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Abstract

Despite significant research efforts in the continuum modeling of biological growth, certain aspects have been overlooked.
For instance, numerous investigations have examined the influence of morphogenetic cell behaviors, like division and inter-
calation, on the mechanical response of passive (non-growing) tissues. Yet, their impact on active growth dynamics remains
inadequately explored. A key reason for this inadequacy stems from challenges in the continuum treatment of cell-level
processes. While some coarse-grained models have been proposed to address these shortcomings, a focus on cell division
and cell expansion has been missing, rendering them unusable when it comes to modeling growth. Moreover, existing stud-
ies are limited to two-dimensional tissues and are yet to be formally extended to three-dimensional multicellular systems.
To address these limitations, we here present a generalized multiscale model for three-dimensional aggregates that accounts
for complex morphogenetic movements that include division, expansion, and intercalation. The proposed continuum theory
thus allows for a comprehensive exploration into the growth and dissipation mechanics of proliferating aggregates, such as

spheroids and organoids.

Keywords Growth mechanics - Cell division - Cell intercalation - Network remodeling - Transient network theory

1 Introduction

Establishing a precise relationship between mechanical
loading and biological response is crucial for understand-
ing various developmental and pathological processes, such
as tumor growth (Zhang et al. 2020). Mathematical mod-
eling of growth (volume change) and morphogenesis (shape
change) has, therefore, remained a central focus in mecha-
nobiology research (Taber 2020). These models primarily
focus on elucidating the coupling between mechanics and
the phenomena of growth and morphogenesis. Additionally,
they inform the design of innovative experiments for mod-
ern tissue and organoid engineering applications (Vernerey
et al. 2021), by aiding in predictive modeling and suggesting
plausible mechanisms responsible for a specific response.
Researchers have thus developed numerous theoretical and
computational modeling tools aimed at predicting the emer-
gent dynamics of developing tissues under diverse chemi-
cal and mechanical factors. These models can broadly be
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classified based on whether the growing body is considered
as a continuum object or as a collection of individual cells.

On the continuum front, one of the most prominent theo-
ries for modeling volumetric growth in soft biological mate-
rials is the theory of finite kinematic growth, also referred
to as morphoelasticity (Goriely 2017). Since its advent, the
morphoelasticity theory has been applied extensively to
study several growth-related phenomena (Kuhl 2014). Some
examples include growth-induced residual stresses (Ambrosi
and Mollica 2002), stress-modulated growth (Ambrosi and
Mollica 2004), and tumor morphogenesis (Mills et al. 2014).
Morphoelasticity theory uses a single second-order tensorial
variable, called the growth tensor, to phenomenologically
model macroscopic tissue growth (Rodriguez et al. 1994).
In reality, however, growth and morphogenesis are medi-
ated at the cellular (and even subcellular) level via multiple
morphogenetic processes like expansion, division, interca-
lation, and apoptosis. The inability to—capture the macro-
scopic influence of these microscopic events and relate the
growth tensor to driving mechanisms—is the main limitation
of morphoelasticity theory (Ambrosi et al. 2011; Jones and
Chapman 2012).

In this regard, agent-based models (Van Liedekerke et al.
2015), which consider individual cells, help us understand
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how cellular activities manifest globally and drive the emer-
gent collective response. For example, vertex- (Lin et al.
2017) and Voronoi- (Barton et al. 2017) model-based simu-
lations have demonstrated the role of cell-cell interactions
in growing epithelial monolayers. The proficiency of these
models lies in their ability to encompass not only cellular
morphogenetic processes but also cellular properties such
as stiffness, contractility, and adhesion to name a few. As
a result, the tissue description provided by these discrete
methods bears a closer resemblance to biology. Neverthe-
less, even such techniques are not without flaws, with the
main challenges being the extension to three-dimensional
complex geometries and the high computational costs
involved.

This led to several efforts to unify the continuous and
discrete approaches, intending to develop computationally
tractable models that can also preserve some cell-level infor-
mation. Researchers have been able to mechanistically incor-
porate cell-scale behavior to model tissue elasticity (Staddon
et al. 2023; Brodland et al. 2006) and cell rearrangements
owing to intercalation (Ishihara et al. 2017) within continu-
ous frameworks. To bridge the cell- and tissue scale behav-
iors, these models follow a coarse-grained technique (Graner
et al. 2008) wherein the effective response at the tissue scale
is derived in an averaged sense from the individual response
of constituent cells. While the mathematical formulation
employed for coarse-graining in these studies is extendable
to three dimensions, the primary focus, to this date, has been
on two-dimensional cell monolayers like epithelial tissues.
Furthermore, the phenomenon of growth which involves cell
expansion and division (termed together as proliferation) has
garnered even less attention.

