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ABSTRACT 
Shared control approaches to robot assistance, which predict a 
user’s goal based on their control input and provide autonomous 
assistance towards the predicted goal, typically assume that user 
behavior remains the same despite the presence of the assistance 
and rely on this assumption to infer user goals. However, people 
operating assisted systems continuously observe the robot behav-
ing di�erently from their expectations, which may lead them to 
adapt their control behavior to better achieve their desired out-
comes. In this paper, we show that users both change their control 
behavior when assistance is added and describe these changes as 
responses to the new system dynamics. In a computer-based bubble 
popping study, participants report changing their strategies with 
di�erent levels of assistance, and analysis of their actual control 
input validates this change. In an in-the-wild robot study, partic-
ipants teleoperated a robot to pick up a cup despite the presence 
of “assistance” that drives the system away from the true goals of 
the task. Participants can overcome the “assistance" and reach the 
goal, which requires them to correct for the novel system dynamics. 
These results motivate further research in user-centered design and 
evaluation of assistive systems that treat the user as intentional. 
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1 INTRODUCTION 
Shared control systems enable users to more easily and e�ectively 
teleoperate robots to perform tasks. These systems generally as-
sume knowledge of autonomous strategies to achieve pre-speci�ed 
tasks that users may want to perform. The assistance interposes 
itself between the user input and the underlying system and ad-
justs the user’s control signal towards the autonomous strategy. 
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Figure 1: Shared control systems work by capturing user in-
put and adjusting it to be more e�ective. In this framing, 
users observe system behavior that con�icts with their ex-
pectations from their internal model. The stationarity as-
sumption requires that users ignore this con�ict. 

To provide assistance for multiple di�erent tasks, shared control 
systems typically infer which of the known tasks the user is trying 
to perform from user behavior. For this step, it is common to assume 
that user input will remain stationary regardless of the presence of 
the assistance: that is, that users will not change how they provide 
input when the assistance is added. Under this assumption, goal 
inference is performed by comparing the user’s observed control 
input with task strategies for the underlying system. Furthermore, 
the assumption bypasses the circularity that arises from trying to 
adapt the assistance behavior to a user who is, in turn, adapting to 
the changing assistance. Shared control systems increase success 
rate and decrease required input in a variety of tasks [5, 20]. 

However, this assumption of stationarity is in con�ict with users’ 
actual experience of the system. As people interact with the robot, 
they continuously observe its actual behavior and how it di�ers 
from their internal models of how the system would behave (Fig. 1). 
In fact, the psychological theory of motor learning [18, 26] proposes 
that it is by observing this feedback that people learn to control 
systems in general. We theorize that as users’ experience with 
the system increases, they intentionally adapt their behavior to 
compensate for the e�ect of the assistance system. According to 
this theory, improvements in task metrics are not only due to the 
assistance itself, but are also driven by users taking advantage of 
the changes in system dynamics that result from adding assistance. 

In this paper, we show that user input behavior changes when 
goal-directed assistance is added. Furthermore, users describe them-
selves as modeling the new system behavior and strategizing about 
how to adapt their inputs. In support, we present two user studies 
in which participants controlled a robot in the presence of shared 
control-based assistance. First, we describe a computer-based study 
in which participants controlled a ball to pop bubbles. We show 
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that participants explicitly identify changes in the assistance be-
havior between conditions and strategize about how to adapt their 
control strategy to maximize their scores. Second, we present a 
public-space user study in which participants controlled a robot 
to pick up a cup despite the presence of “assistance” that directed 
them towards incorrect goals. Participants still succeeded on the 
task despite the changes in dynamics introduced by the assistance. 
These results demonstrate that users consistently and intentionally 
change their behavior in the presence of assistance. 

The idea that users adapt to assistance introduces a new, user-
centered paradigm for designing assistance systems. In this para-
digm, the assistance does not simply act as a proxy of the user’s 
intent: it instead becomes part of the system that the user controls. 
Then, the e�ect of the assistance is to add an additional dynamic 
system with its own state (e.g., probability distribution over possi-
ble goals) and dynamics (e.g., Bayesian updates based on the user’s 
input). Considering an active user introduces new design criteria, 
such as valuing transparency in goal prediction or treating the 
control process as collaborative, that do not apply when design-
ing assistance to autonomously execute a user’s intent. Showing 
that users do, in fact, react to assistance systems justi�es this user-
centered perspective on assistive teleoperation. 

2 BACKGROUND 
2.1 Related work 
Shared control is a paradigm for human-robot interaction in which 
both the user and an assistive algorithm simultaneously provide 
control input to a robot. This approach has improved success rates 
over direct user control in a wide variety of tasks; a general overview 
is given in Cimolino and Graham [5]. These systems are further 
surveyed in Losey et al. [20], which divides shared control assis-
tance into an intent detection phase, during which the system infers 
the user’s likely intended goal or task from their input behavior 
or other passive signals, and an arbitration phase, during which 
the user’s input signal is combined with automatically generated 
assistance. Goal inference is often performed using Bayesian infer-
ence [13] by treating user inputs as observations conditioned on the 
user’s intended goal and the underlying system dynamics; typical 
user models include Boltzmann-rational behavior [3] or maximum 
entropy inverse reinforcement learning [30]. 

