purely dilational case. In all cases, we employ the
third fabrication strategy discussed above with pin-joints
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and laser cut PETG panels, since specimens made this
way are easy to produce and exhibit a ”clean” perfor-
mance. As shown in the figure, each sample is bistable
and displays the predicted shape change. The supple-
mentary videos listed and described in Supplemental Ma-
terial, Section S6[56] provide further illustrations of the
bistability of these samples.

We end this section by showcasing designs tuned to
achieve multiple objectives at the same time. Going back
to the prototypical square-to-rectangular transformation
studied previously, Fig. 5 shows designs that have been
optimized for both a target energy barrier and a target
stiffness in its first stable state. Specifically, we fix ¢, = 1,
c; = 0.002 and E;arg = 0.001 and vary the target stiff-
ness uniformly from k;arg = 0.15 to 0.50 to produce eight
optimized designs. As the plot indicates, we have control
of both the stiffness and energy barrier over a wide range
of the parameter space (from k}*® = 0.1 to 0.45). How-
ever, once k;arg is sufficiently large, the energy barrier

can no longer be held fixed. Instead it tilts up, reflecting
a tradeoff between high stiffness and low energy.

HETEROGENEOUS SHAPE-CHANGE

We now go beyond periodic structures and show how
our design and optimization methods can be integrated
into a simple recipe to program bistable kirigami meta-
materials with target heterogeneous shapes. We explain
the approach through the square to bowtie transforma-
tion shown in Fig. 6 A-C, before illustrating its versatility
through the complex examples in Fig. 6D-E.

In the transformation in Fig. 6A, the quad cells of
the square mesh are mapped one-to-one to the cells
of the bowtie mesh through the lattice transformations
£R(i,j) — £P(i,7) and €8, §) > £P(i, ), indexed by
(7, 7) as shown. While the bowtie mesh is not homoge-
neous, its lattice vectors vary slowly from cell to cell to
produce the overall shape. We exploit these slow vari-
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ations, and the key fact that the lattice vectors are de-
signer inputs for bistability in Eq. [1], to obtain a kirigami
pattern capable of transforming from the square to the
bowtie shape at very little stress.

The general idea is as follows (see Supplemental Ma-
terial, Section S3[56] for more details). After an ini-
tialization step to seed the design of a single kirigami
cell, we produce a global kirigami pattern through a
marching procedure that is fundamentally local. At
each (Z,7), indicating corresponding quads in the two
meshes, we prescribe the lattice vectors for a bistable
design in Eq. [1] as £ = £(i, ). Next, we choose the re-
maining DOF's in this equation as a set of minimizers
51 = Sl(i:j): Sg = 52(3‘:.?.): ¢ = t;f)(i,j) to Eq [2] with

Fobj(s1,82, @) = |(s1, 82, ¢) —

(Sprev prev,qbprev”

prev _prev

where (s; ,s; ,@P™) is from a previously computed
neighboring cell Fina]ly, we choose s3 = s3(%,5),...,v=
v (1, 7) to solve Eq. [1] for the above (i, j) design variables.
This recipe furnishes a bistable kirigami cell that takes
the shape of the two (7, j)-quads as its stable states. It-
erating on it produces two global patterns, one with the
desired overall square shape and another with the desired
bowtie. However, each has small gaps between neighbor-
ing unit cells due to the spatial variations of the lattice
vectors (see Fig. S5 in the Supplemental Material[56]).
A final averaging step glues each pattern together and
furnishes the kirigami designs for the two shapes shown
in Fig. 6B.

The averaging part of the design procedure yields pan-
els in the bowtie that are distorted slightly from their
counterparts in the square pattern, meaning that the
transformation is not stress-free. To verify bistability,
we supplement the procedure with a truss based model
of the pattern under loads in Fig. 6C, based on the
bar-hinge model of Ref. [57]. The model assumes that

the square pattern is the stress-free reference configura-
tion, that bars deform only axially, and that their mate-
rial is linear elastic (see Supplemental Material, Section
S57.D[56]). The pattern is then supported by rollers on
its left boundary and loaded by a uniform set of horizon-
tal nodal forces F' on its right (Fig. 6C-1). The overall
horizontal displacement, denoted d, increases smoothly
under force control until the configuration in Fig 6C-2,
where it jumps from d/|€§| =~ 1 to d/|€}| = 1.6 on a fur-
ther increase of load. Unloading after the jump, the curve
crosses the zero force axis away from the origin, provid-
ing a demonstration of bistability. The bowtie shape of
Fig. 6C-3, showing small residual strains, is the second
equilibrium configuration.

The key point is not that we have identified a square-
to-bowtie bistable design, it is that the procedure is ex-
ceedingly simple and general. It only relies on the fact
that we have a one-to-one "regular” quad mesh of the
two stable states with lattice vectors that vary slowly
from quad to quad (regular means that the meshes can
be mapped bijectively to a connected subset of the Z2
lattice). Such meshes are easy to obtain for a wide va-
riety of shapes, so our procedure can be employed for a
myriad of target bistable patterns. Fig. 6D-E illustrate
two such examples, a "beating heart” and a square-to-
disc transformation.

For the heart, we mesh the compact state (see Fig. STA
in the Supplemental Material[56]) using the ‘Quasi-
Structured Quad’ setting from the freely available soft-
ware Gmsh [59], and dilate this mesh to obtain the
enlarged meshed state. The design procedure iterates
through the cells in these meshes to produce the kirigami
pattern. We have studied a variety of dilation factors
A > 1. Increasing this factor monotonically leads to a
compact state where the slits degenerate to lines (closed
slits), and a dilated state where the slits tend towards be-
ing fully open. At sufficiently large values for A, the pan-
els begin to overlap in the compact state, violating the in-
equality constraints in Eq. [2]. Fig. 6D shows a A =1.25
design obtained by our methods. This level of dilation is
actually quite impressive given the heterogeneity of the
cells and certain basic limitations of quad kirigami. The
rotating squares pattern, for instance, transforms from
its fully closed to fully open state by a uniform dilation
of \y¢ = V2 ~ 1.41, which likely sets the theoretical
upper bound on dilation for these types of patterns.

Our last demonstration of heterogeneous morphing
in Fig. 6E showcases a square-to-disc kirigami pattern.
The quad mesh precursors are obtained by discretiz-
ing the square domain uniformly on (—1,1)? using a
40 x 40 set of square cells, and then deforming this mesh
smoothly to the unit disc by the Elliptical Grid map-
ping (z,y) — (zy/1 —y%/2,y/1 — 2?/2). This mapping
spreads the mesh distortions smoothly from the interior
to four singular points, corresponding to the deformed
corners of the square (see Fig. S7B in the Supplemen-
tal Material[56]). The design procedure accounts for this
spreading by producing cells in the square whose slit area
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of the theory and the trends in the target elastic proper-
ties. Open questions remain. The fine details of fabrica-
tion introduce features not present in the current design
framework, e.g., hinge elasticity, beam buckling or panel
bending. One challenge is to adapt the framework to ac-
count for these details, while still remaining an efficient
design tool. Another avenue concerns generality. The ba-
sic ingredients to our framework are geometric perturba-
tions of a unit cell and intercell compatibility constraints.
As these ingredients are found across metamaterial tem-
plates, design formulas that hard encode bistability, like
Eq. [1], are perhaps ripe for discovery in a wide range of
metamaterials.
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S1

SUPPORTING INFORMATION TEXT FOR “PROGRAMMING BISTABILITY IN GEOMETRICALLY
PERTURBED MECHANICAL METAMATERIALS”

S1. THEORY FOR DESIGNING BISTABLE PLANAR KIRIGAMI

First stable state Second stable state

FIG. S1. Perturbed rotating-squares kirigami and design recipe (repetition of parts of Fig. 1 from the main manuseript). (A)
Unit cell in its first stable state, indicating the design vectors, and (B) periodicity constraint. (C), (D) Second stable states of
(A) and (B), respectively, obtained by rotating each panel by an angle ¢;.

S1.A. Design parameters and compatibility conditions

Fig. S1 illustrates the 2D vectors sq,...,v4, €2, ..., £2 and 2D rotations

_ |cos¢; —sing; .

R(éﬁ) - I:Sinﬁbi COoSs QB‘S :| El = 11 e 14) (Sl)

parameterizing a bistable planar kirigami design, just as in the main text. These parameters are subject to equality

and inequality constraints for a compatible design, which we now enumerate based on visual inspection of the figure.

The s4,..., V4 vectors must form closed loops when they are associated to the boundaries of a panel or a slit. From
Fig. S1A and B, the eight total loop conditions associated to the four slits and four panels of the repeating cell are

Sl+52+53+54:01 t1+t2+t3+t4:0, ll]+ll2+ll3+ll4:0, V1+V2+V3+V4:0,

S2
Sl—tl—ul-l—Vl:O, Sz-tz-“z—’-"g:o, Sg—tg—U3+V3:0, 54—t4—U4+V4:0. ( )

The second stable state is obtained by rotating the panels according to Fig. S1C. These rotation transform the
S1,...,Vy4 vectors to s; = R(¢;)s;, t; — R(¢i)ts, u; — R(g;)wy, vi = R(g;)vi, 2 =1,...,4. These deformed vectors
are also subject to loop compatibility conditions. From Fig. S1C and D, the slit loop conditions for the second stable
state are

R(¢1)s1 + R(d2)s2 + R(é3)ss + R(d4)sa =0,  R(¢1)t1 + R(d2)t2 + R(ds)ts + R(¢a)ts =0,

R(61)us + R(é2)uz + R(da)us + R(éa)us = 0, R(d1)vi + R(do)va + R(d)va + R(da)va=0. )

The panel loop conditions for this state are trivially implied by their counterparts in the second line of in Eq. [S2]
and are thus not a constraint. Periodicity implies its own set of equality constraints on these parameters. We deduce
from Fig. S1A and B that reference Bravais lattice vectors satisfy

f{%:ll]—i—llg—vl—v'g, £§=u1+u41—51—54. (84)
Similarly, from Fig. S1C and D, we deduce that
€7 = R(¢1)u1 + R(d2)uz — R(61)vi — R(d2)va, £ = R(¢1)us + R(pa)us — R(41)s1 — R(¢a)s4. (S5)

Egs. [S2-S5] complete the description of the equality constraints governing a compatible design for bistable kirigami.
We now pursue a formulation of all inequality constraints associated to such designs. The basic point is that when
four vectors close a loop, they need not always form a convex quadrilateral. Whether they do or not depends on
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how the vectors are oriented in space relative to each other. Our designs require all the panels and slits to be convex
quadrilaterals, hence the need for additional constraints.

