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ABSTRACT 
To expedite the development process of interactive reinforcement 
learning (IntRL) algorithms, prior work often uses perfect oracles 
as simulated human teachers to furnish feedback signals. These 
oracles typically derive from ground-truth knowledge or optimal 
policies, providing dense and error-free feedback to a robot learner 
without delay. However, this machine-like feedback behavior fails 
to accurately represent the diverse patterns observed in human 
feedback, which may lead to unstable or unexpected algorithm per-
formance in real-world human-robot interaction. To alleviate this 
limitation of oracles in oversimplifying user behavior, we propose 
a method for modeling variation in human feedback that can be 
applied to a standard oracle. We present a model with 5 dimen-
sions of feedback variation identi�ed in prior work. This model 
enables the modi�cation of feedback outputs from perfect oracles 
to introduce more human-like features. We demonstrate how each 
model attribute can impact on the learning performance of an In-
tRL algorithm through a simulation experiment. We also conduct 
a proof-of-concept study to illustrate how our model can be pop-
ulated from people in two ways. The modeling results intuitively 
present the feedback variation among participants and help to ex-
plain the mismatch between oracles and human teachers. Overall, 
our method is a promising step towards re�ning simulated oracles 
by incorporating insights from real users. 
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• Human-centered computing ! Collaborative and social 
computing; • Computing methodologies ! Modeling and sim-
ulation. 
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Figure 1: We propose a 5-dimensional model, which synthe-
sizes the most representative feedback variation identi�ed 
in the prior research, to categorize the gap between oracles 
and human teachers. The model can integrate with oracle 
feedback to produce modi�ed feedback with human-like fea-
tures and can be generated by working with participants. 

1 INTRODUCTION 
In human-centered robotics research, Interactive Reinforcement 
Learning (IntRL) is a commonly-used technique that enables e�-
cient learning for intelligent robots by using both environmental 
observations and feedback from a human instructor. To quickly 
evaluate the design of IntRL algorithms and expedite the devel-
opment process, researchers often use oracles, typically perfect 
oracles, to provide simulated feedback. These perfect oracles are 
generated from optimal policies or ground truth, delivering dense, 
instantaneous, and error-free feedback tailored to maximize the 
bene�ts for a robot learner. 

However, this approach falls short in accurately modeling the het-
erogeneous feedback patterns exhibited by people. Prior work has 
shown that human teachers often respond to a robot in a delayed, 
stochastic and unreliable way [1], and can give di�erent feedback 
in response to the same observation because of their unique person-
alities, preferences and experience [2]. Therefore, over-relying on 
perfect oracles may result in algorithm performance degradation 
or even failures during the transition from simulation to real-world 
environments, especially when perfect oracles are used in place of 
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user studies; without evaluation with real users, we do not know if 
these algorithms will be robust to common sources of variation in 
human feedback. 

In this paper, we aim to characterize the feedback disparities 
among real participants, and convey these variations to oracles 
(Fig. 1). This allows researchers to continue using oracles for rapid 
iteration in algorithm development, while ensuring that algorithms 
developed in this way are still valid in real-world deployment. To 
achieve this, we �rst formally examine the use of oracles in both 
the state-of-the-art and foundational interactive robot learning 
research. This is to gain a deeper understanding of the notable 
disparities that exist between simulated oracles and human instruc-
tors, particularly in terms of their feedback behavior. Building upon 
these insights and results from the literature outside of robotics, 
we propose a 5-dimensional model that consolidates �ve represen-
tative feedback variations: frequency, delay, strictness, bias, and 
accuracy. By mathematically de�ning each attribute, our model can 
be integrated with the output of a perfect oracle, augmenting the 
oracle with more human-like features. We demonstrate that the 
5 dimensions of variation can in�uence learning in a simulation 
experiment. Lastly, we present a proof-of-concept user study to 
show that the model can be populated from interaction with users 
in two ways: both by extracting from real feedback data and by 
directly asking users to set model parameters that align the oracle’s 
behavior more closely with their own. 

The major contributions of this paper are: 
(1) We conduct a literature review of the use of oracles in founda-

tional IntRL papers and in cutting-edge robot learning publications 
over the last 3 years of 3 premier venues (HRI, CoRL, RSS), identi-
fying the common sources of feedback discrepancies; 

(2) To our knowledge, we are the �rst to synthesize multiple feed-
back dynamics into a uni�ed model and mathematically formulate 
each dynamic in the context of binary feedback; 

(3) We apply our model to modify the output of a perfect oracle, 
and explore the in�uence of modi�ed feedback on a classic IntRL 
framework (Q-learning+TAMER) in an OpenAI Gym environment. 
The results o�er valuable insights into how changes in parameter 
values for each feedback attribute a�ect the algorithm robustness; 

(4) We introduce a mixed-methods approach in a user study to 
obtain two types of our feedback model with participants: extracted 
models and self-reported models. The results a�rm the feasibility of 
collaborating with users to create these models and the e�ectiveness 
of our approach in understanding feedback disparities. 

2 BACKGROUND 
Interactive Reinforcement Learning (IntRL), formally introduced 
in [3] as a branch of Reinforcement Learning (RL), allows a robot 
to interact not only with an environment but also with a human 
teacher. Compared to the traditional RL paradigm, IntRL algorithms 
incorporate a human-in-the-loop to obtain human prior knowledge, 
and have been proven to be e�ective for reducing required training 
time [4] and improving learning performance [5, 6]. Notably, IntRL 
can be very useful for some special conditions, such as preference 
learning tasks [7] and sparse-reward environments [8]. 

Existing IntRL algorithms typically use human feedback to aug-
ment reward functions [9–11], policies [12–14], and exploration pro-
cesses [15–17]. The feedback can be collected from either a real 

participant or a simulated human (oracle). The idea of using simu-
lated oracles can be traced back to the Oz of Wizard methodology 
[18] proposed by Steinfeld et al. in 2009, which aims to solve the im-
practicability of performing a large amount of user testing at every 
iteration of new technology development. Later work has proven 
that introducing simulated oracles is e�ective for shortening the 
development cycle of algorithms and providing useful insights in 
the early implementation stages [19, 20]. 