Numerous works have validated the e�ectiveness of this ap-
proach for robot teleoperation, especially in assistive applications. 
The method helps with tasks such as driving a wheelchair [4, 6, 11, 
12] or controlling a robot arm [2, 7, 10, 14, 15, 17, 28], especially 
in the presence of low-dimensional or noisy input devices [8, 22]. 
These methods vary in how they model tasks, detect user intent, 
and arbitrate between user input and assistance behavior, but the 
intent detection and arbitration pipeline is consistent. 

While research in teleoperation has generally focused on algo-
rithmic developments, Rea and Seo [27] calls for a focus on the 
user experience in teleoperation, and several works consider this 
perspective for shared control systems. Nikolaidis et al. [24] and 
Parekh et al. [25] model the user’s willingness to adapt to the ro-
bot’s behavior so that the assistance system can converge on a 
collaborative strategy. Other strategies [9, 16] modify the robot be-
havior so that the user’s control inputs are likely to be informative 

about their goals earlier in the task. Jun Jeon et al. [17] adds an 
entropy objective to ensure that their goal inference algorithm does 
not trap users into a single task. Zurek et al. [31] models how well 
user behavior aligns with existing tasks and treats low alignment as 
a signal to add new task models to the system. Our work showing 
that users adapt to the presence of assistance contributes to this 
developing focus on user-centered analysis in shared control. 

2.2 Overview of the assistance algorithm 
For all assistance behavior used in the studies, we adapt the shared 
autonomy algorithm given in Javdani et al. [14], which we sum-
marize here. This assistance behavior consists of three stages: goal 
inference, assistance generation, and arbitration. 

2.2.1 Goal inference. We assume that the robot control behavior 
is modeled as a Markov decision process (MDP) consisting of states 
( , actions �, and transition ) . We assume that the user’s goal is 
a single element of a pre-speci�ed set of goals ⌧ , and each goal 
6 de�nes a reward function A6 (G, 0) which is optimized by action 
value function &6 (B, 0) and policy c6 (B). The goal of this �rst step 
is to �nd a probability distribution ? (6 2 ⌧) that represents the 
chance, based on observed evidence, that the user’s true goal is 6. 

To determine this goal probability, we treat the user’s input 
action DC ⇢ � as an observation of their goal provided in state 
BC 2 ( (which we drop for ease of notation). This formulation 
enables us to use Bayesian inference to determine the goal proba-
bility over time [13]. From a known prior ? (6), the goal probabil-
ity distribution is updated at each time step as ? (6|D0, · · · ,DC ) / 
? (DC |6)? (6|D0, · · · ,DC �1). For the observation probability ? (DC |6), 
we assume that user follows Boltzmann rationality [3] ? (D |6) / 
exp V&6 (D), where &6 (D) is given above and V sets the sensitivity of 
the goal inference. For all tasks, the MDP represents G-~ translation 
in a plane. States and goal locations are given as points B = (BG , B~ )
and 6 = (6G , 6~ ). Actions � are bounded velocity vectors in the 
plane, {(0G , 0~ ) 2 R2 : | (0G , 0~ ) |  1}, and transitions are de�ned 
by vector translation: ) (B, 0) = B + 0. 

2.2.2 Assistance generation. Given a goal distribution ? (6) at state 
BC , the optimal assistance command was calculated as 0C = ⇢? (6)06 

⇤ , 
i.e., the expected value of the optimal actions 06 

⇤ for each goal 6 
over the goal distribution. 0C is then normalized to unit length. 
This calculation follows a policy blending approach [7], which is 
su�cient for these simple tasks. 

2.2.3 Arbitration. Once the assistance command 0C has been gen-
erated, the �nal robot action 0appl is generated by an arbitration 
step: 0appl = WDC + (1 � W)0C [23]. The blending factor W indicates 
the relative contribution of the user command and the assistance 
command to the resulting motion; W = 1 is direct control, and W = 0 
is indirect control in which the robot uses the input signal only for 
goal updates and has full control over the output behavior. 

3 BUBBLE POPPING STUDY 
The intentional user model theorizes that participants change their 
behavior in the presence of assistance by adapting to the new dy-
namics of the system. In this �rst study, we investigate this theory 
in a simple, 2-D bubble popping task, performed in two di�erent 
assistance conditions and with direct control. Participants report 
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Figure 2: Overview of bubble popping game. Participants 
moved the popper (spiked ball) to pop the bubbles (blue cir-
cles) as they moved around the screen. The game also showed 
the remaining time (top left) and current score (top right, 
with each bubble worth 10 points). 

that they notice the change in system dynamics change and strate-
gize about how to adapt their control behavior, which we validate 
by �nding quantitative di�erences in input between conditions. 

