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ABSTRACT

Recent years have seen intense interest in the development of point-of-care nucleic acid
diagnostic technologies to address the scaling limitations of laboratory-based approaches. Chief
among these are combinations of isothermal amplification approaches with CRISPR-based
detection and readouts of target products. Here, we contribute to the growing body of rapid,
programmable point-of-care pathogen tests by developing and optimizing a one-pot NASBA-
Cas13a nucleic acid detection assay. This test uses the isothermal amplification technique
NASBA to amplify target viral nucleic acids, followed by Cas13a-based detection of amplified
sequences. We first demonstrate an in-house formulation of NASBA that enables optimization of
individual NASBA components. We then present design rules for NASBA primer sets and
LbuCas13a guide RNAs for fast and sensitive detection of SARS-CoV-2 viral RNA fragments,
resulting in 20200 aM sensitivity. Finally, we explore the combination of high-throughput assay
condition screening with mechanistic ordinary differential equation modeling of the reaction
scheme to gain a deeper understanding of the NASBA-Cas13a system. This work presents a
framework for developing a mechanistic understanding of reaction performance and optimization
that uses both experiments and modeling, which we anticipate will be useful in developing future

nucleic acid detection technologies.
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INTRODUCTION

The past several years have seen a surge of interest in developing point-of-care (POC) nucleic
acid diagnostic technologies'™®. This was motivated by the SARS-CoV-2 pandemic and public
health emergency, which highlighted the challenges of scaling laboratory-based testing capacity
to scales necessary to monitor a global pandemic®. Although the current gold standard for
pathogen testing, reverse transcription—polymerase chain reaction (RT-PCR), is sensitive and
reliable, it necessitates technical expertise, centralized laboratory facilities and multiple reaction
steps performed at different temperatures”®. For these reasons, RT-PCR struggles to meet
surges in demand and is not suitable for accessible, cost-effective, and distributed POC nucleic
acid diagnostic technologies. As such, there is a recognized need for pathogen diagnostic tests
that can be implemented outside of a laboratory setting and produce results with minimal human

intervention, simple protocols, and reduced equipment.

This need has been widely recognized, resulting in POC pathogen tests that provide decreased
time to readout and fewer reaction steps. These POC pathogen tests generally involve two steps:
(1) isothermal amplification of specific pathogen nucleic acid sequences and (2) detection of the
amplified sequences. Among isothermal amplification methods, loop-mediated isothermal
amplification (LAMP)° and recombinase polymerase amplification (RPA)"® have been used

extensively in conjunction with detection techniques such as lateral flow assays®'", colorimetric
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assays'?, fluorescent readouts and next-generation sequencing'®. Additionally,

amplification-free detection methods such as clustered regularly interspaced short palindromic

repeats (CRISPR)-Cas based detection'® and antigen-based tests have been distributed for rapid
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screening'”°. Mobile-based devices and a “suitcase testing lab” also have been developed to

improve portability and minimize subjective interpretation in analyzing test results'®2°2",



Here, we contribute to the growing body of POC tests by developing a diagnostic test that detects
specific RNA sequences and produces a fluorescent readout. In contrast to prior work, we used
nucleic acid sequence-based amplification (NASBA)?? to isothermally amplify a target RNA.
NASBA uses three enzyme components—reverse transcriptase (RT), RNase H, and T7 RNA
polymerase (RNAP)—to amplify a target RNA based on supplied single-stranded DNA (ssDNA)
primers. RT and RNase H convert input single-stranded RNA (ssRNA) into T7 promoter-
containing double-stranded DNA (dsDNA), which is transcribed by T7 RNAP into an activator
RNA. The activator RNA serves as an input to the cycle, promoting exponential amplification. The
activator RNA is also detected by CRISPR-Cas13a, an RNA-guided and RNA-activated

ribonuclease®?* that has been used in other nucleic acid detection strategies'?°.

Upon
recognition of the activator RNA by the designed Cas13a guide RNA (gRNA), Cas13a
indiscriminately cleaves uracil residues in an ssRNA-based reporter to generate fluorescence*
(Figure 1A). This system can be reconfigured to detect different RNAs simply by modifying the
primers and gRNA. We chose NASBA because of its lower operating temperature (37~41°C)?*22¢
compared to LAMP (60~65°C)°, its low cost compared to RPA%, and its off-patent status,
potentially allowing for rapid innovation and adoption, as well as distributed manufacturing of

reaction components?’. The lower operating temperature also could make it more amenable than

other technologies to POC uses.

We chose to develop the system in the context of detecting specific sequences of the SARS-CoV-
2 genome, and also demonstrated that the device can be used to detect the plant virus cucumber
mosaic virus (CMV) in plant lysate. We first demonstrate that NASBA-Cas13a can be performed
in a one-pot isothermal reaction using Leptotrichia buccalis (Lbu) Cas13a. We then develop an
in-house reaction formulation that provides flexibility for optimization by adjusting individual
components and their concentrations. With the in-house formulation, we identify design rules for

NASBA primer sets, as well as LbuCas13a gRNAs, to achieve efficient and sequence-specific



detection of target RNAs. We next used mechanistic modeling of NASBA-Cas13a to better
understand this system. We reasoned that the use of the well-characterized processes of reverse
transcription, transcription, and nuclease activity would make the combined NASBA-Cas13a
reaction scheme amenable to mechanistic modeling, which we used to explore design principles
of the system. We constructed an ordinary differential equation (ODE) mechanistic model
describing the core reaction scheme processes, as well as potential off-target reactions that could
occur in a one-pot formulation. The use of a high-throughput acoustic liquid handling instrument
enabled the generation of a large training dataset that was used with the Generation and Analysis
of Models for Exploring Synthetic Systems (GAMES)?® framework to develop and train the model.
We found that the variability of the high-throughput generated data created challenges to model
building. However, we were able to extract non-intuitive principles related to reaction inhibition
due to high concentrations of certain enzyme species. The introduction of empirical heuristics was
necessary to recapitulate measured trends, pointing to potentially unknown biochemical
mechanisms at play in one-pot reaction formulations. Finally, we explore reaction optimizations

and show the ability to detect hundreds of aM of the SARS-CoV-2 genomic sequence.

This study provides an additional technique to the repertoire of nucleic acid detection technologies
and sets the stage for combining high-throughput experimental screening of reaction conditions

with mechanistic modeling to drive further innovation of these technologies.



MATERIALS AND METHODS

Bacterial strains and growth medium

E. coli strain K12 (Turbo Competent E. coli, NEB #C2984) was used for cloning. E. coli strain
Rosetta 2(DE3)pLysS (Novagen #71401) was used for recombinant protein expression. Luria
Broth supplemented with the appropriate antibiotic(s) (100 pg/mL carbenicillin, 100 pg/mL

kanamycin, and/or 34 pg/mL chloramphenicol) was used as growth medium.

Plasmids and genetic parts assembly

DNA oligonucleotides for cloning and sequencing were synthesized by IDT. NASBA primers were
ordered PAGE-purified to minimize any off-target NASBA products. Genes encoding gRNAs and
SARS-CoV-2 and CMV input RNA fragments were synthesized either as gBlocks or Ultramers

(IDT). A plasmid for expressing LbuCas13a was obtained from Addgene (#83482).

Transcription templates for expressing gRNA variants and SARS-CoV-2 or CMV input RNA
fragments were generated by PCR (Phusion high-fidelity PCR kit, NEB #E0553) of the gBlock or
Ultramer template that included a T7 promoter and the gRNA or input RNA coding sequence. For
the gRNA-expressing templates, an additional cis-cleaving Hepatitis D ribozyme and an optional
T7 terminator were included on the 3’ end of the gRNA coding sequence. We define the T7
promoter as a minimal 17 base pair (bp) sequence (TAATACGACTCACTATA) excluding the first
G that is transcribed. PCR-amplified templates were purified (QlAquick PCR purification Kkit,
Qiagen #28106) and verified for the presence of a single DNA band of the expected size on a 1%
TAE-agarose gel. DNA concentrations were measured using a Qubit dsSDNA BR assay kit
(Invitrogen #Q32853). Plasmids and DNA templates were stored at 4°C. Oligonucleotides and

primers are listed in Supplementary Data 1.

RNA expression and purification



Guide RNAs were expressed from a transcription template encoding a 3' cis-cleaving Hepatitis D
ribozyme (Supplementary Data 1) using overnight IVT at 37°C with the following components:
IVT buffer (40 mM Tris-HCI pH 8, 8 MM MgCl., 10 mM DTT, 20 mM NaCl, and 2 mM spermidine),
11.4 mM NTPs pH 7.5, 0.3 U thermostable inorganic pyrophosphatase (NEB #M0296S), 100 nM
transcription template, 50 ng T7 RNAP, and MilliQ ultrapure H>O to a total volume of 100 pL.
Overnight reactions were ethanol-precipitated and purified by resolving on a 15% urea-PAGE-
TBE gel, isolating the band of the expected size (~60 nt) and eluting at 4°C overnight in MilliQ
ultrapure H-O. Eluted gRNAs were ethanol-precipitated, resuspended in MilliQ ultrapure H-O,
quantified using a Qubit RNA BR assay kit (Invitrogen #Q10211), and stored at —20°C. The SARS-
CoV-2 and CMV input RNA fragments used in Figure S3 (which did not contain the ribozyme

sequence) were expressed and purified as described above.