Nevertheless, researchers have also found that results with or-
acles do not accurately mirror real-world outcomes with human 
users, since simulated oracles are often generated as perfect oracles, 
oversimplifying the human feedback behavior [21, 22]. Individu-
als exhibit their own feedback patterns and variations in human 
feedback can lead to changes of an IntRL model’s performance [23]. 
Although prior work has made attempts to add some human-like 
elements to their oracles, such as incorporating errors [24], delay 
[25] or reducing feedback frequency [26], those e�orts often focus 
on isolated aspects of human feedback discrepancies and prescribe 
human behavior rather than validating it with actual users. As 
a result, the development of robust IntRL methods adaptable to 
feedback from diverse users remains an ongoing challenge. 

A systematic understanding of the underlying causes behind the 
disparity between oracles and people is a preliminary and essential 
step to address this challenge, however, it appears to be absent 
in existing work. Therefore, in the next section, we undertake a 
literature review within the �eld of interactive robot learning to in-
vestigate how oracles are constructed and employed, and to identify 
the major factors contributing to the feedback divergence. 

3 USE OF ORACLES IN THE ROBOT 
LEARNING LITERATURE 

In this section, we delve into a more comprehensive and formal 
examination of prior research, with a speci�c focus on the use of 
oracles and the ways in which they diverge from human teachers. 
The �ndings of this literature review help us characterize human 
feedback discrepancies and motivate how we can mitigate the mis-
match between oracles and persons. We select papers exclusively 
centered on robot learning from simulated and/or real human feed-
back. The form of feedback can be evaluative feedback, preference 
labels, and corrective demonstrations. The papers are drawn from 
two sources: 1) formal search on recent publications in premier 
venues to guarantee the inclusion of state-of-the-art work; and 2) 
ad-hoc search on Google Scholar to identify noteworthy examples 
that may not be present in the formal search. 

For the formal search, we go through the proceedings of HRI, 
CoRL1 and RSS2 conferences over the last 3 years (2020-2022)3 and 
we �nd 13 papers which satisfy our inclusion criteria. Addition-
ally, we include 5 papers from our ad-hoc search, representing the 
foundational IntRL algorithms over the time period: TAMER [27], 
Policy Shaping (Advise) [26], SABL [28], COACH [29], PEBBLE [30]. 
Together, we study where and how the authors obtained the feed-
back for robots, how they created their oracles, what assumptions 

1Conference on Robot Learning 
2Robotics: Science and Systems 
3We additionally examined the proceedings from HRI 2023 and RSS 2023, which were 
recently released at the time of our literature search. 
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they made when adopting oracles to simulate human feedback, 
and what challenges they encountered when working with human 
participants or transitioning from simulation to real-world testing. 

Figure 2 illustrates the sources of feedback employed in the se-
lected papers. Out of all 18 papers, 3 exclusively evaluate their 
algorithms using simulated feedback, 5 rely on feedback only from 
human teachers, and the remaining 10 papers combine feedback 
from both oracles and participants. We observe that a signi�cant 
portion (73%) of the research includes oracles, highlighting their 
prevalent adoption in the IntRL studies. Upon closer examination 
of the design of oracles in these papers, a common pattern emerges. 
In all cases, the oracles are derived from either ground truth knowl-
edge (heuristic functions) or optimal policies (fully-trained models). 
Most work uses a single perfect oracle that consistently delivers 
immediate and �awless feedback. However, one paper [24] adopts a 
dual-oracle approach. They incorporated both a perfect oracle and 
an imperfect oracle with 32.7% error rate to simulate a non-expert 
human teacher. 

Interestingly, among all the work examined, 11 out of 18 (61%) 
papers acknowledged the discrepancies of feedback behavior be-
tween oracles and people. In each of those papers, the authors 
discussed one or two di�erences in terms of assumptions required 
for their research, challenges encountered during user studies, or 
recognized limitations. Speci�cally, some research mentioned the 
quality of human feedback does not consistently match that of 
a perfect oracle, as individuals might occasionally make mistakes 
[24, 31] and they may struggle with providing accurate feedback 
when robot movements are too subtle to discern [32] or when peo-
ple themselves lack the necessary abilities [33]. Also, the timing 
of human feedback does not match the precision of perfect or-
acles, as individuals may omit providing feedback [26, 34, 35] or 
introduce delays in their feedback [27]. Furthermore, the feedback 
strategies of human teachers are not homogeneous, as individu-
als harbor diverse expectations on robot performance - tolerating 

Figure 2: Usage of simulated oracles and participants in the 
interactive robot learning research we surveyed 

Table 1: Feedback variations included in our model 

Attribute De�nition Papers Mentioned4 

frequency how often the teacher provides [26, 34, 35, 38–40] 
feedback 

delay how long the teacher needs to [27, 41–43] 
react to the learner’s action 

strictness how willing the teacher is to [36, 44, 45] 
accept suboptimal solutions 

bias how positive or negative the [7, 28, 29, 46] 
teacher’s feedback is in general 

accuracy how well the feedback re�ects [24, 31, 47–49] 
the actual performance 

suboptimal robot behavior [36], biasing to only encourage favor-
able actions or penalize undesirable ones [28], or extending their 
teaching objectives beyond mere task performance [30]. 

Although perfect oracles are commonly used, the heterogene-
ity of real participants has led researchers to realize many of the 
limitations of those oracles. This prompts the question of how we 
can enhance oracles to emulate human behavior more faithfully. 
Based on the considerations identi�ed in this literature review, we 
formulate a model for modifying oracles. In the following sections, 
we will delve into the details of our model (Section 4), and demon-
strate how it can e�ectively capture di�erences in real user feedback 
and involve users in the process of creating more realistic oracles 
(Section 5 and 6). 

4 MODELING FEEDBACK VARIATION 
In order to maintain the rapid iteration advantages o�ered by cur-
rent oracles while addressing their tendency to oversimplify user 
behavior, one idea is to augment the oracles with feedback pat-
terns that replicate human variability. Few works have explored 
the integration of imperfect oracles into simulation experiments, 
introducing errors or timing-related noises to modify the output 
of a traditional perfect oracle [24, 25, 37]. Using this approach, 
they e�ectively assessed their algorithm performance before the 
human-subject study and ensured the algorithm’s robustness when 
deployed with non-expert participants. Inspired by the success of 
this oracle modi�cation concept and with the goal of incorporating 
multiple representative human feedback variations, we introduce 
a model that categorizes 5 dimensions of feedback dynamics. Our 
model empowers us to adjust the behavior of a perfect oracle with-
out the need for substantial recreation e�orts. 

