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Abstract

Spatially explicit global estimates of forest carbon storage are typically coarsely scaled. While useful, these estimates do
not account for the variability and distribution of carbon at management scales. We asked how climate, topography, and dis-
turbance regimes interact across and within geopolitical boundaries to influence tree biomass carbon, using the perhumid
region of the Pacific Coastal Temperate Rainforest, an infrequently disturbed carbon dense landscape, as a test case. We lever-
aged permanent sample plots in southeast Alaska and coastal British Columbia and used multiple quantile regression forests
and generalized linear models to estimate tree biomass carbon stocks and the effects of topography, climate, and disturbance
regimes. We estimate tree biomass carbon stocks are either 211 (SD = 163) Mg C ha~! or 218 (SD = 169) Mg C ha~!. Natural
disturbance regimes had no correlation with tree biomass but logging decreased tree biomass carbon and the effect dimin-
ished with increasing time since logging. Despite accounting for 0.3% of global forest area, this forest stores between 0.63%
and 1.07% of global aboveground forest carbon as aboveground live tree biomass. The disparate impact of logging and natu-
ral disturbance regimes on tree biomass carbon suggests a mismatch between current forest management and disturbance

history.
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Introduction

Forested ecosystems are important contributors to the
global carbon cycle (Litton et al. 2007; Pan et al. 2011) in part
because of their ability to retain carbon for centuries to mil-
lennia. Global estimates of forest carbon pools vary between
234 and 363 Pg of carbon (Kindermann et al. 2008; Pan et al.
2011; Santoro et al. 2021). Although valuable, these widely
available global estimates of forest carbon do not (nor are in-
tended to) capture the variability and distribution of carbon
at regional scales (McNicol et al. 2019); hence regional mod-
eling is still necessary for many questions at management
scales. To better account for forest carbon at regional and
management scales, estimates and mapping efforts must in-
corporate appropriately scaled patterns and variability of the
landscape, such as climatic and topographic processes that
directly influence the growth and survival of trees and dic-
tate the accumulation and arrangement of carbon (Adams et
al. 2014).

Beyond the well-known climatic and topographic factors
important to the distribution of trees (e.g., slope, aspect, and
elevation), disturbances are a key process that operate at the
landscape scale to change the distribution of forest carbon
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storage through the modification of vegetation composition
and structure (Thom and Seidl 2016). Therefore, to under-
stand the distributions of carbon stocks at regional scales it
is critical to understand the role of disturbance regimes. It
is well documented that individual disturbance events have
a strong impact on local carbon stocks through either the
lateral movement of tree biomass carbon from the stand-
ing live pool to the dead pool (Schomakers et al. 2017) or
through the removal of tree biomass carbon from the system
from combustion or logging practices (North and Hurteau
2011). What is less clear is the impact of disturbance regimes,
which are spatially heterogeneous yet may have an impact
on carbon accumulation at broad scales. For example, if a
disturbance regime is frequent, one would expect lower car-
bon stocks in areas of higher exposure to that regime (e.g.,
on steep slopes with frequent avalanches). More fine-scale
information on disturbance regimes, climate, and topogra-
phy might allow for better estimates of the distributions of
tree biomass carbon across landscapes. This is especially im-
portant in areas that are disproportionally biomass carbon
dense (contribute more to global carbon storage than their
area would suggest), as changes to those regions can have an
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Fig. 1. (a) Map of the perhumid region (dark green) of the coastal temperate North American rainforest (light green on inset
map). Points represent the approximate location of permanent sample plots from the Forest Inventory and Analysis dataset
in southeast Alaska and Forest Inventory and Analysis Branch dataset in coastal British Columbia. Figure was created using
ArcGIS Pro version 2.6.0 with data from the state of Alaska, Esri Canada, and USGS. Coordinate system is Alaska Albers equal
area conic, datum WGS 1984, units in meters. We included photos of the overstory (b) and the lower canopy (c) to provide
context to readers unfamiliar with this ecosystem. Photos are provided from Trevor Carter.
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outsized influence on global carbon cycling (Law et al. 2018,
2023).

One such region is the permanently humid (perhumid)
ecoregion of the Pacific Coastal Temperate Rainforest (Fig. 1a;
Vynne et al. 2021; DellaSala et al. 2022). Previous research
by Buma and Thompson (2019) on the Alaskan coast por-
tion of the perhumid suggests aboveground live tree biomass
carbon density will be on average between 225 and 300 Mg
C ha!. Buma and Thompson (2019) also provide expecta-
tions on the disturbance regimes for windstorms and land-
slides, the two primary natural disturbance regimes for the
perhumid. It is likely that these two disturbance regimes
will have little overlapping area because each regime oc-
curs in unique topographic contexts (e.g., landslides occur on
steep slopes). It is unlikely to observe meaningful differences
in natural disturbance regimes or historical logging across
geopolitical borders in the perhumid (southeast Alaska and
coastal British Columbia) because the variability in biogeog-
raphy and topography is similar across the region. Areas as-
sociated with natural disturbance regimes will likely have
a slightly higher average aboveground live tree biomass at
this spatial scale because these areas are less likely to ex-
perience nutrient declines and subsequent biomass loss as-
sociated with undisturbed ecosystems (Buma and Thomp-
son 2019), a process sometimes referred to as retrogression
(Peltzer et al. 2010). Conversely, the disturbance regime as-
sociated with logging, which occurs with a higher frequency
than natural disturbances (Krankina et al. 2014), will affect
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aboveground live tree biomass. In theory, the effect varies
from negative over short timescales (Rhemtulla et al. 2009) to
positive over longer timescales as regeneration occurs prior
to competitive exclusion of trees (Shugart 1984). However,
in practice, logging rotations in the perhumid (e.g., the Ton-
gass NF in southeast Alaska) typically occur on shorter time
intervals than what is necessary for forests to reach pre-
logging conditions (Krankina et al. 2012; Vynne et al. 2021;
DellaSala et al. 2022). Understanding the effects of logging
on aboveground tree biomass carbon is especially important
when considering the future of forest management in this
region. The United States has logging policies in the Ton-
gass NF (the northern portion of the perhumid) that focus
on (but are not exclusive to) the harvest of younger trees
in previously harvested areas (Vilsack 2013) while the man-
agement strategies adopted by the Canadian government pri-
marily focus on the conservation of old growth forests (James
2016).