LbuCas13a expression and purification

LbuCas13a expression and purification was carried out as described previously® with minor
modifications. The LbuCas13a expression plasmid (N-terminally tagged with a Hise-MBP-TEV
cleavage site) was transformed into Rosetta 2(DE3)pLysS E. coli. A 4 L cell culture was grown in
Luria Broth at 37°C, induced with 0.5 mM of IPTG at an optical density (600 nm) of ~0.5, and
grown overnight at 16°C. Cultures were pelleted by centrifugation (4,000 x g) and resuspended
in lysis buffer (50 mM Tris-HCI pH 7, 500 mM NaCl, 5% glycerol, 1 mM TCEP, and EDTA-free
protease inhibitor (Roche)). Resuspended cells were lysed on ice through ultrasonication, and
insoluble materials were removed by centrifugation. Clarified supernatant containing LbuCas13a
was purified using His-tag affinity chromatography with a Ni-NTA column (HisTrap FF 5mL
column, GE Healthcare Life Sciences) followed by size exclusion chromatography (Superdex
HiLoad 26/600 200 pg column, GE Healthcare Life Sciences) using an AKTAxpress fast protein
liquid chromatography (FPLC) system. The Hiss-MBP tag was removed from the eluted fractions

by adding Hiss-tagged TEV protease in 2 L cleavage buffer (50 mM Tris-HCI, 250 mM NaCl, 1



mM EDTA, 1 mM TCEP, 5% glycerol) at 37°C for 1 h and then at 4°C overnight. The TEV-cleaved
LbuCas13a was buffer-exchanged at 4°C into 3 L of the final storage buffer (20 mM Tris-HCI pH
7, 200 mM KCI, 5% glycerol, 1 mM TCEP), which was split into three 1 L buffers that were
swapped out every 30 min. The Hiss-tagged TEV protease was removed by reloading the fractions
onto a Ni-NTA column (HisTrap FF 5mL column, GE Healthcare Life Sciences) and collecting the
fractions from a 5% imidazole wash. Protein concentrations were determined using a Qubit
protein assay kit (Invitrogen #Q33212). Protein purity and size were validated on an SDS-PAGE

gel (Bio-Rad Mini-PROTEAN TGX and Mini-TETRA cell). Purified proteins were stored at —80°C.

NASBA-Cas13a with commercial NASBA reactions

NASBA-Cas13a reactions depicted in Figure S2 were performed using the commercial NASBA
Liquid kits from Life Sciences Advanced Technologies Inc. (SKU #NWK-1). 3X Reaction Buffer
and 6X Nucleotide Mix were combined with 250 nM of primer each and the input viral RNA
template (PAGE-purified synthetic SARS-CoV-2 fragment or CMV-infected plant lysate) at varying
concentrations to a volume of 7.5 pyL to make 1.3X NASBA master mix. The master mix was
heated at 65°C for 2 min and cooled to 41°C for 5 min to facilitate binding of the primers to the
input viral RNA template. 2.5 uL of the Enzyme Mix and 10 yL of LbuCas13a cleavage reaction
mix (see In-house NASBA-Cas13a for details) were added to the master mix to initiate the
reaction, and fluorescence was monitored on a plate reader (see Plate reader quantification
and micromolar equivalent fluorescein (MEF) standardization for details). The final

concentration of each reaction component is listed in Supplementary Data 3.

In-house NASBA-Cas13a
An in-house NASBA-Cas13a reaction was prepared by combining three different reaction mixes
— NASBA master mix, NASBA enzyme mix, LbuCas13a cleavage reaction mix — that were

prepared separately to a final volume of 20 pL. The NASBA master mix was prepared by



combining the following components (listed at final concentration): NASBA reaction buffer (50 mM
Tris-acetate, 8 mM Mg-acetate, 75 mM K-acetate, 10 mM DTT, pH 8.3), 12 mM Tris-buffered
NTPs, 4 mM dNTPs (NEB #N0447L), 250 nM PAGE-purified forward and reverse primers, 5 mM
fresh DTT, 15% DMSO, and an input RNA at varying concentrations. This master mix was
incubated at 65°C for 5 min and cooled to 37°C to promote primer binding. In parallel with the
above steps, the LbuCas13a cleavage reaction mix was prepared by first incubating the gRNA at
95°C for 5 min and snap-cooling on ice. Then, the following components were combined (listed
at final concentration): cleavage buffer (40 mM Tris-HCI, 60 mM NaCl, 6 mM MgCl,, pH 7.3), 90
nM LbuCas13a, 45 nM gRNA, RNase inhibitor (Invitrogen #10777019), and 2.5 yM RNA reporter
(6’FAM-UUUUU-IABKFQ). The cleavage reaction mix was incubated at 37°C for ~10 min to
promote the complexing of LbuCas13a and gRNA. During these incubation steps, a NASBA
enzyme mix was prepared by combining the following components (listed at final concentration):
0.1 pg/uL BSA (NEB #B9000S), 5 U/uL T7 RNAP (NEB #M0460T), 0.0005 U/uL RNase H (NEB
#MO0297L), and 2.5 U/uL M-MuLV RT (NEB #MO0253L) unless indicated otherwise. Lastly, the
NASBA master mix, NASBA enzyme mix, and the LbuCas13a cleavage reaction were all

combined and mixed by gentle pipetting.

RNA extraction from NASBA

For RNA products in the gel image in Figure 1F, NASBA reactions were set up as described
above, followed by phenol-chloroform extraction and ethanol precipitation to remove any proteins.
Reactions were rehydrated in 1X TURBO™ DNase buffer with 2U TURBO™ DNase (Invitrogen
#QAM2238) to a total volume of 20 yL and incubated at 37°C for 30 min to remove any DNA
products generated during NASBA. Phenol-chloroform extraction followed by ethanol
precipitation was performed again to remove DNase, with rehydration in MilliQ ultrapure H-O.
Concentrations of extracted RNA products were measured using a Qubit RNA HS assay kit

(Invitrogen #Q32852), and they were stored at —20° C until analysis. PAGE analysis of extracted



RNA products used 10% urea-PAGE-TBE gels. Gels were imaged using a ChemiDoc™ Touch

gel imaging system (BioRad Image Lab Touch Software 1.2.0.12).

Sequential NASBA

Two separate reactions per RT were prepared for sequential NASBA reactions in Figure S3A.
First, all reactions were prepared by combining the following components (listed at final
concentration): NASBA reaction buffer (50 mM Tris-acetate, 8 mM Mg-acetate, 75 mM K-acetate,
10 mM DTT, pH 8.3), 1 mM dNTPs (NEB #N0447L), 250 nM of the first primer (IDT, PAGE-
purified), and 10 nM SARS-CoV-2 input RNA fragment (RNA expression and purification). The
reaction mixtures were incubated at 65°C for 2 min and cooled to 37°C to promote initial primer
binding. The first cDNA synthesis was initiated by adding 1 U/uL RT at final concentration (NEB
#MO0277L for AMV RT, NEB #MO0368L for ProtoScript Il RT, and NEB #M0253L for M-MuLV RT).
After 20 minutes of incubation at 37°C, 0.005 U/uL of RNase H (NEB #M0297L) was added to
each reaction to digest the input RNA fragment. After an additional 20 min of incubation at 37°C
for 20 min, one of the reactions was placed on ice to halt the reaction until further purification
(Reaction 1). 250 nM of the second primer (IDT, PAGE-purified) was added to the other reaction,
followed by a 40-minute incubation at 37°C to complete dsDNA synthesis (Reaction 2). Then, all
reactions were treated with 4 M NaOH at 95°C for 5 minutes to remove any residual RNA and
neutralized with HCI. Reactions were ethanol-precipitated, and DNA products were analyzed on

a 10% PAGE-TBE gel without denaturing agent.