The inequality constraints again follow from visual inspection of Fig. S1 (by essentially taking a 2D version of the
cross products associated with the vectors around slits and panels). The convexity conditions for the four slits in the
first stable state are

R(5)s1-s2 >0, R(5)s2-s3>0, R(F)s3-s4>0, R(F)ss-s1>0,
ti-R(5)t2>0, t2-R(F)t3 >0, t3-R(5)ts >0, ti-R(5)t1 >0,

S6
u; -R(5)uz >0, uz-R(F)uz >0, uz-R(F)uy >0, uy-R(F)u; >0, (S6)
R(5)vi-ve >0, R()va-v3>0, R(F)vs-vy>0, R(F)vy-vi>0.
The convexity conditions for the four panels in the first stable state are
R(5)t1-s1 >0, R(5)vi-t1 >0, R(FH)ur-vi >0, R(F)s1-u; >0,
R(g)ug -89 > 0, R(%)Vg -ug > 0, R(%)tg -ve > 0, R(%)SQ -to >0, (S?)
R(g)tg -s3 > 0, R(g)V3 -t3 >0, (g)u:g -vg > 0, R(%)Sg, -ug > 0,
R(g)u4 ©S4 > 0, R(%)V4 -uy > 0, R(%)t4 CVy > 0, R(%)S;; -ty > 0.
The last set of convexity conditions are for the four slits in the second stable state. These conditions are given by
replacing the si, ..., vy vectors in Eq. [S6] with their deformed counterparts, i.e.,
R(%)R(cbl)sl R(¢2)s2 > 0, (%)R(%)SQ R(¢s)s3 > 0, (%)R(¢3)53 R(¢a)sa >0, R(F)R(d4)ss-R(
R(¢1)t1 - R(5)R(¢2)t2 >0, R(p2)t2 - R(5)R(P3)ts >0, R(¢s)ts  R(F)R(da)ts >0, R(da)ts R(F)R(
R(¢1)ur - R(5)R(d2)uz > 0, R(d2)uz R(F)R(d3)uz >0, R(¢s)us-R(3 )R( 1)ug >0, R(da)us - R(F)R(
R(g)R(qf)l)Vl R(¢2)V2 > 0, (g)R( ) R(¢3)V3 > 0, (% R ) ((Z)4)V4 > 0, R(%)R(¢4>V4 ((bl)vl > 0

(S8)
Similar to the loop conditions, the convexity conditions of the deformed panels are implied by the reference versions
in Eq. [S7]. While there are most certainly redundancies in the 48 inequalities in Eqgs. [S6-S8], this issue is not so
important as to be worth refining the equations.
We now introduce a final set of inequalities to address an important technical issue associated to the designs,
namely that the second stable state should be distinct from the first. This condition is achieved by the four inequality
constraints

(det[R(g1) — R(92)])? > 0, (det[R(g2) — R(6a)])? >0, (det[R(¢s) — R(6a)])2 >0, (det[R(s) — R(1)])? A
S9
imposing that rotations of neighboring panels in Fig. S1C are distinct. At first glance, it might appear that we have
assumed too much by these inequalities. However, if two neighboring panels rotate the same, then the corresponding
sides of the central (sy,...,s4)-slit are simply reoriented. Using the law of cosines, it follows that the other two sides
of the convex slit must be reoriented in the exact same fashion since they cannot change their lengths. Thus, for a
compatible design, all the panel rotations of the second state are the same if any two adjacent panel rotations are the

same.
Egs. [S6-S9] enumerate all the inequality constraints associated to a compatible design. Overall, they form a list of
52 nonlinear inequalities of the form

5.6, 0.v,£,) > 0 10
using the notation
S1 ty u; Vi gﬁ
_ |S2 _ |t _|ug |2 Ny B
5= S3 ’ t= ts o U= us V= V3 ’ L= EID ’ ¢ - (¢17 ¢27 ¢3a ¢4) (Sll)
S4 ts Uy \Z! P

for organizational purposes. This list of inequalities, combined with Eqs. [S2-S5], furnish the necessary and sufficient
conditions for a cell-based quad kirigami metamaterial with at least two stable states of specified lattice vectors
R g} gD gD,
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S1.B. Solving the equality constraints

We now derive the key design formula parameterizing the equality constraints in Egs. [S2-S5]. First eliminate
Vi,...,Vy via the parameterizations

vi=—-s1+t;+u;, vg=-—-89+ty+uy, vy3=-—sS3+ts3+us, vyg=-—s4+ts+uy. (812)

Next observe that the conditions vi 4+ va+vs+vy = 0 and R(¢1)vi + R(¢2)ve +R(¢s)vs +R(¢4)vs = 0 are implied
by the remaining unsolved loop conditions

i=1,...,4 4 4 i=1,...,4 4

i=1,..., i=1,...,4 i=1,..., i=1,...,
(S13)
The first three of these conditions are solved by
Sy = —S1 — Sg — 83, t4 = —tl — tg — t37 uy = —u; — ug — us. (814)
Substituting this parameterization into the final three loop conditions gives
Aqysy + Agysy + Aszgsy =0, Aqgty + Aggty + Agyts =0, Aggu; + Aggun + Azguz =0 (S15)

using the definitions A;; = R(¢;) — R(¢;). Egs. [S12] and [S14] turn the Bravais lattices conditions in Eqs. [S4] and
[S5] into equations of the form
Kff:lersthl—tg, Zf:52+53—u2—u3,

D D (816)
L7 =R(¢p1)(s1 —t1) + R(p2)(s2 — t2), £y = Apsus — R(pa)(uz +u3) — Aqas1 + R(ds)(s2 + s3).

Solving Egs. [S15] and [S16] completes the description.

Observe that there are 14 total constraints and 30 total DOFs in the 7 remaining 2D vector equations above.
We solve these constraints by prescribing tq,t2,u1,uz,83,t3,u3 and leaving sy,so, €5 25 €0 €D ¢y, ... ¢4 as free
DOFs. Note that Ajz, Agg, Aszg, and Ay are all invertible under the inequality constraints in Eq. [S9] necessary for
a compatible bistable design. Thus, Eq. [S15] is solved by prescribing

s3 = —A (A8t + Assy), tz = —AL (Argts + Aoste), uz = —AZ (A + Asguy). (S17)
Direct substitution of Eq. [S17] into Eq. [S16] leads to the conditions
£ =51 —ty 455 — b,
0 =55 — A§41 (A1451 + A2452) —us + A§41 (A14u1 + A24uQ),
= AL Av(ug —s1) + A Ags(uz — s2),
€7 = R(¢1)(s1 — t1) + R(2) (52 — t2)

(S18)
=R(1)e] — Ara(s2 — to),
2D = Ajqu; — R(gs)(uz — A/ (Argur + Agguz)) — Agsy + R(¢s)(s2 — Azl (A1ss1 + Azsss))
=R(p3)Az Ars(ur —s1) + R(¢a) Az Ags(uz —s2)
= R(¢3)€5 — Ags(uz —s2)
after standard algebraic manipulations. It follows that the last two equations in Eq. [S18] are solved by
to =80+ ALY — ALR(41)6), w =5, — ALY + AR(¢3)e5. (S19)
Plugging these formula back into the first two equations in Eq. [S18] and rearranging terms gives
t1 =51 +8— £ — (s2+ AL 47 — AL R(1)€])
=81+ AR (¢ — AP,
1 12 (¢2) 1 12 1 (820)

u; = 81 + A;41A34e§ + A;41A23(52 — (SQ — A;;KQD + A;;R(qﬁg)ff))
=s1 - AL R(0)G + AL LS.



S4

The parameterizations in Eqgs. [S12], [S14], [S17], [S19] and [S20] can now all be written in terms of the desired free
variables sy, sg, £, 05 P £D ¢, ... ¢4 through the system of equations

s [ A AL —I- A A 0 0 0 0
s “1-A AL A Ay 0 0 0 0
t I 0 A R(¢2) 0 AL 0
t, 0 I —ALR(¢) 0 A 0
t3 AzAn —1- A3 Ax —AG R(¢) 0 Azl 0 S1
ts “I-AG AL A Ax A R(é) 0 Az 0 S2
u | I 0 0 AR(¢s) 0 —ALM| |€E So1
w| 0 I 0 AGR(d3) 0 —AG| |£F (821)
uz AAL —T—- A A 0 —AR() 0 AL | |
W -I- A:;Ll Ap A?T41A23 0 _ALlR((bl) 0 Azﬁl 7
vi i 0 ALR(G) ALR(G) —Aj —Ay
32 0 I *AI%R(%) AR (63) Afzi *A%;
Vi Az, 9141 -1 _ﬁ34 Ags _A7314 R(¢4) _A2_31R(¢2) Asél A%S
o -1 — Az Ay Az Agg Az R(¢s) —ALR(¢1) —Ag, A411 -
Since each A;; = R(¢;) — R(¢;) depends only on the angles ¢;, ¢;, this equation is structurally of the form
S3
Sq S1
t| =D(¢) |s2], (S22)
u £
v

using the notation in Eq. [S11]. This result is the desired design formula, and is also reported in the main text.

S1.C. Parameterization of the inequality constraints

The parameterization of all inequality constraints in Eq. [S10] can now be simplified given the solution to the
equality constraints as

gioneq(shs%&q&) = {fineq(s, t,u, v, £, ) ’ s3,84,t,u, v solve Eq. [S22]} > 0. (S23)

We optimize kirigami designs subject to these inequality constraints. In the optimization, we consider the Bravais
lattice vectors as a set of specified designer inputs by treating £ = £ as a fixed list. The version of the inequality
constraints introduced in the main text is then

gineq(sla S2, ¢) = g?neq(sla S2, Z, ¢) —el 2 0 (324)

where €1 is a 52 component array with every element taking a small value 0 < € < 1. The purpose of this modification
is twofold: 1) From a purely numerical perspective, we need to replace the strict ”>" inequality in Eq. [S23] with
one that allows the boundary case ”>" to formulate a standard constrained optimization problem. 2) A positive
€ also prevents the slits from closing and the panels from converging to a line on optimization; it thus serves as a
simple tuning parameter that can make optimized patterns more amenable to any limitations that might arise from
an experimental fabrication process.

S2. ELASTIC ENERGY AND OPTIMIZATION
S2.A. General setup

This paper tunes the designs of bistable kirigami patterns by optimizing objective functions of the form

min {fobj (517 S2, ¢) ’ gineq(sl7 S2, d)) > 0} (825)

Our primary interest is in objective functions that can assess and optimize features of the stored elastic energy of
the kirigami. The challenge is that calculating an elastic energy based on high fidelity modeling, like FEM or even
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Periodic
motion

FIG. S2. Model for the stored elastic energy. Corner points are replaced by springs and the pattern is subject to a periodic
motion composed of rigid rotations and translations of the panels. (A) Labeling of points x;; and sides s1,...,vs prior to
deformation. (B) The motion distorts each cell according to lattice vectors £; and £2, which elongates the springs through eight
repeated g;; gap vectors.

bar-hinge based modeling, is not efficient and thus creates a huge bottleneck in the optimization process. We instead
develop an elastic model that can be implemented directly into Matlab and evaluated using its fast solvers.

