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Abstract— Enhancing the expressiveness of human teaching is

vital for both improving robots’ learning from humans and the

human-teaching-robot experience. In this work, we characterize

and test a little-used teaching signal: progress, designed to rep-

resent the completion percentage of a task. We conducted two

online studies with 76 crowd-sourced participants and one pub-

lic space study with 40 non-expert participants to validate the

capability of this progress signal. We find that progress indicates

whether the task is successfully performed, reflects the degree

of task completion, identifies unproductive but harmless be-

haviors, and is likely to be more consistent across participants.

Furthermore, our results show that giving progress does not

require extra workload and time. An additional contribution

of our work is a dataset of 40 non-expert demonstrations from

the public space study through an ice cream topping-adding

task, which we observe to be multi-policy and sub-optimal,

with sub-optimality not only from teleoperation errors but also

from exploratory actions and attempts. The dataset is avail-

able at https://github.com/TeachingwithProgress/
Non-Expert_Demonstrations.

I. INTRODUCTION

Robots have already firmly become part of our daily
lives, making it crucial to learn from users, especially non-
expert users. Learning from Demonstration (LfD) enables
robots to learn new skills by observing expert policies [1],
[2] while Learning from Human Feedback (LfHF) allows
robots to adapt to human preferences or correct wrong
behaviors by learning or shaping a policy [3], [4], [5]. More
recent work has further shown that using human feedback
and demonstrations together can make learning even more
effective by reducing the data needs for human feedback
[6] and loosening the requirements of demonstrations to be
near-optimal [7]. However, while interest in learning fully
or partially from humans is high, there is relatively little
research on what the most effective forms of human feedback
are, especially in combination with human demonstrations.

Human feedback and human demonstrations can be com-
plementary due to the difference in human knowledge they
carry. Demonstrations carry relatively dense and global in-
formation including policies and goals, and tend to be less
accurate [8]. Human feedback carries relatively sparse and
local information such as the correctness or a rating of a
robot’s action, and giving high-quality feedback can be much
easier than giving high-quality demonstrations [9]. Perfect
demonstrations are hard to obtain while purely learning from
human feedback requires many human labels, often obtained
at significant time and expense. To address these challenges
and improve the quality of learning, human demonstrations
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Fig. 1: Public space study with an ice cream topping-adding
task to collect demonstrations and progress from non-experts.

can be combined with human feedback: demonstrations can
be used to train an initial policy to improve the sample
efficiency of feedback [6], and feedback can be used to refine
the policy learned from demonstrations [8].

In previous work using human feedback alongside demon-
strations, the forms of human feedback used are directly
adapted from LfHF [6], [8], which might not be effective
for evaluating a demonstration. The quality of a demon-
stration or a partial demonstration is typically assessed by
comparing it to another [8], [7], [1]. This approach of
comparing or ranking demonstrations is extremely hard for
naive users, especially when the trajectory is only a partial
demonstration [10]. It also neglects the objective quality of
a demonstration or a partial demonstration itself: a pair of
demonstrations might both be good or both bad, making
preferences difficult to provide. This is especially true for
non-expert demonstrations: non-expert demonstrations can
be noisy, multi-policy, and yet still succeed (we show this
in subsection V-C). While feedback like binary evaluation
and scalar feedback is capable of assessing the quality of
a demonstration, comparative information is unavailable for
binary feedback and is unreliable for scalar feedback [11].

In this work, we characterize a novel type of human
feedback for robot learning: progress, which is used to
capture the completion of a task. We show that progress
can indicate the extent of task completion, determine if a
task is completed, and be robust to unproductive behaviors.
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Furthermore, when compared to scalar feedback, progress
is more consistent when demonstrations are noisy and does
not need extra workload and time. We show the capability of
progress through two online studies and one in-person study.
For the online studies, we recruit 76 crowd-sourced workers
to provide scalar feedback and progress with pre-recorded
expert demonstrations over three simple tasks and one long-
horizon task. For the in-person study, we recruit 40 passersby
to provide demonstrations in an ice cream topping-adding
task, shown in Figure 1. The demonstrators then provide
progress and scalar feedback to their own demonstrations.

The main contribution of this work is to demonstrate that
progress has information beyond rating and ranking, and
has great potential in interactive learning. Our validation
studies covered a wide range of scenarios and involved 116
participants in total. Our results also showed that non-expert
demonstrations are multi-policy and sub-optimal, but sub-
optimal in a meaningful way. Finally, we released a dataset
online with 40 non-expert labeled demonstrations from a
public space study, which may better-reflect the types of
demonstrations that can be expected from real-world deploy-
ments than typical expert or in-lab demonstration datasets.