For NASBA products indicated in Figure S3B and Figure S3C, two reactions were prepared by
combining the following components (listed at final concentration): NASBA reaction buffer (50 mM
Tris-acetate, 8 mM Mg-acetate, 75 mM K-acetate, 10 mM DTT, pH 8.3), 1 mM dNTPs (NEB
#NO0447L), 250 nM of the first primer (IDT, PAGE-purified), and 50 nM input RNA fragment (SARS-

CoV-2 fragment for b and CMV fragment for ¢). The mixtures were incubated at 65°C for 2 min
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and cooled to 41°C to promote the initial primer binding. Then, the first cDNA synthesis was
initiated by adding 0.5 U/uL AMV RT (NEB #MO0277L). After 30 min of incubation at 41°C, 0.005
U/uL RNase H (NEB #M0297L) was added to one of the reactions. The other reaction was placed
on ice to halt the first cDNA synthesis temporarily. After incubating for 20 min with RNase H at
41°C, 250 nM of the second primer (IDT, PAGE-purified) was added to both reactions, and the
mixtures were incubated for 30 min at 41°C to complete dsDNA synthesis. Then, all reactions
were treated with 4 M NaOH at 95°C for 5 minutes to remove any residual RNA and neutralized
with HCI. Reactions were ethanol-precipitated, and DNA products were analyzed on a 10%

PAGE-TBE gel without denaturing agent.

Plate reader quantification and micromolar equivalent fluorescein (MEF) standardization

A NIST traceable standard (Invitrogen #F36915) was used to convert fluorescence signal in
arbitrary units to micromolar equivalent fluorescein (MEF). Serial dilutions from a 50 uM stock
were prepared in 100 mM sodium borate buffer at pH 9.5, including a 100 mM sodium borate
buffer blank (12 samples in total). For each concentration, three replicates of samples were
prepared, and fluorescence was read at an excitation wavelength of 490 nm and emission
wavelength of 525 nm for 6-FAM (fluorescein)-activated fluorescence (Synergy H1, BioTek Gen5
v2.04). Fluorescence values for any fluorescein concentration in which a single replicate saturated
the plate reader were excluded from analysis. The remaining replicates were averaged at each
fluorescein concentration, and the average fluorescence of the blank was subtracted from all
values. To estimate a conversion factor, linear regression was performed for concentrations within
the linear range between the measured fluorescence values in arbitrary units and the
concentration of fluorescein. For each plate reader and gain setting, we estimated a linear
conversion factor that was used to convert arbitrary fluorescence values to MEF (Supplementary

Data 3).
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To characterize reaction kinetics, 19 pL reactions were loaded into a 384-well optically clear, flat-
bottom plate using a multichannel pipette and covered with a plate seal, and their signals were
measured via plate reader (Synergy H1, BioTek Gen5 v2.04). Kinetic analysis of 6-FAM
(fluorescein)-activated fluorescence was performed by reading the plate at 5-minute intervals with
excitation and emission wavelengths of 490 nm and 525 nm, respectively, for four hours at 37°C.
Arbitrary fluorescence units were converted to MEF using the appropriate calibration conversion

factor. No background subtraction was performed in the analysis of these reactions.

RNA structure prediction

Input viral RNA templates and gRNA secondary structures were predicted using RNAStructure®
and NUPACK?" at a temperature of 37°C with their respective default parameters. Both prediction
algorithms were used for all RNAs. If there was a discrepancy between the two predicted
structures, the secondary structure predicted with NUPACK was used since its default parameters

resemble the reaction conditions more closely.

High-throughput screening of NASBA-Cas13a reactions with an Echo liquid handling
platform

NASBA enzyme mixes testing different enzyme concentrations were constructed using a liquid-
handling robot (Beckman Coulter, Echo 550) as previously described (In-house NASBA-
Cas13a) with minor modifications to accommodate the requirements of the Echo platform. A 2
pg/uL BSA solution (in water) was transferred from a 384-well polypropylene 2.0 Plus Source
microplate (Beckman) using the 384PP_Plus_BP fluid type into a 384-well destination plate
(BioRad, HSP 3805) using the Echo 525 (Beckman Coulter). While the mixture was being
dispensed, NASBA enzymes were diluted to appropriate concentrations for the reaction
conditions to be tested onto a 384-well polypropylene 2.0 Plus Source microplate (Beckman).

Once the BSA—water mixture dispense was complete, NASBA enzyme dilutions from the source

12



plate were dispensed onto the same destination plate by the Echo 550 suing the 384PP_AQ_CP
fluid type. During the NASBA enzyme dispense, a NASBA master mix and a LbuCas13a cleavage
reaction mix were prepared following the In-house NASBA-Cas13a protocol. Once the NASBA
enzyme mix dispense was complete, the NASBA master mix and LbuCas13a cleavage reaction
mix were manually pipetted onto the destination plate using a multichannel pipette (Integra
Voyager). Then, the destination plate was sealed was loaded onto a plate reader (Synergy H1,
BioTek Gen5 v2.04), and the readout was measured (Plate reader quantification and

micromolar equivalent fluorescein (MEF) standardization).

Using this protocol, the following enzyme concentrations were tested: (1) 1, 5, and 20 U/uL T7
RNAP, (2) 0.5, 2.5, and 10 U/uL M-MuLV RT, and (3) 0.001, 0.005, and 0.02 U/uL RNase H. For
each of these concentrations, two concentrations of Cas13a-gRNA complex were tested: (2.25
and 45 nM) where Cas13a was added in two-fold molar excess of gRNA in the assembly step of
the LbuCas13a cleavage reaction mix (In-house NASBA-Cas13a). In addition, three SARS-CoV-
2 genome (input RNA) concentrations (0, 1, and 10 fM) were used to initiate reactions. Using this
screen setup, 162 triplicate reaction conditions were tested: (2 Cas13a-gRNA x 3 input RNA x 3
T7 RNAP x 3 M-MuLV RT x 3 RNase H) x 3 replicates = 486 reactions. Screening was performed
in two batches: one for conditions with 2.25 nM Cas13a-gRNA and the other for conditions with
45 nM Cas13a-gRNA. This screen setup was performed a total of three separate times (Echo

replicate 1, 2, and 3) for a total of 1,458 reactions.

Iterative model development and analysis
We performed iterative model formulation and parameter estimation based on a previously

described workflow for dynamic model development®®

. To initialize this process and set criteria
for success, we defined a set of qualitative modeling objectives (Table 1), chose a subset of the

data to use as training data for each of the three high-throughput screening experiments (Data
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Sets 1-3, in order of collection date) (Supplementary Data 3, Figure S6B), and formulated a
base case model. Next, we evaluated the parameter estimation method to ensure that the method
could identify the best possible parameter sets given the structure of the base case model and
each training data set (Note S2). This process serves as a positive control for parameter
estimation and ensures that the method used is implemented correctly and is appropriate for the
given parameter estimation problem. Then, we used the same parameter estimation method to
estimate parameters based on each of the training data sets independently. We inspected the
agreement between each experimental data set and the corresponding simulated values in the
context of the modeling objectives, proposed mechanistic updates intended to improve the
agreement when observations motivated such amendment, and mathematically implemented
these updates in a new model. We iterated this process until we identified a model that satisfied
all modeling objectives for each data set (Table 1, Figure 4 for Data Set 2, Figure S22 for Data

Set 1, and Figure S24 for Data Set 3).

Approximation of dynamics

Simulations were run using custom Python scripts (Python 3.9.12) and Python package SciPy’s*?
solve_ivp solver with the LSODA algorithm. The Jacobian matrix was provided and explicitly
calculated for each timestep, rather than relying on a finite difference approximation. Initially, we
used the default solve_ivp error tolerances (an absolute tolerance of 10 and a relative tolerance

of 10®) to run simulations.

Fluorescence data normalization

Raw fluorescence data (i.e., Data Set 2 in Figure 3), were normalized by the following method
for two reasons: (1) to enable comparison between the two batches of experiments performed on
different dates, and (2) to enable comparison between experimental observations and

simulations. Raw experimental fluorescence values were first converted to absolute units, MEF

14



(UM fluorescein), using the method described above (Plate reader quantification and
micromolar equivalent fluorescein (MEF) standardization). Then, the MEF value at each time
interval was normalized to the maximum value over the entire data set. An analogous
normalization was applied to each simulated data set in which each data point was divided by the

maximum value in the simulated data set.

Definition of training data for model development

We chose not to train the model on conditions including only background signal because Fmax
(maximum fluorescence) values for these conditions were generally below practical visibility. For
this reason, we omitted the conditions lacking input RNA and the conditions with low Cas13a-
gRNA from each training data set. We then selected a subset of conditions for model training from
each Echo replicate, consisting of concentration sweeps of one NASBA enzyme while holding
mid-level concentrations of the other two enzymes. For example, this selected subset includes
the conditions with 0.001, 0.005 and 0.02 U/uL RNase H, each with 2.5 U/uL RT and 5 U/uL T7
RNAP. These training data are referred to as Data Set 1, 2 and 3, corresponding to the three
runs of the Echo screen (Echo replicates) (Figure S6B). We chose to incorporate data from each
of the Echo replicates into the training data to gain a holistic, mechanistic understanding of the
system that could sufficiently recapitulate experimental observations despite variation between
experiments. The remaining data was held out for validation and are referred to as out-of-sample

from each Echo replicate.