Next, we will explain how we select our model attributes (Sec-
tion 4.1), how our model can conceptually capture variation in 
human feedback and modify oracle feedback (Section 4.2), how the 
altered feedback can impact the robustness of IntRL algorithms 
(Section 4.3), and how we can obtain model parameters from and 
with participants (Section 5). 

4.1 Model Attributes 
We break down primary sources of human feedback variability 
identi�ed in our literature review into 5 more detailed behavioral 

4This includes the robot learning papers within our literature review as well as some 
machine learning and behavioral psychology papers outside of robotics. 
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features, and we integrate them as our model parameters (see Table 
1). Frequency and delay characterize the timing of the feedback, 
while strictness and bias describe the teaching strategies employed 
by human teachers. Furthermore, accuracy re�ects the quality of 
human feedback, indicating the presence of errors or misjudgments. 
These attributes collectively represent the prevalent feedback dis-
crepancies observed in human teachers. They are grounded in 
human-robot interaction research and are closely associated with 
the development of IntRL algorithms. Most importantly, they are 
straightforward for us to explain and intuitive for non-expert par-
ticipants to understand, since we hope to collect values of these 
attributes directly from participants themselves. 

In our case, we use the model to study discrepancies in binary 
feedback (e.g. +1 for desirable robot actions, -1 for undesirable ones), 
as binary feedback is commonly used for interactive robot learning 
and is relatively simple to understand compared to other feedback 
types. However, our model is not limited to binary feedback; it can 
be extended to other feedback types based on the requirements of 
the speci�c learning problem. 

4.2 Mathematical Formulation 
We mathematically de�ne each model attribute such that they can 
be used to construct modi�ed oracles and so variation in human 
feedback can be categorized and described. Here, we introduce the 
formulation used in our work. 

Notation. We model the learning environment as two sepa-
rate processes: a sequence of robot actions parameterized by 8 2 
(0, · · · , # � 1), and a sequence of feedback instances parameterized 
by 9 2 (0, · · · , " � 1). The robot in state G8 performs action 08 
starting at time C8 and �nishing after a duration 38 ; a delay between 
actions requires that C8 + 38 < C8+1. Separately, the teacher provides 
feedback q 9 2 {�1, +1} at time g 9 . To correlate feedback q with 
actions 0, we de�ne the net feedback for an action 58 as the majority 
vote over all feedback given by the teacher corresponding to action 
08 . Correlated feedback are those whose time g 9 falls between C8 , 
the beginning of action 08 , and C8 + 38 + 1, one second past the end 
of action 08 ; this bu�er incorporates delayed responses. The net 
feedback 58 2 {�1, 0, +1} is �1 if there was more negative feedback 
than positive; +1 if there was more positive feedback than negative; 
and 0 if there was no feedback or there was an equal amount of 
positive and negative feedback provided. 

Formulation. Frequency is calculated by the average amount of 
feedback assigned to per action: 

#(58 < 0)
Frequency = 

# 
Delay is the time between the teacher observing an action and 

providing feedback. We estimate this as the di�erence between 
each feedback time and the start time of the most recent action: 

Delay9 = g 9 � max C8 
8, C8 <g 9 

The total delay is found by taking the mean over all feedback delays. 
We adapt this to simulation by delaying oracle feedback for a set 
number of time steps. We note that this de�nition assumes that 
the feedback given by the teacher corresponds only to the most 
recent action, which may not always be the case. However, in the 
user study, we intend to know people’s self-awareness of their 

own delay, which is more naturally measured in time since the 
most recent action. Furthermore, the robot used in our study has 
a relatively long action execution time (1.2 seconds), so most real 
teacher feedback was not delayed longer than the action duration. 

Accuracy measures how well the feedback re�ects the robot’s 
actual performance. For each action, we determine if the feedback 
given is correct by comparing the observed action 08 with the op-
timal action 0̂8 given by a fully-trained model. Feedback 58 was 
deemed correct if either 08 = 0̂8 and 58 = +1 (true positive) or 
08 < 0̂8 and 58 = �1 (true negative). We estimate the overall accu-
racy by taking the ratio of the number of actions 08 that received 
correct feedback 58 divided by the total number of actions: 

1
Accuracy = #(58 correct)# 

This measures the probability that an action received correct feed-
back rather than either incorrect feedback or none at all. In other 
words, we de�ne accuracy as the probability that a person or a 
modi�ed oracle gives feedback consistent with a perfect oracle for 
each provided feedback. 

Strictness is measured by computing the normalized ranking of 
the observed action 08 among all possible actions that could have 
been performed in state G8 ; this is possible since we assume the 
action set � is discrete. We assign the rank A8 = 1 if 08 = 0̂8 is 

: optimal, A8 = 0 if 08 is the worst action, and a value |� |�1 if it is the 
:-th from worst. We then compute strictness as:✓ ◆

1
Strictness = mean A8 + mean (1 � A8 ) ,2 8, 58 =+1 8, 58 =�1 

which is the average minimum ranking that an action must meet to 
warrant appropriate feedback. If the person is very strict, they will 
give positive feedback only to highly ranked actions and negative 
feedback otherwise, resulting in a strictness value close to 1. 

Bias is measured by how much more often the user gives posi-
tive feedback than would be expected based on an optimal policy. 
Speci�cally, we compute the di�erence between the fraction of 
feedback that was positive and the fraction of actions that were 
optimal, then bound the number between 0 and 1:✓ ◆

1 1 #(58 = +1) #(08 = 0̂8 )Bias = �
2 
+ 
2 # # 

If the person is biased towards giving negative feedback this value 
will be close to 0. If the person is biased towards giving positive 
feedback this value will be close to 1. When modifying oracle behav-
ior, we formulate bias as the probability to skip providing negative 
or positive feedback depending on if the oracle is positive-biased 
or negative-biased respectively. 