Our approach is illustrated in Fig. S2. We model the corner points of the kirigami pattern as linear springs of zero
rest length and unit modulus and subject the pattern to the following simplified family of ”elastic” distortions: First,
we rigidly rotate and translate each panel in an individual unit cell through the 2D rotations R(7;) and corresponding
2D translations c;, i = 1,...,4, as labeled. Then, we repeat these panel motions cell by cell along a set of Bravais
lattice vectors £; and €5 to achieve a bulk effective deformation of the pattern. As a concrete illustration consistent
with the notation in S2A-B, the first panel in the cell has its corner points deformed as

X21 — R(m1)x21 + ¢y, x41 — R(m)xa +cy,

526
Xa1 +t1 = R(m)(Xa1 +t1) + €1, X21 —ur = Ra(m)(X21 — ) + ¢q; (526)

the first panel in the adjacent cell to the right has its corner points deformed as
X1 + €7 = R(m1)Xa1 + ¢1 + 41, Xa1 + £ = R(m)Xar + €1+ £y, (S27)

Xq1 + b1 + 08— R(m)(Xa1 + 1) + €1 + €1, Xo1 —ug +£€f = Ry (1) (x21 — w1) + €1 + £5;

and so on. Fig. S2B sketches the output after all the panel are deformed by this procedure. Gaps typically form
between adjacent panels and are repeated periodically throughout the sample. They are quantified by eight gap
vectors g;;, ij € {12,23,34,14,21,32,43,41}, that satisfy

(R(T?%) - R(n}))xij +c — C; if i'.;" € {21)32) 34) 41}1
gij = { (R(m) — R(ny))xj + € —¢; + €1 — R(m)ef  if ij € {12,43}, (528)
(R(m:) — R(nj))xij + i — ¢j + € — R(ns)eff  if ij € {23,14}.
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The stored elastic energy per unit cell due to the assumed spring model is thus

spring energy per cell = Z lgi;? + |gjil?
ij€{21,32,34,41}
= Y IRm) — R))xij + i — ¢+ [(R(n) — R(m:))xji + ¢ — ¢i + & — R(m;)£f |
ije{21,34}
+ > R = R(my))xis + ¢ — ¢ + [(R(n;) — R(m))xji + €5 — ¢ + £ — R(n; )5
ije{32,41}
= EQ,.(n1,m2, 03, T4, €1, C2, €3, €4, £1, £3).
(S29)
In the remainder of this section, we minimize the excess DOFs above, after accounting for invariances, to develop a
stored elastic energy for the design that is a function of a single actuation angle.

S2.B. Minimizing out the translations and Bravais lattices

First we develop an analytical expression for the solution to the minimization problem

— : 0
Egspr(m,m2,m3,m4) = , min Egpr(m1,m2,m3, M4, €1, €2, €3, €4, €1, £2), ($30)

£1,£2€R?

leading to the result in Eq. [3] of the main text.
The energy above is quadratic in each variable being minimized. As a result, this minimization problem involves
only the linear algebra of finding a critical point. Observe that

TR L T P L e ——)

aaE;O;r =2 :%gcz;:Tgm + 2 %gclj Tg12 +2 %g(ig Tg23 +2 %gcgj Tg32 = 2(g21 — 812 + 8oz — ggz),

8§i,r _ 5 :%gc?: g 42 :%gcz?): g 42 :%gc?: g2 :%gc?: "5 = 2 — o5 + 851 — 15), .
35 = 2[ B0 gy o[ TNy o[ B o[ P 2 — g+ g — ),

a{fg?” = 2[%%;12}%12 +2 {%‘f’rgm = 2(g12 + ga3),

=2l e =2 )

using the linear dependence of the gap vectors in Eq. [S28] on the variables being differentiated. The minimizers
in Eq. [S30] are given by any collection of vectors cy,...,cq4,£1,£€2 that makes these derivatives vanish. Following a
straightforward manipulation of the right side of Eq. [S31], these six derivatives vanish if and only if the gap vectors
satisfy the five vector equations

843 = —812, 823 = —814, 832 = —841, G344 = —G21, L1221 + 814 — 811 =0. (S32)

That there are only five equations to solve for these six derivatives is fully expected, since the elastic energy is invariant
under a translation of the pattern. In pursuit of a solution, observe that

843 + 812 = Alyxuz + Alhx12 + €1 — ¢ — ¢34+ ¢4 + 26 — (R(m1) + R(na)) L7,
834 + 821 = A, X34 + AJ X917 — €1 + €2 + €3 — Cy,
23 + 814 = AliXo3 + AlyX1a + €1 + €2 — €3 — cs + 26 — (R(m1) + R(n2)) €5,
832 + 811 = Alxso + A X471 — €1 — €2+ €3 + €y,

812 — 21 + 814 — 811 = ATy (X12 + Xa1) + 2(c1 — €2) + £ — R(m1) € + ATy (x14 + Xa1) + 2(c1 — cq) + £o — R(n1 )£
(933)
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using AZ— = R(n;) — R(n;) for short. Setting these equations to zero and rearranging terms gives

4 = %(A?Q(X21 —X12) + Als(x34 — xu3) + (R(m) + R(m))ffz),

Ly = <A§’4(X41 — x14) + Ay (x32 — x23) + (R(m) + R(nz))ff)a

Cy—cC1 = é(A T, (5%41 + x14 — £17) + ATy (x12 + x01 — £57) + ATy (3x32 — X23) — Aly(x34 + X43))7 (S34)
C3 —C4 = é(Al’g (534 + X43) + Ay (x32 + X23) + ATy (3x21 — x12 + 52 ) — AT (%41 +X14 — 8{{)),

cy—cCp = é(A?2(5X21 + X109 — €5) + AL (3%34 — x43) + AV, (x41 + X14 — £57) — Al (x30 + X23))-

Substituting this parameterization back into the gap vectors gives the minimizing vectors

1
=3 (A?z (3x12 — Xo1 + €5) — AV, (x41 + x14 + 365) + Al (x34 — 3x43) + Ay (x32 + X23))

812 = —843 3
1
:g(z 3 Rm)si —3 Z R(n;) uL+4 Z R(1; vz>,
=1, 4 =14 a=Tl.4 =1
1
821 = —83 =3 (A?Z(_3X21 +x12 — €8) + AL (3%34 — x43) + AV, (x41 + X14 — 5{?‘) — A (x32 + X23))
1
- g(_4 3 R()si+3 Z R(1:)t; Z R —2 Y R(m)vi),
=1, .4 =1, .4 =1, .4
, (S35)
814 = —823 =3 (A7174(3X14 —x41 +£) — ATy (x12 + Xo1 + 355”) + A7 (x30 — 3x23) + A5 (x34 + X43))
1
= §(3 R(ni)si—2 >, Rti—4 > Rmjw+ > R(Th‘)Vz‘),
i=1,..4 i=1,..4 i=1,..4 i=1,..4
1
gn =g =g (A?4(_3X41 + %14 — €8) + AT, (x19 + X1 — £5) + A (3x30 — X23) — Al (x34 + X43))
1
Zg( Z R(n)si+4 Y Rti+2 Y R)wi—-3 > R(m)w)
i=1,..4 i=1,...4 i=1,..4

where the second equahty in each formula is the result of a careful manipulation using the correspondence between
design vectors sy, ..., vs and points x;; in Fig. SIA and Fig. S2A, as well as the loop conditions in Eq. [S2].
This derivation reveals an analytical expression for the minimization in Eq. [S30] of the form

Eizl, 1 R(ni)si 1831 Z 4I 1}%1 Zizl)mA R (7:)s;
_ Zi:l R(Th)tz ST 121 HI I =1, R(mi)t;

Espr(771777277]3a774) - Ei—l, R(nz)uz . %I %Z&I }%I 7§ Zi:l,...,4 R(ni)ui ) (836)
21:1, 1 R(™i)vi %I il —31 151 Zi:l,...,4 R(n:)v;

=G
spr 10 Eq. [S29] with the gaps formulas in Eq. [S35].
Eq. [S36] is Eq. [3] in the main text. The matrix G € R8*® defined above is symmetric and positive definite.

specifically, by combining the first line of the definition of E?

S2.C. Actuation energy and the energy barrier between stable states

The elastic energy in Eq. [S36] is formulated in terms of four angle variables, corresponding to the four panel
rotations of each unit cell. We now formulate an elastic energy for the pattern’s motion between the two stable states
through a combination of invariances and further energy minimization. This energy is written in terms of a single
generalized displacement variable called the actuation angle.

Assume that Eq. [S21] holds for the design vectors si,...,v4 and angles ¢1,...,¢4. The energy in Eq. [S36] has
the following properties

(invariance under rigid motion:)  Egp(n1 4+ n,m2 + 1,13 + 0,04 + 1) = Espe(m1,m2,03,m4), 1,71, -.,ma ER,
(first designed stable state:) FEq,:(0,0,0,0) =0, (S37)
(second designed stable state:) Egpe(d1, 2, @3, 04) = 0.
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Thus, one of the four angles is redundant on energy minimization since it describes an overall rotation of the pattern.
We therefore fix the first angle to set this overall rotation and define the actuation energy as

Eact (g) = min Espr(¢1a ¢1 + 57 13, 7’4) (838)
n3,M1 ER

The actuation angle & is the relative rotation angle between the first and second panel of a unit cell, after minimizing

out all other DOFs under the assumed panel motions. It thus provides a quantitative measure for how the slits are

opening/closing during the actuation from one stable state to another. Mathematically, F..t(£) = 0 when & = 0 and

when £ = ¢ — ¢1, reflecting the two designed stable states. The interval between these angles furnishes the energy

barrier to actuation via

max F, if g — >0
Eb _ €€(0,drm 1) act(&) ¢2 ¢1 (839)

max Fy. if o — 1 < 0.
£€(p2—¢1,0) t(ﬁ) 2=

After imposing the bistability constraint in Eq. [S21] and prescribing a shape change through £ = £, the energies
Esopr, Egpry Eact and Ey, depend on the design variables s, so and ¢, in addition to the kinematic variables noted in
their derivation. We can tune these variables, and thereby the bistable kirigami design, by optimizing an objective

function of the form
fovi(81,82,9) = |Ep(s1,80, ) — E;"8|? (S40)

for a specified target energy barrier E;*®. The main text presents a detailed example of such tuning.

S2.D. Optimizing for stiffness

Another natural quantity to tune, beyond the energy barrier between the two stable states, is the stiffness of these
states. For simplicity, we focus on the stiffness of the first stable state, as the other can be obtained by analogous
reasoning.

