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ABSTRACT

Shared control approaches to robot assistance, which predict a
user’s goal based on their control input and provide autonomous
assistance towards the predicted goal, typically assume that user
behavior remains the same despite the presence of the assistance
and rely on this assumption to infer user goals. However, people
operating assisted systems continuously observe the robot behav-
ing differently from their expectations, which may lead them to
adapt their control behavior to better achieve their desired out-
comes. In this paper, we show that users both change their control
behavior when assistance is added and describe these changes as
responses to the new system dynamics. In a computer-based bubble
popping study, participants report changing their strategies with
different levels of assistance, and analysis of their actual control
input validates this change. In an in-the-wild robot study, partic-
ipants teleoperated a robot to pick up a cup despite the presence
of “assistance” that drives the system away from the true goals of
the task. Participants can overcome the “assistance" and reach the
goal, which requires them to correct for the novel system dynamics.
These results motivate further research in user-centered design and
evaluation of assistive systems that treat the user as intentional.
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1 INTRODUCTION

Shared control systems enable users to more easily and effectively
teleoperate robots to perform tasks. These systems generally as-
sume knowledge of autonomous strategies to achieve pre-specified
tasks that users may want to perform. The assistance interposes
itself between the user input and the underlying system and ad-
justs the user’s control signal towards the autonomous strategy.
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Figure 1: Shared control systems work by capturing user in-
put and adjusting it to be more effective. In this framing,
users observe system behavior that conflicts with their ex-
pectations from their internal model. The stationarity as-
sumption requires that users ignore this conflict.
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To provide assistance for multiple different tasks, shared control
systems typically infer which of the known tasks the user is trying
to perform from user behavior. For this step, it is common to assume
that user input will remain stationary regardless of the presence of
the assistance: that is, that users will not change how they provide
input when the assistance is added. Under this assumption, goal
inference is performed by comparing the user’s observed control
input with task strategies for the underlying system. Furthermore,
the assumption bypasses the circularity that arises from trying to
adapt the assistance behavior to a user who is, in turn, adapting to
the changing assistance. Shared control systems increase success
rate and decrease required input in a variety of tasks [5, 20].
However, this assumption of stationarity is in conflict with users’
actual experience of the system. As people interact with the robot,
they continuously observe its actual behavior and how it differs
from their internal models of how the system would behave (Fig. 1).
In fact, the psychological theory of motor learning [18, 26] proposes
that it is by observing this feedback that people learn to control
systems in general. We theorize that as users’ experience with
the system increases, they intentionally adapt their behavior to
compensate for the effect of the assistance system. According to
this theory, improvements in task metrics are not only due to the
assistance itself, but are also driven by users taking advantage of
the changes in system dynamics that result from adding assistance.
In this paper, we show that user input behavior changes when
goal-directed assistance is added. Furthermore, users describe them-
selves as modeling the new system behavior and strategizing about
how to adapt their inputs. In support, we present two user studies
in which participants controlled a robot in the presence of shared
control-based assistance. First, we describe a computer-based study
in which participants controlled a ball to pop bubbles. We show
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that participants explicitly identify changes in the assistance be-
havior between conditions and strategize about how to adapt their
control strategy to maximize their scores. Second, we present a
public-space user study in which participants controlled a robot
to pick up a cup despite the presence of “assistance” that directed
them towards incorrect goals. Participants still succeeded on the
task despite the changes in dynamics introduced by the assistance.
These results demonstrate that users consistently and intentionally
change their behavior in the presence of assistance.

The idea that users adapt to assistance introduces a new, user-
centered paradigm for designing assistance systems. In this para-
digm, the assistance does not simply act as a proxy of the user’s
intent: it instead becomes part of the system that the user controls.
Then, the effect of the assistance is to add an additional dynamic
system with its own state (e.g., probability distribution over possi-
ble goals) and dynamics (e.g., Bayesian updates based on the user’s
input). Considering an active user introduces new design criteria,
such as valuing transparency in goal prediction or treating the
control process as collaborative, that do not apply when design-
ing assistance to autonomously execute a user’s intent. Showing
that users do, in fact, react to assistance systems justifies this user-
centered perspective on assistive teleoperation.