4.3 E�ect of Model Parameters on Learning 
Integrating our model with the output of a perfect oracle can pro-
duce modi�ed feedback. In this section, we demonstrate that mod-
i�ed feedback can a�ect algorithm performance and potentially 
provide insights about its robustness. To do this, we ran a simula-
tion experiment to examine the in�uence of model attributes on 
IntRL algorithms. We choose OpenAI Gym taxi-v35 as our testing 
environment. The task is to pick up and drop o� a passenger in 
5https://gymnasium.farama.org/environments/toy_text/taxi 
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(a) frequency (b) delay (c) strictness 

(d) bias (e) accuracy 

Figure 3: Performance of Q-TAMER agent with di�erent modi�ed oracles, grouped by our model attributes. The red line in 
each sub�gure denotes the learning curve of the agent with a perfect oracle (PO). 

a grid-world map. We use Q learning + TAMER [47] as our IntRL 
algorithm because of TAMER’s popularity and its capability to deal 
with feedback delay. We use a fully trained vanilla Q-learning model 
as our perfect oracle, which achieves the best average reward from 
the most recent 100 episodes to be 8.98. 

Using the techniques outlined in Section 4.2, we modify the or-
acle to provide imperfect feedback to the learning agent. While 
real-world feedback variations often arise from a combination of 
feedback attributes, this section studies the impact of individual 
attributes on algorithm performance. Thus, we vary only one at-
tribute per trial, keeping the other attributes �xed to match the 
settings of the perfect oracle. For each feedback attribute value, we 
repeat the training process 5 times, with 2000 episodes each time. 

Figure 3 illustrates the learning curves of the Q-TAMER agent 
grouped by feedback attributes. We found that frequency, delay and 
accuracy signi�cantly a�ect the learning speed. Speci�cally, lower 
frequency, longer delay, and lower accuracy tend to result in slower 
improvement on the average reward. Changing feedback strictness 
results in a large disparity in learning outcomes between the perfect 
oracle and the modi�ed ones, where the agent trained with a per-
fect oracle, which only provides positive feedback when the robot’s 
action is also the best suggested by the oracle, performed signi�-
cantly better than others. As the oracle becomes less strict and can 
accept actions that rank lower, the agent’s performance deteriorates 
and eventually becomes unable to learn the task. Changing bias 
had surprisingly little in�uence on the agent’s performance: only 

a completely positive-biased oracle (b=1) signi�cantly hindered 
learning. We suspect this is due to the relatively low-dimensional 
discrete state space and large amount of allotted time for training. 
We note that early on in learning, within the �rst 250 episodes, 
bias had a much more varied e�ect on performance. In summary, 
each feedback attribute had an e�ect on learning performance in 
isolation, an e�ect we expect would be increased when multiple 
attributes are not consistent with a perfect oracle (as in the case 
with a human teacher). This suggests that truly robust algorithms 
need to be tested and developed with models that capture the ways 
human users vary in terms of these feedback attributes. 

5 OBTAINING FEEDBACK VARIATION 
MODEL: A PROOF-OF-CONCEPT STUDY 

In this section, we present a proof-of-concept study to illustrate the 
use of our model in capturing feedback disparities from participants. 
This study aims to shed light on three primary aspects: �rstly, the 
variation in actual human feedback in relation to the parameters 
de�ned in our model; secondly, the divergent perceptions individu-
als hold about their feedback behavior when compared to a perfect 
oracle; and thirdly, the usability of our model for participants to 
tailor a perfect oracle to replicate their own feedback behavior. 

5.1 Experiment Setup 
5.1.1 Environment. For the study, we implemented a robot catch-
ing environment. The environment includes a Kinova Gen2 arm 
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holding a plastic cup and a Sphero BOLT robot remaining in place 
(Fig. 4a). The goal for the arm is to learn how to catch the Sphero 
(i.e. put the cup down over the Sphero). The arm knows if Sphero 
is caught based on data from Sphero’s ambient light sensor. When 
the arm catches the Sphero or exceeds the maximum number of 
allotted time steps, an episode ends and the arm resets to a starting 
position. We model the environment as a Markov Decision Pro-
cess (MDP) with action space �, state space ( , transition function 
) : ((, �) ! ( , and reward function '. � consists of 5 actions: catch-
ing (putting the cup down), moving forward, moving backward, 
moving left, and moving right. ( is made up of the arm end e�ector 
position (?G , ?~ ), and distance between the end e�ector and Sphero 
(3G ,3~ ). The robot receives +100 reward if it successfully catches 
the Sphero and -100 reward for an unsuccessful catch attempt. The 
arm gets -1 reward after each step. We generated a perfect oracle 
for this environment which was subsequently integrated into our 
interactive system. 

5.1.2 Oracle Modification GUI. Based on the feedback parameteri-
zation outlined in Section 4.2, we developed an interface that allows 
participants to view and modify the behavior of a simulated oracle 
as it provides feedback to a robot learner (Fig. 4b). The primary 
goal of this interface is to obtain people’s perception of their feed-
back behavior (i.e. self-reported feedback model), which provides a 
user-centered perspective for generating more human-like oracles. 

The interface includes a window displaying oracle feedback (e.g. 
the green area in Fig. 4b) and a set of slider UI elements, each of 
which controls a speci�c attribute in our feedback variation model. 
The values set through the sliders in�uence the visualization of the 
oracle feedback. By moving the sliders, participants can change the 
oracle’s feedback-giving behavior to match their own self-perceived 
feedback-giving behavior. While users interact with the GUI, the 
robot performs the task repeatedly so that participants can compare 
the displayed feedback label with the real robot movements in real 
time and the current parameter settings. 

To generate the online feedback display, we �rst trained a Q-
learning agent on our robot catching environment, which achieves 
90% catching rate over 30 consecutive episodes within 40 time steps. 
Then, feedback outputs of the fully-trained agent are modi�ed in 
real time according to the parameter values speci�ed in the GUI. 
The initial values of feedback attribute sliders are set to match a 
perfect oracle. Also, we set the minimum value of the frequency 

(a) (b) 

Figure 4: (a) Environment (b) Oracle Modi�cation GUI 

slider to be one feedback per action (1.2 second time gap between 
two actions, except the catching action, which takes longer than 
the other actions), because this is a common assumption when 
researchers use simulated oracles for IntRL algorithms. 

5.2 Procedure 
We conducted a within-subjects study and each experiment lasted 
⇠1.5 hours. Each participant signed an informed consent form to 
con�rm their eligibility (�uent English speaker, a United States resi-
dent, and at least 18 years old) and their permission to use recording 
devices and automatic transcription service. Participants continued 
to complete a brief survey collecting their demographics, technol-
ogy background and previous robot experience. Next, participants 
went through the following 4 sessions in order: 

Understanding teaching styles. Participants were asked to �ll 
out the authoritative teaching questionnaire [50] to assess their 
general teaching styles. We then asked open-ended questions to 
know whether people would interact di�erently with a robot learner 
compared to a human student, and to understand their attitudes to-
wards robots in general, including any positive, negative or neutral 
perceptions. This session helps us to identify high-level patterns 
that may relate to a teacher’s feedback behavior. 