II. BACKGROUND

By leveraging human knowledge, interactive machine
learning allows learning agents to adapt to the needs of
individual users and improve sample efficiency [9]. Human
knowledge can take a variety of forms, such as semantic
representation [12], numerical feedback [5], eye gaze [13],
gestures [14], facial expressions [3], and demonstrations [15].
In this work, we focus on human feedback and human
demonstrations. Separately, each of these approaches has
significant limitations: on the one hand, inferring a policy
from human feedback requires a large number of interactions
[5], [16], [17], and on the other, error-free demonstrations are
rare and expensive to obtain in the real world [15]. To address
this, many approaches in Interactive Machine Learning seek
to combine human feedback and human demonstration to
compensate for the limitations of each.
Learning from Human Feedback Learning from Human
Feedback has emerged as a promising technology for robots
or machine-learning agents to learn from humans via in-
teractions [18]. LfHF, in general, refers to methods that
have three components: feedback collection, policy or reward
shaping, and policy optimization. Human feedback can be in
a variety of forms, such as verbal [19], [20], numerical [4],
[5], [21], and implicit [3], [22]. Three representative works
of learning from explicit human feedback are Policy Shaping
[4], TAMER [5], and Preference-based policy learning [23].
Human feedback has also been applied to modern Large
Language Models (LLMs) [24] to further improve the perfor-
mance of trained models by having humans rate the outputs
with binary critiques. Despite a large body of work that has
been done, human feedback is mostly used as reward signals.
Learning from Human Demonstrations In robotics, Learn-
ing from Demonstrations (LfD) is a method that facilitates
robots to learn new skills by imitating humans [25]. The

use of LfD offers several advantages, including eliminating
the need for expert programming [26], high data efficiency
[27], safety for learning [28], and guaranteed performance
[29]. The research interest in teaching robots via demon-
strations has steadily advanced. LfD methods are capable of
producing optimal behaviors with clean demonstrations and
sufficient error-free demonstrations [30]. However, due to
the optimal assumption on the demonstrations, LfD methods
like generative adversarial imitation learning [31] or behavior
cloning [32] failed to acquire optimal policy for many robot
tasks since even human experts would make mistakes while
providing demonstrations [33]. Weighting [34], [33], [2] or
ranking [1], [35] demonstrations are considered to be robust
methods of learning from noisy demonstrations. However,
learning from multiple users and learning from imperfect
demonstrations are still challenging problems [15]. One
previous work used a technique they refer to as “reward
sketching”; in practice the annotators were instructed to
provide progress [36]. While their work demonstrates the
potential of progress for guiding learning, it did not closely
investigate the properties of progress or take full advantage of
it as a teaching signal, instead using large numbers of these
“reward sketching” annotations as a loose approximation for
a dense reward function.
Using Human Demonstrations and Human Feedback Re-
cent work has demonstrated that combining human feedback
and human demonstrations could overcome many disadvan-
tages of using one of them solely, including safety [37],
sample efficiency [6], and accuracy [8]. Specifically, work
from [6] used demonstrations to train an initial model for
efficiently collecting preferences from users. Work from [8]
built on [6] and used a model-based method to reduce data
from humans. Using human rankings, work from [7] has
achieved super-human demonstration performance. Although
prior work has achieved great success in consolidating human
feedback with human demonstrations, the source of human
feedback and human demonstrations are likely from experts
or pre-trained agents [38], and the human feedback they
used could be more informative. Our work differs from
prior work by focusing on non-experts. We conducted our
studies with crowd-sourced workers and random passersby.
We showed that progress is informative and consistent when
human demonstrations are multi-policy and non-optimal.

III. PROGRESS

Our goal is to improve learning from human feedback
with a new teaching signal: progress. In this section, we first
define progress, and then introduce our hypothesis.

A. Progress
We hypothesize that progress provides complementary

information to demonstrations beyond rewards. We charac-
terize progress as the accumulative task completion rate over
a task based on the current observation, ranging from totally
incomplete to complete fully. Our intuition is that: A teaching
signal would be more robust to sub-optimal demonstrations
and more consistent among users if human teachers could
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have objective references while providing the teaching signal.
For progress specifically, users can use start states and finish
states as references. In this work, we use the progress signal
as a range from 0 to 100. A progress value of 0 indicates
that the task has not yet begun, while a value of 100 signifies
task completion. In between, we expect that for any given
task t, current state s, any action ai and aj , and any previous
state si and sj :

progt(si, ai, s) = progt(sj , aj , s)8i, j (1)

Ideally, progress is independent of the path taken to the state,
irrespective of the sequence of preceding states. However,
human feedback is known to be noisy and can only be
considered consistent if we view it as an approximate value
[11]. Thus, we collect progress by presenting users with a
trajectory instead of a single state to increase reliability.