This sets the objective for the current study—to address
the shortcomings of existing continuum theories and pro-
pose a multiscale modeling framework that comprehensively
models population growth dynamics. The goal is to refine
the coarse-grained models with mechanisms like prolif-
eration that hold significance to the growth phenomenon.
Though some authors have opted for a more computational
approach (Lejeune and Linder 2017) to achieve this, we
here are interested in introducing a theoretical tool that can
be implemented using nonlinear finite element analysis
(FEA), similar to morphoelasticity. The presented theory
is an extension of our previous work (Bandil and Vernerey
2023) on confluent cell monolayers that laid down the fun-
damental ideas regarding the multiscale modeling of cellular
processes. Here, we not only expand those ideas to three-
dimensional cell ensembles or aggregates but also offer
novel interpretations of cellular processes-induced inelastic
deformation.

The article is organized as follows. In Sec. 2, we start by
providing a concise overview of the classical morphoelastic-
ity theory. Subsequently, we discuss the need to generalize
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the conventional theory to morpho-viscoelasticity that
accounts for the elasto-visco-plastic behavior of cell aggre-
gates. Section 3 delves into the development of morpho-
viscoelasticity theory. For this, we employ transient network
theory (TNT) (Vernerey et al. 2017)—a versatile framework
that has been used to study viscoelasticity due to dynamic
networks across various systems including plant cell walls
(Lalitha Sridhar et al. 2018), fire ant aggregations (Vernerey
et al. 2018), hydrogels (Crespo-Cuevas et al. 2023), and cell
monolayers (Bandil and Vernerey 2023). This section dis-
cusses the details of the mathematical modeling of elastic
and inelastic deformation in the aggregate. In Sec. 4, we
illustrate the developed theory, through simple case studies
focusing on the mechanics of proliferation and intercalation.
In particular, we look at how cellular processes control the
macroscopic stress state and deformation within a growing
aggregate. Finally, Sec. 5 offers concluding remarks con-
cerning the study’s limitations and identifies open issues
for future research.

2 Background
2.1 Morphoelasticity

Morphoelasticity theory is based on the notion of multiple
natural configurations, initially proposed to study finite ine-
lastic deformations in solids (Rajagopal 1995). In the context
of growth, the idea is summarized as follows.

Kinematics. Consider an arbitrary point P inside a con-
tinuum body in its initial (undeformed) configuration 13,.
Let X be the Lagrangian coordinate of P € B, in a three-
dimensional Euclidean space with basis e, (@ = 1,2, 3), as
indicated in Fig. 1. As the body moves in space with time,
its configuration at any time ¢ is given by B(¢), which is
called the current configuration. During this motion, each
point P € BB, with position vector X gets mapped, with one-
to-one and onto correspondence, to its current position in
B(t), where the current position is identified by its spatial
coordinate x(X, 1) (see Fig. 1). The tangent mapping from 3,
to B(z) is then described by the deformation gradient tensor
F(X,1), defined as:

ox
F = —
X M

As per morphoelasticity, the deformation gradient F can be
multiplicatively decomposed into an elastic component F,
and a growth component F, as (Rodriguez et al. (1994);
Lubarda and Hoger (2002)):

F = Fng 2)
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Fig. 1 Illustration of different frames as per morphoelasticity theory. Also shown is a cell aggregate and its corresponding network of segment

vectors r embedded within point P € B(r)