Collecting human feedback. Participants were given a con-
troller to provide binary feedback to the robot based on its perfor-
mance, where they pressed "L1" for positive feedback and "R1" for 
negative feedback. Each participant had 10 minutes to get familiar 
with the experiment setup. Then, they evaluated 10 trials of the 
task (each made up of one of �ve recorded trajectories) for a total 
of 20 minutes of giving binary feedback. This provides insights into 
how each teacher actually provides feedback. 

Modifying oracle feedback. We then proceeded to collect peo-
ple’s perception of their own feedback. Using our oracle modi�ca-
tion GUI described in Section 5.1, participants were able to adjust 
the oracle’s behavior. While observing the robot movements, they 
were encouraged to make the oracle behave in a manner similar to 
how they had given feedback in the last session. Participants could 
continue to modify oracle behavior until they were satis�ed, and 
we recorded their �nal settings. This session allows us to analyze 
di�erences between a user’s self-reported feedback behavior and 
their actual feedback behavior. 

Reflecting. We conducted a retrospective interview to gather 
more in-depth information on their experience in the prior sessions. 
We asked open-ended questions related to their feedback strategy, 
such as how they decided when to give positive or negative feed-
back, and their thoughts when modifying the oracle, such as how 
they perceived themselves and quanti�ed each feedback attribute. 
We also asked for their opinions about the study interface design. 

6 RESULTS 
6.1 Participants 
The study was approved by the university Institutional Review 
Board. We recruited 24 participants (16 females, 8 males; aged 18-34) 
from the campus, and they were compensated $35 for participating 
in the study. 10 out of 24 participants were from non-STEM majors. 
95% of the participants had no prior experience with robots or only 
little experience with non-industrial robots (e.g. vacuum robots). 
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Two participants were excluded for not following study instructions. 
We used the data from the remaining 22 participants for analysis. 

6.2 Modeling Results & Analysis 
6.2.1 User’s feedback di�ers from a perfect oracle, varying among 
individuals. To analyze feedback variations across people, for each 
participant, we used their feedback data to extract a model of their 
actual feedback, following the approach mentioned in Section 4.2. 

Figure 5(a) visualizes the extracted values from each participant, 
grouped by model parameters. The results clearly illustrate that 
people do not behave like a perfect oracle in general. 51% of partic-
ipants did not give feedback to every action, highlighting the high 
likelihood of human teachers giving less frequent feedback than 
oracles. None of the participants had zero delay: they required time 
to process the robot’s movements before responding. The accuracy 
data reveals that the human feedback did not provide the same 
quality as the perfect oracle, likely because people had their own 
teaching criteria and objectives. 

Moreover, we found the parameters re�ecting the feedback strate-
gies (strictness, bias) exhibited less variation across people than the 

(a) Extracted feedback attribute values 

(b) Self-reported feedback attribute values 

Figure 5: Extracted and self-reported feedback attribute val-
ues. The size of each blob represents the number of partici-
pants who chose that value (within 0.01). The black vertical 
line indicates the setting of a perfect oracle. 

parameters associated with the timing and quality of feedback (fre-
quency, delay, accuracy). Speci�cally, 90% of participants displayed 
a slight positive bias. Also, participants generally appeared to be 
more lenient than a perfect oracle, with a notable concentration in 
the 50%-70% strictness range. This could be attributed to the fact 
that, unlike oracles, individuals often recognize multiple ways to 
solve a given task and may take into account social factors such as 
trying to be kind to the robot [51]. 

6.2.2 Users’ perception of their feedback also di�ers from a perfect 
oracle, and varies among individuals. Figure 5(b) shows the parame-
ter values participants selected for generating oracles that mimic 
their own feedback behavior. We noticed a unimodal distribution 
for frequency, delay and accuracy. Speci�cally, 13 out of 22 partici-
pants chose the lowest frequency value, indicating a single feedback 
signal was given per action. While this aligns with a perfect ora-
cle, this was also the minimum frequency value participants could 
choose due to the system design. As �ve participants mentioned 
during the post-study interview, they might have preferred an even 
lower value if it were available. Like with frequency, the data from 
delay and accuracy were heavily skewed. 7 participants believed 
they had very low delay ( 0.01s) and 8 perceived themselves to 
have very high accuracy (� 0.99). This demonstrates that people 
perceive their feedback behavior to be somewhat similar to that of 
a perfect oracle in terms of delay and feedback, albeit not identical. 

Furthermore, we observed a bimodal distribution of strategy-
related attribute values. Participants predominantly perceived them-
selves as either balanced teachers, providing a mix of positive and 
negative feedback, or as reward-focused teachers, o�ering more 
positive feedback. They also saw themselves as somewhat strict 
but less so than a perfect oracle, with values centering around 55% 
and 75% strictness. It is worth noting that this parameter may be 
task-dependent. In our case, participants could evaluate robot per-
formance by observing the distance between the cup and Sphero, 
making it quite intuitive for them to judge whether an action was 
desirable or not. 

6.2.3 Comparison between the extracted model and the self-perceived 
model. To examine how well participants parameterized their feed-
back behavior, we compared the parameter values of their actual 
feedback model (Fig. 5a) with their self-reported ones (Fig. 5b). To 
control for slight di�erences when applying our feedback model 
for oracle modi�cation and attribute extraction, we adopted Spear-
man’s correlation test rather than doing a direct comparison. We 
did not run the test on frequency data because some participants 
chose the minimum frequency but perceived their frequency lower 
than the minimum value they can report. We found participants 
were able to estimate their bias well, as the extracted bias val-
ues and the reported ones had a signi�cant positive correlation 
(d = 0.634, ? = .002), but we did not observe statistically signi�cant 
results for the other attributes (delay: d = �0.154, ? = 0.494; strict-
ness: d = �0.011, ? = 0.962; accuracy: d = 0.332, ? = 0.131). The 
result indicates that while participants were aware of the relation-
ship between feedback attributes and their behavior, they were not 
always precise in quantifying them. 