2 BACKGROUND
2.1 Related work

Shared control is a paradigm for human-robot interaction in which
both the user and an assistive algorithm simultaneously provide
control input to a robot. This approach has improved success rates
over direct user control in a wide variety of tasks; a general overview
is given in Cimolino and Graham [5]. These systems are further
surveyed in Losey et al. [20], which divides shared control assis-
tance into an intent detection phase, during which the system infers
the user’s likely intended goal or task from their input behavior
or other passive signals, and an arbitration phase, during which
the user’s input signal is combined with automatically generated
assistance. Goal inference is often performed using Bayesian infer-
ence [13] by treating user inputs as observations conditioned on the
user’s intended goal and the underlying system dynamics; typical
user models include Boltzmann-rational behavior [3] or maximum
entropy inverse reinforcement learning [30].

Numerous works have validated the effectiveness of this ap-
proach for robot teleoperation, especially in assistive applications.
The method helps with tasks such as driving a wheelchair [4, 6, 11,
12] or controlling a robot arm [2, 7, 10, 14, 15, 17, 28], especially
in the presence of low-dimensional or noisy input devices [8, 22].
These methods vary in how they model tasks, detect user intent,
and arbitrate between user input and assistance behavior, but the
intent detection and arbitration pipeline is consistent.

While research in teleoperation has generally focused on algo-
rithmic developments, Rea and Seo [27] calls for a focus on the
user experience in teleoperation, and several works consider this
perspective for shared control systems. Nikolaidis et al. [24] and
Parekh et al. [25] model the user’s willingness to adapt to the ro-
bot’s behavior so that the assistance system can converge on a
collaborative strategy. Other strategies [9, 16] modify the robot be-
havior so that the user’s control inputs are likely to be informative
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about their goals earlier in the task. Jun Jeon et al. [17] adds an
entropy objective to ensure that their goal inference algorithm does
not trap users into a single task. Zurek et al. [31] models how well
user behavior aligns with existing tasks and treats low alignment as
a signal to add new task models to the system. Our work showing
that users adapt to the presence of assistance contributes to this
developing focus on user-centered analysis in shared control.

2.2 Overview of the assistance algorithm

For all assistance behavior used in the studies, we adapt the shared
autonomy algorithm given in Javdani et al. [14], which we sum-
marize here. This assistance behavior consists of three stages: goal
inference, assistance generation, and arbitration.

2.2.1  Goal inference. We assume that the robot control behavior
is modeled as a Markov decision process (MDP) consisting of states
S, actions A, and transition T. We assume that the user’s goal is
a single element of a pre-specified set of goals G, and each goal
g defines a reward function ry4(x, a) which is optimized by action
value function Qg (s, @) and policy 74(s). The goal of this first step
is to find a probability distribution p(g € G) that represents the
chance, based on observed evidence, that the user’s true goal is g.

To determine this goal probability, we treat the user’s input
action u;y C A as an observation of their goal provided in state
st € S (which we drop for ease of notation). This formulation
enables us to use Bayesian inference to determine the goal proba-
bility over time [13]. From a known prior p(g), the goal probabil-
ity distribution is updated at each time step as p(glug, - - -, uz) o
p(urlg)p(glug, - - - ,us—1). For the observation probability p(u;|g),
we assume that user follows Boltzmann rationality [3] p(ulg)
exp fQy(u), where Qy(u) is given above and 3 sets the sensitivity of
the goal inference. For all tasks, the MDP represents x-y translation
in a plane. States and goal locations are given as points s = (s, sy)
and g = (gx,gy). Actions A are bounded velocity vectors in the
plane, {(ax,ay) € R? : |(ay, ay)| < 1}, and transitions are defined
by vector translation: T(s,a) = s+ a.

2.2.2  Assistance generation. Given a goal distribution p(g) at state
st, the optimal assistance command was calculated as a; = Ep(g) a;,
ie., the expected value of the optimal actions aj for each goal g
over the goal distribution. a; is then normalized to unit length.
This calculation follows a policy blending approach [7], which is

sufficient for these simple tasks.

2.2.3  Arbitration. Once the assistance command a; has been gen-
erated, the final robot action a,,, is generated by an arbitration
step: agppl = yur + (1 — y)ar [23]. The blending factor y indicates
the relative contribution of the user command and the assistance
command to the resulting motion; y = 1 is direct control, and y = 0
is indirect control in which the robot uses the input signal only for
goal updates and has full control over the output behavior.

3 BUBBLE POPPING STUDY

The intentional user model theorizes that participants change their
behavior in the presence of assistance by adapting to the new dy-
namics of the system. In this first study, we investigate this theory
in a simple, 2-D bubble popping task, performed in two different
assistance conditions and with direct control. Participants report
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Figure 2: Overview of bubble popping game. Participants
moved the popper (spiked ball) to pop the bubbles (blue cir-
cles) as they moved around the screen. The game also showed
the remaining time (top left) and current score (top right,
with each bubble worth 10 points).

that they notice the change in system dynamics change and strate-
gize about how to adapt their control behavior, which we validate
by finding quantitative differences in input between conditions.