Accordingly, the Jacobian of deformation, given by
J = detF, follows the split J = J,J,, where J, = detF, and
J, = detF, represent, respectively, the volumetric changes
due to elastic and growth-induced inelastic deformations.
Upon unloading the current state elastically (i.e., described
by mapping operator F e_l), a fictitious configuration, denoted
by B, (1), is obtained (see Fig. 1). This intermediate stress-
free configuration differs from the initial stress-free configu-
ration 53, by a permanent deformation induced by growth.
Since the elastic deformation F, is measured from B, (1),
the intermediate state 3,(¢) is also referred to as the natural
configuration. The mapping from B, to B,(7), as mapped
by growth tensor F,, can then be interpreted as the motion
induced by free growth of the body without storage of
any elastic energy. Hence, the natural state 3, (¢) continu-
ously evolves with time under F,. In rate form, the growth
kinematics is characterized by the spatial velocity gradi-
ent # = FF~' (i denoting the material time derivative of
m) which is additively decomposed into £ = ¢, + €, (see
Appendix Aa). Here, €, = F pa e_l and £, =F,LF are, TeSpec-
tively, the elastic and growth-induced spatial velocity gra-
dients. The tensor L, = FgF ;1 is interpreted as the velocity
gradient in the natural configuration B, (7).

An important concept in morphoelasticity is that of
incompatibility which relates to growth-induced residual
stresses (Skalak et al. 1996). The natural state B, obtained
via elastic unloading under F ;1 (or equivalently via uncon-
strained growth under F,), may not be compatible from a
continuum standpoint (see Fig. 1). This is due to the fact that
the unloaded state (or equivalently the freely grown state)

can only be defined locally and may not lead to a global
stress-free configuration. Consequently, the tensors F, and
F, cannot, in general, be mathematically written as gradi-
ents of a displacement field. In a nutshell, if F o results in an
incompatible deformation, the elastic part F, acts to restore
compatibility in the current (deformed) state 3. This leads
to the development of growth-induced residual stresses
(Garikipati 2009).

Constitutive relations. Based on finite inelasticity, the
complete mechanical response of a growing body under
externally applied loads and constraints can be decoupled
into elastic and inelastic. The elastic response, which corre-
sponds to the deformation from 5, to 53, is characterized by
suitable constitutive relations while the growth-induced ine-
lastic deformation is prescribed in terms of certain evolution
laws. Considering the growing body as a hyperelastic solid,
its elastic response involves introducing a strain-energy den-
sity y,,(F,). Here, the subscript n denotes that the energy
density is defined as stored energy per unit natural volume
(Huang et al. 2021). Furthermore, if the elastic response is
isotropic, y,,(F,) should be expressed as an isotropic scalar
function of the form:

w,(F,) = w,(b,) = w,(I},1,13) 3)

where b, = F ,F eT is the elastic left Cauchy—Green deforma-
tion tensor and /,, 1,, I; are the invariants of b,. In this special
case of isotropy, the Cauchy stress tensor o can be derived
from y, (b,) using (see Appendix Ab):
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c = gaw"b 4
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Thus, capturing the elastic response of a growing isotropic
solid requires the knowledge of spatial tensor b,(x, ) at all
times ¢. This is achieved by solving the following evolution
equation (see Appendix Ac):

Lb,) =b,—¢b,—b" = —d, )

where L(m) denotes the Lie derivative of a tensor field m
and d, is growth-induced inelastic flow rate. In continuum
mechanics, the Lie derivative is a very useful quantity as it
can be used to directly measure the rate of inelastic deforma-
tion in the solid (in this case d,). To understand this, con-
sider the case when £(b,) = 0, which consequently yields
b, =FF T = b, where b is the left Cauchy—Green deforma-
tion tensor. This result implies that when £(b,) vanishes, the
spatial tensor b, convects with the flow under £ and thus, the
deformation is purely elastic. However, in case £(b,) # 0,
the deformation contains an inelastic part, expressed by the
inelastic flow rate d,, which can be derived as d,=tb, +beT
(see Appendix Ac), where Z, = F JF F ;IF 6_1. Therefore, to
complete the model, we need to specify a growth law in
terms of F,(X, ). For isotropic growth, F is an isotropic
tensor of the form Fg = gl, where g(X, 1) is called the growth
ratio and [ is the second-order identity matrix. Consequently,
the flow rate d, for isotropic growth becomes:

d, = nge ©)

