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SUMMARY

A major challenge in global crop production is mitigating yield loss due to plant diseases. One of the best
strategies to control these losses is through breeding for disease resistance. One barrier to the identification
of resistance genes is the quantification of disease severity, which is typically based on the determination of
a subjective score by a human observer. We hypothesized that image-based, non-destructive measurements
of plant morphology over an extended period after pathogen infection would capture subtle quantitative dif-
ferences between genotypes, and thus enable identification of new disease resistance loci. To test this, we
inoculated a genetically diverse biparental mapping population of tomato (Solanum lycopersicum) with Ral-
stonia solanacearum, a soilborne pathogen that causes bacterial wilt disease. We acquired over 40 000 time-
series images of disease progression in this population, and developed an image analysis pipeline providing
a suite of 10 traits to quantify bacterial wilt disease based on plant shape and size. Quantitative trait locus
(QTL) analyses using image-based phenotyping for single and multi-traits identified QTLs that were both
unique and shared compared with those identified by human assessment of wilting, and could detect QTLs
earlier than human assessment. Expanding the phenotypic space of disease with image-based, non-
destructive phenotyping both allowed earlier detection and identified new genetic components of resistance.

Keywords: digital phenotyping, quantitative trait loci, Ralstonia solanacearum, Solanum lycopersicum, bac-
terial wilt, tomato.
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INTRODUCTION . .
on parts of leaves, entire leaves, or the whole plant. Dis-

Plant diseases are a significant global constraint to crop
production. Developing disease-resistant crops requires
identification of genes and alleles which allow crops to
resist the pathogenic microbes that cause disease. Identifi-
cation of disease resistance loci requires phenotyping of
genetically diverse populations of plants that differ in their
response to pathogen infection. Phenotyping plant dis-
eases is challenging because diseases cause complex,
quantitative phenotypes that can occur across spatiotem-
poral scales throughout the development of a plant - e.g.,

© 2023 The Authors.

ease phenotypes vary over time and are modulated by
environmental conditions, plant age, and pathogen viru-
lence. Disease symptoms such as wilting or necrotic spots
are frequently given a visual score, but such phenotypic
assessments are subjective as they can differ by individual
or scoring scale, leading to variable estimates of disease
severity.

The challenging nature of visual disease assessment
has led to the use of imaging techniques that deploy RGB,
hyperspectral, chlorophyll fluorescence, and thermal
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cameras to assess disease severity (Bock et al., 2010; Col-
well, 1956; Jackson, 1986; Simko et al., 2017). Compared to
assessment by the human eye, image-based phenotyping
is more reproducible and can capture even subtle varia-
tions in disease symptoms, which enables sensitive detec-
tion of resistance loci (Bock et al., 2008, 2010; Shakoor
et al., 2017; Simko et al., 2017; Stewart et al., 2016; Stewart
& McDonald, 2014). Many studies have used or developed
tools to assess plant symptoms using different types of
sensors (Lowe et al, 2017; Mahlein, 2016; Mahlein
et al., 2017, 2019; Mir et al., 2019; Mochida et al., 2019;
Pérez-Bueno et al., 2019; Pineda et al., 2021; Shakoor
et al., 2017; Simko et al., 2017). However, only a few stud-
ies have used these image- or sensor-based phenotypes to
carry out quantitative trait locus (QTL) or genome-wide
association (GWA) analyses for responses to plant patho-
gens, and all have used destructive methods (Barbacci
et al., 2020; Corwin et al., 2016; Fordyce et al., 2018; Yates
et al., 2019). It has remained challenging to use image-
based, non-destructive phenotyping for disease resistance
across large populations, because of both technical limita-
tions like the expertise, time, and expense to develop phe-
notyping platforms and biological factors which limit the
utility of any simple parameter (such as plant size) for
accurately reporting disease severity within diverse popu-
lations and across time. One benefit of image-based phe-
notyping is that it can be used to capture both singular
geometric traits and compound higher-order traits. For
example, image-based phenotyping can capture plant
height, width, and color as single traits. However, these
are not independently controlled traits from a plant per-
spective, and the artificial separation of these traits into
single values may limit the resolution of our genetic detec-
tion approaches. These single trait values can be combined
into one or more holistic multi-traits that captures a more
comprehensive view of the phenotype, allowing for the
detection of new loci associated with the response.

The Ralstonia solanacearum species complex (RSSC)
is the causal agent of bacterial wilt disease and has been
ranked as one of the top 10 most destructive plant bacterial
pathogens of all time (Mansfield et al., 2012). Due to high
levels of genetic diversity within the RSSC, the pathogen is
called a species complex and was recently subdivided into
three related species (Prior et al., 2016; Safni et al., 2014;
Sharma et al., 2022). Strains in the RSSC have different
host ranges, virulence proteins, metabolic requirements,
and centers of origin (Garcia et al., 2019; Prior et al., 2016).
Here we use ‘Ralstonia’ to refer to the entire species com-
plex. Ralstonia infects root systems of both resistant and
susceptible plants (Caldwell et al., 2017; French et al., 2018;
Planas-Marques et al., 2020). After entering the root, Ral-
stonia multiplies in the xylem and subsequently moves
into the shoot vasculature. Exopolysaccharide produced by
bacteria acts like a plug in the xylem (Ingel et al., 2021),

preventing water flow to the shoot and leading to wilting
in susceptible plants, whereas resistant plants restrict bac-
terial growth within the xylem and do not wilt (Caldwell
et al., 2017; Planas-Marques et al., 2020). Wilting is there-
fore used to estimate the level of susceptibility of plants to
Ralstonia infection (Genin, 2010; Genin & Denny, 2011).
This bacterium is a major production constraint in solana-
ceous crops globally, including the United States, with
yield losses in tomatoes (Solanum lycopersicum) reported
to be over 70% (Elphinstone et al., 2005; Yuliar et al., 2015).
Resistance to Ralstonia is quantitative in nature (Kim
et al., 2016; Scott et al., 2005; Yuliar et al., 2015), but the
QTLs underlying resistance to US strains of Ralstonia are
largely unknown. QTLs for resistance to non-US Ralstonia
strains have been mapped (Carmeille et al., 2006; Danesh
et al., 1994; Mangin et al., 1999; Shin et al., 2020; Thoquet,
Olivier, Sperisen, Rogowsky, Laterrot, et al., 1996; Thoquet,
Olivier, Sperisen, Rogowsky, Prior, et al., 1996; Wang
et al., 2000, 2013), but functional characterization of the
candidate genes underlying the QTLs and the host deter-
minants necessary for resistance remain unknown.

The limited characterization of QTLs for Ralstonia
resistance can be attributed in part to the difficulty in accu-
rately scoring plant wilting. Wilting is traditionally mea-
sured on a subjective scale, in which researchers estimate
the percentage of wilted leaves (Schandry, 2017). While it
is straightforward to assess the extreme ends of the spec-
trum, rating plants with mid-range scores is particularly
difficult. This is due to the subjective nature of visually
determining when a leaf has lost sufficient turgor to qualify
as wilted. Reliable and reproducible disease phenotyping
is critical for identifying QTLs for resistance to Ralstonia
and the development of resistant varieties.