3.1 Interaction

Participants played a game in which they moved a spiked ball (the
“popper”) to pop bubbles that appeared from the edge of the screen
and moved around randomly (see Fig. 2). Participants commanded
linear and diagonal directions of input using the arrow keys on the
keyboard. The popper was designed to be very sensitive to input,
moving at 1000 pixels per seconds in a 640 X 480 window. This
rapid speed made perfect control difficult without assistance, thus
emulating the difficulty of direct control of a more complex, robotic
system and motivating a preference for assisted control. At most
six bubbles appeared at a time. Each emerged near an edge of the
window with a random initial velocity biased towards the center of
the window and moved with a randomly generated acceleration.
The study was approved by the Tufta Institutional Review Board.

First, participants gave consent, read instructions, and played
one practice game at a slower speed (400 pixels per second) and
a shorter duration (30 seconds). Participants repeated the practice
session as many times as they wanted. Next, participants provided
demographic information and then played three 60-second sessions
of the game at full speed, once per condition. After each session,
participants filled out a questionnaire, and answered a final ques-
tionnaire after all sessions were complete.

For each full session, participants controlled the popper in a
different assistance condition: direct control, assisted, and guided
autonomy. Conditions were fully counterbalanced across partici-
pants in a within-participants study design. To increase consistency,
bubbles within each condition followed the same sequence of tra-
jectories, though the bubbles’ times of appearance and popping
depended on user behavior. To prevent participants from noticing
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the repeated trajectories, a £90° rotational transformation was ap-
plied to the trajectories in each condition, similar to Leyzberg et al.
[19]. Transformations were balanced across conditions.

3.2 Conditions

To measure how people’s inputs varied with the level of assistance,
we applied three different levels of assistance in the three condi-
tions. The assistance calculation is described in Sec. 2.2, with details
below. For each condition, the assistance algorithm set the blending
parameter y between the user input and the assistance input.

Direct control. Participants’ inputs were provided unaltered to
the popper, corresponding to y = 1. Due to the input limitations,
velocities were limited to horizontal, vertical, and diagonal vectors.

Assistance. The final applied velocity was given by the mean of
the assistance and the user’s direct input, corresponding to y = 0.5.

Guided autonomy. The assistance command was used directly
(y = 0); the user’s input only affected the behavior of the bubbles
through changing the system’s inferred goals.

3.3 Assistance generation

In this task, we set r4(s, @) = —1if |g; —s| < D and 0 otherwise, with
D a distance parameter and g; representing the location of bubble
g at time t. This sparse reward function drives the popper in the
direction of the bubble at a constant speed and is analytically solv-
able in this simple environment. Therefore, Q4(s, a) = a’ (g — s),
with (g; p s) the unit vector in the direction of g; from s, normal-
ized to 0 if |g; — s| < D. The corresponding policy is to assign
74(s) = (g¢ . s). The distance threshold D = 25px was chosen to
match the radius of the popper.

This task setting incorporated bubbles (goals) that appeared and
disappeared, which requires an adaptation of the goal inference
step to accommodate. We treat an appearance or disappearance
event as occurring between user inputs, so we can treat these events
separately from the observation updates. Given a current goal set G,
when a new goal g’ appeared, it was assigned uniform probability
p(g) = m Then, the probability mass was removed from

the remaining goals as p’(g) = |(|;Ct;|t‘f|'1
the probability p(g*) was redistributed among the other goals by

lization, so p’(g) = w«—29 .
normalization, so p’(g) e

p(g). To remove a goal g™,

3.4 Hypotheses

H1. The presence of assistance will increase number of bubbles
popped and decrease user input. This finding shows that the assis-
tance in this domain has similar benefits as are generally found in
studies of shared control assistance.

H2. Users’ reported strategies will vary between levels of assis-
tance. H2 shows that the users must be aware of the differences in
the system caused by the changes in assistance level.

In addition, we use the qualitative results to conduct an ex-
ploratory analysis of the quantitative data. This analysis serves
to validate that people’s reported strategies actually led to measur-
able differences in their input behavior.



HRI 24, March 11-14, 2024, Boulder, CO, USA

FrTy

240 I

ko
N ‘ f
120

80 -

Number popped

40 =

0 T T T
Direct control Assistance Guided autonomy

Figure 3: Number of bubbles popped per condition.