2.2 Why morpho-viscoelasticity?

The classical morphoelasticity theory discussed above
assumes the growing body remains elastic over the growth
timescale (Jones and Chapman 2012). This assumption
limits the application of morphoelasticity theory to multi-
cellular systems or aggregates that exhibit complex elasto-
visco-plastic behavior (Preziosi et al. 2010). This behavior
is attributed to mechanisms that can relax the stress at the
time scale of growth. These mechanisms include cellular
activities like adhesion bonds remodeling, cell neighbor
exchange, and cell division. Thus, to effectively model
aggregate growth, it is crucial to integrate these cell-scale
activities as additional inelastic deformations into the mor-
phoelasticity theory. While some attempts in this direction
have been made in the past by phenomenologically reflecting
dissipative mechanisms (Ambrosi and Preziosi 2009; Yan
et al. 2021), a more detailed exploration into the individual
role of cellular processes is warranted, given their significant
influence on the mechanics of concentrated aggregates.
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For instance, volumetric growth in dense cell aggre-
gates, like spheroids, is primarily driven by a process
called proliferation (Gillies and Cabernard 2011; Zhao
et al. 2022), which involves two concurrent yet funda-
mentally distinct processes: (i) cell expansion denoting
an increase in cell size and (ii) cell division denoting an
increase in cell number. Given that proliferation drives
growth, it becomes imperative to differentiate between
expansion and division as they exhibit different mechano-
sensitivity and exert different effects on the growth dynam-
ics. While cell expansion is a non-dissipative process, cell
divisions can result in stress relaxation (Wyatt et al. 2015).
Another cellular mechanism of importance is intercalation
which involves an exchange of neighbors. A noteworthy
study, relevant to our purpose, was conducted by Marmot-
tant et al. (2009) in which the authors performed parallel
plate compression experiments on non-proliferating aggre-
gates. They observed that aggregates exhibited elastic, vis-
cous, and plastic behaviors owing to intercalation.

For these reasons, we here develop a proliferation-based
continuum theory for aggregate growth in which cells can
simultaneously expand, divide, and intercalate. Since
the developed theory accounts for the visco-hyperelastic
response of the growing aggregate, we term it as morpho-
viscoelasticity. Moreover, the theory follows a bottom-up
methodology based on coarse-graining, resulting in a mul-
tiscale model. This entails the use of appropriate statistical
quantities and internal state variables (ISVs) that facili-
tate the translation of microscopic cell-scale information
to the macro-level. Such an approach offers three main
advantages: (1.) establishing a clear correlation between
continuum laws and underlying mechanisms, (2.) effective
modeling of complex feedback and mechanosensitivity,
and (3.) distinguishing between the effects of different cel-
lular activities that might seem similar if considered in a
phenomenological manner.

3 Morpho-viscoelasticity through the lens
of the transient network theory

To implement the bottom-up approach for deriving our
constitutive relations, we employ the theoretical frame-
work of transient network theory (TNT) wherein each
continuum point is imagined to consist of an underlying
network of vectors (Vernerey et al. 2017). A complete
description of macroscopic mechanical behavior at a point
is then provided by the statistics of the network embedded
within that point. We now discuss TNT in the context of
confluent cell ensembles (Bandil and Vernerey 2023).
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(a)

Fig.2 a Cell monolayer as a 2D network of segment vectors. b Illustration of conformation tensor as an ellipse (in blue) for a cell 1. ¢ Conforma-

tion space Q € R?

3.1 Network representation of aggregate

Consider a continuum point P € B(f) with spatial coordi-
nate x. Assuming that the continuum body is sufficiently
large in comparison with the characteristic dimension of
the constituent cell, the point P, on a mesoscale, can be
envisioned as an aggregate of a large number of cells (see
Fig. 1). The same aggregate can be conceptualized as a net-
work of segment vectors r, where r signifies a physical con-
nection between the geometric centers of two adjacent cells
sharing a junction. In other words, r denotes a fopological
link between two neighboring cell sites (or nodes) and the
aggregate can be viewed as a network of many such links
(see Fig. 1). Now, in addition to being elastically deformed,
the cells comprising the aggregate may also be simultane-
ously expanding, dividing, and intercalating. This behavior
can alternatively be interpreted in terms of the network of
segment vectors where the network stores energy while con-
currently remodeling. The deformed state of the aggregate
(engrained within point P at coordinate x and time #) can
thus be determined from a corresponding deformation in
the network. To establish this correspondence, let us first
mathematically quantify the relationship between cells and
segment vectors.