Here, we report an image-based, rapid, non-
destructive phenotyping pipeline that was used to identify
novel loci in tomato that impart resistance to R. solana-
cearum strain K60 (hereafter R. solanacearum). We devel-
oped a rapid, semi-automated imaging and trait analysis
pipeline to quantify bacterial wilt disease and applied it in
a recombinant inbred line (RIL) population derived from R.
solanacearum-resistant and susceptible tomato genotypes.
We found both unique and shared QTLs between our
image-based traits and a subjective plant wilting score.
Employing a dimension reduction approach to develop
compound multi-traits, we were able to detect additional
QTLs and further enhance our analysis. QTLs for wilting
were detected by image-based phenotyping before the
onset of visual symptoms, demonstrating that well-
designed image-based phenotyping captures the disease
phenotype at early stages of infection. These results
demonstrate that image-based, non-destructive phenotyp-
ing can shed light on new aspects of disease and improve
our ability to identify loci that can be used to breed
disease-resistant crops.
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RESULTS

Development of an aboveground imaging and semi-
automated image analysis pipeline

We constructed a simple, low-cost imaging system that
allowed us to semi-automate aboveground disease pheno-
typing. Each plant was placed on a commercially available
turntable, and plants were imaged with a Canon DSLR
camera (Figure S1; details in Methods section). The camera
was connected with a PhotoCapture 360 turntable (Ortery
technologies, Irvine, CA, USA), which allowed us to auto-
matically capture images every 45° (eight images per
plant). Using this system, we were able to non-
destructively image each plant in less than 2 min, with
minimal manual labor. Each image included a fiducial mar-
ker for post-image color correction.

Non-destructive imaging permitted repeated pheno-
typing. Plants were imaged the day before inoculation with
R. solanacearum and at 3, 4, 5, and 6 days post-inoculation

Color correction

(dpi). We imaged five replicate plants of each RIL as well
as the parental lines. Using this system, we captured over
40 000 images for high-resolution disease phenotyping.
The same set of plants were also visually scored by the
same individual at all time points used for imaging and
also at 8 dpi. Visual scoring was based on the percentage
of wilted leaves (Figure S2). At 3 dpi, subjectively assessed
wilting disease symptoms were not present in the suscep-
tible parent West Virginia 700 (WV). By 6 dpi, however,
these plants were completely wilted. The disease pheno-
types in the RIL population ranged from highly susceptible
to highly resistant, consistent with segregating resistance
loci that impart varying degree of resistance to R. solana-
cearum in a quantitative manner (Figure S3).

We next developed a set of mathematical descriptors
to phenotype plants for wilting over time in our images.
Plant wilting is a composite phenotype, and we used 10
image-based traits (Figure 1) to quantify different aspects
of wilting: convex area, convex width, convex perimeter,
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Figure 1. Diagram of the semi-automated analysis pipeline and 10 image descriptors.
After the original image is captured, the image is color-corrected and segmented to identify the stem and plant. From the color-corrected image, convex area,
width, and color are quantified. From the segmented image, the plant area, height, width, X mass, Y mass, CM width, and CM height are calculated. For further

details, see Methods section.
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plant area, plant width, plant height, X mass, Y mass, cen-
ter of mass (CM) height, and CM width. Several of these,
such as the area and width of the convex hull, are indices
that are traditionally used to describe aboveground plant
shape. Because the CM of a plant leaf changes as a plant
wilts, we developed additional descriptors based on the
distance of the leaf CM from the stem (CM width and CM
height, X mass and Y mass). We then developed a pipeline
which used the original image as input, performed color
correction, and quantified each descriptor (Figure 1; Fig-
ure S4, and Methods section).

Image-based traits differentiate resistant and susceptible
plants

To validate the efficiency of the image-based descriptors to
estimate wilting phenotypes, we tested whether image-
based phenotyping descriptors could differentiate resistant
from susceptible inoculated plants. All 10 descriptors, par-
ticularly those based on plant width or convex hull, had sig-
nificantly increased values in the resistant parent at 6 dpi
compared to day —1 (Figure 2a) consistent with continued
growth. In the susceptible parent, seven of 10 descriptors
were significantly decreased at 6 dpi compared to day —1.
The three descriptors that did not differ, plant height, Y
mass, and convex perimeter, significantly increased imme-
diately after inoculation and subsequently decreased.
Although they were trending downward at 6 dpi, they were
not significantly different at that time point compared to
—1 dpi. The majority of RIL descriptor values ranged from
those of the resistant to susceptible parents and with some
transgressive segregation (Figure 2a).

Image-based traits are correlated with wilting score

We next investigated how well our image-based traits cor-
related with human visual scoring. Wilting is categorized
by loss of plant leaf turgor, which results in drooping
leaves, and decreased plant width and height. Determining
how much a plant has wilted is challenging, in part
because it can be difficult to quantify how much each leaf
has drooped and how much drooping of one leaf corre-
lates with whole plant wilting. We aimed to quantify leaf
drooping in image data by using CM traits. Among our
image-based traits, those which were functions of the leaf
CM were highly inversely correlated with visual wilting
score (i.e., as a plant wilts, the CM decreases). These traits
included convex width, CM width, plant width, and X mass
(r< —0.86) (Figure 2b). Multiple image-based traits at ear-
lier time points were correlated with wilting score at 6 dpi
(Table S1). These traits included convex width, plant width,
and X mass (all r < —0.6) at 4 dpi, and convex area, convex
width, plant area, plant width, X mass, and CM width (all
r< —0.7) at 5 dpi.

Several of our traits describe similar features of plant
shape, such as height or width, through different

methods. These traits tended to be highly correlated with
each other. For example, plant height versus Y mass use
different methods to describe plant height (based on the
plant mask or the CM of the stem masks; see Methods
section), and were highly positively correlated with each
other (r = 0.93; Figure 2b). Similarly, convex hull width,
plant width, CM width, and X mass were highly correlated
with one another (Figure 2b). While all describe plant
width, they quantify different aspects of width. Convex
hull width captures the maximum Euclidian distance
between two points in the convex hull (regardless of
direction), while plant width captures the distance
between two points in the image along the x-axis (Fig-
ure S4). Additionally, these different measurements of
width may be more or less informative at different levels
of disease. For example, the CM width may be more influ-
enced by severe rather than mild wilting symptoms. We
chose to use all of these highly correlated, but subtly dif-
ferent traits because they may detect different aspects of
the phenotype and thus different QTLs.

Image-based traits differentiate mock from R. solana-
cearum-inoculated plants

Using four resistant RlLs, four susceptible RILs, the resis-
tant parent Hawaii 7996 (H7996), and the susceptible par-
ent WV, we asked whether the image-based traits could
differentiate mock from inoculated plants. Values of all
traits increased over time in mock-inoculated resistant and
susceptible plants (Figure 3; Figure S5). In the resistant
parent H7996 and all four resistant RlLs, values of all
image-based traits increased after R. solanacearum inocu-
lation, although not always at the same rate as in the
mock-inoculated plants. This was not surprising given that
resistant H7996 tomatoes are colonized by R. solana-
cearum (Caldwell et al., 2017; French et al., 2018; Planas-
Marques et al., 2020), which may impede plant growth. In
contrast to resistant lines, in R. solanacearum-inoculated
susceptible parent WV and all four susceptible RILs the
image-based trait values decreased compared to their
mock-inoculated counterparts (Figure 3; Figure S5).

Single-trait QTL mapping identifies 30 QTLs in 12 clusters
across the tomato genome

The goal of this study was to identify genomic regions that
provide resistance or susceptibility to R. solanacearum. To
facilitate this analysis, we first generated a genetic map.
We identified 632 high-quality single-nucleotide polymor-
phisms (SNPs) for linkage mapping using genotyping by
sequencing (GBS) and combined these with 112 SolCap
markers. These data were used to construct a linkage map
using ICl mapping software (Meng et al., 2015). Our linkage
map consisted of approximately 1300 cM (Figure 4) with
an average marker density per chromosome that varied
from 1.8 to 7.48 cM (Table S2).
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Figure 2. Trait responses to Ralstonia solanacearum and correlation among descriptors.

(a) Boxplots showing the mean normalized values for image-based traits at —1, 3, 4, 5, and 6 dpi for the resistant Hawaii 7996 genotype, the susceptible West
Virginia 700 genotype, and 166 individuals of the recombinant inbred line population. Letters indicate significant differences as determined with the t-test with
Bonferroni correction within each genotype group.