Our post-study data further explains this phenomenon. Partic-
ipants were requested to list the feedback attributes they found 
intuitive to comprehend and those they could conveniently adjust 
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Figure 6: The number of participants who identi�ed each 
attribute as easy to understand (“Understandable”) or easy 
to adjust (“Adjustable”). There were 22 participants total. 

using the oracle modi�cation GUI. We tallied the number of partici-
pants who identi�ed each attribute as easy to understand or adjust 
and present the results in Figure 6. We found that while all feedback 
attributes were generally intuitive for participants to understand, 
participants were not always able to report them precisely. Specif-
ically, they found it a little bit harder to adjust strategy-related 
attributes (bias and strictness) than other attributes. This may be 
because people are familiar with conceptually describing their strat-
egy but are less familiar with parameterizing it (e.g., P8: “I think I 
am positive-biased but did not pay attention to how biased I am when 
giving feedback” ). This may also stem from the complex and evolv-
ing strategies that some participants were trying to communicate 
through the model (e.g, P6: “Initially I would tolerate wrong catch 
actions and allow the robot to explore, but then [when the robot can 
catch better] I gave more bad feedback to push it to catch faster” ). 

7 DISCUSSION & CONCLUSION 
In this paper, we propose a �ve-dimensional feedback model that 
can be used to modify the output of a “perfect” oracle to better 
re�ect common dimensions of variation in human feedback. Our 
approach provides a means to better describe the robustness of In-
tRL algorithms when exposed to human-like feedback. The �ndings 
in Section 4.3 demonstrate that varying feedback along our model 
attributes a�ects learning performance. Those results can be very 
helpful for rapid prototyping of more robust algorithms. 

Our study veri�es that our model can be populated from users 
through two ways: by extracting parameters from actual user feed-
back, and by having users set the values directly. Both methods 
enable algorithm designers to take into account the perspectives 
and abilities of real-world users, even in the early stages of algo-
rithm development where repeated user studies are impractical. 
The combination of these two methods also o�ers valuable insights 
into the origins of the gap between oracles and human instruc-
tors. For example, when both the extracted and self-reported values 
of a model parameter deviate signi�cantly from the settings of a 
perfect oracle, this implies the fundamental dissimilarity between 
people’s conceptions of teaching robots and the design principles 
underpinning perfect oracles for improving robot learning. 

The analysis performed in Section 6 shows substantial individ-
ual variation in feedback behavior, and that users give feedback 
that does not exactly match the parameters of a perfect oracle. 

Users’ self-reported feedback also does not exactly match their ex-
tracted behavior. While precise quanti�cation is di�cult for users, 
we expect that interacting with users to populate the model can 
allow them to use the model to communicate how they think of 
their teaching and what they feel was important about their teach-
ing strategies. For example, how users set the accuracy parameter 
might be used to understand self-e�cacy in teaching, and settings 
of the bias and strictness parameters may reveal di�erences in 
teachers’ strategies between scenarios (e.g., a school setting vs. a in-
dustry setting) or between cultures (e.g., the US vs. Japan). Though 
further research is needed, our method has the potential to sup-
port communication between researchers and users about teaching 
styles/strategies, and assists researchers to be explicit about the 
assumptions they make when modeling human teaching. 

Limitations & Future Work. Our work mainly investigates 
discrepancies of binary evaluative feedback. Given that di�erent 
ways to interact with robots can result in di�erent human teaching 
behavior [52, 53], we recognize our study results may not generalize 
to other feedback types, such as natural language feedback. Addi-
tionally, we only focus on modeling feedback discrepancies among 
individuals not the instabilities within an individual’s behavior. As 
we found in the user study, people might change their feedback 
patterns over time to adapt to robot learning performance. Future 
work may explore how to incorporate this internal inconsistency 
to our existing model, such that the re�ned model can increase the 
similarity between simulated oracles and human teachers, leading 
to the development of more robust IntRL algorithms. Finally, while 
we are able to show that the parameters of our model have an e�ect 
on learning, it is outside the scope of this work to develop novel 
algorithms that optimize performance relative to the model and 
verify whether the algorithm results in improved performance with 
human teachers, especially non-experts. Our hope is that this work 
spurs future e�orts in such a direction; with a growing interest in 
human-in-the-loop learning methods, ensuring that such methods 
are robust to real user behavior is critical. 

Conclusion. This paper introduces a novel user-engaged method-
ology for modeling variation in human feedback. We consolidate 
�ve common feedback discrepancies identi�ed in previous work 
into a uni�ed model and de�ne mathematical formulations for each 
model attribute. With the help of those formulations, we success-
fully derive the model from both on-the-�y human feedback data 
and participants’ self-perception of their feedback behavior. Our 
modeling results intuitively describe the gap between oracles and 
individuals, and help to explain the underlying causes of this gap. 
Rather than replacing human teachers with simulated oracles or 
relying solely on human studies for algorithm development, our 
methodology o�ers a promising path towards enhancing simulated 
oracles by integrating insights from real user behavior, contributing 
to the development of robust IntRL algorithms. 

ACKNOWLEDGMENTS 
This work is supported in part by the National Science Founda-
tion (grant No. IIS-2132887). We thank the AABL Lab at Tufts and 
especially Isaac Sheidlower for their feedback and help. 

310



Modeling Variation in Human Feedback with User Inputs: An Exploratory Methodology HRI ’24, March 11–14, 2024, Boulder, CO, USA 

REFERENCES 
[1] Riku Arakawa, Sosuke Kobayashi, Yuya Unno, Yuta Tsuboi, and Shin-ichi Maeda. 

Dqn-tamer: Human-in-the-loop reinforcement learning with intractable feedback. 
arXiv preprint arXiv:1810.11748, 2018. 

[2] Andras Kupcsik, David Hsu, and Wee Sun Lee. Learning dynamic robot-to-human 
object handover from human feedback. In Robotics research, pages 161–176. 
Springer, 2018. 

[3] Andrea Lockerd Thomaz, Guy Ho�man, and Cynthia Breazeal. Real-time in-
teractive reinforcement learning for robots. In AAAI 2005 workshop on human 
comprehensible machine learning, 2005. 

[4] Rachit Dubey, Pulkit Agrawal, Deepak Pathak, Thomas L Gri�ths, and Alexei A 
Efros. Investigating human priors for playing video games. arXiv preprint 
arXiv:1802.10217, 2018. 