A typical stiffness measure is formulated with respect to some strain or stretch measure. In this exposition,
we consider the stiffness with respect to a simple characteristic stretch A(§), defined as follows. First note that a
characteristic length of a kirigami cell in it first stable state is

121 = [uy — vi + ug — vy (S41)
per Eq. [S4]. Its counterpart in the second stable state is
7] = [uy — vi 4+ R(d2 — ¢1)(uz — v2)| (S42)

per Eq. [S5]. The ratio of these two quantities defines a stretch relating the stable states. Moreover, the actuation
angle £ is zero in the first stable state and ¢o — ¢1 in the second. Consequently, we take the characteristic stretch to
be

_ w = vi + R(E)(uz — va)]|
lur — vy +up — v

A(E) (543)

during the actuation from & =0 to & = ¢2 — 1. A
The stiffness with respect to this stretch is as follows. Set Fact(A(§)) = Fact(§) and observe that

Eje(€) = Byt MEN€), Erer(6) = Bl ME) (N (€))” + Edce(A(€)A"(©)- (S44)

As the first stable state corresponds to (£, A(£)) = (0,1) and is a minimizer of F,.t(§), we conclude that the desired
stiffness is

ki = El (1) = (V(0) 2 El, (0) (545)
provided that X (0) is nonzero. To derive an explicit formula for ky, we first Taylor expand the spring energy in
Eq. [S36] about the first stable state to obtain the leading order quadratic form associated to the spring energy in a
neighborhood of this state. We then link these quadratic forms to the second derivatives of the actuation energy and
supply a formula for A'(0) to complete the derivation.
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The loop conditions in Egs. [S2] imply that, on Taylor expansion, the first stable state satisfies

2i1,..a R(0n;i)s; R(Z)s; R(Z)sy R(Z)s3 R(Z)ss] [m
Ei:l,...AR(dnz’)ti _ R(g)tl R(%)tz R(%)t:’) R(%)M dn2 +O(|6n|2).
>oim1,. 4 R(On)w; R(5)u1 R(5)uz R(5)us R(F)us| |73 (S46)
i=1,....a R(OM:)v; R(3)vi R(3)v2 R(3)vs R(3)val Lons
——
=én
A Taylor expansion of the spring energy around this state gives that
T
om S1 S2 S3 S4 S1 S2 S3 84 om
57]2 t1 t2 t3 t4 tl t2 t3 t4 5172 3
B (0n1,...,0m4) = . G O(|o6 .
pr (O 1) = A spa | fuy us us uy W ous ug uy| |ong| TOUN) (547)
oMy Vi V3 V3 Vi Vi Vo Vs Vgl [0ng
=%K1
As a result, the actuation energy near the first stable state is
0 0
Fat(08) =  min _ Eup(0,66,0m5,0m) = min 4~ | 06|k | 96| L o). (S48)
’ Sng.onaeR DTN 5ns.onack | 2 | 073 on3
N4 dna
To organize the calculation, we introduce the scalar, vector, and matrix defined as
K] [K1]32 (Kilss [Ki]ss
k() — K k() — [ 1/23 — 1 KO — S49
1= (K, 1 [K1]24 (Kilaz|’ 1 K134 [Ki]aa|’ (849)

where [Ki]y; indicates the kI component of the K; matrix. Minimizing out the last two variables in the quadratic
form leads to

(k) — k9 (K)T'K))6e2 + 0(6e%).  (S50)

N =

55 0 (AVA 55
Boe(56) = min_ 4 = |ong [I’j%) “}g%} oms | ¢+ 0(66%) =
1 1

/ R
onsz,0na € 2 5774 5'(]4
-1 o . .
Thus £, (0) = k9 — k9 - (K(l)) kY, which in terms of the design vectors si, ..., vy is
-1
S S S S3 S s
; ? 2 ST ... v ? T ... v 8o T .o VT 2
E0)=2]:]|-G|:|-2 G 2 G 2 G
aCt( ) . . SZ . V;{ SZ . VZ SI . V};
Vo Vo Vo V3 V4 Vo
kg B —a<)! B

(S51)
To complete the derivation, we provide a formula for \'(0) in terms of the design vectors. Observe that

Cw = viFug - vo + 0ER(5)(ug — vo) + O(66%)] (ur —v1) - R(5)(uz — va)

A0E) = =149
(6¢) [ug — vy +ug — v +og |lug — vy +uy — vol?

L 0@ (S52)

on Taylor expansion, since |v + dv| = |[v| + [v|71v - dv + O(|dv|?). So we conclude that
(u —v1) -R(F)(uz — vo)

[ug — vi +ug — vof?

N(0) = (S53)

The formulas in Eq. [S51] and Eq. [S53] furnish an explicit description of the stiffness k1 = (X' (0))72E”.,(0).
Since this stiffness is subject to the bistability constraint in Eq. [S21], it depends only on the tuning variables sy, s;
and ¢ after applying this constraint to the above formulas for a fixed shape change £ = ¢, i.e.,

kl = k‘l (Sl7 So, ¢) (854)

In the main text, we present examples where we optimzie both for stiffness and a target energy barrier by considering
objective functions of the form

fobj(sla S2, ¢) = Cb\Eb(ShSQ, ®) — EZ‘“gIQ + 01|k1(517 S2, ) — kgmg\Qa (855)

for a specified target stiffness k] > 0 in the first stable state and target energy barrier E,*"® > 0. The weights of
the parameters ¢, > 0 and ¢; > 0 are carefully assigned to best achieve the multiple objectives.
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FIG. S3. Flowchart of numerical aspects to the optimization framework.

S2.E. Numerical implementation

The numerical framework for the constrained optimization problem employs the fmincon toolbox to perform a
sequential quadratic programming (SQP) algorithm in Matlab (R2023a). A flowchart of the procedure is illustrated
in Fig S3. To enable the optimization, we prescribe the Bravais lattice vectors £ for two stable states and constrain
the design vectors ss,..., Vv according to Eq. (S22). The eight remaining variables — the design vectors s; and s3
and four rotation angles in the array ¢ — are then optimized based on an assigned objective function fouj(s1,s2, @)
(for instance Eq. (S55)) and the inequality constraints gineq(S1,82, @) in Eq. (S24). Beginning with an initial guess
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xo = (89,89, #"), these variables undergo iterative update x; = (si,sk, ¢') using the SQP algorithm until a local
minimum of the energy is achieved. This procedure transforms the kirigami geometry from its initial guess Xy to an
optimal design Xop; = (S‘ljpt, Sgpt, ¢°P*) that accomplishes the target properties and meets the nonlinear constraints.

Given the non-convex nature of the objective functions and constrained sets, the optimized geometry obtained by
each simulation is dependent upon the choice of the starting point xy. As illustrated by way of an example in Fig. 4A
(main text), different initial guesses for the design can yield different optimized designs that achieve the specified
overall deformation and target energy barrier. Also, in some of the cases of extreme shape change in Fig. 4A-B
(main text), we are not able to achieve the target energy barrier, so we test several initial guesses to ensure that the
deviation from the target is robust. We have also explored other objective functions consistent with minimizing the
same objective, e.g., by replacing | - |? terms with | - | terms, and found that such modifications can sometimes lead
to improvements in the algorithms ability to find designs that get closer to the overall objective. To avoid ad hoc
procedures, we only present results for cases where the objective function and its fitting parameters are consistent
across all optimized designs being compared.

S2.F. Supporting information on the design exploration

The main text explores the design space of bistable kirigami by featuring a wide range patterns that exhibit axial
and shearing shape changes. One of the more intriguing findings is that extreme bistable designs seem to limit to
mechanism-based designs with parallelogram slits, even though we optimize for a finite energy barrier. Here we lend
further evidence to this finding.

Focusing on the axial setting (parameterized by the axial stretches A; and Az from the main text), we fix Ay and
progressively increase the value of A\ to generate optimized patterns until the algorithm is unable to find a design
that meets the given constraints. Fig S4A-C presents designs obtained in this setting by optimizing the energy barrier
using ¢, = 1,¢; = 0 and E;arg = 0.003. The coloring scheme reflects the energy barrier of the design achieved on
optimization. We see that, on increasing A; from its largest value in main text (A; = 1.3) to its approximate maximum
at a fixed Ay, a mechanism-based design with parallelogram slits emerges. This observation adds further credence to
the suggestion that there is perhaps a non-trivial universal relationship between bistable designs and mechanism-based
ones. Informally, our basic conjecture is that the boundary of the set of all bistable planar kirigami designs is a set
of mechanism-based designs.

A =13 M=19
- W - =
-

B =13 =17
el
-

C =13 M =15
- R - B
-

%1073

E, T T T T T 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0

FIG. S4. Pushing our design exploration to the limit. Designs obtained by increasing Ai, keeping A2 constant and equal to:
(A) A2 =0.9, (B) A2 = 1.0, (C) A2 = 1.1.
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S3. HETEROGENEOUS SHAPE CHANGE
S3.A. The design procedure

This section develops a numerical method to obtain bistable planar kirigami designs with specified heterogeneous
shape change. We use the example of a ”square-to-bowtie” transformation in Fig. S5 to illustrate the method. We
also present the details in four distinct steps.

e Step 1: Creating a quad mesh for the two stable states. The initial step entails creating a one-to-one,
regular quad mesh mapping from the reference state to the deformed state in 2D. The left part of Fig. S5A
shows an example of this type of meshing for the square-to-bowtie transformation. Such meshes can be achieved
for a wide variety of target shapes. For a suitable meshing of the two states, we label the mesh points in the
first state as X(4,7) such that neighboring (i, j) pairs correspond to neighboring %X(i, j) points. We also assume
that the mesh points of the second state, labeled ¥ (7, j), can be described by a sufficiently smooth mapping of
the x(i, j) points, i.e., that ¥(i,j) = @(x(i,7)) for all (i,7) for some sufficiently smooth 2D vector field ¢(x).
These assumptions simply formalize what is more-or-less the intuitive way to relate the two meshes bijectively.
We then define the lattice vectors as

PR N e pDys o mps L (S56)
el (Z,]):y(’L%’l,])*X(Z,‘]), e2 (/La]):)’(17]+1)7x(1’])'

Fig S5A-D highlight various aspects of the labeling of these meshes.

e Step 2: Initializing the design. The second step involves seeding the kirigami design starting from an initial
cell. In the example in Fig. S5A, we seed the first cell from the lower left corner quad with the Bravais lattice
vectors £ = £11(0,0) and £P = £P(0,0), i = 1,2. To do so, we solve the minimization problem in Eq. [S25],
wherein we typically use the objective function fobi(s1,s2, @) = —|Ep(s1,s2, ¢)|*> with the goal of producing an
optimized cell design with a high energy barrier between the two states. (The objective function can be defined
differently if needed, to help facilitate the design of a particular set of target shapes.) Once the optimization
is solved, we use the optimized variables s1(0,0), s2(0,0), ¢(0,0) to construct the two stable states of the
cell as follows: Let s3(0,0),...,v4(0,0) denote the design vectors obtained from the compatibility conditions in
Eq. [S21] for the now given s1(0,0), s2(0,0), ¢(0,0), £{5(0,0) and £5(0,0). A direct comparison of the notation
of a single cell in Fig. S1 and that of Fig. S5 furnishes a parameterization of the four corner points of the lower
left panel in the cell as

in the first state:

{5{(0, 0),%(0,0) +v1(0,0),%(0,0) + u;(0,0),%(0,0) + uy(0,0) — s1(0, O)}7

in the second state:

{¥(0,0),5(0,0) +R(¢1(0,0))v1(0,0), 5(0,0) + R(¢1(0, 0))u1(0,0),¥(0,0) + R(¢1(0,0))[u1 (0,0) — 51(0,0)] }.