(b) Heatmap showing the Pearson correlation values between image-based traits and the visual wilting score at 6 dpi. dpi, days post-inoculation.

Phenotypic variation between genotypes in both increase in heritability over time with a highest value of
image-based and visual scoring was partly explained by 0.76 at 8 dpi. This is consistent with the notion that visual
genotypic differences. Wilting score showed a gradual assessment of inherent susceptibility of a plant is more
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Stars indicate significant differences between mock and inoculated values on the same day as determined with a one-tailed t-test (P < 0.05). dpi, days post-

inoculation.

accurate towards the peak expression of a phenotype. The
broad-sense heritability estimates for each image-based
trait varied between 0.53 and 0.69 at 6 dpi (Figure S6;
Table S3). Best linear unbiased predictor (BLUP) values cal-
culated using a mixed linear model were used to carry out
QTL mapping.

We first performed QTL analysis at each time point
using the wilting scores assessed by human scoring. We
also mapped the area under the disease progress curve
(AUDPC) from day —1 to 8 dpi. AUDPC values provide
information about disease severity over time (Simko &

Piepho, 2012). Using composite interval mapping (CIM), at
a logarithm of the odd (LOD) threshold of 3, two QTLs for
‘wilting score’ were detected at 8 dpi on chromosomes 6
and 10; one QTL for AUDPC wilting score was detected on
chromosome 10 (Table 1). The QTL on chromosome 6 was
not detected at any other time point, while the region on
chromosome 10 was also detected at 6 and 7 dpi. No QTLs
were detected earlier than 6 dpi with visual wilting assess-
ment.

To be consistent with previous studies of bacterial wilt
QTL mapping, we call QTL ‘Bacterial wilt resistance (Bwn)’
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Figure 4. Genetic linkage map constructed with SolCap and genotyping by sequencing single-nucleotide polymorphism markers.

Location of 12 QTL clusters displayed using left and right markers. Locations of previously identified QTLs on chromosomes 6 and 12 are also displayed (Shin

et al., 2020). QTL, quantitative trait locus.

© 2023 The Authors.

The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,

The Plant Journal, (2023), 113, 887-903

sdny woiy papro[umo( ‘G ‘€T0T ‘XETES9ET

: Kreaqupaur[uoy/:

™

V1111 01/10p/wod A3

95N JO SO[NI 10§ ATRIQIT SUIUQ A3[IAN UO (SUOHIPUOI-PUR-SULID}/ WO K31’ AIRIqIaUI[uo//:sdny) SUOnIpUo)) pue SWI [, 3y} 39S *[$702/21/07] U0 Areiqry suruO Ada ‘10191 [d

ASULDIT suowwo)) aanear) s[qeardde ay) £q pauIsA0s aIe SANIE YO



894 Valérian Méline et al.

Table 1 Overview of the three QTLs identified by human visual scoring at 8 dpi and 27 QTLs identified using image-based phenotyping at 6

dpi
Left Right

Chromosome Cluster Position Left marker Right marker Trait name LOD PVE Add Cl Cl

2 Bwr2.1 62 SL3.0ch02-49265134  solcap_snp_s|_18443 CM width 3.243 5.3883 -0.25 575 685

3 Bwr3.1 22 solcap_snp_sl_14355 solcap_snp_s|_9689  plant width 3.497 9.0575 0.282 215 255

3 Bwr3.1 22 solcap_snp_sl_14355 solcap_snp_s|_9689 X mass 3.468 8.5483 0.272 215 265

3 Bwr3.1 25 solcap_snp_sl_14355 solcap_snp_sI_9689  plant height 4432 9.2885 0.322 215 325

3 Bwr3.1 25 solcap_snp_sl_14355 solcap_snp_s|_9689 Y mass 3.491 9.5048 0.295 215 325

3 Bwr3.2 29 solcap_snp_s|_9689  solcap_snp_s|_9681  AUDPC convex 4.108 7.8596 0.317 245 335
area

3 Bwr3.2 30 solcap_snp_s|_9689  solcap_snp_sl_9681  AUDPC CM 5218 9.6273 0.361 245 335
width

3 Bwr3.2 30 solcap_snp_s|_9689  solcap_snp_s|_9681  AUDPC convex 4.62 10.133 0.354 245 335
width

3 Bwr3.2 30 solcap_snp_s|_9689  solcap_snp_s|_9681  AUDPC plant 4308 7.5722 0.338 245 335
area

3 Bwr3.2 30 solcap_snp_s|_9689  solcap_snp_sl_9681  AUDPC plant 4998 10.877 0.367 245 335
width

3 Bwr3.2 30 solcap_snp_s|_9689  solcap_snp_s|_9681  AUDPC X mass 4.913 10.71 0.365 25,5 335

3 Bwr3.2 33 solcap_snp_s|_9689  solcap_snp_s|_9681  AUDPC CM 4817 8.994 0338 275 375
height

3 Bwr3.3 38 solcap_snp_sl_21215 solcap_snp_s|_9663  CM width 5411 9.7475 0343 36,5 395

3 Bwr3.3 38 solcap_snp_sl_21215 solcap_snp_sl_9663  convex area 3.568 9.448 0.303 345 395

3 Bwr3.3 38 solcap_snp_sl_21215 solcap_snp_s|_9663  convex width 4827 9.8091 0.329 355 395

3 Bwr3.3 38 solcap_snp_sl_21215 solcap_snp_s|_9663 plant area 3.228 8.4528 0.294 345 395

4 Bwr4.1 4 SL3.0ch04-60431371  solcap_snp_sl_11543 convex width 3.368 6.8646 0.277 15 95

6 Bwr6.1 10 SL3.0ch06-13533085  SL3.0ch06-3310762 AUDPC convex 4.324 7.7592 033 85 115
perimeter

6 Bwr6.2 81 solcap_snp_sl_14458 SL3.0ch06-39435402  wilting score 3.469 11.467 -0.28 78,5 815

8 Bwr8.1 77 solcap_snp_sl_21461 SL3.0ch08-63373341 AUDPC convex 3.427 10.409 0.38 735 825
perimeter

8 Bwr8.1 80 solcap_snp_sl_21461 SL3.0ch08-63373341 AUDPC CM 4947 8.36563 0.338 76,5 825
width

8 Bwr8.1 80 solcap_snp_sl_21461 SL3.0ch08-63373341 AUDPC convex 4.018 7.2955 0.306 75.5 835
area

8 Bwr8.1 80 solcap_snp_sl_21461 SL3.0ch08-63373341 AUDPC convex 4.37 8.6008 0.327 76.5 825
width

8 Bwr8.1 80 solcap_snp_sl_21461 SL3.0ch08-63373341 AUDPC plant 4346 8.4584 0.324 76,5 825
width

8 Bwr8.1 80 solcap_snp_sl_21461 SL3.0ch08-63373341 AUDPC X mass 4.291 8.3494 0.323 76,5 825

10 Bwr10.1 51 solcap_snp_sl_33168 SL3.0ch10-63377492  wilting score 3.342 12197 0.3556 485 545

10 Bwr10.1 53 solcap_snp_sl_33168 SL3.0ch10-63377492 AUDPC wilting 3.382 8.6603 0.293 49.5 545
score

10 Bwr10.2 56 SL3.0ch10-63377492  solcap_snp_s|_61192 plant height 3.277 7.4686 0.289 555 59.5

12 Bwr12.1 43 solcap_snp_sl_9707 solcap_snp_sl_8547 Y mass 3.415 8.4996 0.281 40.5 435

12 Bwr12.1 51 solcap_snp_sl_8549 SL3.0ch12-62141656 CM height 4119 11.118 0.341 445 545

Each line represents a bacterial wilt resistance QTL (Bwr) for a single QTL trait. Cluster: QTLs for single traits that were detected at the same
left and right genetic marker. Trait name refers to the QTL trait that was detected. LOD, maximum value of the logarithm of the odd; PVE,
percentage of phenotypic variance explained; Add, additive effect. A positive additive effect refers to an allele where the resistant H7996 par-
ent had a higher trait value, and a negative sign indicates that the allele from H7996 had a lower trait value. A higher trait value is favorable
for all image-based traits except for visual wilting score, where a higher trait value was associated with susceptibility (e.g., 90% wilting indi-
cates higher susceptibility than 20% wilting). Left confidence interval (Cl) and Right Cl indicate the confidence interval calculated by a one-
LOD decrease from the estimated QTL position. QTL, quantitative trait locus.

