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Abstract

Spatially explicit global estimates of forest carbon storage are typically coarsely scaled. While useful, these estimates do

not account for the variability and distribution of carbon at management scales. We asked how climate, topography, and dis-

turbance regimes interact across and within geopolitical boundaries to inüuence tree biomass carbon, using the perhumid

region of the Paciûc Coastal Temperate Rainforest, an infrequently disturbed carbon dense landscape, as a test case. We lever-

aged permanent sample plots in southeast Alaska and coastal British Columbia and used multiple quantile regression forests

and generalized linear models to estimate tree biomass carbon stocks and the efects of topography, climate, and disturbance

regimes. We estimate tree biomass carbon stocks are either 211 (SD = 163) Mg C ha−1 or 218 (SD = 169) Mg C ha−1. Natural

disturbance regimes had no correlation with tree biomass but logging decreased tree biomass carbon and the efect dimin-

ished with increasing time since logging. Despite accounting for 0.3% of global forest area, this forest stores between 0.63%

and 1.07% of global aboveground forest carbon as aboveground live tree biomass. The disparate impact of logging and natu-

ral disturbance regimes on tree biomass carbon suggests a mismatch between current forest management and disturbance

history.

Key words: disturbance regimes, forest carbon, forest disturbance, logging, tree biomass carbon

Introduction

Forested ecosystems are important contributors to the

global carbon cycle (Litton et al. 2007; Pan et al. 2011) in part

because of their ability to retain carbon for centuries to mil-

lennia. Global estimates of forest carbon pools vary between

234 and 363 Pg of carbon (Kindermann et al. 2008; Pan et al.

2011; Santoro et al. 2021). Although valuable, these widely

available global estimates of forest carbon do not (nor are in-

tended to) capture the variability and distribution of carbon

at regional scales (McNicol et al. 2019); hence regional mod-

eling is still necessary for many questions at management

scales. To better account for forest carbon at regional and

management scales, estimates and mapping eforts must in-

corporate appropriately scaled patterns and variability of the

landscape, such as climatic and topographic processes that

directly inüuence the growth and survival of trees and dic-

tate the accumulation and arrangement of carbon (Adams et

al. 2014).

Beyond the well-known climatic and topographic factors

important to the distribution of trees (e.g., slope, aspect, and

elevation), disturbances are a key process that operate at the

landscape scale to change the distribution of forest carbon

storage through the modiûcation of vegetation composition

and structure (Thom and Seidl 2016). Therefore, to under-

stand the distributions of carbon stocks at regional scales it

is critical to understand the role of disturbance regimes. It

is well documented that individual disturbance events have

a strong impact on local carbon stocks through either the

lateral movement of tree biomass carbon from the stand-

ing live pool to the dead pool (Schomakers et al. 2017) or

through the removal of tree biomass carbon from the system

from combustion or logging practices (North and Hurteau

2011). What is less clear is the impact of disturbance regimes,

which are spatially heterogeneous yet may have an impact

on carbon accumulation at broad scales. For example, if a

disturbance regime is frequent, one would expect lower car-

bon stocks in areas of higher exposure to that regime (e.g.,

on steep slopes with frequent avalanches). More ûne-scale

information on disturbance regimes, climate, and topogra-

phy might allow for better estimates of the distributions of

tree biomass carbon across landscapes. This is especially im-

portant in areas that are disproportionally biomass carbon

dense (contribute more to global carbon storage than their

area would suggest), as changes to those regions can have an
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Fig. 1. (a) Map of the perhumid region (dark green) of the coastal temperate North American rainforest (light green on inset

map). Points represent the approximate location of permanent sample plots from the Forest Inventory and Analysis dataset

in southeast Alaska and Forest Inventory and Analysis Branch dataset in coastal British Columbia. Figure was created using

ArcGIS Pro version 2.6.0 with data from the state of Alaska, Esri Canada, and USGS. Coordinate system is Alaska Albers equal

area conic, datum WGS 1984, units in meters. We included photos of the overstory (b) and the lower canopy (c) to provide

context to readers unfamiliar with this ecosystem. Photos are provided from Trevor Carter.

outsized inüuence on global carbon cycling (Law et al. 2018,

2023).

One such region is the permanently humid (perhumid)

ecoregion of the Paciûc Coastal Temperate Rainforest (Fig. 1a;

Vynne et al. 2021; DellaSala et al. 2022). Previous research

by Buma and Thompson (2019) on the Alaskan coast por-

tion of the perhumid suggests aboveground live tree biomass

carbon density will be on average between 225 and 300 Mg

C ha−1. Buma and Thompson (2019) also provide expecta-

tions on the disturbance regimes for windstorms and land-

slides, the two primary natural disturbance regimes for the

perhumid. It is likely that these two disturbance regimes

will have little overlapping area because each regime oc-

curs in unique topographic contexts (e.g., landslides occur on

steep slopes). It is unlikely to observe meaningful diferences

in natural disturbance regimes or historical logging across

geopolitical borders in the perhumid (southeast Alaska and

coastal British Columbia) because the variability in biogeog-

raphy and topography is similar across the region. Areas as-

sociated with natural disturbance regimes will likely have

a slightly higher average aboveground live tree biomass at

this spatial scale because these areas are less likely to ex-

perience nutrient declines and subsequent biomass loss as-

sociated with undisturbed ecosystems (Buma and Thomp-

son 2019), a process sometimes referred to as retrogression

(Peltzer et al. 2010). Conversely, the disturbance regime as-

sociated with logging, which occurs with a higher frequency

than natural disturbances (Krankina et al. 2014), will afect

aboveground live tree biomass. In theory, the efect varies

from negative over short timescales (Rhemtulla et al. 2009) to

positive over longer timescales as regeneration occurs prior

to competitive exclusion of trees (Shugart 1984). However,

in practice, logging rotations in the perhumid (e.g., the Ton-

gass NF in southeast Alaska) typically occur on shorter time

intervals than what is necessary for forests to reach pre-

logging conditions (Krankina et al. 2012; Vynne et al. 2021;

DellaSala et al. 2022). Understanding the efects of logging

on aboveground tree biomass carbon is especially important

when considering the future of forest management in this

region. The United States has logging policies in the Ton-

gass NF (the northern portion of the perhumid) that focus

on (but are not exclusive to) the harvest of younger trees

in previously harvested areas (Vilsack 2013) while the man-

agement strategies adopted by the Canadian government pri-

marily focus on the conservation of old growth forests (James

2016).