B. Hypotheses
We expect that people naturally estimate task completion

in their daily lives, so progress should be not hard to give. We
also expect that participants would use progress to describe
the completion degree of a task. We hypothesize:
H1. Giving progress does not require extra workload and
extra time compared to giving scalar feedback.
H2. Progress describes the completion rate of a task.
H3. Progress could correctly indicate if the task is complete
even if the robot has made mistakes.
H4. Progress is more consistent than scalar feedback when
demonstrations are non-optimal.

IV. PROGRESS WITH NON-SELF-PROVIDED
DEMONSTRATIONS

We first crowd-sourced users to provide progress with pre-
recorded demonstrations for our online studies. This allows
us to explore the effectiveness of utilizing progress alone,
and examine its applicability across a range of intricate
scenarios. We conducted two online studies: Online study
I uses three simple tasks to evaluate the workload of giving
progress, while online study II involves a long-horizon task
comprising six sub-tasks and five scenarios to assess the
utility of progress.

A. Online study setups
First, we validated the workload of providing progress and

verified that progress contains unique information relative to
scalar feedback in a range of 0 to 100. For each study, we
recruited two groups of participants from an online platform.
One group of participants was only asked to give progress
and the other group of participants was only asked to give
scalar feedback. Participants in two groups watched the same
demonstrations in the same order.

1) Online study I: We recruited two groups of 20 partic-
ipants from Amazon Mechanical Turk to provide progress
annotations to a robot performing three related tasks. The
three tasks we used are reaching, pouring, and spinning,
shown in Figure 2, which are sub-tasks of the task we used
in the online study II. For each task, participants gave 10

Fig. 2: Online Study Setups. Three simple tasks for compar-
ing the workload of giving progress, and a long-horizon task
for comparing the applicability of progress.

progress or 10 scalar feedback annotations. After giving all
progress or scalar feedback, a NASA TLX [39] questionnaire
was given to measure the workload. All demonstrations are
perfect demonstrations except the robot made one mistake
during the spinning task at step 5.

2) Online study II: In study II, we used a long-horizon
task with five representative types of variation in task perfor-
mance to show the capability of progress. The task we use
is a tea steeping task (also shown in Figure 2), which is a
task combining picking, reaching, pouring, and spinning. We
recruited another two groups of 18 participants from Prolific,
a crowdsourcing platform for scientific research, to give
scalar feedback or progress. We chose five demonstrations
each representing a distinct scenario: Perfect (everything is
performed flawlessly), Imperfect (the cup is dropped onto the
table rather than being placed carefully), Unaware (failed to
pick the stir, and spun without a stir), Corrected (failed to
pick the stir but went back to pick it after a few spinning),
and Failure (the cup was dropped at the beginning). The
results and further illustrations of five cases are shown in
Figure 4. For scenarios other than Corrected, participants
were asked to give 15 progress or scalar feedback. In
Corrected, 20 progress or scalar feedback were collected.

B. Quantitative analysis

To analyze the data, we used t-tests [40] and Bayesian
statistics with the schemes present in [41]. For t-test results,
we use Shapiro-Wilk tests to determine if the data is from a
normal distribution. If the data is from a normal distribution,
we use a standard independent samples t-test. Otherwise,
we apply Kruskal-Wallis H Tests and Wilcoxon Rank-Sum
Tests to our results. For Bayesian statistics, a Bayes Factor
(BF) is used. We interpret BF lower than 3 as “no evidence”
for the alternative hypothesis, between 3 to 10 as “moderate
evidence”, and 30 or above as “strong evidence”.

C. Giving progress is not time-consuming and not hard

We used the NASA TLX form to measure the workload,
and we recorded the average task completion time. The
results are shown in Figure 3. We did not find any significant
difference between giving scalar feedback and progress in
all the dimensions of the NASA TLX results using t-tests
and BF (p > 0.45 and 0.3 < BF < 1 for all dimensions).
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Fig. 3: Online Study One Results. The workload of giving
progress has no difference from giving scalar feedback.

The average task completion time for evaluating the demon-
strations using progress is 22 minutes 3 seconds, and the
average task completion time for using scalar feedback is 23
minutes 10 seconds. The average completion time is lower
for progress by 5.06%, but we did not find any significant
difference using t-test and BF (p = 0.442, and BF = 0.444).
H1 is supported.