3.5 Results

3.5.1 Participants. Participants were solicited via word of mouth
and hallway recruitment. Participants used their own laptops or a
experimenter-provided laptop to navigate to a study website hosted
on a research server to provide consent and perform the interaction.
The entire process took about 15 minutes, and each participant
received a $5 Amazon gift card.

The study had a total of N=24 participants. Of these, 19 were
male, 5 were female, and 0 other. 21 of the participants were aged
18-24, and 3 aged 25-34. There were 21 students and 3 other pro-
fessionals. Of the students, majors or areas of study included 9
computer science, 6 mechanical engineering, 4 math, and 2 other
related technical fields. 2 participants reported playing video games
daily; 7 reported weekly; 5 monthly; 7 rarely, and 3 never.

3.5.2  Score and Effort Varied By Condition. First, we analyze the
effect of the assistance on study performance. Typically (e.g in [14]),
it is found that increased levels of assistance lead to better success
rates with less user effort. To evaluate the usefulness of our as-
sistance behavior and to show that this task is representative of
assisted teleoperation, we perform the same analyses here.

We find that increased levels of assistance clearly led to increased
numbers of bubbles popped within the time period. The data is
shown in Fig. 3. Using a Tukey HSD test, the overall differences
were found to be significant (F(2, 69) = 218.6, p < 1072°), and all
pairwise post-hoc found significance at p < 10712, Similarly, we
find that the guided autonomy condition requires less user input
than either of the other conditions with less autonomy, shown in
Fig. 4. Fraction with user input is determined by dividing the total
duration of time stamps during which a control key was pressed
by the total trial time; since the strict upper bound of 1 introduces
a nonlinearity, nonparameteric statistics were used. A Friedman
test shows a significant difference between conditions ( y?(2) =
13.0,p < 0.002); post-hoc comparisons with a paired Wilcoxon
U-test and Holm-Bonferroni correction show significance between
direct control and guided autonomy (U = 49.0, pcorr < 0.007) and
assistance and guided autonomy (U = 35.0, pcorr < 0.002).

Together, these results validate that the assistance improves task
performance and decreases required user input, in line with prior
results on shared control and supporting H1. Reproducing these
performance results suggests that user behavior found here may
generalize to other assisted tasks.
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Figure 4: Fraction of the trial in which user input was nonzero
per condition.

3.5.3 Self-Reported Strategies Varied By Condition. Next, we con-
sider whether participants used different control strategies in differ-
ent conditions. If the control strategies differ, participants must be
reacting to the assistance behavior that they perceive and adapting
the behavior appropriately.

To understand if people explicitly reason about their strategies
for each condition, we asked users three open-response questions
after each trial:

(1) How much do you feel the robot’s ability to complete the
task depended on your input?

(2) What strategies did you use when controlling this system?

(3) Did you change your strategy for using this system compared
previous one(s)? If so, how? (Skipped for the first trial.)

To evaluate these responses, we used open coding to identify 7
themes. One rater coded the data and built a codebook; a second
rater re-coded the data using the codebook. Any disagreements
were resolved through discussion. Number of responses coded with
each code and subdivided by condition are reported in Tab. 1. Quotes
are labeled with participant ID and condition.

Direct control. Strategies in the direct control condition gener-
ally consisted of ad-hoc, specific strategies. These strategies were
independent of the robot’s behavior, for example, “going along di-
agonals” (P8-DC), “lining up multiple bubbles” (P14-DC), or aim for
the bubbles “along the edges” (P13-DC). These ad-hoc strategies
were described as effective, though the features they relied upon —
such as finding “patterns in where the bubbles appeared” (P12-A)
— may not actually exist in the underlying system. Similarly, for
the direct control condition, participants most strongly emphasized
the importance of their active control behavior in accomplishing
the task. They reported that “the task was entirely dependent upon
[their] input” (P9-DC) or emphasized that the system “depended
on [their] input more than” in other conditions (P4-A). Participants
considered themselves the primary agent in controlling the task
in the direct control condition, and came up with various different
strategies to approach the problem of control.

Assistance. In the assistance condition, strategies were somewhat
more consistent than in the direct control case, and the focused
on providing high-level control to the robot. Many participants
reported targeting clusters of bubbles together, described as “go[ing]
in the general direction of a group of bubbles” (P6-A) or “huddl[ing]
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Figure 5: Visualization of all control input values provided by participants over the course of each game. Color indicates the
direction of control input; the keyboard-based input scheme ensured that all inputs were axis-aligned or diagonal.