To generate more ûne scale estimates of the distribution

of aboveground live tree biomass carbon and address the

gaps in our understanding of the impacts of disturbance

regimes on aboveground live tree biomass carbon, we ask

the following questions in the carbon dense perhumid re-

gion of the Paciûc Coastal Temperate Rainforest of North

America: (1) What is the spatial distribution of aboveground

live tree biomass carbon across the region? (2) What are

the spatial patterns of disturbance regimes across the re-

gion? (3) How do disturbance regimes (both natural and an-
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thropogenic) interact across and within geopolitical bound-

aries to inüuence aboveground live tree biomass carbon

stocks?

Materials and methods

Study region
The perhumid region of the Paciûc Coastal Temperate

Rainforest is a carbon dense landscape (Leighty et al. 2006;

McNicol et al. 2019), which ranges from Yakutat in south-

east Alaska through the central coast of British Columbia

near Bella Coola (Fig. 1a). The perhumid region of the Pa-

ciûc Coastal Temperate Rainforest covers 14.7 million ha of

land area and 11.6 million ha of forested area (including the

Tongass NF and Glacier Bay NP in Alaska and the Great Bear

Rainforest in British Columbia as well as private and tribal

lands), spanning from sea level to over 2000 m in elevation

and extends less than 100 km from the coast (Fig. 1). Mean

annual temperature ranges from −14.3 ◦C in the mountains

to 5.6 ◦C at the southern coast while mean annual precipi-

tation varies from 610 to 5690 mm (Fick and Hijmans 2017).

Only a few tree species are dominant in this forest, including

Picea sitchensis, Tsuga heterophylla, and to a lesser degree Tsuga

mertensiana and Callitropsis nootkatensis. Species such as Pseu-

dotsugamenziesii and Thuja plicata, found further south, extend

slightly into the perhumid region but are not major compo-

nents of the forest. Hardwood species mostly in the genus

Alnus and Salix are found in the understory throughout the

forest and can dominate scariûed soil beds and riparian ar-

eas.

Disturbance regimes
This ecosystem is documented to have the lowest fre-

quency of forest disturbances on the North American conti-

nent (Buma et al. 2017) with the absence of a deûnable dry

season and a subsequent lack of wildûre as a disturbance

process within the last 5000 years (DellaSala 2011). In addi-

tion to the lack of historical ûre, there is no evidence of sub-

stantial insect mortality (Harris 1999). There is a large docu-

mented die-of of C. nootkatensis in central and southern por-

tions of the study region associated with decreases in persis-

tent snowpacks and root freezing, while this is amajor source

of C. nootkatensis mortality, we do not include this mortality

presently as the causes and consequences of this mortality

are variable and based on multiple climatic signals (Comeau

and Daniels 2022). We included natural disturbance regimes

via the concept of disturbance exposure (Ager et al. 2012).

Disturbance events in this region are exceedingly rare (Buma

et al. 2017) and are typically not mapped. Thus, we are pri-

marily concerned about their inüuence in terms of averages

over large spatial extents. We used the methods of Kramer

et al. (2001) and Buma and Thompson (2019) to map the

dominant disturbance exposure as spatially explicit distur-

bance regimes (windstorms and landslides, respectively). This

method provides a relative probability of a given area being

disturbed over long run frequencies and assumes the distur-

bances are relatively consistent in terms of severity, which

is appropriate for these two regimes in this region (Nowacki

and Kramer 1998; Read 2015; Foss et al. 2016).

Contemporary logging practices in the region typically

clearcut patches of trees (range from <1 to 5180 ha on private

land AK; <1–222 ha on USFS land AK; <1–937 ha in British

Columbia) and is a more spatially extensive and more fre-

quent factor compared to natural disturbances (Krankina et

al. 2014). We obtained the logging area and year of logging

in the region from the US Forest Service and private industry

(U.S. Forest Service 2022), and from the BCMinistry of Forests

(Forest Analysis and Inventory Branch 2023). The logging data

does not deûne speciûc harvest practices, although clearcuts

are typically standard management practice for this region.

We rasterized the logging polygons and created two spatially

explicit logging layers (ESRI 2020). The ûrst layer was a bi-

nary representation of logging to determine its presence or

absence. The second layer represented the time in years since

the logging occurred.

Plot data
In southeast Alaska, we used Forest Inventory and Analysis

plots (FIA; n = 2315; Gray et al. 2012) and in coastal British

Columbia, we used permanent sample plots from the Forest

Analysis and Inventory Branch (FAIB; n = 950; Forest Analy-

sis and Inventory Branch 2023). FIA plots are stratiûed across

the landscape (1 plot every 6000 acres) in forested areas and

consist of up to four subplots. FAIB plots consist of either

ûxed or variable radius plots and are stratiûed along 20 km

× 20 km grids. The spatial distribution of permanent sam-

ple plots is not even across the study area, with more plots

located in southeast Alaska (Fig. 1a). Because multiple ob-

servers and years are associated with both the FIA and FIAB

data, we validated the logging data reported in these datasets

through visual conûrmation of logging scars, and to the best

of our ability ensured the reported date of logging for each

plotmatched satellite imagery and other raster layers. Impor-

tantly, several plots were reported as being logged and con-

ûrmed to have been logged through satellite imagery but con-

tained data (e.g., multiple trees >50 cm Diameter at Breast

Height (DBH)) that was unsupportive of an area being logged.