[5] Jerry Alan Fails and Dan R Olsen Jr. Interactive machine learning. In Proceedings 
of the 8th international conference on Intelligent user interfaces, pages 39–45, 2003. 

[6] Garrett Warnell, Nicholas Waytowich, Vernon Lawhern, and Peter Stone. Deep 
tamer: Interactive agent shaping in high-dimensional state spaces. In Proceedings 
of the AAAI Conference on Arti�cial Intelligence, volume 32, 2018. 

[7] Paul Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario 
Amodei. Deep reinforcement learning from human preferences. arXiv preprint 
arXiv:1706.03741, 2017. 

[8] Jinying Lin, Zhen Ma, Randy Gomez, Keisuke Nakamura, Bo He, and Guangliang 
Li. A review on interactive reinforcement learning from human social feedback. 
IEEE Access, 8:120757–120765, 2020. 

[9] Eric Wiewiora, Garrison W Cottrell, and Charles Elkan. Principled methods for 
advising reinforcement learning agents. In Proceedings of the 20th international 
conference on machine learning (ICML-03), pages 792–799, 2003. 

[10] Borja Ibarz, Jan Leike, Tobias Pohlen, Geo�rey Irving, Shane Legg, and Dario 
Amodei. Reward learning from human preferences and demonstrations in atari. 
Advances in neural information processing systems, 31, 2018. 

[11] Hang Yu, Reuben M Aronson, Katherine H Allen, and Elaine Schaertl Short. 
From “thumbs up” to “10 out of 10”: Reconsidering scalar feedback in interactive 
reinforcement learning. In 2023 IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS), pages 4121–4128. IEEE, 2023. 

[12] Thomas Cederborg, Ishaan Grover, Charles L Isbell Jr, and Andrea Lockerd 
Thomaz. Policy shaping with human teachers. In IJCAI, pages 3366–3372, 2015. 

[13] Samantha Krening and Karen M Feigh. Newtonian action advice: Integrating 
human verbal instruction with reinforcement learning. In Proceedings of the 18th 
International Conference on Autonomous Agents and MultiAgent Systems, pages 
720–727, 2019. 

[14] Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy 
Scheurer, Javier Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro 
Freire, et al. Open problems and fundamental limitations of reinforcement 
learning from human feedback. arXiv preprint arXiv:2307.15217, 2023. 

[15] Chao Yu, Tianpei Yang, Wenxuan Zhu, Guangliang Li, et al. Learning shaping 
strategies in human-in-the-loop interactive reinforcement learning. arXiv preprint 
arXiv:1811.04272, 2018. 

[16] W Bradley Knox, Peter Stone, and Cynthia Breazeal. Training a robot via human 
feedback: A case study. In International Conference on Social Robotics, pages 
460–470. Springer, 2013. 

[17] Ofra Amir, Ece Kamar, Andrey Kolobov, and Barbara Grosz. Interactive teaching 
strategies for agent training. In In Proceedings of IJCAI 2016, 2016. 

[18] Aaron Steinfeld, Odest Chadwicke Jenkins, and Brian Scassellati. The oz of 
wizard: simulating the human for interaction research. In Proceedings of the 4th 
ACM/IEEE international conference on Human robot interaction, pages 101–108, 
2009. 

[19] Francisco Cruz, Johannes Twiefel, Sven Magg, Cornelius Weber, and Stefan 
Wermter. Interactive reinforcement learning through speech guidance in a 
domestic scenario. In 2015 international joint conference on neural networks 
(IJCNN), pages 1–8. IEEE, 2015. 

[20] Isaac Sheidlower, Allison Moore, and Elaine Short. Keeping humans in the loop: 
Teaching via feedback in continuous action space environments. In 2022 IEEE/RSJ 
International Conference on Intelligent Robots and Systems (IROS), pages 863–870. 
IEEE, 2022. 

[21] Samantha Krening and Karen M Feigh. Interaction algorithm e�ect on human 
experience with reinforcement learning. ACM Transactions on Human-Robot 
Interaction (THRI), 7(2):1–22, 2018. 

[22] Adam Bignold, Francisco Cruz, Richard Dazeley, Peter Vamplew, and Cameron 
Foale. An evaluation methodology for interactive reinforcement learning with 
simulated users. Biomimetics, 6(1):13, 2021. 

[23] Christian Arzate Cruz and Takeo Igarashi. A survey on interactive reinforcement 
learning: Design principles and open challenges. In Proceedings of the 2020 ACM 
Designing Interactive Systems Conference, pages 1195–1209, 2020. 

[24] Guan Wang, Carl Trimbach, Jun Ki Lee, Mark K Ho, and Michael L Littman. 
Teaching a robot tasks of arbitrary complexity via human feedback. In Proceedings 
of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, pages 
649–657, 2020. 

[25] Siddharth Reddy, Anca D Dragan, and Sergey Levine. Shared autonomy via deep 
reinforcement learning. arXiv preprint arXiv:1802.01744, 2018. 

[26] Shane Gri�th, Kaushik Subramanian, Jonathan Scholz, Charles L Isbell, and An-
drea L Thomaz. Policy shaping: Integrating human feedback with reinforcement 
learning. Georgia Institute of Technology, 2013. 

[27] W Bradley Knox and Peter Stone. Interactively shaping agents via human 
reinforcement: The tamer framework. In Proceedings of the �fth international 
conference on Knowledge capture, pages 9–16, 2009. 

[28] Robert Loftin, Bei Peng, James MacGlashan, Michael L Littman, Matthew E Taylor, 
Je� Huang, and David L Roberts. Learning behaviors via human-delivered discrete 
feedback: modeling implicit feedback strategies to speed up learning. Autonomous 
agents and multi-agent systems, 30(1):30–59, 2016. 

[29] James MacGlashan, Mark K Ho, Robert Loftin, Bei Peng, Guan Wang, David L 
Roberts, Matthew E Taylor, and Michael L Littman. Interactive learning from 
policy-dependent human feedback. In International Conference on Machine Learn-
ing, pages 2285–2294. PMLR, 2017. 

[30] Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-e�cient interactive 
reinforcement learning via relabeling experience and unsupervised pre-training. 
arXiv preprint arXiv:2106.05091, 2021. 