To generate more fine scale estimates of the distribution
of aboveground live tree biomass carbon and address the
gaps in our understanding of the impacts of disturbance
regimes on aboveground live tree biomass carbon, we ask
the following questions in the carbon dense perhumid re-
gion of the Pacific Coastal Temperate Rainforest of North
America: (1) What is the spatial distribution of aboveground
live tree biomass carbon across the region? (2) What are
the spatial patterns of disturbance regimes across the re-
gion? (3) How do disturbance regimes (both natural and an-
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thropogenic) interact across and within geopolitical bound-
aries to influence aboveground live tree biomass carbon
stocks?

Materials and methods

Study region

The perhumid region of the Pacific Coastal Temperate
Rainforest is a carbon dense landscape (Leighty et al. 2006;
McNicol et al. 2019), which ranges from Yakutat in south-
east Alaska through the central coast of British Columbia
near Bella Coola (Fig. 1a). The perhumid region of the Pa-
cific Coastal Temperate Rainforest covers 14.7 million ha of
land area and 11.6 million ha of forested area (including the
Tongass NF and Glacier Bay NP in Alaska and the Great Bear
Rainforest in British Columbia as well as private and tribal
lands), spanning from sea level to over 2000 m in elevation
and extends less than 100 km from the coast (Fig. 1). Mean
annual temperature ranges from —14.3 °C in the mountains
to 5.6 °C at the southern coast while mean annual precipi-
tation varies from 610 to 5690 mm (Fick and Hijmans 2017).
Only a few tree species are dominant in this forest, including
Picea sitchensis, Tsuga heterophylla, and to a lesser degree Tsuga
mertensiana and Callitropsis nootkatensis. Species such as Pseu-
dotsuga menziesii and Thuja plicata, found further south, extend
slightly into the perhumid region but are not major compo-
nents of the forest. Hardwood species mostly in the genus
Alnus and Salix are found in the understory throughout the
forest and can dominate scarified soil beds and riparian ar-
eas.

Disturbance regimes

This ecosystem is documented to have the lowest fre-
quency of forest disturbances on the North American conti-
nent (Buma et al. 2017) with the absence of a definable dry
season and a subsequent lack of wildfire as a disturbance
process within the last 5000 years (DellaSala 2011). In addi-
tion to the lack of historical fire, there is no evidence of sub-
stantial insect mortality (Harris 1999). There is a large docu-
mented die-off of C. nootkatensis in central and southern por-
tions of the study region associated with decreases in persis-
tent snowpacks and root freezing, while this is a major source
of C. nootkatensis mortality, we do not include this mortality
presently as the causes and consequences of this mortality
are variable and based on multiple climatic signals (Comeau
and Daniels 2022). We included natural disturbance regimes
via the concept of disturbance exposure (Ager et al. 2012).
Disturbance events in this region are exceedingly rare (Buma
et al. 2017) and are typically not mapped. Thus, we are pri-
marily concerned about their influence in terms of averages
over large spatial extents. We used the methods of Kramer
et al. (2001) and Buma and Thompson (2019) to map the
dominant disturbance exposure as spatially explicit distur-
bance regimes (windstorms and landslides, respectively). This
method provides a relative probability of a given area being
disturbed over long run frequencies and assumes the distur-
bances are relatively consistent in terms of severity, which
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is appropriate for these two regimes in this region (Nowacki
and Kramer 1998; Read 2015; Foss et al. 2016).

Contemporary logging practices in the region typically
clearcut patches of trees (range from <1 to 5180 ha on private
land AK; <1-222 ha on USFS land AK; <1-937 ha in British
Columbia) and is a more spatially extensive and more fre-
quent factor compared to natural disturbances (Krankina et
al. 2014). We obtained the logging area and year of logging
in the region from the US Forest Service and private industry
(U.S. Forest Service 2022), and from the BC Ministry of Forests
(Forest Analysis and Inventory Branch 2023). The logging data
does not define specific harvest practices, although clearcuts
are typically standard management practice for this region.
We rasterized the logging polygons and created two spatially
explicit logging layers (ESRI 2020). The first layer was a bi-
nary representation of logging to determine its presence or
absence. The second layer represented the time in years since
the logging occurred.

Plot data

In southeast Alaska, we used Forest Inventory and Analysis
plots (FIA; n = 2315; Gray et al. 2012) and in coastal British
Columbia, we used permanent sample plots from the Forest
Analysis and Inventory Branch (FAIB; n = 950; Forest Analy-
sis and Inventory Branch 2023). FIA plots are stratified across
the landscape (1 plot every 6000 acres) in forested areas and
consist of up to four subplots. FAIB plots consist of either
fixed or variable radius plots and are stratified along 20 km
x 20 km grids. The spatial distribution of permanent sam-
ple plots is not even across the study area, with more plots
located in southeast Alaska (Fig. 1a). Because multiple ob-
servers and years are associated with both the FIA and FIAB
data, we validated the logging data reported in these datasets
through visual confirmation of logging scars, and to the best
of our ability ensured the reported date of logging for each
plot matched satellite imagery and other raster layers. Impor-
tantly, several plots were reported as being logged and con-
firmed to have been logged through satellite imagery but con-
tained data (e.g., multiple trees >50 cm Diameter at Breast
Height (DBH)) that was unsupportive of an area being logged.
As such we removed plots (n = 4) from our analysis that con-
tained biomass values greater than the 80th percentile of live
tree biomass and were reported as being logged within the
last 20 years, as it is unlikely that regeneration of this scale
occurred within 20 years post logging. Additionally, several
different plots in coastal British Columbia were reported with
the same coordinates and so were removed for our spatially
explicit models leading to a final sample size of n = 2218.
Lastly, if the same plot was measured on multiple occasions,
we used the latest measurement data.