As such we removed plots (n = 4) from our analysis that con-

tained biomass values greater than the 80th percentile of live

tree biomass and were reported as being logged within the

last 20 years, as it is unlikely that regeneration of this scale

occurred within 20 years post logging. Additionally, several

diferent plots in coastal British Columbiawere reportedwith

the same coordinates and so were removed for our spatially

explicit models leading to a ûnal sample size of n = 2218.

Lastly, if the same plot was measured on multiple occasions,

we used the latest measurement data.

We created area standardized estimates (Mg C ha−1) for

each plot using Kozak’s allometric equations (Kozak et al.

1969). Kozak’s tapering equations, developed for the region,

accounts for trees with broken tops and minimizes overes-

timates of aboveground live tree biomass (Turchick 2021).

Given our focus on spatial variation of carbon, the use of addi-

tional allometric equations would reproduce the same trends

of variation (Turchick 2021). All allometric equations are in-
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herently limited to the range of trees upon which they are

calibrated. In this region, there are occasionally trees outside

any developed allometric system (e.g., >1 m DBH for Tsuga

sp.; Table A1). This presents a challenge for unbiased esti-

mations (see discussion), thus we create two estimates that

attempt to bracket the true value. We ûrst estimate carbon

including all reported tree sizes from the FIA and FAIB data

(henceforth the unconstrained estimate). This estimate is po-

tentially biased relative to actual tree biomass carbon (and

likely higher, due to the exponential allometric equations),

as we are applying the allometric equation to trees beyond

the range at which they were calibrated. There is no way to

quantify the error associated with estimating tree biomass

carbon for trees outside of the range of the equation.We then

repeated the same process but truncated trees outside the

range of the Kozak equation to be the maximum size within

the range of the allometric equation (subsequently referred

to as the truncated estimate; Table A1) and report subsequent

results in the supplement. This truncated estimate is neg-

atively biased and underrepresents the true level of above-

ground live tree biomass carbon as a result. We expect true

aboveground live tree biomass carbon is most likely between

the two estimates. For both analyses, we grouped estimates

of aboveground live tree biomass carbon by plot, year of mea-

surement, and status.

We repeat our analyses a second time for a subset of the

data that only includes ûxed radius plots. This subset is re-

ported in depth in the supplemental materials and decreases

our sample size from n = 2218 to 1852, with all variable ra-

dius plots that we excluded being located on the central coast

of British Columbia. Due to diferences in sampling method-

ology between ûxed radius and variable radius plots, the in-

clusion of variable radius plots may bias our dataset and their

inclusion could lead to decreased model performance. How-

ever, we elect to retain all data available for the analyses

present in the main text as we view the exclusion of data for

the primary purpose of increasing model performance as not

best practice.

Machine learning model framework
To estimate regional aboveground live tree biomass carbon

and associated prediction intervals in a spatially explicitman-

ner we used quantile regression forests (QRF; Meinshausen

2017). Quantile regression forest is amachine learning frame-

work that operates similar to random forest with the abil-

ity to estimate values for any quantile that is needed, which

may then be utilized for calculating spatially explicit predic-

tion intervals (e.g., 80%) through using upper (90%) and lower

(10%) quantile maps (Koenker and Hallock 2001). We trained

a QRF using a randomized training set composed of 80% of

the data and an independent test set composed of 20% of the

data to produce spatially explicit predictions of aboveground

live tree biomass carbon for the 0.1, 0.5, and 0.9 quantiles

(Meinshausen 2017).

We included the spatially explicit raster layers of distur-

bance exposures as predictors as well as elevation, slope, and

aspect (LP DAAC 2011), mean annual precipitation and an-

nual temperature (Fick and Hijmans 2017), and percentage

forest cover (Hansen et al. 2013) at a 30 m resolution. Given

the inclusion of ice caps and glaciers üowing to low elevations

in the study area, we clipped the estimates of aboveground

live tree biomass carbon by the forest cover layer to remove

estimates of aboveground live tree biomass carbon where no

forest cover is present (ESRI 2020).

We evaluated the quantile regression forest model perfor-

mance using ûve randomized data folds for cross validation

to determine root mean absolute error, variance explained,

and mean absolute error. Further, we report the non-spatial

distribution of residuals (Fig. A1) and we evaluated the uncer-

tainty estimates by calculating the prediction interval cover-

age probability (Fig. A2) and mean prediction interval as out-

lined in Kasraei et al. (2021).

Spatial analysis framework
To quantify the percentage of the landscape exposed to

disturbance regimes we calculated the area with high dis-

turbance exposure (arbitrarily set at values greater than the

70th percentile of windstorms or landslides, calculated in-

dependently) and logged areas. We then estimated the co-

location between disturbance regimes by counting the over-

lapping areas of modeled disturbance exposure. Additionally,

we determined whether areas of disturbance or high distur-

bance exposure varied topographically and climatically from

areas without disturbance or exposure by visually compar-

ing the sampling distributions (mean of 100 random samples

repeated 1000 times) for precipitation, slope, and elevation

in high and low exposed areas. We utilized t tests to further

compare the sampling distributions of high and low exposed

areas for these variables. To show the variation in aspect, we

randomly sampled aspect 1000 times but did not compute the

mean or conduct a t test because of a circular and non-normal

distribution of the variable.