(S57)

The other three panels of the cell are prescribed in an analogous fashion. The two stable states of the kirigami
cell are emphasized in Fig. SHA.

e Step 3: Marching to obtain the overall design. The next step involves generating a complete preliminary
pattern of the two target shapes by marching from cell-to-cell and solving a local optimization problem for each
unit cell. In this procedure, we choose to minimize the difference in design variables between neighboring cells by
introducing an objective function fobj(s1,s2,¢) = |(s1,s2,¢) — (s}™", 85", ¢pr°V)|2, where (s}, s5™Y, ¢pPrev)
is the optimized result computed from a neighboring cell in the previous iteration. The goal is to produce cell
designs whose parameters vary slowly from cell to cell. In the square-to-bowtie example in Fig. S5B, we march
along the rows as indicated. At a given (4, ) cell in the interior of the domain, we input the lattice vectors as £ =
£R(i,j) and €0 = £P (i, j), k = 1,2, and set (s}, 85"V, ¢P™) = (s1(i —1,7),82(i — 1,5), p(i — 1, 5)). (For a cell
in the left most column, the input for (s}"", s5™", ¢P™V) is the (i, j — 1) cell parameters.) The optimization then

furnishes s1(4,7),s2(%,5), ¢(i,7), while Eq. [S25] furnishes the remaining design variables s3(i,7),...,v4(4, 7).

We construct the two stable states of the cell exactly as we did for the intialized one. Specifically, we take the
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FIG. S5. Marching algorithm for bistable kirigami with target shape change.
(F) The final design is obtained by averaging out the incompatibilites.
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four corner points of the lower left panel in this cell as

in the first state:
{i(l,j),i(l,j) + Vl(Z,]),i(l,]) + u1(27])7)~<(27]) + ul(l>]) - Sl(iaj)}7
in the stable state:

{5’(17.7)’ 5’(27.7) + R((bl (iuj))vl (ivj)v S’(Z?j) + R(¢1 (i’j))ul (ivj)’ 5’(27.7) + R((bl (iuj))[ul (Z?J) - Sl(iuj)]}’

and so-on for the other three panels. Iterating over the entirety of the quad meshes produces the two preliminary
patterns that achieve the target shapes.

(S58)

e Step 4: Averaging gaps by gluing together. Although we have identified overall patterns with the desired
shapes, the procedure is completely local and cell-based. As a result, the panels within each cell are perfectly
compatible, but there are intercell incompatibilities in the form of gaps or overlaps between neighboring unit
cells. Fig. S5E shows examples of these incompatibilites for the square-to-bowtie transformation. The final
step of the procedure is to average the intercell incompatibilities to produce the two planar kirigami states
that approximate the target shape with a fully connected set of panels and slits. Fig. S5F shows the two state
obtained after averaging for the square-to-bowtie transformation.

Let’s assume that the first state is the manufactured one and thus stress free. Averaging the intercell incom-
patibilities in the last step leads to panels in the second state that are not necessarily rigid deformations of their
counterparts in the first, and thus incur panel strain not present in the periodic setting of bistable designs. Even so,
certain heuristics suggest that these patterns should still be bistable in the typical case. Specifically, our meshing
and optimization is designed to produce variables éﬁg (i,7), ZEQ(i,j), s1(2,7),82(4,4), and ¢(i, ) that vary slowly from
cell to cell. Our previous work homogenizing mechanism-based planar kirigami [53] shows that slow variations very
similar to the type in this procedure lead quantitatively to average panel strains that scale as O(I/L), where L is the
characteristic length of the total domain and [ is that of a single unit cell. Thus, for fine meshes with many slowly
varying quad cells, we expect the strain in the second designed state to be very small (albeit not zero). This suggests
that the second state, or something very nearby to it, should be stable.

It is also possible to numerically investigate whether or not the patterns obtained by this procedure are geometrically
bistable through bar-hinge modeling. By way of illustration, we have performed such an investigation for the square-
to-bowtie transformation in Fig. S5 and verified its bistabiltiy. As anticipated, the second stable state takes a bowtie
shape and is slightly internally stressed (see the main text for a more detailed discussion). The bar-hinge model used
for the verification is an ”in-house” Matlab code formulated in Section S7.

S3.B. Robustness to marching strategy

This section discusses the robustness of examples of heterogeneous shape change to the choice of marching strategy.
One strategy entails starting from lower-left unit cell and marching in a zig-zag fashion as depicted in Fig. S6-A.
Another involves initializing the algorithm from the central cell and marching by spiraling out as shown in Fig. S6-B.
In the case of the square-to-bowtie transformation, we have investigated both ways of marching, keeping all other
details of the procedure fixed. The right part of Fig. S6 shows the examples that emerge from these two ways marching.
The design variables do change slightly from cell-to-cell, as indicated by the table below. However, the overall designs
are qualitatively quite similar to each other. This result suggests that the marching algorithm is robust to small
changes in the way the algorithm is initialized. In other words, the design space for heterogeneous shape change
seems to be highly constrained rather than highly degenerate.

Design variables r{rllfﬁiw
x = [s1, 82, @) 1.057%

S3.C. Supporting information on examples

This section provides additional details about two complex heterogeneous examples of shape change, namely, the
"beating heart” pattern and the square-to-disc pattern from the main text.
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FIG. S6. Two marching algorithm procedures and the corresponding heterogeneous configuration results (Letters 'S’ in red
and 'E’ in blue denote the starting and ending cell). (A) From the lower-left corner to the upper-right (algorithm shown in the
previous section). (B) Spiral marching from the center towards the right-bottom corner.

e Beating heart pattern. To simulate the expansion of the heart, we first draw out the boundary of the heart
design via the 2D implicit function (x? + y? — 1) — 22y = 0. We then mesh this domain via the ‘Spline’
option in the meshing software Gmsh (version 4.11.1), selecting in the ‘Tools’ option the ‘Quasi-Structured
Quad (experiment)’ 2D algorithm since it exclusively meshes the shape using quadrilateral elements. By tuning
the ‘Element size factor’ and ‘Subdivision algorithm’ in the options, we can generate meshes with different levels
of refinement and number of elements. In some cases, the meshes obtained may not be suitable for the marching
algorithm to create an optimal design because they are not well-arranged for further iterative optimization.
Hence, we generate a feasible mesh by utilizing the ‘Refine by splitting’ method in Gmsh. Applying this approach
ensures that the quadrilateral meshes are well-organized in rows and columns, thus providing each unit cell with
specific neighboring cells that facilitate the implementation of our marching algorithm. Fig. S7(top) displays a
feasible mesh generated in this fashion, while Fig. S7(middle) illustrates the mesh used for the first stable state
of the heart in the main text. The latter mesh is modified from the auto-generated former one to exclude the
outer layer, as this layer has significant variations in the neighboring lattice vectors and proved difficult for our
marching algorithm to handle. The second stable state is obtained by dilating the modified mesh by a factor of
1.25, as shown in Fig. S7(bottom). Having generated the quad mesh for the two stable states, we proceed with
the same procedure as the square-to-bowtie transformation, thereby obtaining the whole design for the beating
heart presented in the main text.

e Square-to-disc pattern. The Elliptical grid mapping (z,y) — (z\/1—y?/2,y\/1—2%/2) is one type of
transformation that can square the disc. We use this mapping to generate a one-to-one quad mesh between the
two states and the corresponding lattice vectors necessary for the marching algorithm. Specifically, we create the
desired mesh for the square reference using a 40 x 40 set of square unit cells uniformly distributed on (—1,1)2.
We then apply the elliptical grid mapping to this mesh to obtain the second stable state of quad cells. Fig. ST-B
presents the one-to-one quad mesh mapping between the first and second stable states. The elements in the
center experience the least distortion, whereas the quads near the four corners of the square collapse the most,
resulting in the formation of four circular arcs in the deformed plane. The mapping smoothly distributes the
mesh distortions from the interior to the exterior layers. The lattice vectors are represented by the adjacent
sides in each quadrilateral. The full kirigami design is generated from these lattice vectors using the marching
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FIG. S7. Heterogeneous quad mapping for two examples presented in the main text. (A) From top to bottom, original mesh
grid, tailored mesh grid of the first stable state and of the second stable state of the "beating heart” pattern. (B) Mesh grids
of the two stable states of the "square to disc” pattern.

algorithm in approximately 50 seconds on a standard laptop.

S4. FABRICATION

In this section, we provide additional details on the design and fabrication of all types of specimens used in this work,
from the monolithic and bi-material ones, designed for in-plane morphing, to the out-of-plane morphing mono-material
ones.

S4.A. Monolithic kirigami

Planar kirigami found in the literature are typically monolithic, and feature panels connected via elastic hinges.
A common way to fabricate such metamaterials is by laser cutting rubber. While this strategy works well for
metamaterials featuring low energy modes of deformation, it does not work well for bistable metamaterials; in fact,
there is a limit to how thick of a rubber sheet one can laser cut, and thin sheets can lead to low out-of-plane stiffness
and, potentially, to loss of bistability. Thus, we adopt a strategy previously employed by Wu and Pasini [58], where
thick monolithic metamaterials are 3D printed out of thermoplastic polyurethane (TPU). In particular, we use a
TPU-95A filament on an Ultimaker 2+ printer, since this is the softest material of the Ultimaker material palette.
The steps we follow to design and fabricate these specimens are reported below. We let £ = || and £8 = |€Z]
characterize the lengths of the physical specimens.

e Step 1: We import the coordinates of the vertices of each panel of a unit cell (Fig. S8A) in Matlab, and scale it
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FIG. S8. Design workflow for monolithic specimens. (A) Unit cell from the theoretical design process, with its lattice vectors.
(B) Superposition of the theoretical unit cell with a modified unit cell, where we introduce a gap at each corner, as shown in
the detail. (C) Assembly of four cells as to create the outline of one of our specimens. (D) CAD drawing of the specimen to be
printed.

to the desired dimensions (¢ = ££ = 7cm for all specimens). In order to introduce elastic connectors between
panels, we duplicate each corner node of each panel, and set each couple of nodes apart by a desired distance
(Fig. S8B). In all our samples, we set this distance to £§¢/100. We then export the geometry outline of four unit
cells (Fig. S8C).

e Step 2: We import the geometry outline in AutoCAD and extrude the pattern, setting an out-of-plane thickness
of 1 em (Fig. S8D). The whole structure is exported as a STL file.

e Step 3: We import the file into UltiMaker Cura. We print using a 0.4 mm nozzle and set up the following
printing parameters: i) a layer height of 0.1 mm; ii) a wall thickness of 0.8 mm; iii) a top and bottom thickness
of 1.2 mm; iv) 100% infill density; v) a “lines” infill pattern; and vi) Ultimaker-preset values for printing
temperature, build plate temperature, and print speed. Once printed, the specimens are ready to be tested and
do not require additional post-processing.