We created area standardized estimates (Mg C ha~!) for
each plot using Kozak’s allometric equations (Kozak et al.
1969). Kozak’s tapering equations, developed for the region,
accounts for trees with broken tops and minimizes overes-
timates of aboveground live tree biomass (Turchick 2021).
Given our focus on spatial variation of carbon, the use of addi-
tional allometric equations would reproduce the same trends
of variation (Turchick 2021). All allometric equations are in-
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herently limited to the range of trees upon which they are
calibrated. In this region, there are occasionally trees outside
any developed allometric system (e.g., >1 m DBH for Tsuga
sp.; Table A1). This presents a challenge for unbiased esti-
mations (see discussion), thus we create two estimates that
attempt to bracket the true value. We first estimate carbon
including all reported tree sizes from the FIA and FAIB data
(henceforth the unconstrained estimate). This estimate is po-
tentially biased relative to actual tree biomass carbon (and
likely higher, due to the exponential allometric equations),
as we are applying the allometric equation to trees beyond
the range at which they were calibrated. There is no way to
quantify the error associated with estimating tree biomass
carbon for trees outside of the range of the equation. We then
repeated the same process but truncated trees outside the
range of the Kozak equation to be the maximum size within
the range of the allometric equation (subsequently referred
to as the truncated estimate; Table A1) and report subsequent
results in the supplement. This truncated estimate is neg-
atively biased and underrepresents the true level of above-
ground live tree biomass carbon as a result. We expect true
aboveground live tree biomass carbon is most likely between
the two estimates. For both analyses, we grouped estimates
of aboveground live tree biomass carbon by plot, year of mea-
surement, and status.

We repeat our analyses a second time for a subset of the
data that only includes fixed radius plots. This subset is re-
ported in depth in the supplemental materials and decreases
our sample size from n = 2218 to 1852, with all variable ra-
dius plots that we excluded being located on the central coast
of British Columbia. Due to differences in sampling method-
ology between fixed radius and variable radius plots, the in-
clusion of variable radius plots may bias our dataset and their
inclusion could lead to decreased model performance. How-
ever, we elect to retain all data available for the analyses
present in the main text as we view the exclusion of data for
the primary purpose of increasing model performance as not
best practice.

Machine learning model framework

To estimate regional aboveground live tree biomass carbon
and associated prediction intervals in a spatially explicit man-
ner we used quantile regression forests (QRF; Meinshausen
2017). Quantile regression forest is a machine learning frame-
work that operates similar to random forest with the abil-
ity to estimate values for any quantile that is needed, which
may then be utilized for calculating spatially explicit predic-
tion intervals (e.g., 80%) through using upper (90%) and lower
(10%) quantile maps (Koenker and Hallock 2001). We trained
a QRF using a randomized training set composed of 80% of
the data and an independent test set composed of 20% of the
data to produce spatially explicit predictions of aboveground
live tree biomass carbon for the 0.1, 0.5, and 0.9 quantiles
(Meinshausen 2017).

We included the spatially explicit raster layers of distur-
bance exposures as predictors as well as elevation, slope, and
aspect (LP DAAC 2011), mean annual precipitation and an-
nual temperature (Fick and Hijmans 2017), and percentage
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forest cover (Hansen et al. 2013) at a 30 m resolution. Given
the inclusion of ice caps and glaciers flowing to low elevations
in the study area, we clipped the estimates of aboveground
live tree biomass carbon by the forest cover layer to remove
estimates of aboveground live tree biomass carbon where no
forest cover is present (ESRI 2020).

We evaluated the quantile regression forest model perfor-
mance using five randomized data folds for cross validation
to determine root mean absolute error, variance explained,
and mean absolute error. Further, we report the non-spatial
distribution of residuals (Fig. A1) and we evaluated the uncer-
tainty estimates by calculating the prediction interval cover-
age probability (Fig. A2) and mean prediction interval as out-
lined in Kasraei et al. (2021).

Spatial analysis framework

To quantify the percentage of the landscape exposed to
disturbance regimes we calculated the area with high dis-
turbance exposure (arbitrarily set at values greater than the
70th percentile of windstorms or landslides, calculated in-
dependently) and logged areas. We then estimated the co-
location between disturbance regimes by counting the over-
lapping areas of modeled disturbance exposure. Additionally,
we determined whether areas of disturbance or high distur-
bance exposure varied topographically and climatically from
areas without disturbance or exposure by visually compar-
ing the sampling distributions (mean of 100 random samples
repeated 1000 times) for precipitation, slope, and elevation
in high and low exposed areas. We utilized t tests to further
compare the sampling distributions of high and low exposed
areas for these variables. To show the variation in aspect, we
randomly sampled aspect 1000 times but did not compute the
mean or conduct a t test because of a circular and non-normal
distribution of the variable.