Generalized linear model framework
To address the question of how disturbance types and histo-

ries interact to inüuence aboveground live tree biomass car-

bon pools, we used a global generalized linear model with a

gamma error distribution to identify key statistical correla-

tions using R version 4.1.2 (R Core Team 2022) as follows:

Biomass ∼ Logged (Y/N) : TimeSinceLogging

+Logged (Y/N) : TimeSinceLogging2

+Logged (Y/N) × Country + WindRegime

+Landslide Regime + Slope + Precipitation

+Temperature + Latitude × Longitude

We included terms for natural disturbance regimes as rep-

resented through disturbance exposure and a binary term

for logging to indicate if a plot was measured in a logged

area that interacted with another coeocient for time since

logging or country of origin (Table A2). The terms for nat-

ural disturbance exposure were both continuous variables

(ranging from 0 to 1) and are separate from the discrete cate-

gories used in the spatial analysis framework. Additionally,

we included a polynomial term for time since logging to
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Fig. 2. Unconstrained estimate (n = 2218) of aboveground live tree biomass carbon for the perhumid region. Lighter orange

and yellow colors indicate more aboveground live tree biomass. The mean aboveground live tree biomass for the region is 218

Mg ha−1 and the maximum predicted aboveground live tree biomass for the region is 2670 Mg ha−1. Figure was created using

ArcGIS Pro version 2.6.0 with data from the state of Alaska, Esri Canada, and USGS. Coordinate system is Alaska Albers equal

area conic, datum WGS 1984, units in meters.

better understand potential peaks in aboveground live tree

biomass that may occur prior to canopy closure (Table A2).

We included slope, precipitation, and temperature in our

model because both covariates are geographically controlled

and may inüuence aboveground live tree biomass accumu-

lation in this region (Table A2; Buma et al. 2017). We tested

our predictors for collinearity using variable inüuence fac-

tors outlined in (Zuur et al. 2009). Finally, we tested our

model for residual spatial autocorrelation using the Moran’s

I statistic. To reduce residual spatial autocorrelation, we in-

cluded an interaction between latitude and longitude in our

model structure. However, this did not completely resolve

the residual spatial autocorrelation. As such, we report the

residuals as they vary along gradients present in our model

(Fig. A3).

Results

Aboveground tree biomass carbon estimates
Our estimate from the quantile regression forest of above-

ground live tree biomass carbon using our unconstrained es-

timate across the region is comparable to the averages of

aboveground live tree biomasswithin the plot data (predicted

median= 495Mg C ha−1 vs. datasetmedian= 478Mg C ha−1).

Root mean standard error was 520 Mg C ha−1, with mean ab-

solute error of a similar magnitude at 346 Mg C ha−1 and 39%

of variance explained. The unconstrained estimate of median

predicted aboveground live tree biomass carbon ranges from

5 Mg C ha−1 in sparsely forested areas (e.g., higher elevations

or muskeg environments) to 2670 Mg C ha−1 and was on aver-

age 218 Mg C ha−1 (SD = 169 Mg C ha−1; Fig. 2). Total regional

aboveground live tree biomass carbon for our unconstrained

estimate was 2.5 Pg of carbon. The 80% prediction interval

was on average 1140 Mg C ha−1 with 77% of predictions from

the model falling within the prediction interval and 81% of

prediction intervals containing the value of aboveground live

tree biomass estimated from the FIA and FAIB dataset (Figs.

3 and A2).

The quantile regression forest model for the truncated es-

timate performed similarly to the model using the uncon-

strained estimate, with a root mean standard error of 461 Mg

C ha−1, a mean absolute error of 319 Mg C ha−1, and 43%

of the variance explained. The model for the truncated esti-
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Fig. 3. The spatially explicit 80% prediction interval for the unconstrained estimate of aboveground live tree biomass carbon

(Mg C ha−1). The prediction interval coverage probability is 80.57% while 76.91% of predictions are within the prediction

interval. Themean prediction interval (non-shown on histogram) was 1140Mg C ha−1, whilemedian prediction interval (shown

with dashed line) was 897 Mg C ha−1. Figure was created using ArcGIS Pro version 2.6.0 with data from the state of Alaska, Esri

Canada, and USGS. Coordinate system is Alaska Albers equal area conic, datum WGS 1984, units in meters.

mate predicted a slightly smaller average than the model for

the unconstrained estimate, with 211 Mg C ha−1 (SD = 163

Mg C ha−1) being stored as aboveground live tree biomass

(Fig. A4). This estimate set is on average 7 Mg C ha−1 (3%)

lower than the unconstrained estimate of aboveground live

tree biomass carbon (Fig. A5). The truncated estimate of pre-

dicted aboveground live tree biomass carbon is also compa-

rable although slightly higher than averages of aboveground

live tree biomass carbon within the dataset of permanent

sample plots (predicted median = 472 Mg C ha−1 vs. dataset

median = 469 Mg C ha−1). Our truncated estimate of median

aboveground live tree biomass carbon ranges from 5 to 2620

Mg C ha−1 in forested areas and is in total 2.3 Pg of carbon.

The 80% prediction interval for the quantile regression forest

model using the truncated estimate of aboveground live tree

biomass was on average 1061 Mg C ha−1 with 77% of predic-

tions from the model being contained within the prediction

interval and 80% of the prediction intervals containing the

value of aboveground live tree biomass estimated from the

FIA and FAIB dataset (Fig. A6).

Disturbance regimes across the forest
Logging afected approximately 6% of forested area (data

from 1945 to 2014) in the perhumid region with each coun-

try having comparable forested area logged (Table 1; Fig. 4a).

Similarly, disturbance regimes (not individual disturbance

events) for both landslides and windstorms in southeast

Alaska and coastal British Columbia associated with similar

amounts of forested area (Table 1; Fig. 4a). Over half of the

forest area (69.5%; approx. 8 million ha; Table A3) was associ-

atedwith the conditions that alignwith a natural disturbance

regime or experienced logging (Fig. 4b). Within this approx-

imately 8 million ha, 38.2% of the land area was logged or

aligned with one natural disturbance regime (landslides or

windstorms), 29.0% of land area had environmental condi-

tions that accompany both natural disturbance regimes, or

had conditions associated with one disturbance regime and

was logged. Less of the landscape (2.21%) experienced logging

andwas associatedwith the disturbance regimes for both nat-

ural disturbances. There is no major bias of overlapping log-

ging and disturbance regimes based on geopolitical boundary
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Table 1. Summary of the area logged (time range 1945–2014) or associated with natural distur-

bance regimes (modelled) for southeast Alaska, coastal British Columbia and in total (AK+ BC).