S4.B. Bi-material kirigami

To avoid dealing with hinge energy, which can prevent patterns from exhibiting bistability, we resort to a design
for kirigami where panels are connected via actual pin joints. To try and create specimens that deform in plane, we
consider relatively-thick specimens where each panel is skeletal in nature, i.e., we replace each panel by an assembly
of eight bars and five hinges. To make sure that deformations are not localized at the hinges and to avoid excessive
dissipation caused by pins rotating against soft materials, we fabricate hinge regions out of stiff Nylon and bars out
of softer TPU-95A. Each panel is fabricated in a single shot, leveraging the dual-extrusion nature of our Ultimaker 3
printer. The steps we follow to design and fabricate these bi-material specimens are reported below.

e Step 1: We import the coordinates of the vertices of each panel of a unit cell (Fig. S8A) in Matlab, and draw
the outline of a skeletal version of each panel, which features hinge regions (outer radius = 5 mm, inner radius
= 1.5 mm) at each vertex location and at the center of the panel, and bars (width = 2.4 mm) connecting these
hinges (Fig. S9A). At this stage, we do not yet worry about the fact that our algorithms do not produce a
continuous outline of each panel.

e Step 2: We manipulate these files in Inkscape to remove some overlapping paths and create an actual panel
outline (Fig. S9B), and scale the geometry to the desired experimental size (£ = (£ = 10 cm).

e Step 3: In AutoCAD, we use the presspull command, starting from the panel outlines, to extrude the bars
and hinges to a height of 6.35 mm while maintaining height clearance at the hinges where each panel connects
with another panel (Fig. S9C). We also extrude rectangular sections on the sides of the hinges and create
subsequent cutouts at the ends of the bars to accommodate for the protrusion, as illustrated in the exploded
view of Fig. S9D; this is done to improve bonding between the two material phases. Once the 3D model is ready,
we export hinges and bars as separate STL files.
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[ I Theoretical panel
— Quter shape
— Inner lines

FIG. 89. Design workflow for bi-material specimens. (A) Outline of a theoretically-designed panel (gray quadrilateral) and
Matlab-generated “rough” outline of the skeletal version of the same panel (blue and red lines); note the presence of unwanted
red lines at the bottom-right hinge. (B) Actual panel outline after clean up in Inkscape. (C) Bi-material panel featuring nylon
hinges and TPU bars, as created in AutoCAD. Note that the height of the hinges is half of the bars’ height, so that the structure
has a constant thickness when assembled. (D) Exploded view of the panel, showing how the hinges protrude into the bars to
improve adhesion. (E) Assembly of a unit cell from four panels with pins and caps.

e Step 4: We import these files into UltiMaker Cura, where the hinges and bars are automatically matched up,
and set the following printing parameters: i) a layer height of 0.15 mm, the smallest recommended value for
TPU; ii) a wall thickness of 0.4 mm; iii) zero thickness for top and bottom layers, since delamination between
these top layers and the infill layers occurs when these layers have a non-zero value; iv) 100% infill density; v)
a “zigzag” infill pattern, for its ability to fill the most in between the outline of the walls of the bars; and vi)
Ultimaker-preset values for printing temperature, build plate temperature, as well as print speed.

e Step 5: Once all the panels are 3D printed, we clear them of any filament residue and assemble four of them
into one unit cell using metallic captive pins (McMaster-Carr part number: 95648A350) and caps 3D printed out
of PLA (Fig. S9E). When all four unit cells are assembled, we connect them together to form a 2x2 structure.

S4.C. Mono-material kirigami

Our final physical incarnation of the theoretically-designed bistable patterns features thin mono-material panels
laser cut out of PETG and assembled with push-in rivets. We choose PETG since it provides the right amount of
compliance with respect to more classical laser cuttable polymers like acrylic; the thickness is chosen to be small to
avoid high stresses that could lead to breaking of the panels near the relatively-weak hinge regions. These specimens
are designed to bend out of plane as they transition between stable states, and the steps we follow to design and
fabricate them are reported below.

e Step 1: Same as Step 1 for the bi-material specimens but, in this case, the Matlab script generates ready-to-cut
panel outlines (Fig. S10A).

e Step 2: In Inkscape, we replace the inner circles of all hinges — a step that is necessary since the circles created
in Matlab are not actual circular paths but assemblies of short straight lines.

e Step 3: We use these drawings to laser cut the individual panels (Fig. S10B) out of a 1.3 mm-thick PETG sheet
(McMaster-Carr part number: 9513K92). We set our 80W laser cutter (Epilog FusionPro 30) to 30% power,
10% speed and 100% frequency.

e Step 4: When all the panels of a unit cell are laser cut and ready, we assemble them using push-in rivets
(Fig. S10C, McMaster-Carr part number: 90136A630) as illustrated in Fig. S10D. Key to this assembly process
is making sure that cells are assembled on two-layers only. Once all four unit cells are assembled, we connect
them together using the push-in rivets to form a 2x2 structure as shown in Fig. S10E.



FIG. S10. Design workflow for mono-material specimens. (A) Outline of a theoretically-designed panel and Matlab-generated
outline of the pin-jointed version of the same panel. Illustration of (B) one of the panels and (C) one of the push-in rivets. (D)
How four panels are assembled in a unit cell via rivets; note that panels are arranged on two layers only. (E) Assembled 2x2
structure.

S5. EXPERIMENTAL SETUP AND PROCEDURES

All of our quantitative experiments (used to obtain force-displacement curves and demonstrate bistability) are
carried out using an Instron 68FM-100 Universal Testing System (UTS) equipped with a 10kN load cell and by
actuating the specimens in tension, via custom fixtures, at a rate of 1 mm/s. In this section, we provide details on the
custom fixtures, which have distinct features depending on the physical incarnation of kirigami structures they are
used for. In all cases, we choose to apply boundary conditions and loading at hinge locations; specifically, we always
anchor the specimen at the leftmost hinge (connecting the top-left and bottom-left unit cells), and always pull on the
specimen from the rightmost hinge (connecting the top-right and bottom-right unit cells).

S5.A. Monolithic kirigami

The experimental setup for the monolithic structure is constructed by assembling the components shown in
Fig. S11AB. (1): 3D printed 2x2 structure; (2): 50 mm long metallic dowel bar (McMaster-Carr part number:
91595A353); (3): small pieces of rubber tube (McMaster-Carr part number: 9776T26) (4): anchoring and actuation

fixtures built from 3 mm thick acrylic laser cut pieces; (5): 1.5 mm thick rubber pads. Laser cut pieces are used

B

FIG. S11. Experimental setup for monolithic kirigami. (A) Exploded view of the specimen and of the parts that make up the
fixtures. Specific parts include: (1) specimen; (2) metal dowel bars; (3) rubber stoppers to keep the bars and specimen in place;
(4) laser-cut acrylic parts that make up the fixtures to hold the dowel bars and connect them to the UTS; and (5) natural
rubber pads. (B) Experimental setup after the fixtures are assembled. (C) Photo of the specimen and fixtures, mounted on
the UTS, with detail of how the hinge is loosely gripped by two free-to-translate dowel bars.

to construct C-shaped fixtures, which are connected to the specimen via dowel bars. Rubber stoppers are used to
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keep the dowel bars in place while allowing them to rotate freely. The fixtures are connected to the UTS grippers via
rubber pads, to improve contact and avoid slippage.

Since our specimens feature elastic hinges, fixtures are designed to loosely grip these hinges, while trying not
to obstruct the natural deformation of each pattern. For this reason, we design a gripper such that the hinge is
sandwiched between two dowel bars. The metallic bars’ motion is guided by slots located on the T-shaped laser cut
pieces, as shown in the detail of Fig. S11C, which determine their minimum and maximum relative distance; this detail
is necessary since the shape of the hinge region, and the fact that this shape changes drastically during deformation,
makes it challenging to design fixed grippers that don’t obstruct the natural deformation of the patters. As an
unwanted consequence, our grippers provide complex boundary conditions that are difficult to simulate, as discussed
Section S7. Additionally, since these rods will move differently for all specimens due to large shape differences near
the hinge regions, they will effectively provide different boundary conditions for each specimen. Thus, the comparison
between energies computed from experiments on different samples should be taken with a grain of salt.

S5.B. Bi-material kirigami

The experimental setup for the bi-material specimens is simpler than the previous one. In fact, specimens with
pin-jointed panels can be actuated by inserting actuating rods in place of selected pins. This specific setup is built by
assembling the components shown in Fig. SI2A B. (1): assembled and pinned 2x2 structure; (2): 30 mm- and 50 mm-
long, 2mm-diameter metallic dowel bars (McMaster-Carr part number: 91595A043 and 91595A353); (3): acrylic
confining plates (292.5 mm x 292.5 mm) and other acrylic parts for anchoring; (4): actuation fixture built from
various 3 mm thick acrylic laser cut pieces; (5): 1.5 mm thick rubber pads. Laser cut pieces are used to construct
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FIG. S12. Experimental setup for bi-material kirigami. (A) Exploded view of the specimen and of the parts that make up the
fixtures. Specific parts include: (1) specimen; (2) metal dowel bars; (3) laser-cut acrylic parts and confining plates to anchor
the specimen to the bottom gripper of the UTS, and to prevent out-of-plane deformation; (4) laser-cut acrylic parts that make
up the actuation fixture, then connected to the top gripper of the UTS; and (5) natural rubber pads. (B) Experimental setup
after the fixtures are assembled. (C) Photo of the specimen and fixtures, mounted on the UTS.

a C-shaped actuation fixture, connected to the specimen via a dowel bar and secured by rubber stoppers, and an
anchoring fixture which also prevents out-of-plane displacements. The anchoring fixture features two confining acrylic
plates; these plates have 2.5 mm-diameter holes to keep the anchoring dowel pin in place, and 2.2 mm-wide slots to
allow the actuating fixture to move along a straight line. These fixtures, connected to the UTS grippers via rubber
pads, subject the specimen to a pin boundary condition at one end and to a roller boundary condition at the other
end.

S5.C. Mono-material kirigami

The experimental setup for the mono-material structures is very similar to the one for the bi-material ones, and
is constructed by assembling the components shown in Fig. S13A B: (1): assembled and riveted 2x2 structure; (2):
50 mm long metallic dowel bars; (3): small pieces of rubber tube (McMaster-Carr part number: 9776T26); (4):
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anchoring and actuation fixtures built from 3 mm thick acrylic laser cut pieces; (5): 1.5 mm thick rubber pads.
Here, the only difference with the bi-material case is that we use laser cut pieces to construct identical actuating and

A

FIG. S13. Experimental setup for mono-material kirigami. (A) Exploded view of the specimen and of the parts that make up
the fixtures. Specific parts include: (1) specimen; (2) metal dowel bars; (3) rubber stoppers to keep the bars and specimen in
place; (4) laser-cut acrylic parts that make up the fixtures to hold the bars and connect to the UTS; and (5) natural rubber
pads. (B) Experimental setup after the fixtures are assembled. (C) Photo of the specimen and fixtures, mounted on the UTS.

anchoring fixtures, and that we do not use constraining plates but rather embrace out-of-plane deformations. The
rubber stoppers allow some out-of-plane rotation of the panels at the anchoring points, as discussed more in detail in
Section S7.

S6. ADDITIONAL IMAGES AND VIDEOS OF EXPERIMENTAL RESULTS

Here, we show additional images of our specimens in their first and second (if present) stable states. We feel that
this is needed to emphasize how, in those cases where our specimens do display a second stable state, the morphology
of this second stable state closely resembles or is even identical the one predicted by theory. These images are displayed
in Fig. S14.