Pre-processing of training data
We pre-processed the data to remove conditions for which there was low confidence due to high

measurement error. First, we calculated the mean proportion of measurement error p; for each

condition (set of unique enzyme concentrations) j, starting with Data Set 1:

15



Zdj Y
M (Equation 1)

pj = 7
Here, d; is the number of data points collected for each condition j, o; is the measurement error
(standard deviation) associated with data point i in condition j, and max(r;) is the maximum
readout value for condition j. The distribution of p; across all conditions (Figure S9A) indicated
that a small subset of conditions in Data Set 1 had high mean proportion measurement error (the

highest p; was nearly 0.80, or 80%). Including conditions with high measurement error can bias

parameters by fitting to random trends in noise instead of underlying biological mechanisms.

To determine which conditions to remove from the training data for Data Set 1, we investigated
the time course trajectory for each replicate in the NASBA enzyme sweeps, excluding conditions
for which input RNA = 0 or Cas13a-gRNA = 2.25 nM (Figure S9B). The condition with p; > 0.30
had one replicate with near-zero readout regardless of the time point, in contrast to the other
replicates in the condition, potentially suggesting an experimental error in implementing this
condition. Therefore, we chose to remove the condition with p; > 0.30 from the training data for
Data Set 1 (Figure S6B). We calculated the mean proportion error distributions for Data Sets 2
and 3 (Figure S9C,D, respectively), but there were no conditions with p; > 0.30 within the subset
of conditions used for the training data, so no conditions were removed from the training data for

either data set.

Cost function
The cost function, which calculates the agreement between experimental and simulated data,
was defined as the mean of squared error (MSE) evaluated between each normalized

experimental and normalized simulated data point. In the equation below, d is the total number of
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data points in the training data set, y,¢*" is the k' datapoint in the normalized experimental data,

and y, () is the normalized simulated value of the k™ datapoint using the parameter set 6.

d
MSE(®) == ) (57~ yi(6))? (Equation 2)
k=1

Cost function filter

We applied a cost function filter to remove from consideration any parameter sets yielding low
(desirable) cost function values that were undesirable for other reasons. We noticed that
parameter sets yielding very low simulated readout across all conditions were still able to achieve
low cost function values due to the maximum value-based normalization strategy that we used.
Therefore, we removed all parameter sets yielding maximum simulated fluorophore readout
values of less than 2000 nM, as we expect the maximum value in the experimental data set to be

at least on the order of ~2500 nM, which is the initial concentration of quencher-fluorophore.

Coefficient of determination
The coefficient of determination (R?) was used along with MSE to evaluate the goodness of fit

between simulated data and experimental data.

D=1 07 — v, (6))?
Yie=1 (7P =i (6))?

R?2(0) = 1- (Equation 3)

Here, d is the number of data points in the training data set, y,°*? is the k™ data point in the
normalized experimental data, y, () is the normalized simulated value of the k" data point using
the parameter set 8, and 7°*? is the mean of the training data set. R? is a more interpretable metric

than MSE because the magnitude of MSE values depends on many factors such as the number
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of data points®. Possible R? values span 0 to 1, with R? = 1 indicating perfect agreement between

the two data sets.

Parameter estimation method

A multi-start local optimization algorithm was used to estimate parameters (Figure S10A, Note
S3). First, a global search with nscarch total parameter sets was performed and the cost function
was calculated for each parameter set. The ninit parameter sets with the lowest cost function
values were used to initialize optimization runs using the Levenberg-Marquardt optimization
algorithm. The resulting parameter set with the lowest cost function value following optimization
was chosen as the best (i.e., calibrated) parameter set. This algorithm was implemented using

t34

custom Python scripts along with Python packages SALib*® for global search and LMFit** for

optimization.

While the default numerical tolerances kept computational time minimal, simulated concentration
values sometimes took negative values, which is an unphysical result due to numerical error. To
check whether estimated parameters were relatively insensitive to these errors, we reduced the
absolute tolerance to 107" and relative tolerance to 107°, reran the optimization using the same
parameters for initialization as in the default error tolerance runs, and found that the optimization
results were consistent when the cost function was low. When the model resulted in a poor fit to
the training data results were not always consistent, suggesting that the difference in the
parameters in these cases was a result of the model formulation. A representative example
comparing the time course trajectories with the default versus decreased ODE solver tolerances

for the final model for Data Set 2 is in Figure S25.

Parallelization of computational tasks
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Simulations were parallelized across eight independent cores (chosen based on the number of
cores available in the hardware used to run the simulations) to improve computational efficiency.

Parallelization was implemented using custom scripts and the multiprocessing package in Python.

Sensitivity analysis

We performed a sensitivity analysis on the calibrated parameters for the final model for each data
set to determine which parameters had the greatest impact on the simulated time course
trajectories and overall fit to experimental data. We independently varied each parameter by +
10% of the calibrated value and calculated the_ti2> (time to reach half-maximum readout), Fmax,
and MSE for each parameter variation. The percent change in each metric was calculated relative

to the metric for the calibrated parameter set to quantify the model’s sensitivity to each parameter.

Definition of test data

We selected five sets of test data for the final models trained on Data Set 1, 2, and 3, including
the training data from the other replicates generated with the Echo liquid handler. For example,
the test data for the final model trained on Data Set 1 includes the out-of-sample data from the
first Echo replicate (Figure S6B), training Data sets 2 and 3, and out-of-sample data from the 2"
and 3" Echo replicate. We used the final model for each data set to simulate time course
trajectories for each condition in the test data set, and calculated MSE and R? metrics to quantify

the fit.
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RESULTS

Screening of NASBA reverse transcriptases (RTs)

Before developing an in-house NASBA formulation, we used a commercial kit to assess the
feasibility of combining NASBA and CRISPR-Cas13a cleavage in a one-pot isothermal reaction
(Figure 1A, Materials and Methods). The NASBA primers targeted the genome of either SARS-
CoV-2 or cucumber mosaic virus (CMV)* (Supplementary Data 1) and were designed to yield
an RNA product complementary to the pathogen sequence (Figure S1). For reactions detecting
the SARS-CoV-2 genome (synthesized by TWIST, SKU 102019), we observed an input RNA
concentration-dependent effect on fluorescent signal (Figure S2A,C). We also tested for
detection of CMV genome from infected plant lysate and confirmed that the reaction can take

place in a complex matrix (Figure S2B,D).

For the SARS-CoV-2 detection reaction, we observed a substantial signal in the absence of the
input RNA (Figure S2C). Because it is difficult to pinpoint the source of leak with a commercial
kit, we developed an in-house formulation of NASBA (Materials and Methods). Among all the
NASBA components (RT, T7 RNAP, RNase H, primers and buffer composed of various salts),
we identified RT choice and primer design as important determinants of reaction functional
characteristics such as sensitivity, magnitude of fluorescence, and the time at which signal is
activated®. We tested several commercially available RTs: avian myeloblastosis virus (AMV)
RT, ProtoScript Il RT (a recombinant M-MuLV RT with reduced RNase H activity and increased
thermostability), and Moloney murine leukemia virus (M-MuLV) RT (Figure 1A)***°. When
NASBA-Cas13a was run using the same primer set and input RNA concentrations, an input RNA
concentration-dependent fluorescent signal was observed only with M-MuLV RT and not the other
RTs (Figure 1B—D). Additionally, the leak was diminished with in-house NASBA compared to the

commercial kit results.
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To further investigate the impact of RT choice and the presence of any off-target RT products that
might interfere with the reaction, we performed NASBA in two steps by staggering the addition of
the reaction components (Materials and Methods). Native PAGE analysis indicated that a high
molecular weight off-target dsDNA product formed during the double-stranding step with AMV RT
and ProtoScript Il RT (Figure S3A, Supplementary Data 2). We suspect that this off-target
dsDNA product might explain the absence of fluorescent signal with these RTs (Figure 1B,C). In
addition, this off-target product was favored in the absence of RNase H (Figure S3B), and the
same outcome was observed for reactions initiated with CMV as the input RNA (Figure S3C). On
the other hand, there was an off-target ssDNA product with M-MuLV RT that appeared during the
first cDNA synthesis step, as well as several off-target dsDNA products in the double-stranding
step (Figure S3A). These results suggest that the type of off-target NASBA products generated

depends on the choice of RT.

To minimize the presence of off-target products observed in Figure S3, we explored the use of
additional components in the NASBA buffer. Including DMSO substantially improved NASBA
efficiency (Figure S4A-D), presumably by increasing the specificity of the first primer binding*'*2.
Fresh DTT and BSA improved the efficiency as well, though less so than DMSO (Figure S4E—

H). In summary, NASBA and LbuCas13a-mediated cleavage are compatible in a one-pot format,

and the choice of RT and presence of DMSO are important determinants of reaction efficiency.