Disturbance Area of disturbance (ha) Area of forest (ha) Area (%)

Logging AK 305 000 6 110 000 4.99%

Logging BC 381 000 5 490 000 6.95%

Logging total 687 000 11 600 000 5.92%

Wind regime AK 1840 000 6 110 000 30.1%

Wind regime BC 1750 000 5 490 000 31.9%

Wind regime total 3 590 000 11 600 000 30.9%

Landslide regime AK 1540 000 6 110 000 25.2%

Landslide regime BC 2240 000 5 490 000 40.9%

Landslide regime total 3 780 000 11 600 000 32.6%

Note: Area is reported both in hectares and as a percentage of forested area in relation to southeast Alaska (6.11 million ha),
costal British Columbia (5.49 million ha), and the perhumid region (11.6 million ha). Logged areas vary in time since logging
(span of 67 years) but are reported as such in either the FIA or FIAB dataset. Area for natural disturbance regimes are >70th
percentile of relative frequency for each respective natural disturbance (for full description see methods).

Fig. 4. (a) Map of the area that either experienced logging or was associated with the conditions that align with the disturbance

regimes (i.e., exposure) of windstorms or landslides. (b) The number of overlapping polygons from panel (a). Figure was created

using ArcGIS Pro version 2.6.0 with data from the state of Alaska, Esri Canada, and USGS. Coordinate system is Alaska Albers

equal area conic, datum WGS 1984, units in meters. Variation in the sampling distribution for the mean of elevation for (c)

logged and unlogged areas, (d) high and low relative frequency for the windstorm disturbance regime, and (d) high and low

relative frequency for the landslide disturbance regime. High and low relative frequencies of disturbance regimes (disturbance

exposure) are greater than or equal to the 70th percentile and lower than the 70th percentile of relative disturbance frequency

respectively.

(Table A3), this is result is not sensitive to the arbitrary cutof

used to deûne high versus low disturbance regimes.

Logged areas were biased towards areas with higher mean

precipitation, lower slopes, and lower elevations (Fig. 4c) but

did not vary with regards to aspect (Fig. A7c). Logging did

not disproportionately occur in areas with natural distur-

bance regimes (Fig. A8). Unsurprisingly, the presence of log-

ging was correlated with signiûcantly lower aboveground

live tree biomass carbon (Table 2; Fig. A9). Predicted above-

ground live tree biomass carbon was slightly higher in un-
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Table 2. Model results estimating the efect of the relative frequency of natural disturbance

regimes and logging across geopolitical borders on aboveground live tree biomass carbon

using the unconstrained estimate of plots (n = 2218).

Biomass ∼ Disturbance regimes + Slope + Precipitation + Temperature + Latitude × Longitude
(N = 2218)——R2 = 0.238

Coeocient Estimate SE (Standard Error) t-value P-value

Unlogged − 22.4 19.2 − 1.16 0.245

Logged − 4.03 0.450 − 8.96 <0.001

BC unlogged 1.22 0.107 11.4 <0.001

BC logged − 1.18 0.160 − 7.33 <0.001

Wind regime 0.002 0.010 0.193 0.847

Landslide regime − 0.240 0.499 − 0.480 0.631

Precipitation 0.001 0.000 1.23 0.217

Temperature 0.068 0.015 4.51 <0.001

Slope 0.021 0.003 6.83 <0.001

Logged (Y) × TimeSince 0.110 0.027 4.00 <0.001

Logged (Y) × TimeSince2 − 0.001 0.000 − 1.54 0.123

Latitude 0.634 0.351 1.81 0.071

Longitude − 0.130 0.151 − 0.857 0.391

Latitude × Longitude 0.003 0.003 1.23 0.219

Note: Covariates for slope and precipitation are included to further elucidate the efect of landslides.

logged forests in coastal British Columbia and slightly lower

in logged forests in coastal British Columbia as compared to

unlogged and logged forests in southeast Alaska, respectively

(Table 2; Fig. A9). On average, unlogged plots in southeast

Alaska had 461 ± 22 Mg C ha−1 while logged plots in south-

east Alaska had 189 ± 49 Mg C ha−1 and unlogged plots in

coastal BC had 1047 ± 59 Mg C ha−1 with logged plots hav-

ing 160 ± 47 Mg C ha−1 (mean ± 95% CI). In logged areas, the

efect of the time since logging (over a span of 67 years) had

a signiûcant linear efect on aboveground live tree biomass

carbon such that with increasing time since logging above-

ground live tree biomass was higher than areas with less time

since logging (Fig. A10). Plots associated with the lowest time

since logging (1 year) were associatedwith 7.0± 6.3MgCha−1

while plots associated with the highest time since logging (67

years) were associated with 579± 484Mg C ha−1 (mean± 95%

CI), with the conûdence around the mean decreasing with in-

creasing time since logging (Fig. A10). We did not observe a

decrease in estimated aboveground live tree biomass associ-

ated with the quadratic term for time since logging.

Areas with high exposure to windstorm disturbance

regimes are biased towards comparatively less steep slopes,

southwesterly aspects, and to a lesser degree lower eleva-

tions than areas with low exposure to windstorm distur-

bance regimes (Figs. 4d and A7). Areas with high exposure

to landslide disturbance regimes difered meaningfully from

areas with low exposure in all topographic contexts tested.

Speciûcally, areas with high exposure to landslide distur-

bance regimes had highermean precipitation, steeper slopes,

more southern aspects, and lower elevations (Fig. 4e and

A7). Areas with a high exposure to one disturbance regime

were positively associated with areas with a high exposure

to the other disturbance regime (i.e., areas of high landslide

exposure were also in areas of high windstorm exposure

and vice-versa; Figs. 4 and A8). Overall, natural disturbance

regimes were not important predictors of aboveground live

tree biomass carbon for the region (Table 2). Slope signiû-

cantly predicted aboveground live tree biomass carbon such

that steeper slopes on average had higher aboveground live

tree biomass carbon.