QTL. We use the term ‘QTL cluster’ to describe QTL for dif-
ferent traits that are detected with the same left and right
genetic marker. The wilting score QTL on chromosome 6

Carmeille et al., 2006; Danesh et al.,
et al., 1999; Thoquet, Olivier, Sperisen, Rogowsky, Laterrot,
et al., 1996; Thoquet, Olivier, Sperisen, Rogowsky, Prior,

1994; Mangin

(Table 1, Bwr6.2) has been detected repeatedly for resis-
tance to other species and strains of Ralstonia (Figure 4;

et al., 1996; Wang et al,
Danesh, 1994).

2000, 2013; Young &
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Disease resistance QTLs and image-based phenotyping 895

We next detected QTLs using image-based phenotyp-
ing. As plant shape at a given time point after inoculation
is related to shape at day —1, the difference in value from
day —1 to each time point was used for QTL mapping for
each of our 10 descriptors. In addition, we mapped the
AUDPC from day —1 to 6 dpi for each trait. Descriptive
statistics for each trait for resistant and susceptible parents
and RILs are shown in Table S4. At 6 dpi, the last time
point we imaged, we identified 27 QTLs for 10 image-
based traits (Table 1; Figure 4). Each Bwr QTL explained
approximately 5-12% of the variation in response to R.
solanacearum. The 27 Bwr image-based QTLs were
grouped into 10 clusters (Table 1; Figure 4). Anywhere
between one and seven Bwr QTLs were part of a given
QTL cluster. Each QTL within a cluster explained a different
percentage of phenotypic variation.

All genomic regions were identified using either
image-based traits or wilting score, and not both. How-
ever, on chromosome 10, wilting score and AUDPC wilting
score identified Bwr10.1. Although no QTLs identified
using image-based traits overlapped with Bwr10.1, plant

(a) LOD score

(@]
I 2

30+

cM

|

60 -

(L1

B AuDPC wilting score (] wilting score
@ plant height

(b) LOD score

k;@’!)/

90

() AUDPC convex area (] convex area [ plant height
() AuDPC convex width [Jl] convex width @ plant width
@ AUDPC X mass B cM width @ plant area
[ AuDPC plant area  ([] AUDPC CM height [_] X mass

Figure 5. QTL clusters on chromosomes 10 (a) and 3 (b).

42.73 - solcap_snp_sl_33168

53.37 - SL3.0ch10-63377492

56.14 - solcap_snp_sl_61192

height detected a QTL at Bwr10.2 that was in close proxim-
ity (Figure 5a).

Bwr QTLs for traits that are highly correlated with
each other frequently mapped to the same loci (Fig-
ure 2b). For example, Bwr3.2 and Bwr3.3, QTLs for area-
related traits (convex width, convex area, plant area, and
CM width, r> 0.84 for each comparison; Figure 2b) were
detected on the proximal arm of chromosome 3 (Table 1;
Figure 5b). At other loci, only one trait that described
one aspect of the wilting phenotype was present. For
example, despite several metrics that describe width,
only convex width was identified as a QTL on chromo-
some 4 (Bwr4.1, LOD 3.36; phenotypic variance
explained = 6.86%).

Image-based phenotyping identified Bwr QTLs earlier than
visual scoring

Although no QTLs were identified based on human scoring
at any time point earlier than 6 dpi, at 3, 4, and 5 dpi, we
detected image-based QTL clusters which co-localized with
those identified at 6 dpi (Table S5). Bwr3.3 (plant width

LOD score

45-
50+

54

60
60.39 - CL017176-0241

LOD score

19.88 - solcap_snp_sl_55037
20

21.07 - solcap_snp_sl_14354
21.36 - solcap_snp_sl_14355

254
27.60 - solcap_snp_sl_9689

30

34.63 - solcap_snp_sl_9681
3

37.63 - solcap_snp_sl_21215
39.51 - solcap_snp_sl_9663
40

The vertical axis represents the genetic position (cM) and the horizontal axis shows the logarithm of the odd score. For each chromosome, the left panel repre-
sents the entire chromosome and the right panel represents the significant QTL cluster regions. QTL, quantitative trait locus.
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896 Valérian Méline et al.

and area traits) was detected at 3, 4, 5, and 6 dpi, Bwr3.1
(plant height and width traits) was detected at 3, 5, and
6 dpi, and Bwr3.2 was detected at 3 and 6 dpi. Bwri2.1
was detected at both 5 and 6 dpi. This is consistent with
the higher heritability of all image-based traits at 3 and
4 dpi compared to visual assessment (Figure S6). In this
study, wilting symptoms in completely susceptible plants
(such as the WV parent) begin to appear at 4 dpi, and
plants are nearly 100% wilted by 6 dpi. Our results show
that image-based phenotyping can identify Bwr QTLs prior
to the onset of wilting symptoms.

Multi-trait QTL analysis

Mapping for single image-based traits did not detect any
QTLs at Bwr6.2, a known QTL involved in bacterial wilt
resistance (Carmeille et al., 2006; Danesh et al., 1994; Man-
gin et al.,, 1999; Thoquet, Olivier, Sperisen, Rogowsky,
Laterrot, et al., 1996; Thoquet, Olivier, Sperisen, Rogowsky,
Prior, et al., 1996; Wang et al., 2000, 2013; Young &
Danesh, 1994) which we detected with visual scoring (Fig-
ure 4; Table 1). Visual wilting score is a complex pheno-
type and observers capture different aspects of the plant
morphology. Since the image-based traits were unidimen-
sional, we hypothesized that individual image-based traits
may not be sufficient to capture the bacterial wilt disease
phenotype. To test this, we performed multi-trait QTL anal-
ysis using principal components (PCs) derived from a
group of image-based traits and the visual wilting score.
For these analyses, we calculated two sets of PCs. The first
set of PCs included all primary image-based traits along
with wilting score, and the second set of PCs included only

Table 2 Multi-trait QTL analysis

the image-based traits (see Tables S6 and S7 for a list of
all traits used in the analysis). All days were used in both
sets of PCs. QTL mapping with both sets of PCs allowed us
to test whether using only image-based traits could be suf-
ficient to detect all QTLs observed with image-based and
wilting scores if they were treated as multivariate compo-
nents. A total of five PCs for each set of traits were used
and these captured >98% of the variation in these pheno-
types as reflected in the scree plots (Table S7; Figure S7).
Wilting score showed the most differential response from
all the image-based phenotypes and captured >80% of the
variation in PC1 and PC2 (Tables S6 and S7). Using these
five PCs for each set, we detected five QTLs using PCs
without wilting score and four QTLs using PC values that
included wilting score. For both sets of PCs, all but one
QTL were detected at or near the position of a QTL present
in the single-trait analyses (Table 2). Most importantly, PC5
generated using the primary image-based traits without
the wilting score detected a QTL linked to Bwr6.2 (position
81, Table 1; position 85, Table 2) which we had failed to
identify using any single image-based trait. When wilting
score was included in the PCs, a QTL linked to Bwr6.2 was
also detected (position 79, Table 2). The detection of a QTL
linked to Bwr6.2 using a multivariate summary of the
image-based traits demonstrates that machine-generated
phenotypes can be sufficient to model the complexity of
morphological changes associated with wilting. Thus, mul-
tivariate traits expand the phenotypic space addressable
by high-throughput phenotyping and disease screening
and enable the identification of resistance loci that would
be captured by traditional subjective scoring while also