3.1 Interaction 
Participants played a game in which they moved a spiked ball (the 
“popper”) to pop bubbles that appeared from the edge of the screen 
and moved around randomly (see Fig. 2). Participants commanded 
linear and diagonal directions of input using the arrow keys on the 
keyboard. The popper was designed to be very sensitive to input, 
moving at 1000 pixels per seconds in a 640 ⇥ 480 window. This 
rapid speed made perfect control di�cult without assistance, thus 
emulating the di�culty of direct control of a more complex, robotic 
system and motivating a preference for assisted control. At most 
six bubbles appeared at a time. Each emerged near an edge of the 
window with a random initial velocity biased towards the center of 
the window and moved with a randomly generated acceleration. 
The study was approved by the Tufta Institutional Review Board. 

First, participants gave consent, read instructions, and played 
one practice game at a slower speed (400 pixels per second) and 
a shorter duration (30 seconds). Participants repeated the practice 
session as many times as they wanted. Next, participants provided 
demographic information and then played three 60-second sessions 
of the game at full speed, once per condition. After each session, 
participants �lled out a questionnaire, and answered a �nal ques-
tionnaire after all sessions were complete. 

For each full session, participants controlled the popper in a 
di�erent assistance condition: direct control, assisted, and guided 
autonomy. Conditions were fully counterbalanced across partici-
pants in a within-participants study design. To increase consistency, 
bubbles within each condition followed the same sequence of tra-
jectories, though the bubbles’ times of appearance and popping 
depended on user behavior. To prevent participants from noticing 

the repeated trajectories, a ±90� rotational transformation was ap-
plied to the trajectories in each condition, similar to Leyzberg et al. 
[19]. Transformations were balanced across conditions. 

3.2 Conditions 
To measure how people’s inputs varied with the level of assistance, 
we applied three di�erent levels of assistance in the three condi-
tions. The assistance calculation is described in Sec. 2.2, with details 
below. For each condition, the assistance algorithm set the blending 
parameter W between the user input and the assistance input. 

Direct control. Participants’ inputs were provided unaltered to 
the popper, corresponding to W = 1. Due to the input limitations, 
velocities were limited to horizontal, vertical, and diagonal vectors. 

Assistance. The �nal applied velocity was given by the mean of 
the assistance and the user’s direct input, corresponding to W = 0.5. 

Guided autonomy. The assistance command was used directly 
(W = 0); the user’s input only a�ected the behavior of the bubbles 
through changing the system’s inferred goals. 

3.3 Assistance generation 
In this task, we set A6 (B, 0) = �1 if |6C �B |  ⇡ and 0 otherwise, with 
⇡ a distance parameter and 6C representing the location of bubble 
6 at time C . This sparse reward function drives the popper in the 
direction of the bubble at a constant speed and is analytically solv-
able in this simple environment. Therefore, &6 (B, 0) = 0) (6C �̂ B), 

ˆwith (6C � B) the unit vector in the direction of 6C from B , normal-
ized to 0 if |6C � B | < ⇡ . The corresponding policy is to assign 

ˆc6 (B) = (6C � B). The distance threshold ⇡ = 25px was chosen to 
match the radius of the popper. 

This task setting incorporated bubbles (goals) that appeared and 
disappeared, which requires an adaptation of the goal inference 
step to accommodate. We treat an appearance or disappearance 
event as occurring between user inputs, so we can treat these events 
separately from the observation updates. Given a current goal set ⌧C , 
when a new goal 6 0 appeared, it was assigned uniform probability 

1? (6 0) = |⌧C |+1 . Then, the probability mass was removed from 

the remaining goals as ? 0 (6) = |⌧
|⌧ 
C 
C 
|+
| 
1 ? (6). To remove a goal 6⇥ , 

the probability ? (6⇥) was redistributed among the other goals by 
Õ ? (6)normalization, so ? 0 (6) = 

6 0 2⌧ \{6⇥ } ? (6 0 ) . 

3.4 Hypotheses 
H1. The presence of assistance will increase number of bubbles 

popped and decrease user input. This �nding shows that the assis-
tance in this domain has similar bene�ts as are generally found in 
studies of shared control assistance. 

H2. Users’ reported strategies will vary between levels of assis-
tance. H2 shows that the users must be aware of the di�erences in 
the system caused by the changes in assistance level. 

In addition, we use the qualitative results to conduct an ex-
ploratory analysis of the quantitative data. This analysis serves 
to validate that people’s reported strategies actually led to measur-
able di�erences in their input behavior. 
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Figure 3: Number of bubbles popped per condition. 