Discussion

Aboveground tree biomass carbon
Our study represents themost detailed investigation of spa-

tially explicit aboveground live tree biomass carbon distribu-

tions in the perhumid region of the Paciûc Coastal Temper-

ate Rainforest to date. Our median estimates of aboveground

live tree biomass carbon ranged between 2.3 and 2.5 Pg of

carbon (Figs. 2 and A4). We estimate this forest has on aver-

age either 211 Mg C ha−1 (SD = 163 Mg C ha−1) or 218 Mg C

ha−1 (SD = 169 Mg C ha−1) stored in aboveground live tree

biomass. Our estimates largely align with previous spatially

explicit estimates of tree biomass carbon densities for south-

east Alaska (1.21–1.52 Pg C: Buma and Thompson 2019), and

are slightly higher than previous estimates that do not em-

ploy spatially explicit estimation methods (0.45 Pg C: Law et

al. 2023; 0.42–0.53 Pg C: Leighty et al. 2006). Our estimates

are also comparable with other high-end carbon density es-

timates of globally important and highly productive forests

(Santoro et al. 2021). The perhumid region disproportionally

contributes to global forest carbon storage; the perhumid re-

gion consists of approximately 0.3% of global forest area (Pan

et al. 2011; Keenan et al. 2015) but the data here suggest that

it stores between 0.63% and 1.07% of global aboveground for-

est carbon as aboveground live tree biomass (Kindermann et

al. 2008; Pan et al. 2011; Santoro et al. 2021).
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Patterns of disturbance regimes
Disturbance regimes did have distinct spatial patterns,

both individually (Fig. 4) and relative to each other (Fig. A8).

Logging did not preferentially occur on areas with high ex-

posure to landslide or windstorm regimes. However, natural

disturbance regimes were co-located despite diferent trends

in the topographic and climatic positioning of mean sam-

pling distributions for each respective disturbance regime

(Table A3; Fig. A7). Although we did not observe a bias of

logged sites occurring in areas of more frequent natural dis-

turbances at this spatial scale, there are many similarities

in the topographic positioning between logging and natu-

ral disturbance regimes. Both logging and landslides are bi-

ased towards areas of higher precipitation and lower eleva-

tions, while logging and windstorms tend to occur on lower

slopes. Notably, the means of each disturbance or distur-

bance regimes have minor diferences for each topographic

context.

Surprisingly, we did not observe any trends of natural dis-

turbance regimes on aboveground live tree biomass carbon

storage, as was observed in Buma and Thompson (2019). The

lack of efect may be in part because natural disturbances

are infrequent in absolute terms across this landscape (Buma

et al. 2017), or because disturbance events lack the magni-

tude to impact biomass carbon accumulation at this scale

(Turchick 2021). While our sample area only comprises less

than 1% of the landscape, the failure to detect an efect of nat-

ural disturbance regimes on aboveground live tree biomass

is likely not due to an inadequate sample size. Our sample,

albeit not spatially random, is representative of the popula-

tion we are modelling. A post hoc power analysis provides

evidence that our sample size was suocient to detect an ef-

fect as small as 0.08 (df = 2204, n = 2218, α=0.05). In con-

trast, logging decreased aboveground live tree biomass car-

bon (Table 2) and the efect of time since logging showed a

positive relationship with aboveground live tree biomass car-

bon (Fig. A10).

Inüuence of logging
Unsurprisingly, logging decreased aboveground live tree

biomass, which is intuitive andwell documented in other sys-

tems (Mathys et al. 2013; DellaSala et al. 2022). The efect of

logging typically difers from natural disturbance regimes, as

carbon is removed from the landscape as compared to trans-

ferred laterally from one pool to another. The efect of log-

ging on aboveground live tree biomass carbon was consistent

across geopolitical borders, although themagnitude of the ef-

fect varied slightly by country (Fig. A9). The positive relation-

ship of time since loggingwith aboveground live tree biomass

carbon aligns with biomass accumulation during stand re-

generation. The variation in operational-level practices (e.g.,

slash and logging debris left on site, non clearcut operations,

etc.) may also result in the high variability observed within

logged plots, though we did not have data to detect that ac-

tor. We note that the dataset is limited in temporal coverage,

going back to the 1950s. It is possible that inadequate rep-

resentation of older logging locations precluded capturing

further changes in aboveground live tree biomass as stand

structure closes in our model (Shugart 1984). The efect of

logging is especially important when considering the future

of forest management in this region. The United States has

recently adopted new logging policies that primarily focus

on the harvest of younger trees exclusive to the Tongass NF

portion of the study region (Vilsack 2013). This contrasts with

the management strategies adopted by the Canadian govern-

ment, which focus on conservation and has taken land out

of the harvest rotation, although some logging does still oc-

cur (James 2016). Policy focused on re-logging areas will con-

tinue to disturb highly productive areas (i.e., valley bottoms)

that might serve as aboveground live tree biomass carbon

refuges. The continued efect of logging, if done in the same

locations, may not result in large changes to carbon storage

in the landscape unless intensiûed, but that also implies a re-

gional carbon level lower than potential carbon stocks were

logging activity to be shifted or reduced (Leighty et al. 2006;

DellaSala et al. 2022). We observed a slight but noticeable

trend of aboveground live tree biomass increasing with time

since logging. This trend is underscored by the high variance

in aboveground live tree biomass carbon in plots that experi-

enced logging. The conservation of coastal British Columbia

forests is particularly important because of their slight but

signiûcantly higher levels of aboveground live tree biomass

carbon as compared to southeast Alaska.