Generalized linear model framework

To address the question of how disturbance types and histo-
ries interact to influence aboveground live tree biomass car-
bon pools, we used a global generalized linear model with a
gamma error distribution to identify key statistical correla-
tions using R version 4.1.2 (R Core Team 2022) as follows:

Biomass ~ Logged (Y/N) : TimeSinceLogging
+Logged (Y/N) : TimeSinceLogging®
+Logged (Y/N) x Country + Wind Regime
-+Landslide Regime + Slope + Precipitation

+ Temperature + Latitude x Longitude

We included terms for natural disturbance regimes as rep-
resented through disturbance exposure and a binary term
for logging to indicate if a plot was measured in a logged
area that interacted with another coefficient for time since
logging or country of origin (Table A2). The terms for nat-
ural disturbance exposure were both continuous variables
(ranging from O to 1) and are separate from the discrete cate-
gories used in the spatial analysis framework. Additionally,
we included a polynomial term for time since logging to
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Fig. 2. Unconstrained estimate (n = 2218) of aboveground live tree biomass carbon for the perhumid region. Lighter orange
and yellow colors indicate more aboveground live tree biomass. The mean aboveground live tree biomass for the region is 218
Mg ha~! and the maximum predicted aboveground live tree biomass for the region is 2670 Mg ha~!. Figure was created using
ArcGIS Pro version 2.6.0 with data from the state of Alaska, Esri Canada, and USGS. Coordinate system is Alaska Albers equal

area conic, datum WGS 1984, units in meters.
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better understand potential peaks in aboveground live tree
biomass that may occur prior to canopy closure (Table A2).
We included slope, precipitation, and temperature in our
model because both covariates are geographically controlled
and may influence aboveground live tree biomass accumu-
lation in this region (Table A2; Buma et al. 2017). We tested
our predictors for collinearity using variable influence fac-
tors outlined in (Zuur et al. 2009). Finally, we tested our
model for residual spatial autocorrelation using the Moran’s
I statistic. To reduce residual spatial autocorrelation, we in-
cluded an interaction between latitude and longitude in our
model structure. However, this did not completely resolve
the residual spatial autocorrelation. As such, we report the
residuals as they vary along gradients present in our model
(Fig. A3).

Results
Aboveground tree biomass carbon estimates
Our estimate from the quantile regression forest of above-

ground live tree biomass carbon using our unconstrained es-
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timate across the region is comparable to the averages of
aboveground live tree biomass within the plot data (predicted
median = 495 Mg C ha! vs. dataset median =478 Mg C ha™!).
Root mean standard error was 520 Mg C ha~?!, with mean ab-
solute error of a similar magnitude at 346 Mg C ha~! and 39%
of variance explained. The unconstrained estimate of median
predicted aboveground live tree biomass carbon ranges from
5 Mg C ha! in sparsely forested areas (e.g., higher elevations
or muskeg environments) to 2670 Mg C ha~! and was on aver-
age 218 Mg C ha~! (SD = 169 Mg C ha~!; Fig. 2). Total regional
aboveground live tree biomass carbon for our unconstrained
estimate was 2.5 Pg of carbon. The 80% prediction interval
was on average 1140 Mg C ha~! with 77% of predictions from
the model falling within the prediction interval and 81% of
prediction intervals containing the value of aboveground live
tree biomass estimated from the FIA and FAIB dataset (Figs.
3 and A2).

The quantile regression forest model for the truncated es-
timate performed similarly to the model using the uncon-
strained estimate, with a root mean standard error of 461 Mg
C ha~!, a mean absolute error of 319 Mg C ha~!, and 43%
of the variance explained. The model for the truncated esti-
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Fig. 3. The spatially explicit 80% prediction interval for the unconstrained estimate of aboveground live tree biomass carbon
(Mg C ha~!). The prediction interval coverage probability is 80.57% while 76.91% of predictions are within the prediction
interval. The mean prediction interval (non-shown on histogram) was 1140 Mg C ha~!, while median prediction interval (shown
with dashed line) was 897 Mg C ha~. Figure was created using ArcGIS Pro version 2.6.0 with data from the state of Alaska, Esri
Canada, and USGS. Coordinate system is Alaska Albers equal area conic, datum WGS 1984, units in meters.
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mate predicted a slightly smaller average than the model for
the unconstrained estimate, with 211 Mg C ha~! (SD = 163
Mg C ha™!) being stored as aboveground live tree biomass
(Fig. A4). This estimate set is on average 7 Mg C ha~! (3%)
lower than the unconstrained estimate of aboveground live
tree biomass carbon (Fig. A5). The truncated estimate of pre-
dicted aboveground live tree biomass carbon is also compa-
rable although slightly higher than averages of aboveground
live tree biomass carbon within the dataset of permanent
sample plots (predicted median = 472 Mg C ha~! vs. dataset
median = 469 Mg C ha™!). Our truncated estimate of median
aboveground live tree biomass carbon ranges from 5 to 2620
Mg C ha~! in forested areas and is in total 2.3 Pg of carbon.
The 80% prediction interval for the quantile regression forest
model using the truncated estimate of aboveground live tree
biomass was on average 1061 Mg C ha~! with 77% of predic-
tions from the model being contained within the prediction
interval and 80% of the prediction intervals containing the
value of aboveground live tree biomass estimated from the
FIA and FAIB dataset (Fig. A6).
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Disturbance regimes across the forest

Logging affected approximately 6% of forested area (data
from 1945 to 2014) in the perhumid region with each coun-
try having comparable forested area logged (Table 1; Fig. 4a).
Similarly, disturbance regimes (not individual disturbance
events) for both landslides and windstorms in southeast
Alaska and coastal British Columbia associated with similar
amounts of forested area (Table 1; Fig. 4a). Over half of the
forest area (69.5%; approx. 8 million ha; Table A3) was associ-
ated with the conditions that align with a natural disturbance
regime or experienced logging (Fig. 4b). Within this approx-
imately 8 million ha, 38.2% of the land area was logged or
aligned with one natural disturbance regime (landslides or
windstorms), 29.0% of land area had environmental condi-
tions that accompany both natural disturbance regimes, or
had conditions associated with one disturbance regime and
was logged. Less of the landscape (2.21%) experienced logging
and was associated with the disturbance regimes for both nat-
ural disturbances. There is no major bias of overlapping log-
ging and disturbance regimes based on geopolitical boundary
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Table 1. Summary of the area logged (time range 1945-2014) or associated with natural distur-
bance regimes (modelled) for southeast Alaska, coastal British Columbia and in total (AK + BC).