3.5 Results 
3.5.1 Participants. Participants were solicited via word of mouth 
and hallway recruitment. Participants used their own laptops or a 
experimenter-provided laptop to navigate to a study website hosted 
on a research server to provide consent and perform the interaction. 
The entire process took about 15 minutes, and each participant 
received a $5 Amazon gift card. 

The study had a total of N=24 participants. Of these, 19 were 
male, 5 were female, and 0 other. 21 of the participants were aged 
18-24, and 3 aged 25-34. There were 21 students and 3 other pro-
fessionals. Of the students, majors or areas of study included 9 
computer science, 6 mechanical engineering, 4 math, and 2 other 
related technical �elds. 2 participants reported playing video games 
daily; 7 reported weekly; 5 monthly; 7 rarely, and 3 never. 

3.5.2 Score and E�ort Varied By Condition. First, we analyze the 
e�ect of the assistance on study performance. Typically (e.g in [14]), 
it is found that increased levels of assistance lead to better success 
rates with less user e�ort. To evaluate the usefulness of our as-
sistance behavior and to show that this task is representative of 
assisted teleoperation, we perform the same analyses here. 

We �nd that increased levels of assistance clearly led to increased 
numbers of bubbles popped within the time period. The data is 
shown in Fig. 3. Using a Tukey HSD test, the overall di�erences 
were found to be signi�cant (� (2, 69) = 218.6, ? < 10�29), and all 
pairwise post-hoc found signi�cance at ? < 10�12. Similarly, we 
�nd that the guided autonomy condition requires less user input 
than either of the other conditions with less autonomy, shown in 
Fig. 4. Fraction with user input is determined by dividing the total 
duration of time stamps during which a control key was pressed 
by the total trial time; since the strict upper bound of 1 introduces 
a nonlinearity, nonparameteric statistics were used. A Friedman 
test shows a signi�cant di�erence between conditions (j2 (2) = 
13.0, ? < 0.002); post-hoc comparisons with a paired Wilcoxon 
U-test and Holm-Bonferroni correction show signi�cance between 
direct control and guided autonomy (* = 49.0, ?corr < 0.007) and 
assistance and guided autonomy (* = 35.0, ?corr < 0.002). 

Together, these results validate that the assistance improves task 
performance and decreases required user input, in line with prior 
results on shared control and supporting H1. Reproducing these 
performance results suggests that user behavior found here may 
generalize to other assisted tasks. 

Figure 4: Fraction of the trial in which user input was nonzero 
per condition. 

3.5.3 Self-Reported Strategies Varied By Condition. Next, we con-
sider whether participants used di�erent control strategies in di�er-
ent conditions. If the control strategies di�er, participants must be 
reacting to the assistance behavior that they perceive and adapting 
the behavior appropriately. 

To understand if people explicitly reason about their strategies 
for each condition, we asked users three open-response questions 
after each trial: 

(1) How much do you feel the robot’s ability to complete the 
task depended on your input? 

(2) What strategies did you use when controlling this system? 
(3) Did you change your strategy for using this system compared 

previous one(s)? If so, how? (Skipped for the �rst trial.) 
To evaluate these responses, we used open coding to identify 7 
themes. One rater coded the data and built a codebook; a second 
rater re-coded the data using the codebook. Any disagreements 
were resolved through discussion. Number of responses coded with 
each code and subdivided by condition are reported in Tab. 1. Quotes 
are labeled with participant ID and condition. 

Direct control. Strategies in the direct control condition gener-
ally consisted of ad-hoc, speci�c strategies. These strategies were 
independent of the robot’s behavior, for example, “going along di-
agonals” (P8-DC), “lining up multiple bubbles” (P14-DC), or aim for 
the bubbles “along the edges” (P13-DC). These ad-hoc strategies 
were described as e�ective, though the features they relied upon — 
such as �nding “patterns in where the bubbles appeared” (P12-A) 
— may not actually exist in the underlying system. Similarly, for 
the direct control condition, participants most strongly emphasized 
the importance of their active control behavior in accomplishing 
the task. They reported that “the task was entirely dependent upon 
[their] input” (P9-DC) or emphasized that the system “depended 
on [their] input more than” in other conditions (P4-A). Participants 
considered themselves the primary agent in controlling the task 
in the direct control condition, and came up with various di�erent 
strategies to approach the problem of control. 

Assistance. In the assistance condition, strategies were somewhat 
more consistent than in the direct control case, and the focused 
on providing high-level control to the robot. Many participants 
reported targeting clusters of bubbles together, described as “go[ing] 
in the general direction of a group of bubbles” (P6-A) or “huddl[ing] 
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Figure 5: Visualization of all control input values provided by participants over the course of each game. Color indicates the 
direction of control input; the keyboard-based input scheme ensured that all inputs were axis-aligned or diagonal. 