Limitations and challenges
The models selected, which incorporate disturbance

regimes, while appropriate for our understanding at broad

spatial scales, are not intended to understand individual dis-

turbance events nor processes at ûner spatial scales. We are

not aware of any dataset for natural disturbances that span

the entire study region at a temporal scale that would be

appropriate to address questions of aboveground live tree

biomass carbon storage. Mapping at regional scales requires

subsuming heterogeneous local factors and local data set

limitations, which may be signiûcant at local scales, into

broader modeling frameworks. For example, the data avail-

able in both southeast Alaska and coastal BC for logging do

not represent a complete history of logging in the region;

however, at broad spatial scales our data represents similar

trends to the landscape (approx. 6% of plots experienced log-

ging and approx. 6% of landscape experienced logging). To

help address uncertainty in data, we included a variety of

estimates of aboveground live tree biomass carbon (see sup-

plemental materials) and expressly caution against using a

singular estimate for management and policy decisions. The

prediction intervals were on average large in both the un-

constrained estimate set (1140 Mg C ha−1; Fig. 3) and trun-

cated estimate set (1061 Mg C ha−1; Fig. A6). The variation

that we observed within each estimate set is likely because

of the variation present within the data collected across a

broad geographic area (see Fig. 1a), which was propagated by

the quantile regression forest throughout its estimating pro-

cedures (supplemental materials). The disparity of plot num-

ber and continuity between the United States and Canada is

likely causing some of the spatial autocorrelation, as there

are spatial gaps between the two eforts and additional sam-
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pling eforts will likely decrease the variance present in the

models.

There are also challenges associated with allometric equa-

tions, which were developed for trees ranging from 12.7 to

215.9 cm DBH in the Paciûc Coastal Temperate Rainforest

(Table A1). The largest trees hold a disproportionate amount

of tree biomass carbon. This makes it impossible to prop-

erly estimate uncertainty for the full dataset, because the

sizes of some trees are outside the range of tree sizes used

to develop the Kozak tapering equation (or any allometric

for these species). We suggest the unconstrained estimate is

likely closer to the true value, because it includes the full

range of tree sizes, but it is impossible to fully quantify the er-

ror. Conversely, our truncated estimate, which does not fully

account for these trees is certainly an underestimate of true

tree biomass carbon but does provide a strong estimate for

the lower range of potential values. Given the growing sig-

niûcance of carbon storehouses in global climate accounting

(Keith et al. 2014), it is a challenge that must be met by the

mensuration community.

Conclusions

The Paciûc Coastal Temperate Rainforest is exceptionally

carbon dense. Despite multiple spatially explicit predictions

of aboveground tree biomass carbon, each estimate needs to

be interpreted with caution due to the limitations of quanti-

fying the uncertainty of allometric equations and bias in the

spatial coverage of plots. Aboveground live tree biomass car-

bon is relatively insensitive to natural disturbance regimes at

broad scales; rather, carbon is more strongly associated with

topography and climate. Logging is also a strong inüuence

even at regional scales. Logging is farmore frequent than nat-

ural disturbances on this landscape, and the negative efect

of logging on tree biomass carbon storage will persist if forest

management plans focus on the harvest of younger trees. Fu-

ture management plans for the perhumid, which include the

Tongass NF and Great Bear Rainforest, should fully consider

the impact of harvest on tree biomass carbon storage and

how harvest rotations align (or do not align) to the natural

disturbance regime as outlined here. This work can inform

regional carbon management pracices, which in turn can in-

form international goals to conserve reservoirs of carbon,

such as forests, outlined in the Paris Climate Agreement (arti-

cle 5) that was signed by both the United States and Canada.

The regional map of current aboveground live tree carbon

stocks is a useful dataset for planning management activities

that could mimic patterns of carbon stocks or natural distur-

bances at regional scales.
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Appendix A

Table A1. Species and associated ranges of values for diameter at breast height (DBH) and

height used by Kozak (1969) to develop the allometric equation used.

Species DBH min (cm) DBH max (cm) Height min (m) Height max (m)

Abies amabilis 12.70 60.96 8.53 35.96

Abies lasiocarpa 12.70 60.96 8.53 35.96

Alnus rubra 12.70 45.72 16.15 32.92

Betula papyrifera 12.70 53.34 13.72 27.13

Chamaecyparis nootkatensis 15.24 111.76 13.41 45.11

Picea engelmannii 12.70 66.04 11.28 41.76

Picea glauca 12.70 66.04 11.28 41.76

Picea sitchensis 15.24 215.90 14.63 74.98

Pinus contorta 12.70 58.42 12.80 39.62

Pinus monticola 15.24 68.58 13.72 44.80

Populus balsamifera 12.70 121.92 13.72 50.90

Populus tremuloides 12.70 53.34 12.80 31.39

Pseudotsuga menziesii 12.70 180.34 15.85 70.41

Thuja plicata 15.24 129.54 9.45 57.60

Tsuga heterophylla 12.70 106.68 12.19 53.64

Tsuga mertensiana 12.70 106.68 12.19 53.64

Table A2. Topographic, climatic, and disturbance regime covariates included in the gen-

eralized linear model framework (n = 2218).

Covariate Mean Standard deviation Units

Annual mean temperature −0.384 2.81 Degrees

Annual precipitation 284 85.7 Decimeter

Slope 16.0 10.6 Degrees

Elevation 246 226 Meters

Tree cover 83.3 19.9 Percent

Windstorm regime 0.410 0.232 Relative Probability

Landslide regime 0.100 0.093 Relative Probability

Presence/absence logging 6.40 1351 AK, 867 BC Percent/# of plots

Time since logging 33.5 12.2 Years

Note: We report mean, standard deviation, and associated units for each variable. For the presence/absence of logging
we report what proportion of plots was reported as being logged and the number of plots within each country in place
of a standard deviation.
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Fig. A1. The nonspatial distribution of residuals for quantile regression forest estimate of the unconstrained estimate of tree

biomass carbon (n = 2218).
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Fig. A2. The 80% prediction interval coverage probability for the quantile regression forest using the unconstrained estimate

of aboveground live tree biomass carbon. The y-axis represents the diference in Mg C ha−1 between predicted and observed

biomass from the quantile regression forest (error, dashed line = 0 error). Grey bars represent the 80% prediction interval for

each point estimate in the model.
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Fig. A3. Residuals of our generalized linear model after accounting for spatial autocorrelation plotted against individual co-

variates of our model. Spatial autocorrelation was not fully removed after including latitude and longitude in our model.
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Fig. A4. The truncated estimate (n= 2218) of aboveground live tree biomass carbon for the perhumid ecoregion. Lighter orange

and yellow colors indicate more aboveground live tree biomass. The mean aboveground live tree biomass for the perhumid

ecoregion is 218 Mg ha−1 and the maximum predicted tree biomass for the region is 2620 Mg ha−1. Figure was created. ArcGIS