Screening of NASBA primer sets

Once we identified an in-house formulation of NASBA that effectively generates activator RNA
with little off-target products, we proceeded to design NASBA primers targeting different regions
of the SARS-CoV-2 genome. We considered two main factors in primer design: (1) the
directionality of the primer set and (2) the transcription efficiency of the DNA template generated

by reverse transcription. To the first point, we reasoned that a primer set with the T7 promoter
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incorporated through the reverse primer (in the first cDNA synthesis) should confer more efficient
amplification than one with the promoter incorporated through the forward primer. In the former
case, a single round of reverse transcription and double strand synthesis generates a DNA
template from which an antisense RNA is transcribed (Figure S1A), whereas in the latter, an
additional round of DNA synthesis is needed to create a double-stranded T7 promoter and DNA
template from which a sense RNA is transcribed (Figure S1B). To the second point, we designed
several primer sets that result in DNA templates with higher transcription efficiency by
incorporating an additional initiating guanine in the reverse primers*®. In all, there were eight
primer sets (Figure 1F). Primer Set 1 targets the gene encoding the S1 spike protein, Primer Set
2 targets the origin of replication, and the remaining sets (3—8) target various regions within SARS-
CoV-2 genome that are predicted to be conserved and unstructured**. In addition, for Primer Set
1 we designed two different versions targeting the same viral genome region but with opposite
primer directionality, so that one amplifies the antisense strand and the other amplifies the sense
strand. Of the remaining six sets targeting unstructured regions (Primer Sets 3-8), three are

intended to have high transcription efficiency (Primer Sets 6-8).

To test these primer sets, in-house NASBA was run with each set for 3 h using 0 or 20 fM synthetic
SARS-CoV-2 genome, and the final RNA products were extracted for urea PAGE analysis
(Figure 1F, Materials and Methods). We observed three types of outcomes: (1) no expected
RNA product (Primer Set 1 — sense; Primer Set 6); (2) the expected RNA product was generated
even in the absence of input RNA (Primer Set 1 — antisense; Primer Sets 4 and 5); or (3) the
expected RNA product was observed only with input RNA, with little or no off-target products
(Primer Sets 2, 3, 7, and 8). In the third category, Primer Sets 2, 7 and 8 had a prominent band
of the expected RNA product. This result indicates that primer sets targeting regions with low

predicted secondary structure and generating DNA templates designed for efficient T7
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transcription produced a large quantity of expected NASBA products only in the presence of input

RNA with little or no off-target products.

In summary, we showed that the directionality of the primer set and the sequence of the reverse

primer that impacts T7 transcription efficiency can impact NASBA amplification efficiency.

Optimization of LbuCas13a gRNAs

Once efficient NASBA primer sets were identified, we sought to investigate gRNA design
principles. Previous studies on Cas13-based detection assays have suggested gRNA design
principles that could impact assay performance including the number and location of mismatches
between gRNA and target RNA, the sequence of the protospacer-flanking site, and the secondary
structure of target RNAZ*%5*8_ To expand on these ideas, we screened a panel of LbuCas13a
gRNAs targeting each NASBA product. Based on the results in Figure 1F, we focused on the
products generated by Primer Sets 2, 7 and 8 for three reasons: minimal product without input
RNA; minimal off-target products with input RNA; and high-intensity expected RNA bands with

input RNA.

LbuCas13a complexes with gRNA by recognizing a short hairpin on the 5’ end of the gRNA,
followed by a 28-nt spacer that binds to an activator RNA. Previously, it was determined that the
structure of the activator RNA—the RNA product in this case generated by NASBA—can impact
cleavage efficiency®. Taking this into account, we analyzed predicted secondary structures of
each activator RNA and designed two to four gRNAs per activator RNA that target regions of
varying secondary structure. Each gRNA is named with two numbers: the first for the primer set
and the second for the gRNA variant, e.g., gRNA 2-1 refers to the first gRNA in the series

targeting the RNA product generated by Primer Set 2. When in-house NASBA-Cas13a was run
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with Primer Set 2 and each corresponding gRNA, the reactions with gRNA 2—-1 had low leak

(signal without input RNA), whereas those with gRNA 2-2 had high leak (Figure S5A,B).

We next screened gRNAs targeting the activator RNA generated by Primer Set 7 (Figure 2A,

Figure S5C). This activator RNA is predicted to form a four-way junction®>*'

, and we designed
four gRNAs targeting different regions of the junction: gRNA 7—1 binds to the first and the fourth
stems, gRNA 7-2 binds to the third stem, gRNA 7-3 binds to the third and the fourth stems, and
gRNA 7-4 binds to the second hairpin and the first stem. In NASBA-Cas13a with these gRNAs,
gRNA 7-1 and gRNA 7-2 generated a rapid input RNA-dependent signal and had low leak
(Figure 2B,C). gRNA 7-2 generated a signal sooner (and with a steeper slope) than did gRNA
7-1. On the other hand, gRNAs 7-3 and 7—-4 performed poorly: gRNA 7-3 conferred low
activation and gRNA 7—4 conferred high levels of leak (Figure S5C). The two gRNAs with high
leak (QRNA 2-2 and gRNA 7—4) contained sequences on their 3' ends that are complementary
to the forward primer, which we suspect could lead to interference with other NASBA reaction
components, as it was previously determined that the gRNA 3’ end resides outside of the central

channel within the NUC lobe of LbuCas13a*. It is unclear from this analysis what could cause

poor performance of gRNA 7-3.

We also designed three gRNAs to bind the activator RNA generated by Primer Set 8 (Figure 2E).
Activator RNA 8 is predicted to form a structure consisting of three hairpins, with the third hairpin
including single-stranded regions that are potentially accessible to the gRNA?*'. gRNA 8-1 was
designed to bind to the largest single-stranded region in the third hairpin, gRNA 8-2 to a smaller
region in the same hairpin and gRNA 8-3 to the second hairpin and the surrounding single-
stranded regions. As expected, the fastest signal activation was for NASBA-Cas13a with gRNA
8-1 (Figure 2F). NASBA-Cas13a with gRNA 8-2 targeting a smaller single-stranded region in

the same hairpin had much poorer performance, with a low endpoint fluorescent signal and worse
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sensitivity (Figure 2G). gRNA 8-3 also performed more poorly with a slower activation time than
gRNA 8-1 although it is designed to target the smallest hairpin with the lowest number of bps in

the activator RNA (Figure 2H).

Despite low NASBA efficiency, we also screened gRNAs targeting an activator RNA generated
by Primer Set 6 to determine whether the observed patterns were similar (Figure S5E).
Surprisingly, reactions with gRNA 6—1, which is designed to bind a long single-stranded bulge in
activator RNA 6, showed poor performance (Figure S5F). This observation contradicts the result
seen with gRNA 8-1, which also targets a long single-stranded region within Activator RNA 8 and
shows a fast detection time and rapid signal generation (Figure 2E,F). In addition, the gRNAs
targeting a stem loop in the activator 6 RNA (gRNA 6-2 and gRNA 6-3) performed better with
faster signal activation and higher endpoint fluorescence (Figure S5G,H). Finally, we tested a
gRNA that binds to an activator RNA generated by Primer Set 3 and observed a poor limit of
detection, potentially due to low NASBA efficiency (Figure 1F) and an incorrect hairpin structure

for complexing with LbuCas13a (Figure S5D).

Overall, the screen identified gRNA candidates that functioned well and could serve as useful
starting points for further optimization, and it revealed that factors such as local secondary

structure of the activator RNA and structure of the gRNA affect NASBA-Cas13a performance.

Creating a model-driven approach to explore NASBA-Cas13a assay development

Much of diagnostic assay development is done through laborious manual screening of reaction
conditions. The advent of new liquid handling instruments provides a way to explore larger spaces
of reaction parameters®, potentially enabling the training of computational models of reaction

mechanisms that could further facilitate exploration of reaction mechanism and optimization.
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We explored high-throughput screening in the context of the NASBA-Cas13a assay, focusing on
varying component concentrations as important parameters for reaction performance (Figure 3).
Using Primer Set 8 and gRNA 8-1, we designed a high-throughput screen of NASBA-Cas13a
reactions containing different concentrations of input RNA, RT, T7 RNAP, RNase H, and Cas13a-
gRNA (Figure 3). NASBA enzyme mix component combinations were dispensed via an Echo
liquid-handling robot, added to manually prepared NASBA master mix and LbuCas13a cleavage
reaction mix, and characterized through fluorescence measurement by plate reader (Figure 3A,

Figure S6A, Materials and Methods).