D. Progress is used to signify the completion rate of a task

The results of online study II are shown in Figure 4.
Each line represents the average progress or scalar feedback
of 18 participants under a certain scenario. While scalar
feedback and progress can both describe the quality of
a demonstration, progress and scalar feedback focus on
different information.

Progress describes the degree to what extent a task has
been completed. Progress was low at the beginning, increased
as the task was completed more, stayed the same or became
lower while the robot was not acting towards finishing the
task (see Failure before spinning, Unaware after missing the
stirrer, and Corrected before re-picking the stirrer). A higher
value of progress indicates more successful task completion.
For instance, in the Unaware scenario, the progress at the
final step is greater than in the Failure scenario but lower
than in the Perfect scenario, due to 5 out of 6 sub-tasks
being completed in the Unaware, as opposed to 1 out of
6 in the Failure. We calculate Pearson corrections between
the progress function from participants and an accumulative
progress function created by true labels (+1 for completing
part of the task, 0 for not completing anything, and -1
for backtracking) for each scenario. The correlations are
0.983 for Perfect scenario (p < 0.001), 0.982 for Imperfect
scenario (p < 0.001), 0.974 for Unaware scenario (p <
0.001), 0.977 for Corrected scenario (p < 0.001), and 0.895
for Failure scenario (p < 0.001). H2 is supported.

Scalar feedback reflects the quality of a trajectory, and
only a single trajectory. The average values of scalar feed-
back were generally high if there were no imperfections,
and dramatically changed if there were any mistakes had
been made, no matter if the mistakes would affect the robot
completing the task (step 10, dropping cup, in Imperfect

Average IQR Comparison to Perfect

Perfect Progress 91.5 2.75
Scalar F 95.1 0.75

Imperfect Progress 89.0 15.0 p = 0.71, BF = 0.34
Scalar F 62.7 43.75 p < 0.01,BF > 1000

Unaware Progress 61.3 21.25 p < 0.01, BF = 98.75
Scalar F 23.1 50.0 p < 0.01, BF > 1000

Corrected Progress 94.1 8.25 p = 0.62, BF = 0.33
Scalar F 82.0 23.75 p < 0.05, BF = 2.01

Failure Progress 23.4 17.5 p < 0.01, BF > 1000
Scalar F 91.0 10.0 p = 0.30, BF = 0.46

TABLE I: Average progress and scalar feedback at the last
step. Progress shows the ability to indicate task completion
even if the demonstration is not perfect.

scenario) or if the robot did better in previous sub-tasks (step
12 to step 15 in Failure).

E. Progress indicates if a task is complete

We showed average progress and average scalar feedback
at the last step for all participants and statistical analysis
results between each scenario and the Perfect scenario in
Table I. We found that progress could correctly indicate if the
task is complete, while the indication of task completion was
not captured by scalar feedback. The task has been completed
in three scenarios, Perfect, Imperfect, and Corrected. The
average progress of three completed scenarios at the last step
is about 90, and there was no evidence showing that there
is any difference between the other two and the Perfect case
(p = 0.714, BF = 0.34 for Imperfect, and p = 0.620, BF =
0.33 for Corrected). For the Unaware and Failure scenarios,
there is strong evidence indicating that the task was not
completed (avg = 61.3, p < 0.001, BF = 98.75 for
Unaware, and avg = 23.4, p < 0.001, BF > 1000 for
Failure). H3 is supported.

F. Progress is robust and more consistent to sub-optimality

In the Imperfect scenario, when the robot dropped the
cup onto the table, the progress remained at a similar level
and did not affect the eventual progress. The conclusion
holds the same in the Corrected scenario. The progress only
changed slightly when the robot missed the stirrer and started
spinning unproductively, and progress at the end is similar
to Perfect. Scalar feedback, on the other hand, changed
dramatically in all these cases. Participants used scalar feed-
back to indicate if a demonstration was clean and good, but
the possibility that the errors were ”harmless explorations”
or ”fixable mistakes” is not captured by scalar feedback.
Moreover, for every scenario other than Perfect, progress
has a lower average standard deviation in each scenario
compared to scalar feedback. The average standard deviation
for Imperfect: 16.1 for progress and 22.5 for scalar feedback
(p = 0.018, BF = 3.19), Unaware: 16.8 for progress and
21.1 for scalar feedback (p = 0.060, BF = 1.41), Corrected
16.1 for progress and 20.3 for scalar feedback (p = 0.058,
BF = 1.39), and Failure: 15.6 for progress and 28.3 for
scalar feedback (p < 0.001, BF > 1000). H4 is supported.
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Fig. 4: Online Study II Results. Progress and scalar feedback carry different information. Scalar feedback reflects the
optimality of a trajectory, while progress reflects the degree towards completing the task. Progress is more consistent than
scalar feedback when the demonstration is non-optimal across participants. Progress is also capable of indicating if the task
is completed successfully even if the robot has made a minor mistake or made a faulty mistake but fixed it.