Pro version 2.6.0 with data from the state of Alaska, Esri Canada, and USGS. Coordinate system is Alaska Albers equal area

conic, datum WGS 1984, units in meters.
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Fig. A5. The diference between the unconstrained estimate and truncated estimate (n = 2218 vs. n = 2218) of aboveground

live tree biomass carbon. Purple and orange colors indicate where the full sample size estimate was larger, grey indicates zero

change between estimates, and black represents areas where the biased estimate was larger than the full sample size estimate.

On average, the full sample size estimate was 27% higher than the biased estimate. Figure was created using ArcGIS Pro version

2.6.0 with data from the state of Alaska, Esri Canada, and USGS. Coordinate system is Alaska Albers equal area conic, datum

WGS 1984, units in meters.
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Fig. A6. The spatially explicit 80% prediction interval for the truncated estimate of aboveground live tree biomass carbon (Mg

C ha−1). The prediction interval coverage probability is 80.23% while 77.36% of predictions are within the prediction interval.

The mean prediction interval (non-spatially explicit) was 1061 Mg C ha−1 while the median prediction interval (shown with

dashed line) was 806 Mg C ha−1. Figure was created using ArcGIS Pro version 2.6.0 with data from the state of Alaska, Esri

Canada, and USGS. Coordinate system is Alaska Albers equal area conic, datum WGS 1984, units in meters.

Table A3. Summary of the area disturbed or exposed to 1 disturbance

(written as 1 disturbance in the table), disturbed and exposed to 1 dis-

turbance or exposed to 2 disturbances (written as 2 disturbances in the

table), or disturbed and exposed to 2 disturbances (written as 3 distur-

bances in the table) for southeast Alaska, coastal British Columbia and

in total (AK + BC).

Disturbance Area (ha) Area (% of disturbed)

1 Disturbance 4 440 000 38.2%

2 Disturbances 3 360 000 29.0%

3 Disturbances 257 000 2.21%

Total Disturbed 8 060 000 69.5%

1 Disturbance AK 1970 000 24.5%

1 Disturbance BC 2460 000 30.6%

2 Disturbances AK 1540 000 19.1%

2 Disturbances BC 1820 000 22.6%

3 Disturbances AK 170 000 2.10%

3 Disturbances BC 87 200 1.08%

Note: Area is reported both in hectares disturbed and as a percentage of forested area (11.6
million ha).
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Fig. A7. Variation in the sampling distribution for the mean of precipitation (a, e, and i), slope (b, f, and j), elevation (d, h,

and l), and sample of aspect (c, g, and k) for logged and unlogged areas (a, b, c, and d), high and low relative frequency of

windstorm disturbance regime (i.e., exposure; e, f, g, and h), and high and low relative frequency of landslide disturbance

regime (i.e., exposure; i, j, k, and l). High and low relative frequencies for disturbance regimes are greater than or equal to the

70th percentile and lower than the 70th percentile of disturbance respective exposures. Results are not sensitive to arbitrary

cutof (data not shown).
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Fig. A8. Comparison of (a) mean sampling distributions for logged and unlogged areas across a gradient of the relative fre-

quency of windstorm disturbance regimes. (b) The mean sampling distribution for high and low relative frequencies for land-

slide disturbance regimes along a gradient of relative frequency for windstorm disturbance regimes. (c) The mean sampling

distribution for logged and unlogged areas across a gradient of relative frequency for landslide disturbance regimes. (d) The

mean sampling distribution for high and low relative frequencies for windstorm disturbance regimes along a gradient of rel-

ative frequency for landslide disturbance regimes. High relative frequency for a disturbance regime is >70th percentile of

exposure for respective disturbance while low relative frequency ≤70th percentile of exposure. Results are not sensitive to

arbitrary cutof (data not shown).
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Fig. A9. Comparisons of aboveground live tree biomass carbon (Mg C ha−1) in southeast Alaska (gold; AK) and coastal British

Columbia (blue; BC) in plots that were unlogged (darker shade) as compared to logged (lighter shade). Logging corresponded

with decreased average aboveground live tree biomass carbon in southeast Alaska with unlogged plots having 461 ± 22 Mg C

ha−1 (mean ± 95% CI) and logged plots having 189 ± 49 Mg C ha−1 (mean ± 95% CI), as well as decreased average aboveground

live tree biomass carbon in coastal BC with unlogged plots having 1074 ± 59 Mg C ha−1 (mean ± 95% CI) and logged plots

having 160 ± 47 Mg C ha−1 (mean ± 95% CI). Each point represents a permanent sample plot for the respective dataset.
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Fig. A10. Aboveground live tree biomass carbon of logged plots varying as a function of time since logging. At the lowest time

since logging (1 year) aboveground live tree biomass carbon is on average 7.0 ± 6.3 Mg C ha−1 (mean ± 95% CI) while at the

longest time since logging (67 years) aboveground live tree biomass carbon is on average 579 ± 484 Mg C ha−1 (mean ± 95% CI).

The solid black line is the best ût regression line time since logging on aboveground live tree biomass carbon (Mg C ha−1) from

the model presented in Table 2. The shaded polygon represents the 95% conûdence interval. Country of origin is displayed

using squares for southeast Alaska and circles for coastal BC.
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