Code Direct control Assistance Guided auton. 
speci�c strategy 16 7 6 
active control 15 10 4 
target clusters 7 11 0 
general direction 3 10 5 
follow robot 2 7 18 
random control 1 0 10 
minimal input 0 2 8 

Table 1: Counts of participant responses that were coded with 
each code, separated by condition, out of 24 total participants. 

towards clusters” (P1-A). This group focused their control e�ort in 
directing the general direction of the popper. Participants noted that 
“if [they] aimed at a general direction, the robot did the �ne tuning” 
(P7-A), and put “less emphasis on the more precise movement and 
just moving it in the general direction” (P17-A). Participants noticed 
that the assistance was particularly e�ective at performing fast, 
localized motion so they “stopped caring about accuracy since the 
system took care of it for me” (P11-A). This change made the game 
“easier and more relaxing” (P23-A). Input in the assisted control 
condition was both more consistent between participants than in 
the direct control condition (using fewer ad-hoc strategies) and 
tended to show an emergent hierarchical control behavior, with the 
participant “aiming at groups of bubbles and letting it do its thing 
on its own once [they] got close enough” (P20-A). This emergence 
of a distinct strategy indicates that users are responding to the 
presence of assistance and adjusting their behavior to match. 

Guided autonomy. The guided autonomy condition was primar-
ily distinguished by participants emphasizing their lack of control 
over the popper and describing their struggles to �nd strategies that 
improve system performance. Participants described the system be-
havior as following the popper, claiming that “[i]t would completely 
disregard” their input (P13-GA) and wondering if “the robot might 
just be doing it all by itself” (P4-GA). Some participants thought that 
providing any random input helped, saying that “[i]t just found the 
circles on its own as long as I was pressing buttons” (P11-GA) and 
that they “didn’t really even think of which key I was even pressing” 
(P2-GA). Participants explicitly rejected strategies developed for 
other conditions: “Initially, I tried to use my old strategy but then 
I realized that I was not in control” (P17-GA);“I just tried to aim 

Figure 6: Total angular distance traveled by the control in-
put during each game. Participants who changed their con-
trol input direction rapidly covered larger angular distances, 
whereas participants who provided minimal input or who 
rarely changed input direction had smaller total distances. 
Starting or stopping control incur a distance of c/4, the same 
as transitioning between adjacent control directions. 

like last time but I devolved to mashing the arrow keys and it got 
everything” (P5-GA). Other participants provided minimal input to 
the system, saying they “basically did almost nothing except maybe 
press a button every once in a while” (P8-GA) or “allowed the robot 
to play the game until it was too far away from the balls to make 
a decision and then [they] sent it in the right direction” (P9-GA). 
Participants noticed that the system was less responsive to their 
input and developed new, often arbitrary, strategies in the hope 
that their inputs would improve the system performance. 

Overall, participants report that they can identify di�erences in 
the system behavior in di�erent assistance conditions and that they 
change their strategies to match, supporting H2. 

3.5.4 Input Behavior Matched Reported Strategies. In their responses, 
participants claim to notice changes in system behavior and develop 
new strategies in response. Here, we show that these changes in 
strategy corresponded to measurable changes in input behavior. 

We visualize the input behavior of all participants in all con-
ditions in Fig. 5. General condition-dependent trends appear in 
the visualization. Most notable, the guided autonomy condition 
is characterized by substantial periods of constant input behavior, 
matching the random control strategies asserted by participants. The 
di�erence in input behavior between direct control and assistance 
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is more subtle, but direct control seems to show more rapid changes 
in control direction and fewer periods of no control applied. 

We can further characterize these di�erences by comparing how 
much participants changed their control input direction within each 
trial. From the qualitative results above, participants in the direct 
control condition believed the score depended strongly on their own 
input behavior and developed strategies to maximize their score; 
we might, therefore, expect to observe many rapid changes in input 
direction to precisely target bubbles. In the assistance condition, 
participants reported using high-level, general control behavior 
and leaving the �ne motion to the assistance, which might lead 
to less overall rate of change in the direction of input. The guided 
autonomy condition led to participants controlling randomly by 
selecting a single key to hold down or providing minimal input, 
which should lead to the least total change in input direction. 

Indeed, we �nd in Fig. 6 that the total distance traveled in angle of 
input control direction varied signi�cantly by condition. Using a re-
peated measures ANOVA, we �nd a signi�cant main e�ect of condi-
tion (� (2, 46) = 19.44, ? < 10�6), with post-hoc signi�cance found 
for all pairs of conditions using a paired t-test with Holm-Bonferroni 
correction: direct control and assistance (C (23) = 3.12, ?corr < 0.02), 
direct control and guided autonomy (C (23) = 3.51, ?corr < 0.001), 
and assistance and guided autonomy (C (23) = 4.50, ?corr < 0.0002). 
This exploratory analysis suggests that the reported strategies were 
not merely a rationalization of identical behavior. Instead, the di�er-
ent strategies reported by participants led to measurably di�erent 
control input behavior, further validating that participants indeed 
responded di�erently to di�erent assistance behavior. 