Chromosome Position Left marker Right marker

Left Right
Trait name LOD PVE Add Cl Cl

3 30 solcap_snp_s|_9689  solcap_snp_sl_9681 PC1 without visual 4.7451  10.4055 0.3589 245 335
wilting score

3 57 SL3.0ch03-61078160  solcap_snp_sl_10372 PC5 without visual 3.761 9.5337 0.3722 545 59.5
wilting score

6 10 SL3.0ch06-13533085  SL3.0ch06-3310762 PC3 without visual 4413  13.1285 03516 9.5 11.5
wilting score

6 85 solcap_snp_sl_12749  SL3.0ch06-40800307 PC5 without visual 3.6518  6.0843 0.298 835 86.5
wilting score

8 80 solcap_snp_sl_21461 SL3.0ch08-63373341  PC1 without visual 35015 6.8606  0.2922 755 825
wilting score

3 30 solcap_snp_sl_9689  solcap_snp_sl|_9681 PC1 with visual 4.6247 10.1476 0.3539 245 335
wilting score

4 5 solcap_snp_sl_11543 solcap_snp_sl_28824 PC2 with visual 3.4248 9.0385 -0.3108 1.5 105
wilting score

6 79 solcap_snp_sl_14458 SL3.0ch06-39435402  PC4 with visual 4.0312 10.745 -0.3331 76.5 80.5
wilting score

8 80 solcap_snp_sl_21461 SL3.0ch08-63373341  PC1 with visual 3.4881 6.8168  0.2908 75.5 82.5

wilting score

Cl, confidence interval; LOD, logarithm of the odd; PVE, phenotypic variance explained; QTL, quantitative trait locus.
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Disease resistance QTLs and image-based phenotyping 897

expanding our ability to identify loci affecting individual
traits.

Bwr QTLs occur at loci distinct from plant architecture and
growth QTLs

The parents of the RIL population, H7996 and WV, have dif-
ferent aboveground phenotypes (Figure S4) and the shoot
architecture of the RILs correspondingly varies. To deter-
mine if the Bwr QTLs were the result of tomato responses
to R. solanacearum, and not due to differences in above-
ground plant architecture, we used the image-based traits
captured at —1 dpi, the day before plants had been inocu-
lated, in a QTL analysis. We call these ‘tomato plant archi-
tecture (Tpa)’ QTLs. We identified 22 Tpa QTLs within eight
QTL clusters (Table 3). Two Tpa QTLs were detected within
the same interval as Bwr observed at 6 dpi: Tpa3.7 was
detected near Bwr3.2 and Tpa8.1 was detected near
Bwr8.1. Both Bwr3.2 and 8.7 are QTLs for AUDPC traits for
plant width and area. It is possible that these two plant
architecture and disease resistance QTLs co-localize due to
a common genetic determinant that largely impacts plant
morphology. Alternatively, two alleles where one impacts
plant architecture and the other influences disease resis-
tance are linked. None of the other Bwr QTLs co-localize
with Tpa QTLs, which suggests that our image-based

disease phenotyping approach largely detected genomic
regions that respond to R. solanacearum and are not the
result of differential growth patterns within the RiLs.

DISCUSSION

Breeding for disease resistance is one of the best strategies
to combat plant pathogens and prevent major crop loss,
but is challenging in part due to the complicated nature of
disease phenotyping. Here we used non-destructive,
image-based phenotyping with RGB images to identify
QTLs for tomato responses to R. solanacearum, three of
which were detected as early as 3 dpi. Combining our sin-
gle image-based traits allowed us to detect QTLs that were
only identified by visual scoring in the single-trait analysis.
These results establish the importance and feasibility of
quantitative, non-destructive, image-based phenotyping to
identify new genetic targets for crop disease resistance
breeding.

Benefits of image-based phenotyping

Image-based phenotyping has been used to detect QTLs
associated with plant root (Topp et al., 2013) and shoot
(Knoch et al., 2020; Li et al., 2020; Wang et al., 2019; Zhang
et al., 2017) architecture, salt stress (Awlia et al., 2021), and
yield (Pauli et al., 2016; Tanger et al., 2017), among other

Table 3 Overview of tomato plant architecture (Tpa) QTLs identified at —1 dpi by image-based phenotyping

Left Right
Right marker LOD PVE Add Cl Cl

Cluster Trait name  Chromosome Position Left marker
Tpa2.1  convex width 2 117 solcap_snp_sl_8510
Tpa2.1  plant width 2 117 solcap_snp_sl_8510
Tpa2.1 X mass 2 117 solcap_snp_sl_8510
Tpa3.1 plant area 3 29 solcap_snp_sl_9689
Tpa3.2 convex area 3 59 SL3.0ch03-61078160
Tpa3.2 X mass 3 59 SL3.0ch03-61078160
Tpa5.1  convex 5 106 SL3.0ch05-65105663
perimeter
Tpa6.1 CM width 6 10 SL3.0ch06-13533085
Tpa6.1  convex area 6 10 SL3.0ch06-13533085
Tpa6.1  convex 6 10 SL3.0ch06-13533085
perimeter

Tpa6.1 convex width 6 10 SL3.0ch06-13533085
Tpa6.1  plant area 6 10 SL3.0ch06-13533085
Tpa6.1  plant height 6 10 SL3.0ch06-13533085
Tpa6.1  plant width 6 10 SL3.0ch06-13533085
Tpa6.1 X mass 6 10 SL3.0ch06-13533085
Tpa6.1 Y mass 6 10 SL3.0ch06-13533085
Tpa8.1  convex area 8 77 solcap_snp_sl_21461
Tpa8.1 convex width 8 79 solcap_snp_s|_21461
Tpa8.1  plant width 8 79 solcap_snp_sl_21461
Tpa8.1 X mass 8 80 solcap_snp_s|_21461
Tpa9.1 convex area 9 67 SL3.0ch09-39293163
Tpal0.1 convex 10 70 solcap_snp_sl_8835

perimeter

solcap_snp_sl_15574 4.2287 8.3478  0.3056 1145 117
solcap_snp_sl_15574 3.8821 7.5656  0.2906 1145 117
solcap_snp_sl_15574 4.8344 85043 0312 1145 117
solcap_snp_s|_9681 4.0834 7.7376 0.304 255 345
solcap_snp_sl_10372 4.412 7.5959 0.2983 575 625
solcap_snp_sl_10372 3.4878 6.4254 0.2705 575 625
SL3.0ch05-66111590 4.2495  8.047 0.3249 995 1125

SL3.0ch06-3310762  3.9209 10.0438  0.315 85 115
SL3.0ch06-3310762 55064  9.1352  0.3286 85 115
SL3.0ch06-3310762  6.0019 10.9029  0.3794 85 115

SL3.0ch06-3310762  3.2702  6.4948  0.2701 85 115
SL3.0ch06-3310762  4.4188 8.2091  0.3149 85 115
SL3.0ch06-3310762  3.4395 7.7884  0.2853 85 115
SL3.0ch06-3310762  3.7961 7.5494  0.2909 85 115
SL3.0ch06-3310762  5.305 9.4216  0.3291 85 115
SL3.0ch06-3310762  4.6841 8.2847  0.3465 85 115
SL3.0ch08-63373341 3.3939 9.0659  0.3257 735 825
SL3.0ch08-63373341 3.3521 8.0965 0.3004 745 825
SL3.0ch08-63373341 3.1855 7.5993  0.2908 745 825
SL3.0ch08-63373341 3.6138 6.3813  0.27 745 825
SL3.0ch09-63338944 3.7141 6.2079 -0.2705 60.5 69.5
Le013158s_161 3.3363 5.9224 0.2791 685 735