V. PROGRESS WITH SELF-PROVIDED DEMONSTRATIONS
FROM NON-EXPERTS

While progress can be effective in being used along
with expert demonstrations, using progress to annotate
non-expert demonstrations may still be challenging. We
expected most hypotheses will hold. We conducted a public
space study to validate the applicability of progress with
self-provided demonstrations from non-experts. We recruited
40 participants to provide demonstrations, progress, and
scalar feedback in an ice cream topping-adding task.
Participants were recruited from the atrium of a university
building and the overall participation time was about
15 minutes. This work is approved by the Institutional
Review Board and all data collected was anonymous.
We released all data we collected from our public space
study as a dataset, along with the example scripts that
read the data from files. The dataset is available at:
https://github.com/TeachingwithProgress/
Non-Expert_Demonstrations

A. Experiment Setup

The study was settled in the lobby of a university building.
Each participant was asked to first give one demonstration
and then watch a replay of the demonstration. The task we

asked participants to demonstrate is an ice cream topping-
adding task. The goal for participants is to pick up a
topping from a shelf and pour the topping into an ice cream
via teleoperating a robot arm. The shelf is located on the
right side of the workspace, and there are four toppings
available which are located at four locations. The participants
controlled the arm by using an Xbox controller. The arm
was a Kinova Gen 3 Lite arm with six DoF. The setup
and the workspace are shown in Figure 1. We recorded the
demonstrations in 5 HZ. During the replay, the arm would
stop every 10% of the frames, and we would ask participants
for one progress and one scalar feedback for the replayed
partial trajectory.

B. Experiment Procedure

We recruited participants by asking people who walked by
our setup. Of the 40 participants, 22 participants were male,
14 participants were female, and 4 participants preferred not
to say. If the participants agreed to join the study, we first
asked them if they were familiar with robots, and excluded
them if they said yes. We then asked them to fill out a consent
form. Then we introduced them to the ice cream topping
adding task, and how to use an Xbox controller to teleoperate
the arm. Participants had up to 3 minutes to practice the
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Fig. 5: 3D visualization of 40 non-expert demonstration
trajectories. The positions of objects are marked out with
images. The blue trajectories are successful demonstrations
and the orange trajectories are faulty demonstrations. Most
of the demonstrations succeed, while the policies are diverse.

task before giving a demonstration. Each participant only
had one chance to give a demonstration and could not retry.
After giving a demonstration, the experimenter introduced
participants to the replay evaluation task. The experimenter
would introduce progress and scalar feedback in detail to
reduce the difference in understanding of the signals among
participants. During the replay, the arm would stop ten
times. For each time, the experimenter would briefly explain
progress and scalar feedback again, and ask participants for
two signals in a random order.

C. Non-Expert Demonstrations Are Multi-Policy and Noisy
We collected 40 demonstrations from 40 participants. All

trajectories are visualized in Figure 5. We also visualized
the locations of the objects used in the experiment. The blue
trajectories are successful demonstrations and the orange
trajectories are failed demonstrations. We found that non-
expert demonstrations are noisy and contain a variety of
policies, even though 34 out of 40 are ultimately successful.
This suggests that policies can be both successful and sub-
optimal, which supports our intuition: assessing the quality
of demonstrations by comparing is likely to lose information
if there are many ”good enough” policies. We also observed
that the noise in the demonstrations is not only teleoperating
errors but also explorations. For instance, we observed that
14 participants slightly shook the topping jar to test if the
gripper firmly held the jar when picking the jar, and 17
participants poured a few toppings out first to see if the jar
was right above the ice cream when pouring the toppings.
This highlights the importance of detecting unproductive
behaviors, and suggests that noisy demonstrations from

partially trained agents or perfect demonstrations with

injected noise are inappropriate approximations of noisy

human demonstrations: human demonstrations are “noisy”
in a meaningful way. For the six failed demonstrations,

Fig. 6: Progress and scalar feedback over 32 Demonstrations.
Progress increases as the task approaches completion, indi-
cates task success, and is consistent among participants.

three of them were because the topping jar was accidentally
dropped while reaching the ice cream, and two of them were
because the gripper did not successfully pick up the topping
jar. The most common faulty cases are similar to the Failure
scenario and the Unaware scenario we used in our online
study, which confirmed the validity of the design of our
online study.