4 “ASSISTED” GRASPING STUDY 
To understand people’s adaptation to shared control and validate 
that our results hold in interactions with a physical robot, we con-
ducted a public-space study with a robot arm in a pickup task 
with shared control. Unlike in the previous study, however, the 
“assistance” was tuned to be e�ectively adversarial: the assistive 
algorithm did not know about the the user’s actual goal. If people 
were not aware of the “assistance” and operated the robot as if 
in direct control, it would be impossible to complete the task: the 
“assistance” would drive the robot further from the goals, and users 
would not be able to compensate for the changes. However, we �nd 
that users succeed in the task despite the presence of the adversarial 
dynamics, which is only possible because users do perform this 
compensatory adjustment. Furthermore, users explicitly strategize 
about how to adapt their control behavior to these new dynamics 
(as in the previous study) and show an increase in performance 
with more experience with the robot, which further demonstrates 
the presence of this reactive adjustment. 

4.1 Task 
Data collection for the study was performed in a public space over 
a single day. The robot was set up on a table in a public walkway 
and passersby were invited to participate. Participants controlled a 
Kinova Gen3 Lite robot arm to pick up one of two candy-�lled cups 
on a table. The robot started above the cups with its gripper pointed 
downward. Participants controlled the G-~ motion of the robot 
along with a con�icting “assistance” system. When participants 

pressed a button on the controller, the robot transitioned to the 
second stage and began moving steadily downward towards the 
cups in addition to maintaining the previous G-~ control. Once the 
robot reached a �xed height, the gripper closed. If the robot was 
lined up successfully during the downward motion, it grasped one 
of the cups and the trial was considered a success; if neither cup 
was grasped, it was a failure. The robot performed an autonomous 
pouring motion, then the robot and cups were reset. 

4.2 Procedure 
Participants �rst provided consent and completed a demographic 
survey on an experimenter-provided laptop, then waited for the 
robot to become available. Next, they were introduced to the robot, 
the task, and its controls. They performed eight trials in two sets of 
four each (without a practice period), then completed the survey 
by answering two qualitative questions and providing an email ad-
dress for compensation. The entire interaction took approximately 
10 minutes, excluding wait time for the robot. Participants were 
compensated with $3.50 Amazon gift cards. As an additional incen-
tive, the cups were �lled with candies of the participant’s selection. 
When the cup was successfully grasped, the robot poured out the 
candy and the participant kept it. The study protocol was approved 
by the university’s institutional review board. 

Participants performed two sets of four trials each. The �rst 
four trials occurred at the baseline di�culty level, described below. 
After those trials were complete, the di�culty level was changed 
based on the participant’s number of successes during the �rst 
set. If the participant succeeded on 0 or 1 trial, the second set of 
trials was performed in the easier di�culty level; if they succeeded 
on exactly 2 trials, the assistance was maintained at the baseline 
di�culty level; and if the participant succeeded on 3 or 4 of the 
trials, they next experienced the harder di�culty level. Adjusting 
the level of di�culty of the task helped to compensate for the large 
variance in participants’ initial levels of skill at controlling the 
robot. Tuning the task di�culty level to more closely match the 
participant’s initial skill made the study success rate more sensitive 
to how participants adapted with more experience. 

In addition to these modi�cations to assistance parameters, the 
“goal” locations varied between participants and set of trials. In all 
trials, the assistance used three “goal” con�gurations positioned in 
a triangle around the workspace, with the cups in the interior of 
the triangle. There were four goal con�gurations, corresponding to 
the direction that the triangle pointed: up, down, left, right. The 
goal con�guration for the �rst set of trials was block-randomized 
between participants. For the second set of trials, the goal con�gu-
ration was inverted relative to the �rst set. An overhead view of 
the interaction appears in Fig. 7. 

4.3 “Assistance” system 
The G-~ motion of the robot was determined using the participant’s 
raw input data via the shared autonomy assistance described in 
Sec. 2.2. However, unlike in the previous study, the “assistance” 
system directed the users to “goals” composed of arbitrary points 
in space and not located above the cups. In this scenario, the “assis-
tance” signal draws the robot away from the cups, so the user must 
overcome the dynamics of the “assistance” to achieve their goal. 
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Figure 7: Overhead view of robot in the claw game interaction. 
A user controlled a Kinova Gen3 Lite robot to pick up one 
of two cups, despite “assistance” that drove them away from 
the cup locations. 

To compute the assistance, we set the reward function of each 
goal to A6 (G, 0) = �U if |6 � G | > ⇡ or � U |6 � G | otherwise. This⇡ 
piecewise linear reward function matches the one used in Javdani 
et al. [14] and helps align the robot more precisely with the goal 
location when it is nearby. The scaling parameter U controls the 
overall robot speed. We set ⇡ = 5cm experimentally. 