Disturbance Area of disturbance (ha) Area of forest (ha) Area (%)
Logging AK 305 000 6110000 4.99%
Logging BC 381000 5490 000 6.95%
Logging total 687000 11600 000 5.92%
Wind regime AK 1840000 6110000 30.1%
Wind regime BC 1750000 5490000 31.9%
Wind regime total 3590000 11600000 30.9%
Landslide regime AK 1540000 6110000 25.2%
Landslide regime BC 2240000 5490000 40.9%
Landslide regime total 3780000 11600000 32.6%

Note: Area is reported both in hectares and as a percentage of forested area in relation to southeast Alaska (6.11 million ha),
costal British Columbia (5.49 million ha), and the perhumid region (11.6 million ha). Logged areas vary in time since logging
(span of 67 years) but are reported as such in either the FIA or FIAB dataset. Area for natural disturbance regimes are >70th
percentile of relative frequency for each respective natural disturbance (for full description see methods).

Fig. 4. (a) Map of the area that either experienced logging or was associated with the conditions that align with the disturbance
regimes (i.e., exposure) of windstorms or landslides. (b) The number of overlapping polygons from panel (a). Figure was created
using ArcGIS Pro version 2.6.0 with data from the state of Alaska, Esri Canada, and USGS. Coordinate system is Alaska Albers
equal area conic, datum WGS 1984, units in meters. Variation in the sampling distribution for the mean of elevation for (c)
logged and unlogged areas, (d) high and low relative frequency for the windstorm disturbance regime, and (d) high and low
relative frequency for the landslide disturbance regime. High and low relative frequencies of disturbance regimes (disturbance
exposure) are greater than or equal to the 70th percentile and lower than the 70th percentile of relative disturbance frequency
respectively.
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(Table A3), this is result is not sensitive to the arbitrary cutoff
used to define high versus low disturbance regimes.

Logged areas were biased towards areas with higher mean
precipitation, lower slopes, and lower elevations (Fig. 4c) but
did not vary with regards to aspect (Fig. A7c). Logging did
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not disproportionately occur in areas with natural distur-
bance regimes (Fig. A8). Unsurprisingly, the presence of log-
ging was correlated with significantly lower aboveground
live tree biomass carbon (Table 2; Fig. A9). Predicted above-
ground live tree biomass carbon was slightly higher in un-
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Table 2. Model results estimating the effect of the relative frequency of natural disturbance
regimes and logging across geopolitical borders on aboveground live tree biomass carbon
using the unconstrained estimate of plots (n = 2218).

Biomass ~ Disturbance regimes + Slope + Precipitation + Temperature + Latitude x Longitude
(N =2218)—R? = 0.238

Coefficient Estimate SE (Standard Error) t-value P-value
Unlogged —224 19.2 —1.16 0.245
Logged —4.03 0.450 —8.96 <0.001
BC unlogged 1.22 0.107 114 <0.001
BC logged —1.18 0.160 —7.33 <0.001
Wind regime 0.002 0.010 0.193 0.847
Landslide regime —0.240 0.499 —0.480 0.631
Precipitation 0.001 0.000 1.23 0.217
Temperature 0.068 0.015 4.51 <0.001
Slope 0.021 0.003 6.83 <0.001
Logged (Y) x TimeSince 0.110 0.027 4.00 <0.001
Logged (Y) x TimeSince? —0.001 0.000 —1.54 0.123
Latitude 0.634 0.351 1.81 0.071
Longitude —0.130 0.151 —0.857 0.391
Latitude x Longitude 0.003 0.003 1.23 0.219

Note: Covariates for slope and precipitation are included to further elucidate the effect of landslides.

logged forests in coastal British Columbia and slightly lower
in logged forests in coastal British Columbia as compared to
unlogged and logged forests in southeast Alaska, respectively
(Table 2; Fig. A9). On average, unlogged plots in southeast
Alaska had 461 & 22 Mg C ha! while logged plots in south-
east Alaska had 189 + 49 Mg C ha~! and unlogged plots in
coastal BC had 1047 + 59 Mg C ha~! with logged plots hav-
ing 160 + 47 Mg C ha~! (mean + 95% CI). In logged areas, the
effect of the time since logging (over a span of 67 years) had
a significant linear effect on aboveground live tree biomass
carbon such that with increasing time since logging above-
ground live tree biomass was higher than areas with less time
since logging (Fig. A10). Plots associated with the lowest time
since logging (1 year) were associated with 7.0 £ 6.3 Mg C ha~!
while plots associated with the highest time since logging (67
years) were associated with 579 + 484 Mg C ha~! (mean + 95%
CI), with the confidence around the mean decreasing with in-
creasing time since logging (Fig. A10). We did not observe a
decrease in estimated aboveground live tree biomass associ-
ated with the quadratic term for time since logging.

Areas with high exposure to windstorm disturbance
regimes are biased towards comparatively less steep slopes,
southwesterly aspects, and to a lesser degree lower eleva-
tions than areas with low exposure to windstorm distur-
bance regimes (Figs. 4d and A7). Areas with high exposure
to landslide disturbance regimes differed meaningfully from
areas with low exposure in all topographic contexts tested.
Specifically, areas with high exposure to landslide distur-
bance regimes had higher mean precipitation, steeper slopes,
more southern aspects, and lower elevations (Fig. 4e and
A7). Areas with a high exposure to one disturbance regime
were positively associated with areas with a high exposure
to the other disturbance regime (i.e., areas of high landslide
exposure were also in areas of high windstorm exposure
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and vice-versa; Figs. 4 and A8). Overall, natural disturbance
regimes were not important predictors of aboveground live
tree biomass carbon for the region (Table 2). Slope signifi-
cantly predicted aboveground live tree biomass carbon such
that steeper slopes on average had higher aboveground live
tree biomass carbon.