Code Direct control  Assistance Guided auton.
specific strategy 16 7 6
active control 15 10 4
target clusters 7 11 0
general direction 3 10 5
follow robot 2 7 18
random control 1 0 10
minimal input 0 2 8

Table 1: Counts of participant responses that were coded with
each code, separated by condition, out of 24 total participants.

towards clusters” (P1-A). This group focused their control effort in
directing the general direction of the popper. Participants noted that
“if [they] aimed at a general direction, the robot did the fine tuning”
(P7-A), and put “less emphasis on the more precise movement and
just moving it in the general direction” (P17-A). Participants noticed
that the assistance was particularly effective at performing fast,
localized motion so they “stopped caring about accuracy since the
system took care of it for me” (P11-A). This change made the game
“easier and more relaxing” (P23-A). Input in the assisted control
condition was both more consistent between participants than in
the direct control condition (using fewer ad-hoc strategies) and
tended to show an emergent hierarchical control behavior, with the
participant “aiming at groups of bubbles and letting it do its thing
on its own once [they] got close enough” (P20-A). This emergence
of a distinct strategy indicates that users are responding to the
presence of assistance and adjusting their behavior to match.

Guided autonomy. The guided autonomy condition was primar-
ily distinguished by participants emphasizing their lack of control
over the popper and describing their struggles to find strategies that
improve system performance. Participants described the system be-
havior as following the popper, claiming that “[i]t would completely
disregard” their input (P13-GA) and wondering if “the robot might
just be doing it all by itself” (P4-GA). Some participants thought that
providing any random input helped, saying that “[i]t just found the
circles on its own as long as I was pressing buttons” (P11-GA) and
that they “didn’t really even think of which key I was even pressing”
(P2-GA). Participants explicitly rejected strategies developed for
other conditions: “Initially, I tried to use my old strategy but then
I realized that I was not in control” (P17-GA);"I just tried to aim
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Figure 6: Total angular distance traveled by the control in-
put during each game. Participants who changed their con-
trol input direction rapidly covered larger angular distances,
whereas participants who provided minimal input or who
rarely changed input direction had smaller total distances.
Starting or stopping control incur a distance of /4, the same
as transitioning between adjacent control directions.

like last time but I devolved to mashing the arrow keys and it got
everything” (P5-GA). Other participants provided minimal input to
the system, saying they “basically did almost nothing except maybe
press a button every once in a while” (P8-GA) or “allowed the robot
to play the game until it was too far away from the balls to make
a decision and then [they] sent it in the right direction” (P9-GA).
Participants noticed that the system was less responsive to their
input and developed new, often arbitrary, strategies in the hope
that their inputs would improve the system performance.

Overall, participants report that they can identify differences in
the system behavior in different assistance conditions and that they
change their strategies to match, supporting H2.

3.5.4 Input Behavior Matched Reported Strategies. In their responses,
participants claim to notice changes in system behavior and develop
new strategies in response. Here, we show that these changes in
strategy corresponded to measurable changes in input behavior.
We visualize the input behavior of all participants in all con-
ditions in Fig. 5. General condition-dependent trends appear in
the visualization. Most notable, the guided autonomy condition
is characterized by substantial periods of constant input behavior,
matching the random control strategies asserted by participants. The
difference in input behavior between direct control and assistance
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is more subtle, but direct control seems to show more rapid changes
in control direction and fewer periods of no control applied.

We can further characterize these differences by comparing how
much participants changed their control input direction within each
trial. From the qualitative results above, participants in the direct
control condition believed the score depended strongly on their own
input behavior and developed strategies to maximize their score;
we might, therefore, expect to observe many rapid changes in input
direction to precisely target bubbles. In the assistance condition,
participants reported using high-level, general control behavior
and leaving the fine motion to the assistance, which might lead
to less overall rate of change in the direction of input. The guided
autonomy condition led to participants controlling randomly by
selecting a single key to hold down or providing minimal input,
which should lead to the least total change in input direction.

Indeed, we find in Fig. 6 that the total distance traveled in angle of
input control direction varied significantly by condition. Using a re-
peated measures ANOVA, we find a significant main effect of condi-
tion (F(2,46) = 19.44, p < 107°), with post-hoc significance found
for all pairs of conditions using a paired t-test with Holm-Bonferroni
correction: direct control and assistance (£(23) = 3.12, pcorr < 0.02),
direct control and guided autonomy (¢(23) = 3.51, pcorr < 0.001),
and assistance and guided autonomy (#(23) = 4.50, pcorr < 0.0002).
This exploratory analysis suggests that the reported strategies were
not merely a rationalization of identical behavior. Instead, the differ-
ent strategies reported by participants led to measurably different
control input behavior, further validating that participants indeed
responded differently to different assistance behavior.