Cl, confidence interval; LOD, logarithm of the odd; PVE, phenotypic variance explained; QTL, quantitative trait locus.
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traits. Although image-based phenotyping has become
increasingly common to quantify plant disease symptoms
(Elliott et al., 2022; Lowe et al., 2017; Mahlein, 2016; Mah-
lein et al., 2017, 2019; Mir et al., 2019; Mochida et al., 2019;
Pérez-Bueno et al., 2019; Pineda et al., 2021; Shakoor
et al., 2017; Simko et al., 2017), few studies have used this
technology to identify new genetic loci for plant disease
resistance (Barbacci et al., 2020; Corwin et al., 2016; For-
dyce et al., 2018; Yates et al., 2019). One reason for this
may be that many plant disease symptoms occur at or
below the leaf scale, such as spots and specks, presenting
a challenge to sensor resolution to analyze them non-
destructively at high throughput. For example, automated
digital phenotyping of Septoria tritici Blotch on wheat (Tri-
ticum aestivum) leaves identified novel QTLs for resis-
tance, but phenotyping was destructive and required
significant manual labor to harvest, mount, and scan
leaves (Yates et al., 2019). While wilting does occur at the
leaf scale, we demonstrate here that it is possible to assess
it at the whole plant scale. Imaging sensors are often
expensive, making it more challenging to phenotype the
large number of plants needed in QTL or GWA studies.
Our method is low-cost and requires little manual labor
other than placing the plant on the turntable and initiating
imaging via a computer. Theoretically, plants can be
imaged for as long as the researchers wishes. Here, we
chose to image plants only until 6 dpi because after that
point, the resistant plants grew so large that they grew out
of the optical view of the camera (susceptible plants
remained well within view for the entire experiment).
Imaging longer would require a modified imaging setup
and updated downstream analyses. Since we observed
100% wilting in our susceptible parent by 6 dpi, this plat-
form was sufficient for our imaging needs. However, we
continued with visual scoring until 8 dpi. At 7 and 8 dpi, no
new plants initiate wilting symptoms. Instead, wilting on
already symptomatic plants becomes more obvious at
these time points, improving visually assessed phenotyp-
ing and QTL detection.

New QTLs for responses to Ralstonia in tomato

Resistance to Ralstonia species in solanaceous crops is
quantitative (Carmeille et al., 2006; Danesh et al., 1994;
Mangin et al., 1999; Thoquet, Olivier, Sperisen, Rogowsky,
Laterrot, et al., 1996; Thoquet, Olivier, Sperisen, Rogowsky,
Prior, et al., 1996; Wang et al., 2000, 2013; Young &
Danesh, 1994). Breeding for resistance QTLs is thus the pri-
mary way forward to developing Ralstonia-resistant crops
in the Solanaceae family. This has not been easy, in part
because of the diversity of the RSSC (Prior et al., 2016;
Remenant et al., 2012; Safni et al., 2014). Each species has
multiple strains with overlapping, but distinct, sets of viru-
lence proteins that promote disease (Landry et al., 2020).
Varieties with effective resistance will likely have QTLs that

are effective against specific strains (strain-specific QTLs)
as well as those effective against multiple strains (broad-
spectrum QTLs).

Most previously identified QTLs provide resistance to
R. pseudosolanacearum, and none of the previous studies
used the R. solanacearum strain used in this work (Car-
meille et al., 2006; Danesh et al., 1994; Mangin
et al., 1999; Shin et al., 2020; Thoquet, Olivier, Sperisen,
Rogowsky, Laterrot, et al., 1996; Thoquet, Olivier, Speri-
sen, Rogowsky, Prior, et al., 1996; Wang et al., 2000,
2013). Using visual assessment of wilting and the same
RIL population of tomato (H7996 x WV) used here, one
broad-spectrum QTL for resistance to multiple strains of
R. pseudosolanacearum and one strain of R. solana-
cearum (JT-516) were previously identified on chromo-
some 6 (Carmeille et al.,, 2006; Danesh et al., 1994;
Mangin et al., 1999; Shin et al., 2020; Thoquet, Olivier,
Sperisen, Rogowsky, Laterrot et al., 1996; Thoquet, Olivier,
Sperisen, Rogowsky, Prior, et al., 1996; Wang et al., 2000,
2013). We also identified a QTL on chromosome 6. In our
study, Bwr6.2 confers approximately 11.5% of the varia-
tion, compared to 11.5-33% for Bwr6a-Bwr6d (Shin
et al., 2020; Wang et al., 2013).

Previous studies also identified a major QTL on chro-
mosome 12 that is effective for resistance against other
species and strains of Ralstonia that explained between
15.9 and 53.9% of the variation (Shin et al., 2020). We
found two clusters of QTLs on chromosome 12 for image-
based traits that do not overlap with the previously
detected QTLs. Within the region spanning Bwri2.1 on
chromosome 12 are one nucleotide binding site-leucine-
rich repeat (NBS-LRR) disease resistance gene and a clus-
ter of kinase-encoding genes. QTLs detected on chromo-
somes 2, 3, 4, 5, 8, and 10 have not been detected against
other Ralstonia species and strains, and thus may be speci-
fic to R. solanacearum.

Together, our results establish the value of image-
based, non-destructive disease phenotyping for uncover-
ing novel genetic components and new targets for quanti-
tative disease resistance in crops. This type of phenotyping
may enable the identification of broad-spectrum and dur-
able resistance.

METHODS
Plant growth

Seeds of 188 RILs from a cross between H7996 and WV were
obtained in the F8 generation from the Asian Vegetable Research
and Development Center (AVRDC) in June 2014. Seeds were prop-
agated to the Fg generation in the field and greenhouse in West
Lafayette, IN in 2014 and 2015 and were used for QTL mapping in
2019.

Seeds were sown into individually labeled 1801 traditional
inserts (cell dimensions 3 1/8” x 3 1/8" x 2 1/4") and placed into
1020 flats (Hummert International, Earth City, MO, USA). One seed
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per RIL per cell, along with parental controls, was grown in the
same growth chamber in the Lilly Greenhouses and Growth Facil-
ity at Purdue University. Five independent experimental replicates
were evaluated. Experimental replicates were conducted consecu-
tively such that the next replicate was planted immediately after
the prior replicate ended. The position of each line was completely
randomized within each experimental replicate, and trays were
rotated in the growth chamber throughout each experiment. The
growth chamber temperature was set to 28°C, with a relative
humidity of 65% and a lighting cycle of 16 h light/8 h dark. Seed-
lings started to emerge at 4 days after planting. Plants were inocu-
lated with R. solanacearum at 17 days after planting when three
true leaves were present. Each plant was imaged the day before
inoculation (—1) and at 3, 4, 5, and 6 dpi. Plants were not imaged
after 6 dpi because resistant individuals grew out of the image
frame. Plants were visually assessed for wilting daily from 1 to
8 dpi. Of the total 188 RILs, 166 RILs were used for downstream
analyses. In total, 19 RlLs were excluded due to high variability in
visual wilting score (for example, rated as 100% wilting in two
replicates but 0% wilting in three replicates). RILs with standard
deviation in wilting scores across five replicates that were in the
top 10% of all standard deviations for the population were
removed.