Monostable specimens do not display a second stable state regardless of their physical realization. As discussed in
the main text, monolithic specimens are not always bistable. In fact, only the one with target energy barrier 0.003
displays clear bistability; in the other cases we fabricated (target energies 0.001 and 0.0015), the hinge energies are
too high and prevent the specimens from displaying a second stable state. In the monolithic case that displays a
second stable state, we can see that the morphology of the second stable state is very close to the theoretical one but
not identical. In particular, one can notice that the most slender panels display some bending (as shown in the inset),
thus indicating that this state is not stress-free.

To provide further information on the behavior of all specimens, we report videos of their actuation. A brief
description of each video is given in the following:

e ActuationVideo_Monolithic_0d001.MOV : Video of the monolithic, 0.001 barrier specimen. The specimen is
clearly not bistable.

e ActuationVideo_Monolithic_0d0015.MOV : Video of the monolithic, 0.0015 barrier specimen. The specimen
seems to display some bistability initially but then returns to its original state.

e ActuationVideo_Monolithic_0d003.MOV : Video of the monolithic, 0.003 barrier specimen. This specimen
shows clear and ”long term” bistability.

e ActuationVideo_Bimaterial_0d003.MOV : Video of the bi-material, 0.003 barrier specimen. Note how the
beams buckle in plane as the specimen is actuated, and how the specimen is clearly stable in its second state.

e ActuationVideo_Monomaterial_Monostable.MOV : Video of the mono-material, monostable specimen. When
actuated, the specimen deforms out of plane and even buckles, but does not display a stress free second stable
state.
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Fabricated pattern

Design identifier Theoretical pattern
Manolithic Bi-material Mono-material

Monostable
rotating squares
perturbation

Target barrier 0.001
1st stable state

Target barrier 0,001
2nd stable state

Target barrier 0.0015
1st stable state

Target barrier 0.0015
2nd stable state

Target barrier 0.003
1st stable state

Target barrier 0,003
2nd stable state

Shearing pattern
1st stable state

Shearing pattern
2nd stable state

Axial pattern
1st stable state

Axial pattern
2nd stable state

Auxetic pattern
1st stable state

Auxetic pattern
2nd stable state

waE 2\ sl e ss

[: Not fabricated [[]: Mo second stable state

FIG. S14. Summary of the first and second stable states (if present) of all specimens fabricated in this study. Some of these
images are not shown in the main text.
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e ActuationVideo_Monomaterial_0d001.MOV : Video of the mono-material, 0.001 barrier specimen. The speci-
men is clearly bistable.

e ActuationVideo_Monomaterial_0d0015.MOV : Video of the mono-material, 0.0015 barrier specimen. The spec-
imen is clearly bistable.

e ActuationVideo_Monomaterial_0d003.MOV : Video of the mono-material, 0.003 barrier specimen. The speci-
men is clearly bistable.

e ActuationVideo_Monomaterial ExtremeShear.MOV : Video of a mono-material specimen designed to undergo
an extreme shear-like shape transformation. While the specimen is clearly bistable, since the panels bend
between stress-free stable states, the energy barrier is not very significant, as is the case for most extreme

designs.

e ActuationVideo_Monomaterial_ExtremeRectangle.MOV : Video of a mono-material specimen designed to un-
dergo an extreme square-to-rectangle shape transformation. The specimen is clearly bistable.

e ActuationVideo_Monomaterial ExtremeAuxetic.MOV : Video of a mono-material specimen designed to un-
dergo an extreme auxetic shape transformation. This specimen is bistable but challenging to actuate, and
requires adjusting the position of one of the corner panels to avoid self-intersection.

S7. NUMERICAL SIMULATIONS: ADDITIONAL RESULTS AND DETAILS

In this section, we provide numerical insight into some of our experimental results via high-fidelity finite element
simulations (using the software Abaqus). By showcasing the challenges encountered in modeling the nuanced behavior
of our fabricated structures with high fidelity, we believe that we strengthen the case for the use of simplified energy
metrics at the early stages of design. In this section, we also provide details on the reduced-order truss models used
to validate the bistability of the heterogeneous patterns.

S7.A. Numerical model for monolithic specimens

Our monolithic specimens are simulated in Abaqus using two-dimensional plane-strain quadrilateral elements (S8R),
as to create an ensemble of continuously connected panels. The geometry of our model is shown in Fig. S15A, where
we also show a detail of the structured mesh at one of the elastic hinges. The mesh is generated by adding lines

0.001 barrier 0.0015 barrier —— 0.003 barrier
B C --- Theoretical 2nd equilibrium d
Experiments Numerical simulations
20 i
14 i
12 15 i
£ 10 10 i
s 3 .
o 8 = 5
£ 6
& 0 |
4 5 i
2 i
-10 !
GU 2 4 6 3 0 10 20 30 40 0 10 20 30 40
Strain d [mm] d [mm]

FIG. S15. Numerical modeling of monolithic specimens. (A) One of the modeled structures, with details on the applied
boundary conditions and with a zoom-in of the mesh at one of the elastic hinges. (B) Measured stress-strain curve of a dogbone
specimen 3D printed out of TPU-95, which we use to calibrate the nonlinear material model in Abaqus. (C) Comparison
between experimental and numerical results in terms of force-displacement curves, for specimens with three target energy
barriers.

separating the panels at each hinge, and by “seeding” those lines with a desired number of elements (here chosen to
be 10 after a mesh convergence study). Boundary conditions (a pin at the left and a horizontal roller at the right,
plus a concentrated displacement d at the right roller) are then applied to the central nodes of the two hinges marked
in Fig. S15A. The analysis is carried out in displacement control mode, allowing for geometric nonlinearity. The
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displacement-control mode is needed to capture the negative stiffness parts of the force-displacement curve. Due to
the high strain expected in the elastic hinge regions, we also consider a nonlinear material model and fit an Ogden
potential of order 3 to the experimental stress-strain curve shown in Fig. S15B, obtained by testing a 3D printed
dogbone specimen made of TPU-95A. We then run a displacement-control, static, geometrically-nonlinear analysis
using a 0.0002 stabilization magnitude and an adaptive damping ratio of 0.05.

A comparison between numerical and experimental results for the theoretically-bistable patterns with target energy
barriers 0.001, 0.0015 and 0.003 is shown in Fig. S15C. We immediately notice that the numerical curves present
lower forces with respect to the experimental ones. We ascribe this discrepancy to the material properties we used
in our numerical model. In fact, the slope of the curve in the linear regime of Fig. S15B amounts to =~ 25 MPa,
which is much lower than the 67 MPa given in Ultimaker material data sheets, possibly due to filament degradation
throughout our experimental campaign. Despite this discrepancy, we notice that the numerical model captures the
experimental trends quite well: the specimen with 0.003 barrier is the only clearly-bistable one, while the 0.0015
is borderline bistable and the 0.001 one is not bistable at all. Another sign of the accuracy of our simulations is
the fact that the displacement corresponding to the second stable state, for the specimens that display bistability,
matches the theoretical value, highlighted by vertical, color-coded dashed lines in Fig. S15C. Please note that a one-
to-one comparison between the experimental curves to the numerical ones is not appropriate, due to the complex
boundary conditions imposed by our fixtures and reflected in our experimental results. Finally, we also observe that
the numerical curves display sudden vertical jumps in the low stiffness region; this is most likely due to localized
buckling mechanics that get smoothened out in our experiments due to viscoelasticity.

S7.B. Numerical model for bi-material specimens

The bi-material structures are simulated in Abaqus using beam elements, to replicate the skeletal structure of the
panels shown in Fig. S9 at a reduced computational cost. The geometry of the model for the 0.003 barrier pattern
is shown in Fig. S1I6N-0, together with the boundary conditions and an arrow indicating the direction of the applied
displacement d. To capture the fact that hinge regions are stiff, we place cross bars at each hinge location. We define
linear elastic materials TPU-95 (Young’s Modulus = 67 MPa, Poisson’s Ratio = 0.37) and Nylon (Young’s Modulus
= 2336 MPa, Poisson’s Ratio = 0.4) and assign appropriate sections to the bars and hinges, respectively. Note that
the material properties are taken from Ultimaker data sheets. We assign connector sections with properties join and
rotation at each hinge location to simulate the in-plane rotation of the structure; to bias the structure towards in-plane
rotation, we assign large values to all other rotational and translational stiffnesses at the joints. In particular, the
connector rotational stiffnesses are set to D11 = 1, D22 = 1, and D33 = 1 x 10~%, where Dii is to be interpreted as
the rotational stiffness about e;. We mesh the model using B31H elements and mesh size 5 x 10~4. We then run a
displacement-control, static, geometrically-nonlinear analysis using a 0.0005 stabilization magnitude and an adaptive
damping ratio of 0.05.

The simulation results for the structure with 0.003 target energy barrier are presented in Fig. S16 and compared with
the experimental ones. From the force-displacement curves in Fig. SI6A; we can see that results agree well in terms
of critical force and in terms of the displacement corresponding to the second stable equilibrium point (=~ 60 mm).
However, other features of the curves are less similar. To clarify these discrepancies, we compare numerical (Fig. SI6N-
1-N-3) and experimental deformed shapes (Fig. SI6E-1-E-3), at various displacement values labeled in Fig. S16A. In
Fig. S1I6N-1 and E-1, we can see that the beams that buckle are consistent between experiments and numerics, as
indicated by the arrows. As we reach a displacement near 47 mm, we can see that the numerical curve experiences a
vertical jump, while the experimental one does not. By looking at Fig. S16E-2 and comparing the deflected shape to
the one in N-2, we can see that this jump is associated with the appearance of a higher order buckling mode in the
numerics that is not seen in the experiments (see the shape of the beams in the highlighted regions). Beyond this
displacement, experiments and numerics follow two different paths but meet again at the second, stress-free equilibrium
point (illustrated in Fig. S16N-3 and E-3). These results highlight that the challenge in modeling kirigami structures
made of such skeletal panels is that these panels have a rich array of buckling modes, and that understanding which
buckling mode to expect is far from simple.

S7.C. Numerical model for mono-material specimens

Finally, the mono-material specimens are also simulated in Abaqus, this time by means of S4R shell elements. The
geometry of the model for the 0.003 barrier structure is shown in Fig. S17N-0, together with the boundary conditions
and an arrow indicating the direction of the applied displacement d. Panels are created in Abaqus without the holes
for the rivets, while we preserve the circular regions at the panels’ corners. Overlapping circles from neighboring
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FIG. S16. Numerical modeling of bi-material specimens. (A) Comparison between the experimental and numerical results
in terms of force-displacement curves, for the sample with a 0.003 energy barrier. (N-0)-(N-3) Numerical snapshots of the
deformation at a few key points marked in (A). (E-0)-(E-3) Experimental snapshots of the deformation at a few key points
marked in (A). The circled regions of the snapshots are intended to highlight discrepancies between numeriecal and experimental
results.

panels are connected via connector elements at their central nodes. In particular, we set rotational stiffnesses D11 =
1,D22 = 1 and D33 = 1 x 106 for the joints. The material is considered to be linear, with a Young’s modulus of ~1
GPa, extracted from our own experiments on PETG dogbone samples. Again, the geometrically nonlinear analysis is
performed in displacement-control mode with 0.0002 stabilization magnitude and damping factor stabilization method.