[31] Jake Brawer, Debasmita Ghose, Kate Candon, Meiying Qin, Alessandro Roncone, 
Marynel Vázquez, and Brian Scassellati. Interactive policy shaping for human-
robot collaboration with transparent matrix overlays. In Proceedings of the 2023 
ACM/IEEE International Conference on Human-Robot Interaction, pages 525–533, 
2023. 

[32] Donald Joseph Hejna III and Dorsa Sadigh. Few-shot preference learning for 
human-in-the-loop rl. In Conference on Robot Learning, pages 2014–2025. PMLR, 
2023. 

[33] Ryan Hoque, Lawrence Yunliang Chen, Satvik Sharma, Karthik Dharmarajan, 
Brijen Thananjeyan, Pieter Abbeel, and Ken Goldberg. Fleet-dagger: Interactive 
robot �eet learning with scalable human supervision. In Conference on Robot 
Learning, pages 368–380. PMLR, 2023. 

[34] Ruohan Zhang, Dhruva Bansal, Yilun Hao, Ayano Hiranaka, Jialu Gao, Chen 
Wang, Roberto Martín-Martín, Li Fei-Fei, and Jiajun Wu. A dual representation 
framework for robot learning with human guidance. In Conference on Robot 
Learning, pages 738–750. PMLR, 2023. 

[35] Jonathan Spencer, Sanjiban Choudhury, Matthew Barnes, Matthew Schmittle, 
Mung Chiang, Peter Ramadge, and Siddhartha Srinivasa. Learning from inter-
ventions: Human-robot interaction as both explicit and implicit feedback. In 16th 
Robotics: Science and Systems, RSS 2020. MIT Press Journals, 2020. 

[36] Tesca Fitzgerald, Pallavi Koppol, Patrick Callaghan, Russell Quinlan Jun Hei 
Wong, Reid Simmons, Oliver Kroemer, and Henny Admoni. Inquire: Interactive 
querying for user-aware informative reasoning. In 6th Annual Conference on 
Robot Learning, 2022. 

[37] Carlos Celemin and Jens Kober. Knowledge-and ambiguity-aware robot learning 
from corrective and evaluative feedback. Neural Computing and Applications, 
pages 1–19, 2023. 

[38] Charles Isbell, Christian R Shelton, Michael Kearns, Satinder Singh, and Peter 
Stone. A social reinforcement learning agent. In Proceedings of the �fth interna-
tional conference on Autonomous agents, pages 377–384, 2001. 

[39] Daniel Harnack, Julie Pivin-Bachler, and Nicolás Navarro-Guerrero. Quantifying 
the e�ect of feedback frequency in interactive reinforcement learning for robotic 
tasks. arXiv preprint arXiv:2207.09845, 2022. 

[40] Angel Ayala, Claudio Henríquez, and Francisco Cruz. Reinforcement learning 
using continuous states and interactive feedback. In Proceedings of the 2nd 
International Conference on Applications of Intelligent Systems, pages 1–5, 2019. 

[41] Charles Isbell and Christian Shelton. Cobot: A social reinforcement learning 
agent. Advances in neural information processing systems, 14, 2001. 

[42] Dilip Arumugam, Jun Ki Lee, Sophie Saskin, and Michael L Littman. Deep 
reinforcement learning from policy-dependent human feedback. arXiv preprint 
arXiv:1902.04257, 2019. 

[43] Patrick M Pilarski, Michael R Dawson, Thomas Degris, Farbod Fahimi, Jason P 
Carey, and Richard S Sutton. Online human training of a myoelectric prosthesis 
controller via actor-critic reinforcement learning. In 2011 IEEE international 
conference on rehabilitation robotics, pages 1–7. IEEE, 2011. 

[44] Raymond G Miltenberger. Behavior modi�cation: Principles and procedures. Cen-
gage Learning, 2015. 

[45] Matthew E Taylor and AI Borealis. Improving reinforcement learning with 
human input. In IJCAI, pages 5724–5728, 2018. 

[46] Andrea L Thomaz and Cynthia Breazeal. Experiments in socially guided explo-
ration: Lessons learned in building robots that learn with and without human 
teachers. Connection Science, 20(2-3):91–110, 2008. 

[47] W Bradley Knox and Peter Stone. Tamer: Training an agent manually via evalua-
tive reinforcement. In 2008 7th IEEE International Conference on Development and 
Learning, pages 292–297. IEEE, 2008. 

[48] Taylor A Kessler Faulkner and Andrea Thomaz. Interactive reinforcement learn-
ing from imperfect teachers. In Companion of the 2021 ACM/IEEE International 
Conference on Human-Robot Interaction, pages 577–579, 2021. 

311



HRI ’24, March 11–14, 2024, Boulder, CO, USA 

[49] Zhiyu Lin, Brent Harrison, Aaron Keech, and Mark O Riedl. Explore, exploit or 
listen: Combining human feedback and policy model to speed up deep reinforce-
ment learning in 3d worlds. arXiv preprint arXiv:1709.03969, 2017. 

[50] Sigrun K Ertesvåg. Measuring authoritative teaching. Teaching and Teacher 
Education, 27(1):51–61, 2011. 

[51] Kerstin Fischer. Interpersonal variation in understanding robots as social actors. 
In Proceedings of the 6th international conference on Human-robot interaction, 

Jindan Huang, Reuben M. Aronson, and Elaine Schaertl Short 

pages 53–60, 2011. 
[52] Gianpaolo Maggi, Elena Dell’Aquila, Ilenia Cucciniello, and Silvia Rossi. “don’t 

get distracted!”: the role of social robots’ interaction style on users’ cognitive 
performance, acceptance, and non-compliant behavior. International Journal of 
Social Robotics, pages 1–13, 2020. 

[53] Pallavi Koppol, Henny Admoni, and Reid G Simmons. Interaction considerations 
in learning from humans. In IJCAI, pages 283–291, 2021. 

312


	Abstract
	1 Introduction
	2 Background
	3 Use of Oracles in the Robot Learning Literature
	4 Modeling feedback variation
	4.1 Model Attributes
	4.2 Mathematical Formulation
	4.3 Effect of Model Parameters on Learning

	5 Obtaining Feedback Variation Model: A Proof-of-concept Study
	5.1 Experiment Setup
	5.2 Procedure

	6 Results
	6.1 Participants
	6.2 Modeling Results & Analysis

	7 Discussion & Conclusion
	Acknowledgments
	References