Ralstonia solanacearum growth and plant inoculation

Culturing of R. solanacearum and inoculation has been described
previously (Caldwell et al., 2017). Briefly, R. solanacearum (con-
taining a GFP reporter) was grown on casamino acid-peptone-
glucose agar containing tetrazolium chloride in the dark for 48 h
at 28°C. Bacteria were resuspended in sterile water to a concentra-
tion of approximately 2 x 108 colony forming units ml~" for each
experiment. For each experiment, the concentration of inoculum
was confirmed through dilution plating. Pots of three-leaf plants
were lightly compressed to induce wounding similar to transplant
handling in field conditions. Next, 60 ml of inoculum was applied
to the surrounding soil using a serological pipet.

Visual assessment of bacterial wilt disease

Wilting scores were recorded based on visual assessment of
plants daily from 1 to 8 dpi. Wilt scores were calculated by divid-
ing the number of true leaves that were wilted by the total number
of true leaves on the plant. Wilting percentage varied from 0 to
100%, with 0% being no wilting and 100% being complete wilting
including the topmost portion of the stem. Plants were given a
wilting percentage of 95% if the plant had all of its leaves wilted,
excluding the topmost leaf. No wilting was observed for any plant
at 1 or 2 dpi and these values were not used for mapping.

Plant imaging

Plants were imaged using a Linco Linstor 2000-watt photo studio
as the backdrop and Flora X fluorescent lighting, which created a
small photo studio. The photo studio contained the following
items: three Linco#3452 Flora X Auto Pop-Up Softbox Set 20" sets,
three Linco#5140 Flora X Fluorescent 4-Socket Light Banks, three
8806 Zenith 77" Light Weight Light Stands, 12 Linco PP171050-1
photography studio E26 soft white bulbs (each 6400 K and
40 watts), one Linco#4225KB Linco Zenith Boom Arm Reflector
Holder Kit, one 2020-6 Photography Studio Exclusive Premium
Carrying Bag for Lighting Kit, one 4152 Linco Zenith Backdrop
Stand Support System, a GEN0510T Photography Studio Green
Screen Backdrop Muslin Background, a WHO0510T Photography
Studio White Screen Backdrop Muslin Background, and a

© 2023 The Authors.

BLK0510T Photography Studio Black Screen Backdrop Muslin
Background.

Individual plants were placed on a PhotoCapture 360 turnta-
ble (Ortery Technologies) that was programmed to capture eight
images around the plant (every 45°). The images were captured
using an EOS 6D DSLR Canon camera with an EF 50 mm /1.4
USM lens with 100 ISO, 11 Aperture, and 1/30 shutter speed on a
stationary tripod. All camera settings were kept the same through-
out all experiments. An imaging carriage was created with a
square Petri dish and a fiducial marker attached to each side (Fig-
ure S1). A total of five independent replicates for each RIL and the
parental controls were imaged.

Phenotyping pipeline and image analysis

From the plant images, 10 traits were acquired for QTL analysis. A
detailed description of the acquisition process was given previ-
ously (Yang et al., 2020, 2021). All traits were extracted based on
plant size and shape. To eliminate any color discrepancy between
images, images were automatically color-corrected using a fidu-
cial marker consisting of a colored checkerboard with known
physical dimensions and colors.

After color correction, plant pixels were segmented from the
rest of the image by thresholding channels in the L*A*B* color
space. The thresholds used were the same as described in Yang
et al. (2021). The resulting segmentation mask was improved with
image morphological operations to fill holes and remove noise
generated by the thresholding. The stem of the plant was identi-
fied using two neural networks, Mask R-CNN and U-Net. By locat-
ing the stem of the plant, metrics were defined that reflect the
morphology of the plant. To train the neural networks, stem seg-
mentation ground truth data were generated using Adobe Photo-
shop and LabelMe (a Python-based annotation tool) to mark the
location of the image pixels belonging to the stem of the plant.
More detail about this procedure is provided in (Yang et al., 2020,
2021).

The plant and stem masks were used in the subsequent size
and shape analysis, which acquired 10 traits: total area of the
plant mask (plant area), height of the plant mask (plant height),
maximum width of the plant mask (plant width), perimeter of the
convex hull (convex perimeter), area of the convex hull (convex
area), width of the convex hull (convex width), horizontal distance
between the CM of the left and right sides of the plant stem (CM
width), height of the CM (CM height), x-axis distribution of the CM
(X mass), and y-axis distribution of the CM (Y mass).

The plant area, plant height, and plant width were calculated
from the plant mask. To calculate image-based plant height, the
upper 5% of the plant material was not included, which helped
eliminate the impact of immature leaves growing at the top. Using
functions available in OpenCV Python Library, a convex hull was
fit around the plant mask and the convex area and convex width
were calculated. The convex hull was defined as the smallest con-
vex polygon that contains all points in the image. Convex hull
area described the area within the hull; convex perimeter referred
to the perimeter of the entire hull. The width of the convex hull
referred to the longest Euclidian distance between two points in
the image. To calculate traits involving the CM, the plant mask
was split into left and right halves using the stem mask (Yang
et al., 2020) and the CM located for each half. The x-axis distance
between CMs (CM width) and the average height of the CMs (CM
height) were used as traits. lllustrations of each trait using images
of the resistant parent H7996 and the susceptible parent WV are
shown in Figure S4.
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The extension of just one leaf can have a major impact on
measured plant width, generating a disproportionately larger
value. Capturing the plant material distribution inside the plant
mask can overcome this issue. Using the split plant mask, the hor-
izontal and vertical distribution of plant material was estimated.
The distances at which 90% of the plant material was captured in
the horizontal and vertical directions were used as the traits ‘X
mass distribution” and ‘Y mass distribution’. The average of the
same trait from all eight views around the plant was used to rep-
resent a single trait value. The units of these image-based traits
are in pixels. In addition, AUDPC was calculated using the audpc
function implemented in the R package epifitter (Madden et al.,
2007). The average trait values for all the measured traits across
all five replications are provided (Table S8).

DNA extraction, marker generation, and GBS

Fg generation RIL seeds and parental controls were grown in the
greenhouse in 2-gallon pots with Metro Mix 510 soil. Tissue was
collected for DNA extraction from 6-week-old plants. Leaf disc
samples were collected from each RIL plant using a biopsy punch
and were sent to LGC, Biosearch Technologies (Middlesex, UK).
Genomic DNA was extracted and genotyped for 128 SNPs from
the Tomato SolCAP panel using LGC's KASP assay. In total, 112
SNPs were obtained from each RIL using this method.

For GBS, genomic DNA was extracted from 188 Fg individuals
of the RIL population and from parental plants using TRIzol.
Extracted DNA was treated with RNase and cleaned with phenol
chloroform extraction. Sequencing libraries were prepared as
described by (Elshire et al., 2011). Briefly, DNA was digested with Pstl
and 150-bp paired end (PE) sequencing was performed on two lanes
of an lllumina Hi-seq 2500 platform at the Purdue Genomics Facility.

Reads were mapped to the S. lycopersicum 3.0 genome
using the methods of Manching et al. (2017). In brief, reads were
de-multiplexed and adapter sequences were removed. Reads were
filtered based on the presence of a GBS barcode on the forward
read (R1), which accounts for 95.4% of the PE reads (Table S9).
For these R1, 97.3% had a paired R2 read, and 2.7% did not form a
pair (Table S9). R1 read pairs and R1 single reads were combined
and assessed independent of pairing and treated as single-end
reads for the remaining analyses (924 500 737 reads; Table S9).

Reads with a GBS barcode (95.4% of the PE reads) were sub-
sequently filtered to remove those with an internal restriction site,
lacking the expected restriction site overhang sequence at the
end, or below a minimum length. After filtering, 93.0% of the
reads were retained (Table S9). There was a minimum of 17 561
reads, a maximum of 16 127 292 reads, and an average of
4 480 149 reads per sample (Figure S8). Reads were mapped using
BWA-MEM for PE reads, and the GATK haplotype caller was used
to generate a genomic Variant Call Format (gVCF) file for down-
stream analysis.