4.4 Di�culty levels 
Participants could experience three di�erent task di�culty levels, 
set by adjusting the arbitration parameter W and the reward scaling 
parameter U . 

Baseline. In this level, the arbitration parameter W was set to 0.5, 
which causes the same behavior as the assistance condition in Study 
1. The robot speed remained nominal at U = 0.5. 

Easier. To make the control easier, the arbitration parameter was 
changed to W = 0.8, so that the user input contributed more to the 
�nal motion than the assistance did. In addition, the overall robot 
speed was halved, so U = 0.25. 

Harder. For participants who achieved success in the �rst set of 
trials, the arbitration parameter was lowered to W = 0.2, so that the 
user input has less direct impact on the robot motion. In addition, 
the overall speed was scaled up by a factor of 1.5, making U = 0.75. 

4.5 Hypotheses 
H1. Users will succeed on the task despite the presence of adver-

sarial “assistance”. If users tried to control the robot directly and 
did not adapt to the unexpected dynamics, the “assistance” would 
drive the robot away from the goal and make the task very di�cult. 
The fact that users can succeed means they must be adapting to 
the assistance dynamics. 

H2. Users will report explicitly reasoning about how the system 
works and strategizing about how to control it. 

H3. User success rates will increase as they perform more trials at 
the same di�culty level. An increase in success rate with experience 
can only occur if users are changing their policies over time, which 
is inconsistent with the assumption of stationary control behavior. 

4.6 Results 
4.6.1 Participants. Over the course of 6.5 hours, 35 participants 
were recruited to interact with the robot. 5 interactions were dis-
carded due to data quality or study performance issues, leading 
to N=30 overall participants. Participant demographics largely re-
�ected the university setting of the study. 13 were male, 15 female, 
and 2 unspeci�ed. 21 were aged 18-24, 7 aged 25-34, 1 aged 35-44, 
and 1 65 or older. Almost all participants (26) were students; others 
included 1 professor and 3 sta� members. Computer science was the 
primary area of study (16), and the remaining participants studied 
technical �elds except for 2 art students. 1 reported playing video 
games daily; 5, weekly; 5, monthly; 10, rarely; and 9, never. 

4.6.2 Overall Performance. Success rates on the task demonstrate 
that it was possible for users to control the robot and achieve their 
goals. Over each participant’s �rst sets of trials, which all occurred 
in the baseline di�culty level, participants successfully grasped a 
cup in 42/120 (35%) of trials, and successful trials took an average of 
29.9 seconds. After the �rst set, participants performed a second set 
in the easier, baseline (again), or harder di�culty level depending 
on their performance in the �rst set. 16/30 (53.3%) of participants 
succeeded on fewer than two trials, so their second set was per-
formed in the easier di�culty. They succeeded in 61/64 (95.3%) of 
trials, and successful trials took an average of 10.6 seconds. 9/30 
participants (30%) succeeded twice in the �rst set and continued 
in baseline di�culty, during which they succeeded in 16/36 trials 
(44.3%) and took an average of 14.9 seconds on successful trials. The 
remaining 5/30 participants (16.7%) succeeded on three or more 
trials in the �rst set, so they transitioned to the harder di�culty 
level. Over their second sets of trials, they succeeded in 10/20 (50%), 
and successful trials took 26.4 seconds on average. The highest 
performing participant overall succeeded in 7/8 trials. 23/30 partici-
pants (77.7%) succeeded at least once in the �rst set of trials, and all 
participants succeeded in at least one trial among both of their sets. 

The success rates in the task show that users can perform this 
robot control task despite the con�icting assistance. While success 
rate varied widely among participants, even the lowest-performing 
participants succeeded in at least one trial. This �nd supports H1 
and provides evidence that participants must be using control strate-
gies other than what would be appropriate for direct control. 

4.6.3 Participants Use Concrete Strategies. Next, we consider how 
participants explain their own strategies to accomplish the task. 
After participants �nished both sets of trials, they answered two 
open-response questions taken from the the �rst study: 

(1) How much do you feel the robot’s ability to complete the 
task depended on your input? 

(2) What strategies did you use when controlling this system? 
Reviewing user responses suggests that several participants tried 

to stabilize the robot above the cup before initiating downward 
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motion so that they needed to provide minimal control as the cup 
descended. For example, P29 reports that “I sort of just hover the 
claw above the cup and then initiate the drop and make slight ad-
justment[s] along the drop.” This strategy takes advantage of stable 
points in the combined dynamics of the robot and the assistance, 
explicitly described by P9 (“[I] tried to stabilise [the robot] in a 
position”) and P33 (“I was usually able to get [the robot] positioned 
well enough that, even when the robot shifted as it descended, I 
didn’t need to touch the analog stick.”). These stable points were not 
an explicit design objective of the assistance; instead, they emerged 
from the coupled dynamics between the assistance and the under-
lying system behavior. Users were sensitive enough to the behavior 
of the system to identify these stable points intuitively. 