Discussion

Aboveground tree biomass carbon

Our study represents the most detailed investigation of spa-
tially explicit aboveground live tree biomass carbon distribu-
tions in the perhumid region of the Pacific Coastal Temper-
ate Rainforest to date. Our median estimates of aboveground
live tree biomass carbon ranged between 2.3 and 2.5 Pg of
carbon (Figs. 2 and A4). We estimate this forest has on aver-
age either 211 Mg C ha=! (SD = 163 Mg C ha~!) or 218 Mg C
ha=! (SD = 169 Mg C ha™!) stored in aboveground live tree
biomass. Our estimates largely align with previous spatially
explicit estimates of tree biomass carbon densities for south-
east Alaska (1.21-1.52 Pg C: Buma and Thompson 2019), and
are slightly higher than previous estimates that do not em-
ploy spatially explicit estimation methods (0.45 Pg C: Law et
al. 2023; 0.42-0.53 Pg C: Leighty et al. 2006). Our estimates
are also comparable with other high-end carbon density es-
timates of globally important and highly productive forests
(Santoro et al. 2021). The perhumid region disproportionally
contributes to global forest carbon storage; the perhumid re-
gion consists of approximately 0.3% of global forest area (Pan
et al. 2011; Keenan et al. 2015) but the data here suggest that
it stores between 0.63% and 1.07% of global aboveground for-
est carbon as aboveground live tree biomass (Kindermann et
al. 2008; Pan et al. 2011; Santoro et al. 2021).
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Patterns of disturbance regimes

Disturbance regimes did have distinct spatial patterns,
both individually (Fig. 4) and relative to each other (Fig. A8).
Logging did not preferentially occur on areas with high ex-
posure to landslide or windstorm regimes. However, natural
disturbance regimes were co-located despite different trends
in the topographic and climatic positioning of mean sam-
pling distributions for each respective disturbance regime
(Table A3; Fig. A7). Although we did not observe a bias of
logged sites occurring in areas of more frequent natural dis-
turbances at this spatial scale, there are many similarities
in the topographic positioning between logging and natu-
ral disturbance regimes. Both logging and landslides are bi-
ased towards areas of higher precipitation and lower eleva-
tions, while logging and windstorms tend to occur on lower
slopes. Notably, the means of each disturbance or distur-
bance regimes have minor differences for each topographic
context.

Surprisingly, we did not observe any trends of natural dis-
turbance regimes on aboveground live tree biomass carbon
storage, as was observed in Buma and Thompson (2019). The
lack of effect may be in part because natural disturbances
are infrequent in absolute terms across this landscape (Buma
et al. 2017), or because disturbance events lack the magni-
tude to impact biomass carbon accumulation at this scale
(Turchick 2021). While our sample area only comprises less
than 1% of the landscape, the failure to detect an effect of nat-
ural disturbance regimes on aboveground live tree biomass
is likely not due to an inadequate sample size. Our sample,
albeit not spatially random, is representative of the popula-
tion we are modelling. A post hoc power analysis provides
evidence that our sample size was sufficient to detect an ef-
fect as small as 0.08 (df = 2204, n = 2218, «=0.05). In con-
trast, logging decreased aboveground live tree biomass car-
bon (Table 2) and the effect of time since logging showed a
positive relationship with aboveground live tree biomass car-
bon (Fig. A10).

Influence of logging

Unsurprisingly, logging decreased aboveground live tree
biomass, which is intuitive and well documented in other sys-
tems (Mathys et al. 2013; DellaSala et al. 2022). The effect of
logging typically differs from natural disturbance regimes, as
carbon is removed from the landscape as compared to trans-
ferred laterally from one pool to another. The effect of log-
ging on aboveground live tree biomass carbon was consistent
across geopolitical borders, although the magnitude of the ef-
fect varied slightly by country (Fig. A9). The positive relation-
ship of time since logging with aboveground live tree biomass
carbon aligns with biomass accumulation during stand re-
generation. The variation in operational-level practices (e.g.,
slash and logging debris left on site, non clearcut operations,
etc.) may also result in the high variability observed within
logged plots, though we did not have data to detect that ac-
tor. We note that the dataset is limited in temporal coverage,
going back to the 1950s. It is possible that inadequate rep-
resentation of older logging locations precluded capturing
further changes in aboveground live tree biomass as stand
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structure closes in our model (Shugart 1984). The effect of
logging is especially important when considering the future
of forest management in this region. The United States has
recently adopted new logging policies that primarily focus
on the harvest of younger trees exclusive to the Tongass NF
portion of the study region (Vilsack 2013). This contrasts with
the management strategies adopted by the Canadian govern-
ment, which focus on conservation and has taken land out
of the harvest rotation, although some logging does still oc-
cur (James 2016). Policy focused on re-logging areas will con-
tinue to disturb highly productive areas (i.e., valley bottoms)
that might serve as aboveground live tree biomass carbon
refuges. The continued effect of logging, if done in the same
locations, may not result in large changes to carbon storage
in the landscape unless intensified, but that also implies a re-
gional carbon level lower than potential carbon stocks were
logging activity to be shifted or reduced (Leighty et al. 2006;
DellaSala et al. 2022). We observed a slight but noticeable
trend of aboveground live tree biomass increasing with time
since logging. This trend is underscored by the high variance
in aboveground live tree biomass carbon in plots that experi-
enced logging. The conservation of coastal British Columbia
forests is particularly important because of their slight but
significantly higher levels of aboveground live tree biomass
carbon as compared to southeast Alaska.