Towards the goal of generating a model to help interpret this high-dimensional data set, we
defined qualitative modeling objectives—observations that were representative of all three high-
throughput screening experiments—that a formal mathematical representation of this system
would need to recapitulate to be useful for guiding interpretation. We fit Hill functions to the time
course trajectories and extracted summary metrics: n (Hill coefficient with respect to time), ti
(time to reach half-maximum readout), Fo (initial fluorescence) and Fmax (maximum fluorescence)
(Figure 3B). Distributions of each summary metric across all conditions were used to define the
first three modeling objectives. Objective 1: each trajectory had a sigmoidal shape, as indicated
by strong agreement (R? > 0.95) between the trajectories and Hill function fits (Figure 3C, Figure
S22A, Figure S24A). Objective 2: plateaus in readout occurred at various times depending on
the condition, as indicated by a range of ti> values (Figure 3D, Figure S22B, Figure S24B).
Objective 3: the final fluorescent magnitude depends on the reaction condition, as indicated by a
range of Fmax values (Figure 3E, Figure S22C, Figure S24C). Conditions yielding Fmax ~0.10
generally corresponded to those lacking input RNA or with low Cas13a-gRNA (e.g., 2.25 nM).
Additional modeling objectives were formulated from qualitative observations of the trends in Finax
values as one NASBA enzyme concentration was varied and the other NASBA enzymes were

held at mid-level with Cas13a-gRNA at a high level (Materials and Methods — Definition of
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training data for model development). Observations include: the readout increased with
increasing RT (Figure 3F, Figure S22D, Figure S24D, Objective 4), increasing T7 RNAP
counterintuitively decreased the readout (Figure 3G, Figure S22E, Figure S24E, Objective 5),
and increasing RNase H had a non-monotonic effect on the readout, which increased from the
low to mid-range dose and decreased from the mid-range to high dose (Figure 3H, Figure S22F,
Figure S24F, Objective 6). It is unclear for Data Set 1 whether there is a non-monotonic
relationship between RNase H concentration and readout (Figure S22F) due to the experimental
error in the RNase H sweeps, but the trend was clear for Data Sets 2 (Figure S23F) and 3 (Figure

S24F).

Conditions with low Cas13a-gRNA had Fmax values similar to background, indicating no
substantial readout (Figure S8A-C). We therefore did not incorporate conditions with low input
RNA or low Cas13a-gRNA in the modeling objectives because both conditions yielded
experimental readout values that are below practical visibility (Materials and Methods). The

other metrics (n, Fo) (Figure S7) were not used to define modeling objectives.

Together, the six qualitative objectives defined features of the experimental data that we next
aimed to describe using a mathematical model to improve our understanding of the NASBA-
Cas13a reaction mechanisms by testing whether a proposed model structure is consistent with
these experimental observations. Ordinary differential equation (ODE) models are well-suited to
this task, as they describe the continuous, time-dependent evolution of component concentrations

such as in genetic systems®'°.

Identifying new putative mechanisms via model development
Our approach was to use iterative model formulation and parameter estimation (Materials and

Methods) to evaluate candidate models and arrive at a final model that satisfied all objectives
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and was in quantitative agreement with each training data set. We selected the conditions
representing all three Echo replicates (Data Set 1, 2, and 3) in Figure 3F-H, Figure S22D-F,
Figure S24D-F as training data, as these conditions incorporate information on each objective
(Figure S6B and Materials and Methods). Starting with a base case model (Figure 4A), we
estimated parameters and inspected whether the simulated values for the optimal parameter set
met the modeling objectives (Materials and Methods, Note S2, and Figure S10A). With the
base model, there was already strong agreement (R? > 0.95) between the simulated trajectories
and Hill fits, which indicated that each trajectory had a sigmoidal shape (Objective 1), and the
distribution of simulated t;» values indicated that plateaus in readout occurred at various times
(Objective 2) (Table 1, model A, and Figure S22A,B, Figure S23A,B, Figure S24A,B for the
final model). Although the fits for Data Sets 2 and 3 met Objective 1, they were visually less
sigmoidal than the fits to Data Set 1. To meet additional modeling objectives and improve the
visual fit, we refined our mechanistic descriptions, implemented each change as a new candidate
model, and repeated the parameter estimation and model evaluation. Next, we describe
observations and refinements in developing a model to fit the training data (Data Set 1, 2, and 3)

from Echo replicates.

The first mechanistic refinement was to describe a loss of Cas13a-gRNA indiscriminate ssRNase
activity over time. In the model A simulations, plateaus in readout (Frax) could occur only at the
maximum possible value, corresponding to cleavage of all available reporter molecules, which is
most evident in the fit to Data Set 1 (Figure S12). To enable a range of simulated Fpnax values
across reaction conditions, consistent with the experimental data (Objective 3), it was necessary
to implement a heuristic function for loss of Cas13a-gRNA indiscriminate ssRNase activity over
time (Table 1, model B, Figure 4B, right, and Note S1). The addition of this heuristic successfully
resulted in varying Fmax values. In addition, the simulated trajectories for RT in model B indicated

that increasing RT concentration increased readout, in agreement with Objective 4 (Table 1,
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Figure S15A, Figure S16A, Figure S17A). However, the fits for Data Sets 2 and 3 remained
visually less sigmoidal than those for Data Set 1 (Figure S16 and Figure S17). The lack of
improvement could be due to higher average experimental error in Data Sets 2 and 3 and a more
complex, clearly non-monotonic relationship between RNase H concentration and readout,
compared to Data Set 1. The need to account for deactivation of indiscriminate ssRNase activity
to yield simulations that are consistent with experimental data suggests a previously unconsidered
potential mechanism affecting the performance of the diagnostic. Additionally, this hypothesis
suggests that selecting a different Cas13a-gRNA that deactivates over longer timescales could

improve the system.

To match the experimentally observed increase of readout with decrease of T7 RNAP
concentration (Objective 5) and non-monotonic readout with varying RNase H concentrations
(Objective 6), we revised the mechanistic descriptions of T7 RNAP and RNase H function.
Initially, simulations of models A and B indicated that increasing T7 RNAP concentration should
increase readout (violating Objective 5). To achieve an increase in readout with decreasing T7
RNAP concentration (and satisfy Objective 5), it was necessary to implement another heuristic
function for a negative relationship between kun, vase (the rate constant for T7 transcription of
activator RNA) and initial T7 RNAP concentration (Table 1, model C, Figure 4B, middle, and
Note S1). This description is plausible, as excess T7 RNAP can inhibit transcription and decrease
product yield>®. Simulations of models A, B, and C also indicated that increasing RNase H
concentration should increase readout while experimental results showed non-monotonic
behavior (violating Objective 6). To achieve an increase in readout from the low to mid-range
concentration and a decrease from the mid-range to high concentration (and satisfy Objective 6),
it was necessary to implement a heuristic function with a non-monotonic relationship between
krHa (RNase H activity) and RNase H concentration (Table 1, model D, Figure 4B, left, and Note

$1). Although Objective 6 was not satisfied for fits to Data Set 1, given the experimental error in
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the RNase H sweeps, the relationship between RNase H concentration and readout is unclear.
Therefore, this model is still consistent with fits to Data Set 1. To explain the apparent
inconsistency in this trend between fits to Data Set 1 and fits to Data Sets 2 and 3, we speculate
that technical error could have led to differences in the amount of each reagent dispensed from
the liquid handling robot each time the experiment was performed. It is known that dispensing
reagents with variable viscosities at small volumes can potentially result in imprecise and/or
inaccurate amounts of reagent dispensed that may not be reported by the instrument®’. The
addition of the T7 RNAP and RNase H heuristics resulted in a model that satisfied all modeling
objectives for each data set and identified additional hypotheses that could be experimentally

tested in future work.

In summary, we arrived at a model structure that qualitatively satisfied each objective for all three
data sets when a subset of the data was used for training. The final model (model D) includes
three heuristics describing: the loss of Cas13a-gRNA indiscriminate ssRNase activity over time,
a negative relationship between the rate of T7 transcription of activator RNA and T7 RNAP
concentration, and a non-monotonic relationship between RNase H activity and RNase H
concentration (Table 1). A detailed schematic of model D is in Figure $21, model states are in
Table S1, parameters are in Table S2, calibrated parameter values are in Table S$3, ODEs are
in Table S4, and comparisons between the experiments and simulations for each data set are in
Figures $22-S24. As noted above (Materials and Methods), we opted not to train the model on
conditions without viral RNA or with low Cas13a-gRNA because Fnax values for these conditions
were negligible. However, we suspect that agreement between the model and each experimental
data set could be further improved by adding a mechanism for background signal (produced in
the absence of viral RNA), as experimental maximum readout values for low Cas13a-gRNA

conditions resemble background. Altogether, our model development effort yielded a highly

30



explanatory result and identified specific opportunities for future hypothesis-guided experimental

and computational investigation.