In addition, some participants report providing exploratory in-
puts to the robot to understand its dynamics before controlling it: “I 
�rst tried moving the arm around with the joystick to try to under-
stand how it responded to input” (P20). These exploratory actions 
are inconsistent with goal-directed models of user input, and mis-
interpreting motion as goal-directed can derail certain assistance 
systems completely [2]. Participant descriptions of their own strate-
gies not only support H2, but they motivate further examination 
of the user experience in controlling an assisted system. 

4.6.4 Success Increases With Experience. Finally, we consider if 
user performance on tasks increased with experience. To control 
for participant skill and adjusted di�culty levels, we count the 
number of successful trials in the early part of each participant’s 
sets, i.e., trials 1, 2, 5, and 6. We compare this count to their number 
of total successes in the later half of each set, comprising trials 3, 4, 
7, and 8. We �nd that 4 participants succeed one fewer time; 13 par-
ticipants succeeded the same number of times; and the remaining 
13 succeeded an additional time. A paired t-test shows a signi�cant 
di�erence between the number of successes (C (29) = 2.34, ? < 0.03), 
with a mean increase in the number of successes of 0.3 (95% CI: 
[0.038, 0.56]). These results provides evidence that success rates 
increased with experience, supporting H3. 

5 DISCUSSION AND CONCLUSION 
In this paper, we show that users change their control input in the 
presence of automated assistance. When the assistance is useful, 
participants describe how they learn the new system behavior 
and strategize about how to best take advantage of it. When the 
assistance con�icts with user objectives, users can override the 
“assistance” to accomplish the task. These �ndings motivate future 
investigations into how users respond to the presence of assistance. 

Furthermore, these �ndings suggest a new, user-centered ap-
proach to analyzing assistance systems. Rather than optimizing 
over nominal user input behavior, future work can explicitly con-
sider the system from the user’s perspective. To the user, the assis-
tance acts as a separate dynamical system coupled to the underlying 
system, not unlike how virtual �xtures [21, 29] introduce stabiliz-
ing “forces” around particular locations or motions. Unlike virtual 
�xtures, though, the assistance can take advantage of known task 
models and task switching dynamics. User-centered assistance acts 
by changing the system dynamics to ones that a user can better 
understand and control to accomplish their tasks. 

Several design implications result from this user-centered per-
spective on assistance. For example, complex assistance systems 
face a tradeo� between the increased task modeling power they 
provide and the decreased ability of users to understand their dy-
namics and control the entire system optimally. It is important for 
the goal prediction system not only to be capable, but to be inter-
pretable, so that the entire system is transparent to the user [1]. 
Further, the requirement of a perfect, complete task model may 
be lessened: the system can rely on the user’s expertise for some 
parts of the task, thus reframing the assistance as collaboration. 
This perspective also allows researchers to investigate the coupled 
system via system analysis techniques, e.g., measuring how quickly 
the system reacts to a change in the user’s goal or if the assistance 
introduces new stable states, as were found by users in the second 
experiment. Demonstrating that users can take an active role in 
controlling assistive systems is foundational to this user-centered 
perspective on assistance design. 

One limitation of this work is that the tasks that users performed 
are particularly simple, so this ability of users to adapt may not 
transfer to more complex tasks. Simple tasks were used here so that 
participants could learn how the systems behaved and change their 
input strategy within short interactions, so these results cannot 
prove that users adapt to assistance in all tasks. However, user 
adaptation is compatible with the increases in performance found 
with automated assistance, and cooperative adaptation may even 
make the assistance more e�ective than if the user policy remained 
stationary. Future work can examine how users respond to more 
complex assistance systems in more sophisticated tasks. 

Another limitation that pertains especially to the second study is 
that the level of di�culty of the task, and the amount of experience 
participants had with the task before operating the robot, was not 
tightly controlled. While conducting the study in a public space 
substantially improved recruitment, participants often watched 
other people controlling the robot before they began, which may 
a�ect how they responded to the assistance. In addition, the ease 
of the easier di�culty level meant that participants had a near-
perfect success rate, so improvement with experience was di�cult 
to measure. This study is best understood as demonstrating that 
participants can override con�icting assistance to accomplish their 
goals rather than precisely characterizing this adaptation. 

In this paper, we show that users respond to the presence of goal-
directed assistance by learning how it works and adapting their 
control inputs to achieve their goals. Users adjust their performance 
to collaborate more e�ectively with assistance that shares their 
goals and to compensate for “assistance” that makes their goals 
harder to achieve. This variation in user behavior does not need to 
be rejected as noise that degrades the performance of an optimal 
assistive system. Rather, treating users as intentional agents opens 
up new ways of developing and evaluating goal-directed assistance 
systems: the future of assistance is collaborative. 
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