Limitations and challenges

The models selected, which incorporate disturbance
regimes, while appropriate for our understanding at broad
spatial scales, are not intended to understand individual dis-
turbance events nor processes at finer spatial scales. We are
not aware of any dataset for natural disturbances that span
the entire study region at a temporal scale that would be
appropriate to address questions of aboveground live tree
biomass carbon storage. Mapping at regional scales requires
subsuming heterogeneous local factors and local data set
limitations, which may be significant at local scales, into
broader modeling frameworks. For example, the data avail-
able in both southeast Alaska and coastal BC for logging do
not represent a complete history of logging in the region;
however, at broad spatial scales our data represents similar
trends to the landscape (approx. 6% of plots experienced log-
ging and approx. 6% of landscape experienced logging). To
help address uncertainty in data, we included a variety of
estimates of aboveground live tree biomass carbon (see sup-
plemental materials) and expressly caution against using a
singular estimate for management and policy decisions. The
prediction intervals were on average large in both the un-
constrained estimate set (1140 Mg C ha~1; Fig. 3) and trun-
cated estimate set (1061 Mg C ha~!; Fig. A6). The variation
that we observed within each estimate set is likely because
of the variation present within the data collected across a
broad geographic area (see Fig. 1a), which was propagated by
the quantile regression forest throughout its estimating pro-
cedures (supplemental materials). The disparity of plot num-
ber and continuity between the United States and Canada is
likely causing some of the spatial autocorrelation, as there
are spatial gaps between the two efforts and additional sam-
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pling efforts will likely decrease the variance present in the
models.

There are also challenges associated with allometric equa-
tions, which were developed for trees ranging from 12.7 to
215.9 cm DBH in the Pacific Coastal Temperate Rainforest
(Table A1). The largest trees hold a disproportionate amount
of tree biomass carbon. This makes it impossible to prop-
erly estimate uncertainty for the full dataset, because the
sizes of some trees are outside the range of tree sizes used
to develop the Kozak tapering equation (or any allometric
for these species). We suggest the unconstrained estimate is
likely closer to the true value, because it includes the full
range of tree sizes, but it is impossible to fully quantify the er-
ror. Conversely, our truncated estimate, which does not fully
account for these trees is certainly an underestimate of true
tree biomass carbon but does provide a strong estimate for
the lower range of potential values. Given the growing sig-
nificance of carbon storehouses in global climate accounting
(Keith et al. 2014), it is a challenge that must be met by the
mensuration community.

Conclusions

The Pacific Coastal Temperate Rainforest is exceptionally
carbon dense. Despite multiple spatially explicit predictions
of aboveground tree biomass carbon, each estimate needs to
be interpreted with caution due to the limitations of quanti-
fying the uncertainty of allometric equations and bias in the
spatial coverage of plots. Aboveground live tree biomass car-
bon is relatively insensitive to natural disturbance regimes at
broad scales; rather, carbon is more strongly associated with
topography and climate. Logging is also a strong influence
even at regional scales. Logging is far more frequent than nat-
ural disturbances on this landscape, and the negative effect
of logging on tree biomass carbon storage will persist if forest
management plans focus on the harvest of younger trees. Fu-
ture management plans for the perhumid, which include the
Tongass NF and Great Bear Rainforest, should fully consider
the impact of harvest on tree biomass carbon storage and
how harvest rotations align (or do not align) to the natural
disturbance regime as outlined here. This work can inform
regional carbon management pracices, which in turn can in-
form international goals to conserve reservoirs of carbon,
such as forests, outlined in the Paris Climate Agreement (arti-
cle 5) that was signed by both the United States and Canada.
The regional map of current aboveground live tree carbon
stocks is a useful dataset for planning management activities
that could mimic patterns of carbon stocks or natural distur-
bances at regional scales.
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Table A1. Species and associated ranges of values for diameter at breast height (DBH) and
height used by Kozak (1969) to develop the allometric equation used.

Species DBH min (cm) DBH max (cm) Height min (m)  Height max (m)
Abies amabilis 12.70 60.96 8.53 35.96
Abies lasiocarpa 12.70 60.96 8.53 35.96
Alnus rubra 12.70 45.72 16.15 32.92
Betula papyrifera 12.70 53.34 13.72 27.13
Chamaecyparis nootkatensis 15.24 111.76 13.41 45.11
Picea engelmannii 12.70 66.04 11.28 41.76
Picea glauca 12.70 66.04 11.28 41.76
Picea sitchensis 15.24 215.90 14.63 74.98
Pinus contorta 12.70 58.42 12.80 39.62
Pinus monticola 15.24 68.58 13.72 44.80
Populus balsamifera 12.70 121.92 13.72 50.90
Populus tremuloides 12.70 53.34 12.80 31.39
Pseudotsuga menziesii 12.70 180.34 15.85 70.41
Thuja plicata 15.24 129.54 9.45 57.60
Tsuga heterophylla 12.70 106.68 12.19 53.64
Tsuga mertensiana 12.70 106.68 12.19 53.64

Table A2. Topographic, climatic, and disturbance regime covariates included in the gen-

eralized linear model framework (n = 2218).

Covariate Mean Standard deviation Units
Annual mean temperature —0.384 2.81 Degrees
Annual precipitation 284 85.7 Decimeter
Slope 16.0 10.6 Degrees
Elevation 246 226 Meters

Tree cover 83.3 19.9 Percent
Windstorm regime 0.410 0.232 Relative Probability
Landslide regime 0.100 0.093 Relative Probability
Presence/absence logging 6.40 1351 AK, 867 BC Percent/# of plots
Time since logging 33.5 12.2 Years