Sensitivity analysis of model parameters

To assess whether the estimated parameters were well-constrained across the three data sets,
we performed a parameter sensitivity analysis. We evaluated which parameters had the greatest
impact on the simulated time course trajectories, as quantified by percent change in Fnax and tiz,
and overall fit to experimental data, as quantified by percent change in MSE (Materials and
Methods). Three parameters—kcas13 (the rate of binding of Cas13-gRNA to RNA target),
Kioc,deactivation, @nd Kscale,deactivation  (the time and rate of Cas13 deactivation, respectively)—were
highly sensitive across all three data sets. Varying these parameters resulted in a high percent
change in each of the three metrics relative to that incurred when varying the other parameters
(Figure S26, Figure S27). For the highly sensitive parameters, the magnitude of the percent
changes to the performance metrics Fmax and ti2 was generally similar. We also compared the
calibrated parameter values obtained when using the ODE solver with default versus decreased
error tolerances (Materials and Methods). Within each data set, the highly sensitive parameter
values varied within one order of magnitude across solver scenarios (Table S5). We observed
variations in parameter values greater than an order of magnitude (within any data set) only for
parameters to which the model is less sensitive, indicating that these parameters are not fully
constrained by the data. These observations provide confidence in the numerical methods used

to solve the model ODEs.

Evaluation of final model fits to test data
To assess the predictive capability of the final model with parameters optimized for each data set,
we quantified the prediction of each model to test data not included in the training data set. For

the final model trained to each replicate training data set, we selected 5 sets of test data, including
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the data sets used to train the other two models and out-of-sample data on which no model was
trained (Materials and Methods). Each model produced reasonable fits to the other Echo
replicate training data sets (Table S6). Additionally, these predictions were generally better than
the prediction of the out-of-sample data for the same Echo replicate, except for the final model for
Data Set 1 which produced similar fits to each of these test data sets. We suspect that the models
performed better on the other Echo replicate training sets compared to the new out-of-sample
data because the other replicate training data are at the same concentration conditions. The fit of
each model to Echo replicate 3 out-of-sample data was generally the poorest of the test data fits
for a given model, which we attribute to the high average experimental error for Echo replicate 3.
Overall, we find that the final model formulation meets the modeling objectives when trained on
all three replicates. These models can predict out-of-sample data for the same and new
component concentrations with reasonable accuracy, and they perform better for concentrations
on which they have been trained. The decrease in prediction accuracy from models trained on
Data Set 1 to 3 is likely due to variation in experimental error in each experiment. These
observations provide helpful guidance as to how future experimental campaigns may best inform
model development to align with explanatory and predictive uses of such models. In particular,
the variation in component concentrations across high-throughput screens should be more

carefully analyzed and incorporated into the model training procedure.

Limit of detection analysis

Finally, we sought to determine the limit of detection of the assay using the optimized primers and
gRNAs (Supplementary Data 3). Based on these results, we examined four pairs: (1) Primer Set
2 and gRNA 2-1 (Figure 5A), (2) Primer Set 7 and gRNA 7-1 (Figure 5B), (3) Primer Set 7 and
gRNA 7-2 (Figure 5C) and (4) Primer Set 8 and gRNA 8-1 (Figure 5D). Among the pairs, gRNA

7-1, gRNA 7-2 and gRNA 8—1 pairs were sufficiently sensitive for detecting hundreds of attomolar
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of input RNA. This result demonstrates that one-pot formulations of the NASBA-Cas13a reactions

have the potential to meet analytical sensitivity requirements of pathogen detection approaches’?.
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DISCUSSION

We developed a test for RNA detection that uses NASBA to amplify a viral RNA and CRISPR-
Cas13a activation to cleave a reporter and produce a fluorescent signal. We demonstrated a one-
pot isothermal formulation (Figure S2 and Figure S4) and screened different reaction
components to improve the sensitivity of the test and magnitude of the readout (Figure 1 and
Figure 2). These investigations led to a test with nucleic acid detection sensitivity around 20—200
aM (Figure 5). High-throughput screening of the NASBA enzyme and input RNA concentration
landscape (Figure 3) supported the development of a mechanistic model that explained the
effects of component doses on the readout and improved our understanding of the assay (Figure
4). The in-house NASBA formulation was important in facilitating a one-pot isothermal reaction,
collecting a data set for model training, and reducing the per-reaction cost. We speculate that it

also could enable large-scale test production by eliminating reliance on a commercial kit.

RNA structure was an important consideration when designing primer sets and gRNAs. Among
the primers tested, those targeting more structurally flexible regions in the genome led to more
efficient amplification (Figure 1F). Similarly, gRNAs targeting more flexible regions in the activator
RNA generally facilitated a faster readout, especially at low input RNA (Figure 2), although other
factors also affected Cas13a activity (Figure S5). These factors could arise due to the presence
of other components (e.g., the NASBA primers and different buffer compositions that could impact
gRNA folding and ribonucleoprotein complexing) that interfere with cleavage reactions. Finally,
we observed that certain gRNA designs resulted in leak even in the in-house NASBA reactions
(Figure 2 and Figure S5). We suspect that this leak be attributable to any of these factors: non-
specific NASBA amplification, unintended interactions between the NASBA primers and the
gRNA, or a low level of DNA cross-contamination from gRNA IVT reactions that could weakly

activate LbuCas13a®.
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One limitation of NASBA-Cas13a is that the readout time (1-2 hours) is not as fast as some
commercially available antigen tests (15 minutes)'” and a RT-LAMP-based nucleic-acid based
POC test (30 minutes)'?. However, we note that NASBA-Cas13a detection is more sensitive than
antigen tests and does not require a high incubation temperature of RT-LAMP (60~65°C). The
system also has not yet been validated on patient samples, which potentially contain reaction
inhibitors. Our focus was on investigating the impact of various design choices on effective nucleic
acid detection. Field deployment would be a logical step to pursue in subsequent work focusing

on translational deployment.

An innovation in optimizing NASBA-Cas13a was the use of ODE modeling. Through iterative
model development, we identified previously unconsidered mechanisms that led to lower-than-
expected readout. It was necessary to invoke mechanisms for Cas13a deactivation, an inverse
relationship between T7 RNAP concentration and the readout within the relevant concentrations,
and a non-monotonic relationship between RNase H concentration and the readout within the
relevant concentrations (Table 1). The identification of these relationships demonstrates the
power of explanatory computational modeling to translate results from an empirical scan into
specific hypotheses that could be pursued by experimental investigation to build mechanistic
understanding. Future work could include testing targeted interventions to mitigate these
limitations or predicting interventions that could improve performance metrics (considerations are
listed in Note S4). The model development process used in this study is an extension of the
GAMES workflow? and the first instance in which the workflow was used to describe experimental
observations. We anticipate that this approach may be extensible to other molecular diagnostic

tests.

We were unable to determine a mechanism by which Cas13a deactivates over time. We suspect

that there are certain incompatibilities between NASBA and LbuCas13a frans-cleavage that
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eventually deactivate the ssRNase activity of LbuCas13a before it can cleave all the reporter
substrate. Investigating a detailed mechanism of Cas13a deactivation over time in NASBA-

Cas13a is a potential area of future work.

The reaction condition found to be optimal in the model (i.e., faster t1>. and higher Fmax) did not
further improve the limit of detection of the assay compared to the condition used prior to the
model development (Figure 5) when tested in a manual reaction setup. This result could be due
to differences in the way that reactions were set up using the Echo liquid-handling platform
(Materials and Methods). Such liquid handlers can be inaccurate when dispensing reagents with
variable viscosities at small volumes®. The reagents in NASBA-Cas13a have a range of
viscosities due to the presence of glycerol in the enzymes used and DMSO in the NASBA buffer.
Future work could include optimizing the liquid handler setting to minimize discrepancies between

the high-throughput data sets and the manual data sets®.