D. Progress indicates task completions and is more consis-
tent across participants than scalar feedback

We collected progress and scalar feedback from 34 partic-
ipants (two participants’ progress and scalar feedback were
excluded since all progress and scalar feedback they provided
were 100). The results are shown in Figure 6. We plot
the average progress and scalar feedback for all successful
demonstrations, and progress and scalar individually for
all failure demonstrations. We are not able to determine
if progress from participants correctly describes the task
completion rate since we do not have ground truth labels, but
average progress for successful demonstrations did start from
low and increased as the demonstrations were reproduced
which is a strong indication that progress correlates with
task completion rates.

We successfully identified all failed demonstrations by
only looking at progress at the last step. We use 90 as the
divide value, which is the average progress at the last step for
successful demonstrations in our online study. If progress at
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Fig. 7: 3D trajectory of one participant’s demonstration.
The trajectories are colored with progress, and both scalar
feedback and progress signals are indicated in a timeline
above the figure. The brown circle represents the start point.
The green star represents the endpoint. The blue square is
the position of the topping jar. The participant reset the arm
to the start position after demonstrating a few steps to adjust
the grip point.

the last step is less than 90, the task is incomplete, otherwise
the task is completed. For all failed demonstrations, the end
progress is less than 90 and the average progress at the
end for successful demonstrations is 98.8. H3 is supported.
Moreover, progress is significantly more consistent across
participants even though their demonstrations are multiple
policies and in different quality (avg stdprogress = 11.6,
avg stdscalarfeedback = 25.5, p < 0.001, BF > 1000). H4

is supported.

E. Progress allows the awareness of backtracking

As mentioned in subsection V-C, participants would do
explorations while demonstrating difficult parts of the task.
We also observed that some participants went back a few
steps to adjust the grip pose or the pouring position. For
instance, one participant failed to pour the toppings into the
ice cream because the grasp point was not optimal. Then the
participant decided to reset the arm to the initial position,
demonstrated the entire task from the beginning again, and
succeeded. We plot the trajectory for that demonstration
along with progress and scalar feedback, shown in Figure 7.
As indicated by progress, the arm was reset to the initial
position between step 4 and step 5, and the task was
successfully completed afterward.

VI. DISCUSSION

In this work, we investigated and closely defined an under-
explored teaching signal, progress, and conducted three
different studies to show the usefulness of progress across a

Fig. 8: Correlations between progress and rewards (top), and
correlation between scalar feedback and rewards (bottom)
over 32 participants. The correlations between progress and
rewards have an average of 0.83.

variety of scenarios. We showed that giving progress is not
hard and progress carries information beyond scalar feedback
and other teaching signals in prior work. We expect that
progress will be effective in many applications other than
just using along with demonstrations.

Prevent Reward Hacking Progress could be a powerful
signal to indicate reward hacking. Reward hacking is a
phenomenon in which a learning agent learns to achieve
high rewards by performing unintended actions instead of
finishing the task. For instance, a cleaning robot gets a +1
reward every time it cleans a room. The robot, instead of
cleaning one room and going to the next room, repetitively
ejects dirt in a room, then cleans it, and thus achieves high
rewards. Using progress, we can easily identify that the robot
is not advancing towards task completion.

Inverse Reinforcement Learning We observed a simi-
larity between progress functions and reward functions and
expect that a progress function might be a representation
of a reward function. We trained a reward function using
demonstrations we collected in the public space study us-
ing Adversarial Inverse Reinforcement Learning [42], and
calculated the rewards for each demonstration. We then
calculated the Pearson correlation between the rewards of the
demonstration and the progress, as well as the correlation
between the rewards and the scalar feedback from each
participant in Figure 8. We found that progress is strongly
correlated with the learned reward function (avgr = 0.83)
and the average correlation is significantly higher (p < 0.001,
BF > 1000 ) than scalar feedback (avgr = 0.19).

Data Filtering and Ranking Progress could also be used
to rank demonstrations. For example, a demonstration with
a progress of 60 at the end should be ranked lower than a
demonstration with a progress of 90. Moreover, progress can
be applied as a data filter especially when the demonstrations
are sub-optimal.

A key area for future work is to compare the model per-
formance between the model trained using progress and the
model trained using other types of human feedback. Training
a reliable model from limited non-expert demonstrations and
non-expert annotations is challenging but future work could
expand our data with more demonstrations along with more
types of human teaching signals such as preference.
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VII. CONCLUSION

In conclusion, we defined progress in detail and found that
progress could be used to describe completion degrees of a
task, indicate if a task is complete, and be more consistent
across users, without requiring extra workload or time com-
pared to giving scalar feedback. We collected 40 non-expert
demonstrations along with progress and scalar feedback,
and released them as a dataset. We found that non-expert
demonstrations are multi-policy and mostly successful, while
noisy in a meaningful way. Our work suggests that progress
is information-rich and is worth more attention to develop
new methods to effectively leverage the novel information
from progress.