4 “ASSISTED” GRASPING STUDY

To understand people’s adaptation to shared control and validate
that our results hold in interactions with a physical robot, we con-
ducted a public-space study with a robot arm in a pickup task
with shared control. Unlike in the previous study, however, the
“assistance” was tuned to be effectively adversarial: the assistive
algorithm did not know about the the user’s actual goal. If people
were not aware of the “assistance” and operated the robot as if
in direct control, it would be impossible to complete the task: the
“assistance” would drive the robot further from the goals, and users
would not be able to compensate for the changes. However, we find
that users succeed in the task despite the presence of the adversarial
dynamics, which is only possible because users do perform this
compensatory adjustment. Furthermore, users explicitly strategize
about how to adapt their control behavior to these new dynamics
(as in the previous study) and show an increase in performance
with more experience with the robot, which further demonstrates
the presence of this reactive adjustment.

4.1 Task

Data collection for the study was performed in a public space over
a single day. The robot was set up on a table in a public walkway
and passersby were invited to participate. Participants controlled a
Kinova Gen3 Lite robot arm to pick up one of two candy-filled cups
on a table. The robot started above the cups with its gripper pointed
downward. Participants controlled the x-y motion of the robot
along with a conflicting “assistance” system. When participants
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pressed a button on the controller, the robot transitioned to the
second stage and began moving steadily downward towards the
cups in addition to maintaining the previous x-y control. Once the
robot reached a fixed height, the gripper closed. If the robot was
lined up successfully during the downward motion, it grasped one
of the cups and the trial was considered a success; if neither cup
was grasped, it was a failure. The robot performed an autonomous
pouring motion, then the robot and cups were reset.

4.2 Procedure

Participants first provided consent and completed a demographic
survey on an experimenter-provided laptop, then waited for the
robot to become available. Next, they were introduced to the robot,
the task, and its controls. They performed eight trials in two sets of
four each (without a practice period), then completed the survey
by answering two qualitative questions and providing an email ad-
dress for compensation. The entire interaction took approximately
10 minutes, excluding wait time for the robot. Participants were
compensated with $3.50 Amazon gift cards. As an additional incen-
tive, the cups were filled with candies of the participant’s selection.
When the cup was successfully grasped, the robot poured out the
candy and the participant kept it. The study protocol was approved
by the university’s institutional review board.

Participants performed two sets of four trials each. The first
four trials occurred at the baseline difficulty level, described below.
After those trials were complete, the difficulty level was changed
based on the participant’s number of successes during the first
set. If the participant succeeded on 0 or 1 trial, the second set of
trials was performed in the easier difficulty level; if they succeeded
on exactly 2 trials, the assistance was maintained at the baseline
difficulty level; and if the participant succeeded on 3 or 4 of the
trials, they next experienced the harder difficulty level. Adjusting
the level of difficulty of the task helped to compensate for the large
variance in participants’ initial levels of skill at controlling the
robot. Tuning the task difficulty level to more closely match the
participant’s initial skill made the study success rate more sensitive
to how participants adapted with more experience.

In addition to these modifications to assistance parameters, the
“goal” locations varied between participants and set of trials. In all
trials, the assistance used three “goal” configurations positioned in
a triangle around the workspace, with the cups in the interior of
the triangle. There were four goal configurations, corresponding to
the direction that the triangle pointed: up, down, left, right. The
goal configuration for the first set of trials was block-randomized
between participants. For the second set of trials, the goal configu-
ration was inverted relative to the first set. An overhead view of
the interaction appears in Fig. 7.

4.3 “Assistance” system

The x-y motion of the robot was determined using the participant’s
raw input data via the shared autonomy assistance described in
Sec. 2.2. However, unlike in the previous study, the “assistance”
system directed the users to “goals” composed of arbitrary points
in space and not located above the cups. In this scenario, the “assis-
tance” signal draws the robot away from the cups, so the user must
overcome the dynamics of the “assistance” to achieve their goal.
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Figure 7: Overhead view of robot in the claw game interaction.
A user controlled a Kinova Gen3 Lite robot to pick up one
of two cups, despite “assistance” that drove them away from
the cup locations.

To compute the assistance, we set the reward function of each
goal to r4(x,a) = —a if |g — x| > D or —F|g — x| otherwise. This
piecewise linear reward function matches the one used in Javdani
et al. [14] and helps align the robot more precisely with the goal
location when it is nearby. The scaling parameter o controls the
overall robot speed. We set D = 5cm experimentally.