Although the results from the high-throughput and manual reaction data were not reconcilable,
this is an area of future work that can link our understanding of the two distinct methods and our
modeling work. We decided to proceed using the high-throughput data as a proof-of-concept that
such a data set could be used to train a model of a complex molecular system. Despite the
discrepancies observed between the two setups, the model trained with the high-throughput
assay was useful for identifying mechanisms that were not elucidated from the manual reaction
setup. We expect that with further refinement, some of the observed experimental noise could be
reduced so that more reaction conditions can be tested efficiently. Above all, we found value in
using ODE modeling to describe CRISPR-Cas-based diagnostic assays, which to the best of our

knowledge has not been done previously.
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There is a growing interest in CRISPR-Cas—based nucleic acid detection techniques. This study
contributes to the growing body of POC tests and provides a starting point for model-driven
characterization and engineering of CRISPR-based POC tests. Uniting systematic manual
experimental characterization, high-throughput screening experiments and rigorous mechanistic

mathematical modeling will set the stage for model-driven experimental design of in vitro systems.
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Figure 1 | In-house NASBA formulation provides flexibility for reaction optimization. (A)
Schematic overview of NASBA, which uses cycles of reverse transcription, RNase H-mediated
degradation and T7 transcription to convert and amplify an input RNA into an antisense activator
RNA. The antisense activator serves as an input to Cas13a-based detection which generates a
fluorescent output signal. In-house NASBA formulation enables screening of different reverse
transcriptases (RTs). One-pot in-house NASBA-Cas13a targeting the ORF1ab of the SARS-CoV-
2 genome, with 0, 2 or 20 fM synthetic SARS-CoV-2 genome and 1 U/uL of (B) avian
myeloblastosis virus (AMV) RT, (C) ProtoScript Il RT, or (D) Moloney murine leukemia virus (M-
MuLV) RT. Readout was observed only with M-MuLV RT. (E) Schematic of the steps in NASBA
with a cartoon of viral genome structures that could influence where NASBA primers bind and
impact NASBA efficiency. (F) To test different primer sets, RNA products were extracted from
one-pot NASBA (lacking Cas13a) and analyzed by urea-PAGE. Reactions were initiated using
2.5 U/yL M-MuLV RT with 0 (-) or 20 (+) fM synthetic SARS-CoV-2 genome. The expected RNA
product for each primer set is boxed and its length is indicated, unless the band was not present
as in the case of sets 1 and 6 (expected products 104 nt and 164 nt, respectively). Data in (B)—
(D) are n=3 independent experimental replicates, each plotted as a line with raw fluorescence
standardized to MEF. Shading in (B)-(D) indicates the average of the replicates + standard
deviation. Data in (F) are one representative of n=3 independent experimental replicates; the
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other replicates and the uncropped, unprocessed image in (F) are in Supplementary Data 2.
Sequences of primers and gRNAs are listed in Supplementary Data 1.
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Figure 2 | Screening of LbuCas13a gRNAs identifies factors that could impact cleavage
efficiency. (A) Predicted secondary structure of activator RNA 7 generated from NASBA with
Primer Set 7. Regions targeted by gRNAs are shaded in different colors. Fluorescence kinetics
from NASBA-Cas13a at varying concentrations of synthetic SARS-CoV-2 genome with (B) gRNA
7-1, (C) gRNA 7-2, or (D) gRNA 7-3 with predicted secondary structures of each gRNA shown
above. The spacer sequences of gRNA 7-2 (highlighted in yellow) and gRNA 7-3 (highlighted in
blue) share 1-nt and 2-nt overlap with the 3 end of the LbuCas13a gRNA scaffold
(GGACCACCCCAAAAAUGAAGGGGACUAAAACA), respectively. (E) Predicted secondary
structure of activator RNA 8 generated from NASBA with Primer Set 8. Regions targeted by
gRNAs are shaded in different colors. Fluorescence kinetics from NASBA-Cas13a at varying
concentrations of synthetic SARS-CoV-2 genome with (F) gRNA 8-1, (G) gRNA 8-2, or (H) gRNA
8-3 with predicted secondary structures of each gRNA shown above. Data are n=3 independent
experimental replicates, each plotted as a line with raw fluorescence standardized to MEF.
Shading indicates the average of the replicates + standard deviation.
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Figure 3 | High-throughput screening of the enzyme concentration landscape suggests
model assumptions and reveals reaction design principles, shown for Data Set 2. (A)
Different amounts of input RNA, RT, T7 RNAP, RNase H, and Cas13a-gRNA were dispensed in
triplicate (independent replicates) using an Echo liquid handling platform. Assembled NASBA-
Cas13a reactions were run and fluorescence data collected and averaged across ftriplicate
measurements to arrive at a mean dynamic trajectory. The dynamic trajectory was then
normalized by the maximum readout value, such that the maximum readout value across the
entire experiment (all conditions) was set to 1. (B) Hill functions were fit to each normalized time
course trajectory, and summary metrics (n, ti2, Fo, and Fmax) wWere parameterized. A
representative time course trajectory and Hill plot is shown as an example. (C) For each time
course, R? values for the normalized experimental data (points) and Hill fit (dotted line) were
calculated and plotted as a histogram. Histograms of values across all conditions were computed
for: (D) ti2, and (E) Fmax. (F)—(H) Time course trajectories for data subsets varying: (F) RT, (G)
T7 RNAP, and (H) RNase H, each using two different input RNA concentrations. Shading
indicates the average of the triplicates + standard deviation. This process was repeated for each
experimental data set, but Data Set 2 is highlighted here because it was in closest alignment with
all modeling objectives.
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Figure 4 | Mathematical modeling recapitulates key experimental observations. (A)
Schematic of key reaction stages (top) and mechanisms (bottom) in the model. A more detailed
depiction of the model is in Figure S21. (B) Key mechanisms included in the model. Each
mechanism is involved in the reaction stage indicated to the left of each mechanism description.
(C)—(H) Hill-like functions were fit to each simulated time course trajectory, and summary metrics
(n, tip, Fo, and Fmax) were parameterized (Figure 3B is a visual representation of these metrics).
(C) For each time course, R? for the normalized simulated data and Hill fit was calculated; values
are plotted as a histogram. Histograms of values across all conditions in the simulated training
data set were calculated for: (D) ti2 and (E) Fmax. (F)—(H) Time course trajectories for simulated
data subsets: (F) mid-range RNase H and T7 RNAP and high Cas13a-gRNA, (G) mid-range
RNase H and RT and high Cas13a-gRNA, and (H) mid-range T7 RNAP and RT and high Cas13a-

gRNA.
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Figure 5 | Limit of detection analysis. Fluorescence values at 150 minutes from NASBA-
Cas13a with varying concentrations of synthetic SARS-CoV-2 genome using (A) gRNA 2—1, (B)
gRNA 7-1, (C) gRNA 7-2, or (D) gRNA 8-1. Data are n=3 independent experimental replicates,
each plotted as a point with raw fluorescence values standardized to MEF. Bar height represents
the average of the replicates. Error bars indicate the average of the replicates + standard
deviation. Input RNA concentrations for which signal is distinguishable from background (without
input RNA) were determined using a two-sided, heteroscedastic Student’s t-test. ***P < 0.001,
**P=0.001-0.01, *P=0.01-0.05). P values and degrees of freedom are listed in Supplementary
Data 3.
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Table 1 | Summary of modeling objectives and candidate models for each data set’.

Model A Model B Model C Model D
Additional mechanism— N S Non-monotonic
) : egative relationship ) X
B Cas13a gRNA_ deactivates between transcription rate relationship between
) L over time RNase H cleavage rate
Modeling objective | and T7 RNAP and RNase H
Data Data Data Data Data Data Data Data Data Data Data Data
set 1 set 2 set 3 set 1 set 2 set 3 set 1 set 2 set 3 set 1 set 2 set 3
Objective 1: Time
course trajectories have Yes Yes? Yes? Yes Yes? Yes? Yes Yes Yes Yes Yes Yes
a sigmoidal shape
Objective 2: Plateaus in
readout can occur at Yes Yes? Yes? Yes Yes? Yes? Yes Yes Yes Yes Yes Yes
various times depending
on the condition
Objective 3: The
magnitude of the plateau No No No Yes No No Yes Yes Yes Yes Yes Yes
can vary depending on
the condition
Objective 4: Increasing
RTtoa re_latl\_/ely high No No Yes Yes Yes Yes Yes No Yes Yes Yes Yes
concentration increases
the readout
Objective 5: Increasing
7 RNAP toa rela_t|vely No No No No No No Yes Yes Yes Yes Yes Yes
high concentration
decreases the readout
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Objective 6: Increasing
RNase H to a relatively

high concentration No No No No No No No No No No? Yes Yes
increases, then
decreases the readout
Q“a”t'tat"(’g{;‘greeme”t 043 | 026 | 031 | 053 | 027 | 033 | 099 | 087 | 078 | 099 | 096 | 085
Q“a”t'ta?,\‘;lesgreeme”t 0062 | 0040 | 0051 | 0.045 | 0.037 | 0.048 | 0.0021 | 0.0066 | 0.018 0'%01 0'%02 0.016

'Each column is an additional mechanism added to the model. For example, Model C includes mechanisms from Models A and B.
‘Yes’ indicates that a version met an objective, and ‘No’ indicates that it did not. Calibration and analysis of suboptimal candidate
models are described in Figure S11. Quantitative agreement is reported as the MSE or R? between experimental data and simulated

data for the subset that was used for training in Figure 4 (Figure S6B).

The determination of whether these objectives were met for Data Sets 2 and 3 is based only on the quantitative metrics from the Hill

fit (i.e., a high R? value between the trajectories and Hill fits and a range of t;» values) (Note S3).

3Although this modeling objective was not met for Data Set 1, given the experimental error in the RNase H sweeps it is unclear whether
this data set has a non-monotonic relationship between RNase H concentration and readout, which is indicative of potential error in
the amount of each reagent dispensed from the liquid handling robot for each experiment.
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