ACKNOWLEDGMENT
The work described here was supported in part by the US

National Science Foundation (IIS-2132887).
REFERENCES

[1] D. S. Brown, W. Goo, and S. Niekum, “Better-than-demonstrator
imitation learning via automatically-ranked demonstrations,” in Conf.
on robot learning. PMLR, 2020, pp. 330–359.

[2] L. Chen, R. Paleja, and M. Gombolay, “Learning from suboptimal
demonstration via self-supervised reward regression,” in Conf. on robot
learning. PMLR, 2021, pp. 1262–1277.

[3] Y. Cui, Q. Zhang, B. Knox, A. Allievi, P. Stone, and S. Niekum, “The
empathic framework for task learning from implicit human feedback,”
in Conf. on Robot Learning. PMLR, 2021, pp. 604–626.

[4] T. Cederborg, I. Grover, C. L. Isbell Jr, and A. L. Thomaz, “Policy
shaping with human teachers.” in IJCAI, 2015, pp. 3366–3372.

[5] W. B. Knox and P. Stone, “Interactively shaping agents via human
reinforcement: The tamer framework,” in Proc. of the fifth Int. Conf.
on Knowledge capture, 2009, pp. 9–16.

[6] B. Ibarz, J. Leike, T. Pohlen, G. Irving, S. Legg, and D. Amodei,
“Reward learning from human preferences and demonstrations in
atari,” Advances in neural information processing systems, vol. 31,
2018.

[7] D. S. Brown, W. Goo, and S. Niekum, “Ranking-based reward extrap-
olation without rankings,” arXiv preprint arXiv:1907.03976, 2019.

[8] M. Palan, N. C. Landolfi, G. Shevchuk, and D. Sadigh, “Learning re-
ward functions by integrating human demonstrations and preferences,”
arXiv preprint arXiv:1906.08928, 2019.

[9] C. Arzate Cruz and T. Igarashi, “A survey on interactive reinforcement
learning: Design principles and open challenges,” in Proc. of the 2020
ACM designing interactive systems Conf., 2020, pp. 1195–1209.

[10] C. Laidlaw and S. Russell, “Uncertain decisions facilitate better pref-
erence learning,” Advances in Neural Information Processing Systems,
vol. 34, pp. 15 070–15 083, 2021.

[11] H. Yu, R. M. Aronson, K. H. Allen, and E. S. Short, “From “thumbs
up” to “10 out of 10”: Reconsidering scalar feedback in interactive
reinforcement learning,” in 2023 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS). IEEE, 2023, pp. 4121–4128.

[12] I. Kostavelis and A. Gasteratos, “Learning spatially semantic repre-
sentations for cognitive robot navigation,” Robotics and Autonomous
Systems, vol. 61, no. 12, pp. 1460–1475, 2013.

[13] A. Saran, E. S. Short, A. Thomaz, and S. Niekum, “Understanding
teacher gaze patterns for robot learning,” in Conf. on Robot Learning.
PMLR, 2020, pp. 1247–1258.

[14] P. M. Yanik, J. Manganelli, J. Merino, A. L. Threatt, J. O. Brooks,
K. E. Green, and I. D. Walker, “A gesture learning interface for sim-
ulated robot path shaping with a human teacher,” IEEE Transactions
on Human-Machine Systems, vol. 44, no. 1, pp. 41–54, 2013.

[15] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
advances in robot learning from demonstration,” Annual review of
control, robotics, and autonomous systems, vol. 3, pp. 297–330, 2020.

[16] R. Arakawa, S. Kobayashi, Y. Unno, Y. Tsuboi, and S.-i. Maeda, “Dqn-
tamer: Human-in-the-loop reinforcement learning with intractable
feedback,” arXiv preprint arXiv:1810.11748, 2018.

[17] G. Warnell, N. Waytowich, V. Lawhern, and P. Stone, “Deep tamer:
Interactive agent shaping in high-dimensional state spaces,” in Proc.
of the AAAI Conf. on artificial intelligence, vol. 32, no. 1, 2018.

[18] S. Casper, X. Davies, C. Shi, T. K. Gilbert, J. Scheurer, J. Rando,
R. Freedman, T. Korbak, D. Lindner, P. Freire, et al., “Open problems
and fundamental limitations of reinforcement learning from human
feedback,” arXiv preprint arXiv:2307.15217, 2023.

[19] P. Goyal, S. Niekum, and R. J. Mooney, “Using natural lan-
guage for reward shaping in reinforcement learning,” arXiv preprint
arXiv:1903.02020, 2019.