4.4 Difficulty levels

Participants could experience three different task difficulty levels,
set by adjusting the arbitration parameter y and the reward scaling
parameter a.

Baseline. In this level, the arbitration parameter y was set to 0.5,
which causes the same behavior as the assistance condition in Study
1. The robot speed remained nominal at & = 0.5.

Easier. To make the control easier, the arbitration parameter was
changed to y = 0.8, so that the user input contributed more to the
final motion than the assistance did. In addition, the overall robot
speed was halved, so a = 0.25.

Harder. For participants who achieved success in the first set of
trials, the arbitration parameter was lowered to y = 0.2, so that the
user input has less direct impact on the robot motion. In addition,
the overall speed was scaled up by a factor of 1.5, making a = 0.75.

4.5 Hypotheses

H1. Users will succeed on the task despite the presence of adver-
sarial “assistance”. If users tried to control the robot directly and
did not adapt to the unexpected dynamics, the “assistance” would
drive the robot away from the goal and make the task very difficult.
The fact that users can succeed means they must be adapting to
the assistance dynamics.
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H2. Users will report explicitly reasoning about how the system
works and strategizing about how to control it.

H3. User success rates will increase as they perform more trials at
the same difficulty level. An increase in success rate with experience
can only occur if users are changing their policies over time, which
is inconsistent with the assumption of stationary control behavior.

4.6 Results

4.6.1 Participants. Over the course of 6.5 hours, 35 participants
were recruited to interact with the robot. 5 interactions were dis-
carded due to data quality or study performance issues, leading
to N=30 overall participants. Participant demographics largely re-
flected the university setting of the study. 13 were male, 15 female,
and 2 unspecified. 21 were aged 18-24, 7 aged 25-34, 1 aged 35-44,
and 1 65 or older. Almost all participants (26) were students; others
included 1 professor and 3 staff members. Computer science was the
primary area of study (16), and the remaining participants studied
technical fields except for 2 art students. 1 reported playing video
games daily; 5, weekly; 5, monthly; 10, rarely; and 9, never.

4.6.2 Overall Performance. Success rates on the task demonstrate
that it was possible for users to control the robot and achieve their
goals. Over each participant’s first sets of trials, which all occurred
in the baseline difficulty level, participants successfully grasped a
cup in 42/120 (35%) of trials, and successful trials took an average of
29.9 seconds. After the first set, participants performed a second set
in the easier, baseline (again), or harder difficulty level depending
on their performance in the first set. 16/30 (53.3%) of participants
succeeded on fewer than two trials, so their second set was per-
formed in the easier difficulty. They succeeded in 61/64 (95.3%) of
trials, and successful trials took an average of 10.6 seconds. 9/30
participants (30%) succeeded twice in the first set and continued
in baseline difficulty, during which they succeeded in 16/36 trials
(44.3%) and took an average of 14.9 seconds on successful trials. The
remaining 5/30 participants (16.7%) succeeded on three or more
trials in the first set, so they transitioned to the harder difficulty
level. Over their second sets of trials, they succeeded in 10/20 (50%),
and successful trials took 26.4 seconds on average. The highest
performing participant overall succeeded in 7/8 trials. 23/30 partici-
pants (77.7%) succeeded at least once in the first set of trials, and all
participants succeeded in at least one trial among both of their sets.

The success rates in the task show that users can perform this
robot control task despite the conflicting assistance. While success
rate varied widely among participants, even the lowest-performing
participants succeeded in at least one trial. This find supports H1
and provides evidence that participants must be using control strate-
gies other than what would be appropriate for direct control.

4.6.3 Participants Use Concrete Strategies. Next, we consider how
participants explain their own strategies to accomplish the task.
After participants finished both sets of trials, they answered two
open-response questions taken from the the first study:

(1) How much do you feel the robot’s ability to complete the

task depended on your input?

(2) What strategies did you use when controlling this system?

Reviewing user responses suggests that several participants tried
to stabilize the robot above the cup before initiating downward
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motion so that they needed to provide minimal control as the cup
descended. For example, P29 reports that “I sort of just hover the
claw above the cup and then initiate the drop and make slight ad-
justment[s] along the drop.” This strategy takes advantage of stable
points in the combined dynamics of the robot and the assistance,
explicitly described by P9 (“[I] tried to stabilise [the robot] in a
position”) and P33 (“I was usually able to get [the robot] positioned
well enough that, even when the robot shifted as it descended, I
didn’t need to touch the analog stick”). These stable points were not
an explicit design objective of the assistance; instead, they emerged
from the coupled dynamics between the assistance and the under-
lying system behavior. Users were sensitive enough to the behavior
of the system to identify these stable points intuitively.