In total, 74 082 SNPs were called between the population and
the S. lycopersicum 3.0 reference genome. Many of these were
SNPs between the reference genome and the population and did
not vary in the population used here. Filtering for the presence of
two alleles within the RIL population resulted in 2738 SNPs. Of
these, the parental alleles were identified in both parents for 278
SNPs and in one parent for 698 SNPs. The remaining 1762 SNPs
could not be assigned a parental origin and were not used for fur-
ther analysis. The 976 SNPs with parental origin identified were
filtered for a minor allele frequency greater than 0.02 and less than
0.99, which resulted in 632 high-quality SNPs.

Tomato SolCap markers and SNPs identified through GBS
were used for map creation. High-quality SNPs identified from

GBS were combined with previously defined SolCap markers from
LGC Biosearch Technologies for a total of 748 markers. Of the 748
markers, RILs were represented by an average of 366 markers.
The genotype density ranged from a minimum of 115 markers to
a maximum of 555 markers (Figure S9). There was some residual
heterozygosity in the RlLs (Figure S9b), and two RILs with >10%
heterozygosity were excluded from further analysis.

Linkage map construction

The software QTL IciMapping (Meng et al., 2015) (version 4.1) was
used for map construction with all 748 markers. Redundant mark-
ers were filtered by taxon coverage using a missing rate of less
than 15% and a distortion threshold at 0.001 to obtain a total of
408 unique markers. These 408 markers without anchor informa-
tion were assigned to 12 linkage groups based on an LOD
(‘logarithm of the odds’) score threshold value of 3. After group-
ing, the markers were ordered using the nearest neighbor algo-
rithm (nnTwoOpt) using the rippling criterion SARF (Sum of
Adjacent Recombination Frequencies) with a window size of five
markers. After ordering, some markers at the end of the chromo-
somes were deleted when they were adding an insignificant
genetic distance to the chromosome. These markers were identi-
fied after splitting the current chromosome in two sub-
chromosomes between the longest marker interval. If the shortest
sub-chromosome contained more than 20% of the markers before
splitting, the two sub-chromosome were re-assembled. Otherwise,
the shortest sub-chromosome was deleted.

BLUP calculations and QTL detection

Plant shape at a given time point after inoculation depends on
plant shape prior to inoculation. Thus, for mapping, raw pheno-
typic data were considered as the difference in trait value between
a given time point and day —1. Linear regression of the raw phe-
notypic data determined RIL accession and replication to be signif-
icant (P < 0.01) terms across all phenotypes. To control for the
replication effect on phenotypes, we built a linear mixed model
using RIL and replication as random effects using the Imer func-
tion implemented in the R package /Ime4 (Bates et al., 2015). This
model was used to calculate the BLUP values for each trait across
all accessions. We used the genetic variance estimates from the
mixed model to calculate the broad-sense heritability on a line
mean basis for each trait (Holland et al., 2003). The BLUP values
were used to perform QTL mapping.

To ensure a normal distribution, the function ‘orderNorm’
was used to perform an ordered quantile normalization (Peterson
& Cavanaugh, 2020) before QTL analysis using the package
‘bestNormalize’ version 1.6.1 with R software version 3.6.1 (R Core
Team, n.d.). QTLs were detected using inclusive composite inter-
val mapping with additive effects (ICIM-ADD) in IciMapping (Meng
et al., 2015) (version 4.1) using a genetic mapping with a scanning
step of 1 ¢M and a probability in stepwise regression of 0.001. The
LOD significance threshold to declare a QTL significant was deter-
mined using a Type | error of 0.05 calculated using 1000 permuta-
tions (Churchill & Doerge, 1994).
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Additional Supporting Information may be found in the online ver-
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Figure S1. Design of our low-cost phenotyping platform including
automatic turntable, backdrop, lightning, and RGB camera.

Figure S2. Raw RGB pictures showing the evolution of wilting
symptoms on RIL #646 at —1, 3, 4, 5, and 6 dpi. Visually assessed
wilting scores are expressed in percentage of wilted leaves.

Figure S3. Wilting of recombinant inbred lines (RILs). Boxplots
show the normalized wilting scores at 8 dpi for the 166 RiLs, the
resistant Hawaii 7996 genotype (HA), and the susceptible West Vir-
ginia genotype (WV).

Figure S4. RGB pictures showing the evolution of the traits at -1,
3, 4, 5, and 6 dpi for (a) Hawaii 7996 and (b) West Virginia. pw,
plant width; ph, plant height; CMh, center of mass height; CMw,
center of mass width; xm, horizontal mass distribution; ym, verti-
cal mass distribution. The Hawaii 7996 plant shown here is the
same plant used for Figure 1.

Figure S5. Trait values differ between mock and inoculated resis-
tant and mock and inoculated susceptible plants. (a-d) Resistant
RILs 649, 657, 659, and 663. (e-h) Susceptible RILs 705, 776, 791,
and 797. (i) Resistant parent Hawaii 7996 (HA). The susceptible
parent West Virginia (WV) is shown in Figure 3 of the main text.
For each trait, the gray column indicates mock-inoculated; the
white column indicates Ralstonia-inoculated. Stars indicate signifi-
cant differences between mock and inoculated plants on the same
day (P < 0.05, one-tailed t-test).

Figure S6. Broad-sense heritability (H2) estimates of 10 image-
based traits and wilting scores across all time points. Heritability
estimates of image-based and visual scoring measurements.
Figure S7. A total of five principal components captured a majority
(>98%) of the variation in phenotypes as reflected in scree plots.
(a) All primary image-based traits including wilting score. (b) All
image-based traits without wilting score.

Figure S8. GBS read distribution by sample (includes parental ref-
erences).

Figure S9. (a) RIL and parental coverage and SNP density from
GBS analysis. (b) Percent heterozygosity and SNP density.

Table S1. Correlations between wilting at 6 dpi and image-based
descriptors at 3, 4, and 5 dpi (Excel file).
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Table S2. Marker density per cM for each chromosome (Support-
ing Information file).
Table S3. Heritability of each trait at each time point (Excel file).

Table S4. Descriptive statistics for 10 image-based descriptors at
6 dpi, visually assessed wilting scores at 8 dpi, and the AUDPC for
each descriptor and wilting score. Data are shown for the resistant
parent Hawaii 7996, the susceptible parent West Virginia 700, and
the RIL population (Supporting Information file).

Table S5. Overview of QTLs identified across the genome at 3, 4,
5, 6, and 7 dpi with R. solanacearum. QTLs for visually assessed
wilting were identified at 6 and 7 dpi; all others are image-based
traits. Image-based traits identified the Bwr QTL as early as 3 dpi.
LOD, maximum value of the logarithm of the odd; PVE, percent-
age of phenotypic variance explained. Left Cl and Right Cl indicate
the confidence interval calculated by a one-LOD decrease from the
estimated QTL position. "Bwr3.1, ""Bwr3.2, 11Bwr3.3, *Bwr12.1,
ABwr10.1

(Supporting Information file).

Table S6. Partial contribution of variables for primary traits (with-
out wilting score) for the first five principal components used for
QTL mapping (Excel file).

Table S7. Partial contributions of variables for primary traits
including wilting score for the first five principal components used
for QTL mapping (Excel file).

Table S8. Values for all 166 RILs and each parent at —1, 3, 4, 5,
and 6 dpi for all 10 image-based traits and human-assessed wilt-
ing scores. The average value for each genotype from five repli-
cates is in pixels; wilting score is percentage of leaves wilted
(Excel file).

Table S9. Total PE reads and GBS read summary (Supporting
Information file).
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