[20] G. Kuhlmann, P. Stone, R. Mooney, and J. Shavlik, “Guiding a
reinforcement learner with natural language advice: Initial results in
robocup soccer,” in The AAAI-2004 workshop on supervisory control
of learning and adaptive systems. San Jose, CA, 2004.

[21] D. Arumugam, J. K. Lee, S. Saskin, and M. L. Littman, “Deep
reinforcement learning from policy-dependent human feedback,” arXiv
preprint arXiv:1902.04257, 2019.

[22] D. Xu, M. Agarwal, E. Gupta, F. Fekri, and R. Sivakumar, “Accelerat-
ing reinforcement learning using eeg-based implicit human feedback,”
Neurocomputing, vol. 460, pp. 139–153, 2021.

[23] R. Akrour, M. Schoenauer, and M. Sebag, “Preference-based pol-
icy learning,” in Machine Learning and Knowledge Discovery in
Databases: European Conf., ECML PKDD 2011, Athens, Greece,
September 5-9, 2011. Proc., Part I 11. Springer, 2011, pp. 12–27.

[24] OpenAI, :, J. Achiam, Adler, and et al., “GPT-4 Technical Report,”
arXiv e-prints, p. arXiv:2303.08774, Mar. 2023.

[25] S. Chernova and A. L. Thomaz, Robot learning from human teachers.
Morgan & Claypool Publishers, 2014.

[26] Z. Zhu and H. Hu, “Robot learning from demonstration in robotic
assembly: A survey,” Robotics, vol. 7, no. 2, p. 17, 2018.

[27] H. Ravichandar, S. R. Ahmadzadeh, M. A. Rana, and S. Chernova,
“Skill acquisition via automated multi-coordinate cost balancing,” in
2019 Int. Conf. on Robotics and Automation (ICRA). IEEE, 2019,
pp. 7776–7782.

[28] J. Umlauft and S. Hirche, “Learning stable stochastic nonlinear
dynamical systems,” in Int. Conf. on Machine Learning. PMLR,
2017, pp. 3502–3510.

[29] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural computation, vol. 25, no. 2, pp. 328–373, 2013.

[30] F. Sasaki, T. Yohira, and A. Kawaguchi, “Sample efficient imitation
learning for continuous control,” in Int. Conf. on learning representa-
tions, 2018.

[31] J. Ho and S. Ermon, “Generative adversarial imitation learning,”
Advances in neural information processing systems, vol. 29, 2016.

[32] B. Fang, S. Jia, D. Guo, M. Xu, S. Wen, and F. Sun, “Survey of
imitation learning for robotic manipulation,” Int. Journal of Intelligent
Robotics and Applications, vol. 3, pp. 362–369, 2019.

[33] Y.-H. Wu, N. Charoenphakdee, H. Bao, V. Tangkaratt, and
M. Sugiyama, “Imitation learning from imperfect demonstration,” in
Int. Conf. on Machine Learning. PMLR, 2019, pp. 6818–6827.

[34] F. Sasaki and R. Yamashina, “Behavioral cloning from noisy demon-
strations,” in Int. Conf. on Learning Representations, 2020.

[35] Y. Wang, C. Xu, B. Du, and H. Lee, “Learning to weight imperfect
demonstrations,” in Int. Conf. on Machine Learning. PMLR, 2021,
pp. 10 961–10 970.

[36] S. Cabi, S. G. Colmenarejo, A. Novikov, K. Konyushkova, S. Reed,
R. Jeong, K. Zolna, Y. Aytar, D. Budden, M. Vecerik, et al., “Scaling
data-driven robotics with reward sketching and batch reinforcement
learning,” arXiv preprint arXiv:1909.12200, 2019.

[37] D. Brown, R. Coleman, R. Srinivasan, and S. Niekum, “Safe imitation
learning via fast bayesian reward inference from preferences,” in Int.
Conf. on Machine Learning. PMLR, 2020, pp. 1165–1177.

[38] J. Huang, R. M. Aronson, and E. S. Short, “Modeling variation in
human feedback with user inputs: An exploratory methodology,” 2024.

[39] S. G. Hart, “Nasa-task load index (nasa-tlx); 20 years later,” in Proc.
of the human factors and ergonomics society annual meeting, vol. 50,
no. 9. Sage publications Sage CA: Los Angeles, CA, 2006, pp.
904–908.

[40] R. S. Witte and J. S. Witte, Statistics. John Wiley & Sons, 2017.
[41] J. van Doorn, D. van den Bergh, U. Böhm, F. Dablander, K. Derks,
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