In addition, some participants report providing exploratory in-
puts to the robot to understand its dynamics before controlling it: “T
first tried moving the arm around with the joystick to try to under-
stand how it responded to input” (P20). These exploratory actions
are inconsistent with goal-directed models of user input, and mis-
interpreting motion as goal-directed can derail certain assistance
systems completely [2]. Participant descriptions of their own strate-
gies not only support H2, but they motivate further examination
of the user experience in controlling an assisted system.

4.6.4 Success Increases With Experience. Finally, we consider if
user performance on tasks increased with experience. To control
for participant skill and adjusted difficulty levels, we count the
number of successful trials in the early part of each participant’s
sets, i.e., trials 1, 2, 5, and 6. We compare this count to their number
of total successes in the later half of each set, comprising trials 3, 4,
7, and 8. We find that 4 participants succeed one fewer time; 13 par-
ticipants succeeded the same number of times; and the remaining
13 succeeded an additional time. A paired t-test shows a significant
difference between the number of successes (£(29) = 2.34, p < 0.03),
with a mean increase in the number of successes of 0.3 (95% CI:
[0.038,0.56]). These results provides evidence that success rates
increased with experience, supporting H3.

5 DISCUSSION AND CONCLUSION

In this paper, we show that users change their control input in the
presence of automated assistance. When the assistance is useful,
participants describe how they learn the new system behavior
and strategize about how to best take advantage of it. When the
assistance conflicts with user objectives, users can override the
“assistance” to accomplish the task. These findings motivate future
investigations into how users respond to the presence of assistance.

Furthermore, these findings suggest a new, user-centered ap-
proach to analyzing assistance systems. Rather than optimizing
over nominal user input behavior, future work can explicitly con-
sider the system from the user’s perspective. To the user, the assis-
tance acts as a separate dynamical system coupled to the underlying
system, not unlike how virtual fixtures [21, 29] introduce stabiliz-
ing “forces” around particular locations or motions. Unlike virtual
fixtures, though, the assistance can take advantage of known task
models and task switching dynamics. User-centered assistance acts
by changing the system dynamics to ones that a user can better
understand and control to accomplish their tasks.
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Several design implications result from this user-centered per-
spective on assistance. For example, complex assistance systems
face a tradeoff between the increased task modeling power they
provide and the decreased ability of users to understand their dy-
namics and control the entire system optimally. It is important for
the goal prediction system not only to be capable, but to be inter-
pretable, so that the entire system is transparent to the user [1].
Further, the requirement of a perfect, complete task model may
be lessened: the system can rely on the user’s expertise for some
parts of the task, thus reframing the assistance as collaboration.
This perspective also allows researchers to investigate the coupled
system via system analysis techniques, e.g., measuring how quickly
the system reacts to a change in the user’s goal or if the assistance
introduces new stable states, as were found by users in the second
experiment. Demonstrating that users can take an active role in
controlling assistive systems is foundational to this user-centered
perspective on assistance design.

One limitation of this work is that the tasks that users performed
are particularly simple, so this ability of users to adapt may not
transfer to more complex tasks. Simple tasks were used here so that
participants could learn how the systems behaved and change their
input strategy within short interactions, so these results cannot
prove that users adapt to assistance in all tasks. However, user
adaptation is compatible with the increases in performance found
with automated assistance, and cooperative adaptation may even
make the assistance more effective than if the user policy remained
stationary. Future work can examine how users respond to more
complex assistance systems in more sophisticated tasks.

Another limitation that pertains especially to the second study is
that the level of difficulty of the task, and the amount of experience
participants had with the task before operating the robot, was not
tightly controlled. While conducting the study in a public space
substantially improved recruitment, participants often watched
other people controlling the robot before they began, which may
affect how they responded to the assistance. In addition, the ease
of the easier difficulty level meant that participants had a near-
perfect success rate, so improvement with experience was difficult
to measure. This study is best understood as demonstrating that
participants can override conflicting assistance to accomplish their
goals rather than precisely characterizing this adaptation.

In this paper, we show that users respond to the presence of goal-
directed assistance by learning how it works and adapting their
control inputs to achieve their goals. Users adjust their performance
to collaborate more effectively with assistance that shares their
goals and to compensate for “assistance” that makes their goals
harder to achieve. This variation in user behavior does not need to
be rejected as noise that degrades the performance of an optimal
assistive system. Rather, treating users as intentional agents opens
up new ways of developing and evaluating goal-directed assistance
systems: the future of assistance is collaborative.
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