Note: We report mean, standard deviation, and associated units for each variable. For the presence/absence of logging
we report what proportion of plots was reported as being logged and the number of plots within each country in place

of a standard deviation.
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Fig. A1. The nonspatial distribution of residuals for quantile regression forest estimate of the unconstrained estimate of tree

biomass carbon (n = 2218).
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Fig. A2. The 80% prediction interval coverage probability for the quantile regression forest using the unconstrained estimate
of aboveground live tree biomass carbon. The y-axis represents the difference in Mg C ha—! between predicted and observed
biomass from the quantile regression forest (error, dashed line = 0 error). Grey bars represent the 80% prediction interval for
each point estimate in the model.
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Fig. A3. Residuals of our generalized linear model after accounting for spatial autocorrelation plotted against individual co-
variates of our model. Spatial autocorrelation was not fully removed after including latitude and longitude in our model.
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Fig. A4. The truncated estimate (n = 2218) of aboveground live tree biomass carbon for the perhumid ecoregion. Lighter orange
and yellow colors indicate more aboveground live tree biomass. The mean aboveground live tree biomass for the perhumid
ecoregion is 218 Mg ha~! and the maximum predicted tree biomass for the region is 2620 Mg ha~!. Figure was created. ArcGIS
Pro version 2.6.0 with data from the state of Alaska, Esri Canada, and USGS. Coordinate system is Alaska Albers equal area
conic, datum WGS 1984, units in meters.
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Fig. A5. The difference between the unconstrained estimate and truncated estimate (n = 2218 vs. n = 2218) of aboveground
live tree biomass carbon. Purple and orange colors indicate where the full sample size estimate was larger, grey indicates zero
change between estimates, and black represents areas where the biased estimate was larger than the full sample size estimate.
On average, the full sample size estimate was 27% higher than the biased estimate. Figure was created using ArcGIS Pro version
2.6.0 with data from the state of Alaska, Esri Canada, and USGS. Coordinate system is Alaska Albers equal area conic, datum
WGS 1984, units in meters.
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Fig. A6. The spatially explicit 80% prediction interval for the truncated estimate of aboveground live tree biomass carbon (Mg
C ha™!). The prediction interval coverage probability is 80.23% while 77.36% of predictions are within the prediction interval.
The mean prediction interval (non-spatially explicit) was 1061 Mg C ha~! while the median prediction interval (shown with
dashed line) was 806 Mg C ha~!. Figure was created using ArcGIS Pro version 2.6.0 with data from the state of Alaska, Esri
Canada, and USGS. Coordinate system is Alaska Albers equal area conic, datum WGS 1984, units in meters.
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Table A3. Summary of the area disturbed or exposed to 1 disturbance
(written as 1 disturbance in the table), disturbed and exposed to 1 dis-
turbance or exposed to 2 disturbances (written as 2 disturbances in the
table), or disturbed and exposed to 2 disturbances (written as 3 distur-
bances in the table) for southeast Alaska, coastal British Columbia and
in total (AK + BC).

Disturbance Area (ha) Area (% of disturbed)
1 Disturbance 4440000 38.2%
2 Disturbances 3360000 29.0%
3 Disturbances 257000 2.21%
Total Disturbed 8060000 69.5%
1 Disturbance AK 1970000 24.5%
1 Disturbance BC 2460000 30.6%
2 Disturbances AK 1540000 19.1%
2 Disturbances BC 1820000 22.6%
3 Disturbances AK 170000 2.10%
3 Disturbances BC 87200 1.08%

Note: Area is reported both in hectares disturbed and as a percentage of forested area (11.6
million ha).
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Fig. A7. Variation in the sampling distribution for the mean of precipitation (a, e, and i), slope (b, f, and j), elevation (d, h,
and I), and sample of aspect (c, g, and k) for logged and unlogged areas (a, b, ¢, and d), high and low relative frequency of
windstorm disturbance regime (i.e., exposure; e, f, g, and h), and high and low relative frequency of landslide disturbance
regime (i.e., exposure; i, j, k, and I). High and low relative frequencies for disturbance regimes are greater than or equal to the
70th percentile and lower than the 70th percentile of disturbance respective exposures. Results are not sensitive to arbitrary
cutoff (data not shown).
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Fig. A8. Comparison of (a) mean sampling distributions for logged and unlogged areas across a gradient of the relative fre-
quency of windstorm disturbance regimes. (b) The mean sampling distribution for high and low relative frequencies for land-
slide disturbance regimes along a gradient of relative frequency for windstorm disturbance regimes. (c) The mean sampling
distribution for logged and unlogged areas across a gradient of relative frequency for landslide disturbance regimes. (d) The
mean sampling distribution for high and low relative frequencies for windstorm disturbance regimes along a gradient of rel-
ative frequency for landslide disturbance regimes. High relative frequency for a disturbance regime is >70th percentile of
exposure for respective disturbance while low relative frequency <70th percentile of exposure. Results are not sensitive to
arbitrary cutoff (data not shown).
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Fig. A9. Comparisons of aboveground live tree biomass carbon (Mg C ha~!) in southeast Alaska (gold; AK) and coastal British
Columbia (blue; BC) in plots that were unlogged (darker shade) as compared to logged (lighter shade). Logging corresponded
with decreased average aboveground live tree biomass carbon in southeast Alaska with unlogged plots having 461 + 22 Mg C
ha~! (mean + 95% CI) and logged plots having 189 4 49 Mg C ha~! (mean + 95% CI), as well as decreased average aboveground
live tree biomass carbon in coastal BC with unlogged plots having 1074 + 59 Mg C ha~! (mean =+ 95% CI) and logged plots
having 160 + 47 Mg C ha~! (mean + 95% CI). Each point represents a permanent sample plot for the respective dataset.
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Fig. A10. Aboveground live tree biomass carbon of logged plots varying as a function of time since logging. At the lowest time
since logging (1 year) aboveground live tree biomass carbon is on average 7.0 4+ 6.3 Mg C ha~! (mean + 95% CI) while at the
longest time since logging (67 years) aboveground live tree biomass carbon is on average 579 4 484 Mg C ha~! (mean + 95% CI).
The solid black line is the best fit regression line time since logging on aboveground live tree biomass carbon (Mg C ha~!) from
the model presented in Table 2. The shaded polygon represents the 95% confidence interval. Country of origin is displayed
using squares for southeast Alaska and circles for coastal BC.
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