From the experiments, it is clear that mono-material structures buckle out of plane during the transition between
stable states, but we do not know a priori which shape they are supposed to assume. Thus, we perform an initial
linear buckling analysis step and extract the first tensile buckling mode for the specimen, illustrated in Fig. S17N-
Buckling. The eigenvector is then provided as seed for the geometrically nonlinear analysis. We choose to only use
a single buckling mode since choosing multiple tensile buckling modes did not cause our results to vary significantly,
and since we were unsure on the weight to be assigned to each mode.

A comparison between experimental and numerical results for the 0.003 specimen is shown in Fig. S17; in particular,
force-displacement curves are shown in Fig. SITA. Numerical and experimental curves show a similar trend, including
a similar change in slope in the negative stiffness region. Moreover, numerical and experimental critical forces are
similar in magnitude, and the displacements corresponding to the second equilibrium coincide with the theoretical
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FIG. S17. Numerical modeling of mono-material specimens. (A) Comparison between the experimental and numerical results
in terms of force-displacement curves, for the sample with 0.003 energy barrier. (N-0)-(N-3) Numerical snapshots of the
deformation at a few key points marked in (A). (N-Buckling) indicates the first tensile buckling mode, whose eigenvector is
used as seed for our post-buckling analysis. (E-0)-(E-3) Experimental snapshots of the deformation at a few key points marked
in (A).

prediction. However, the curves also show some discrepancies, discussed in the following. The initial stiffness of the
sample is much larger in the numerical simulation than the experiments. We ascribe this fact to some unavoidable play
at the rivets in the experimental sample. The fact that the experimental curve shows higher forces throughout the 10
to 60 mm region can be ascribed to the presence of significant friction between riveted panels, which is unavoidable
as the panels undergo large out-of-plane bending and push on the head and tail of the rivet.

To provide additional insight, we compare numerical (Fig. SI7TN-1-N-3) and experimental deformed shapes
(Fig. S17TE-1-E-3), at various displacement values labeled in Fig. S1TA. We can see that these shapes are similar,
especially at the large deformation level corresponding to snapshots N-2 and E-2. From the zoom-in in E-2 we can
also see that our fixtures allow some relative rotations between panels about the e; axis, something that our model
does not capture and that could represent an additional source of discrepancies.

S7.D. Bar-hinge model for heterogeneous kirigami

To verify the bistability of the heterogeneous kirigami designs, we perform 2D simulations of a simplified truss
model, also called a "bar-hinge” model, based on the origami-focused work of Liu and Paulino [57]. We choose this
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reduced-order model since heterogeneous designs comprise a large number of unit cells for which Abaqus simulations
would be highly computationally intensive and impractical. Our truss model for kirigami treats each panel as an
assembly of pin-jointed bars that can only undergo tension, compression and finite rotations and translations. One
such panel, featuring 5 nodes and 8 bars, is illustrated in Fig. SI8A; an assembly of panels that form a unit cell is
shown in Fig. S18B, while an entire structure is shown in Fig. S18C. It is important to note that, unlike classical
bar-hinge models, ours does not feature any rotational stiffness at the hinges and is only appropriate for structures
that do not feature pure mechanism modes of deformation.
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FIG. S18. Bar-hinge modeling details. (A) A single panel of our kirigami structures, made of 5 hinges and 8 bars. (B) Unit
cell and (C) entire heterogeneous “bowtie” structure. (D) A single bar in its reference and deformed configurations, with all

the geometrical quantities of interest.

Our model is based on bar elements whose matrices are derived from a Green strain-based formulation. In the
following, we show how to obtain formulas for the tangent stiffness matrix and internal force vectors used in our
codes, drawing inspiration from the book of Crisfield [MA Crisfield, Non-linear finite element analysis of solids and
structures, volume 1: Essentials (1991)] and the work of Liu and Paulino [57]. Note that the notation used in this
section is independent from the rest of the article.

We consider a single bar element of initial length L. and cross sectional area A, in its reference and deformed
configurations, as illustrated in Fig. S18D. Its nodes are labeled ¢ and j. In the figure, we define both a global (X;
with ¢ = 1,2) and a local coordinate system (z; with ¢ = 1,2), with the latter being aligned with the element itself.
The virtual internal work for the element can be written as

Winte = / S.0E, dv, (S59)
Ve

where E, is the Green-Lagrange strain for the bar element, and S, is its work conjugate, the second Piola-Kirchhoff
stress; both quantities are scalars in these one-dimensional elements. The § symbol indicates virtual quantities. V, is
the bar volume in its reference configuration. Leveraging the one-dimensional nature of the element, we can rewrite

the energy as
L.
Wit = / A,S,0F, dz:. (S60)
0

Differential expressions for E. and d F, can be found by considering an infinitesimal slice of bar and by tracking its
elongation in the local coordinate system. In particular, calling ¢, the initial length of the slice and ¢ its length in the
deformed configuration, and by replacing these lengths with the coordinates indicated in Fig. S18D, it follows that

22 duy 1 [(du\? 1 [duy\?
E, =-—_0_ %7, ~ (21 — (=2 . 1

In turn, the virtual work can be computed by taking the first variation of this quantity. Recalling that E. = E.(u1, ua),
this first variation can be computed by replacing u; and us with u; + adu; and us + adus in Eq. S61, where « is a
constant, by taking a derivative with respect to said a and by finally setting a = O:

5E, — {dEe (U1+046U1,U/2+a6u2):| . (S62)
a=0

do
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This operation yields

SE. — dduq %déul @déuz
e dI‘l di?l dzl dl‘l d’JJl '

(S63)

Prior to substitution in Eq. S60, we introduce a finite element discretization with linear shape functions, such that
displacement variables are written as

up = [1—2 2] M Ny, uy = 12 8] Y2 Ny, (S64)
e e _ulj_ e e u2]
where N is a matrix of shape functions, and their derivatives are written as
duq 1 1 _uli_ duy 1 1 U2q
— = |- 7 =Buy, —=|—-F 7+ '| = Buy, S65
dr, [ Le Le] K le dxq [ Le Le] oy 2e ( )
where B contains derivatives fo the shape functions.

We can then combine these expressions into compact ones
capturing all displacements and their derivatives:

Ui
_|ur 1*% 0 % u2i | _
“[W]{ 0 1-2 ¢ = Neu,

v S66
L. L) vy (506)
U
Uts
du  |du 1 [-1 0 10]|u
d‘H‘L[o ~10 1] Juy, | =Bt 5

where N, and B, capture shape functions and their derivatives for all discrete degrees of freedom in a bar. We also
apply the same discretization to virtual quantities. For convenience, we also define the derivative of u; as a function
of the vector of all nodal displacements:

U1
dU1 1 ’U,2'
—L=—1T1-1010 ‘| =Bju.. S68
dl‘l Le [ ] Uiy 1 ( )

We can now substitute these expressions into the definition of strain, such that

du; 1 [(du; S| dus 2 du; 1/ du T du 1 ror
E,=—t4_- (22 S(=2) =24+ (=) = =Bju.+ -u’B’B.u..
dxl + 2 <d$1> + 2 d.’tl d!El + 2 d(El diEl 1Ue + 2116 ¢ u

(S69)
In Liu and Paulino, the matrix in the second term is compactly defined as B, = BIB,, such that
1
E,=Bju, + §ueTB2ue. (S70)
Similarly, the virtual strain can be discretized as follows:
d5U1 du1 d5u1 dUQ d5UQ ToT T
0k, = — — =du.B ou; Bou,, S71
dl‘l dZEl dxl dl‘l dl‘l e 1 + e B2t ( )

where the first term of the last expression has been transposed for convenience.

Plugging Eq. S71 into Eq. S60, and by noticing that discrete variables don’t depend on the axial coordinate, we
obtain

Le
Winte = / A S.oul (BT 4+ Boue) dry = dul A.S.L. (B +Bou,), (S72)
0
where we can identify the internal force vector for the element in the local coordinate system:
finte - AeLeSe (B{ + B2ue) . (873)
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The definition of tangent stiffness matrix comes from the linearization of the nonlinear equilibrium equation with
Newton-Raphson or any other root finding algorithm, and can be found by taking derivatives of the internal force
vector. For a single element, in the local coordinate system, we can write

dfint e dSe T T d (B,%1 + Bglle)
ki = —— = A.L B B _]. 4
te dll@ else (dlle ( 1 + 2ue> + Se dlle (87 )

Completing this differentiation requires the definition of a material model. In our case, we use a St. Venant-Kirchhoff
material (a linear material model in a nonlinear mechanics framework), such that S, = CE,. and % =C ‘fife.
Differentiating Eq. S70, substituting it in the stress expression and computing the derivatives in Eq. S74, yields

ke = CA,L.BTB, + CA,L, (BlT (Bou)” + (Bou,) Bl) + CA,Le(Bou,)(Bouo)T + S A, L.Bo. (S75)

The definitions of internal force vector and tangent stiffness matrix in Eq. S73 and S75 still refer to the local
coordinate system. In order to appropriately assemble vectors and matrices for the whole structure, we first need to
express such quantities in a global coordinate system. To perform this conversion, we rotate the local displacement
vector u, for the whole element as to obtain its counterpart in the global coordinate system, U.. Calling 6. the angle
between the local and global coordinate systems, we can write

U; cosf, sinf, 0 0 Uy;
_|u2i| _ |—sinf. cosb. 0 0 Usi|
Ue = uj| 0 0 cosf, sinf.| |U;| T.U.. (576)
Unj 0 0 —sinfd. cosf.]| LU

By making this substitution in Eq. S72 and by carrying out the same computations shown above, we derive
Fince = AcLeS. (BIT.)" + TTByTou, ) = ALS. (BiT.)" + Bou, ), (ST7)
and

Ko = CA.L, (B, T.)" (B T.)+CA.L, ((BlTe)T (Bou,)” + (Bou,) (BlTe))+CA6L8(B2ue)(Bgue)T—&—SeAeLeBg.

(S78)
In Liu and Paulino, BT, is defined as By and is written as an explicit function of the position vectors of the nodes
of the element:
1

B, = 1z [— (X1 — X1i) — (Xoj — Xoi) X1j — X1i Xoj — XQi] . (S79)

(&

By assembling the internal force vectors Fi,;. and tangent stiffness matrices K;. for each element, we form the
total internal force vector Fy,; and tangent stiffness matrix K; for the whole structure. After imposing the required
boundary conditions, we use a full Newton-Raphson solution technique to obtain the force-displacement curve of the
structure. This force-controlled procedure, chosen over arc length procedures to avoid the convergence issues we expect
in such complex-shaped bistable structures, does not allow to trace negative-sloped portions of the force-displacement
curve. Thus, to identify the presence of a second stable equilibrium configuration, we load the specimen beyond the
critical load and, when a desired force value is reached, we apply an incremental negative force to simulate unloading
and verify whether the unloading curve crosses the zero-force axis at a point different from the origin — which we
interpret as a sign of bistability.
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