For ease of demonstration, we focus here on a two-
dimensional (2D) network, although the formulation can be
extended to three dimensions (3D). Consider a cell mon-
olayer, represented as a 2D network of vectors r, as shown in
Fig. 2a. The geometry of any random cell / can be approxi-
mated from the conformation tensor M, defined by (Graner
et al. (2008)):

1
M, := _Z"u@”'u @)

5

where n; is the number of neighbors of cell 7, r; is the seg-
ment vector between cell I and its neighbor J, and ® denotes
the dyadic product. The shape of cell [ is then estimated by
the eigenvalues and eigendirections of the conformation ten-
sor M, represented by a confidence ellipse (ellipsoid in 3D),
as shown in Fig. 2b. More precisely, the dimensions of the
semi-major axes and the principal directions of the ellipse
(ellipsoid in 3D) are, respectively, given by the square roots
of the eigenvalues and the eigendirections of the associated
conformation tensor. For example, the volume V; of the con-
fidence ellipsoid for a cell 7 (in 3D) can be calculated from
M;asV,=4xn/3)\/detM.

The above illustration shows how the network of seg-
ment vectors and the aggregate of cells can be considered as
‘mathematical duals’ of each other. We are now interested
in bridging the gap between the fine scales (individual seg-
ments) and the coarse scales (network level). To do this, we
make use of the mean-field approximation, by which the
network deformation is approximated as the averaged defor-
mation of its constituent vectors. For the deformed network
state to be representative of the macroscopic deformation at
coordinate x and time ¢, this averaging must be statistically
homogeneous. This means that the continuum description
provided by the network should be independent of network
size. In the TNT, the network size is measured by the total
number, say n(x, t), of vectors comprising the network. To
satisfy statistical homogeneity, the network should be large
enough so that the averaged result becomes independent of
n(x,t). Therefore, one can imagine the network (or corre-
spondingly the aggregate) to be composed of a large number
n(x, t) of vectors (or correspondingly N(x, ) of cells) at any
instant. Given this, the segment vector r = (r,,r,,r,) can be
treated as a continuous random variable that assumes all
possible conformations, i.e., r,, 1,1, € (=00, 00), in a con-
formation space Q € R3. Here, Q can be understood as some
virtual or theoretical space, with basis {r,, ry, r.}, in which
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B(t)

a; M=Tr(M)H

Fig.3 Geometric illustration of mean conformation tensor M in the initial and current frames. The eigenvalues (A2, A2 /1?) of M can be
expressed in terms of shape parameters v, 7,, 73 as A7 = Tr(M)y,, A3 = Tr(M)y,, and A2 = Tr(M)y,

each coordinate denotes a segment vector r, as shown in
Fig. 2c.

3.2 Mean conformation tensor (texture tensor)

An averaged depiction of the network can now be indicated
by a mean conformation tensor, M(x, ), defined as the mean
of r ® r over space Q, i.e.,

Mx, 1) = / pex,r,)r @ rdQ ®)
Q

where p(x,r,t) is a probability density function (pdf) that
measures the likelihood of a segment vector to exist in con-
formation r € Q. The mean conformation tensor, also com-
monly known as texture tensor (Aubouy et al. 2003; Ishi-
hara et al. 2017; Graner et al. 2008), represents the averaged
geometry of cells in the aggregate in the form of a mean cell.
That is the tensor M(x, f) describes the averaged deformed
shape and size of the cells comprising the aggregate. Note
that the texture tensor M is statistically homogeneous, and
thus, allows us to connect micro- and macro-level descrip-
tions. To show how M geometrically represents the mac-
roscopic deformed state at a continuum point, we employ
another well-known macroscopic quantity called structure
tensor, denoted by H(x, t) (Kao et al. 2011). Let a,,a,,a; be
the eigendirections' of M. The texture tensor M can now
be split as M = Tr (M)H, where the structure tensor H is
given by:

H = ya, ®a +7aQa;+ya;Qa; 9)

Here y,,7,, 75 are the eigenvalues of H and denote shape
parameters that control the shape anisotropy of M. The
shape parameters verify the conditions 0 < y;,7,,73 < 1

! For an isotropic solid, the eigendirections (a,,a,,as) would be the
principal directions of elastic stretch in the spatial frame. This will
become clear in sec. 3.5 on elastic deformation.
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and y, +y, + 3 = 1. These conditions on shape param-
eters ensure that Tr (H) = 1 and the eigenvalues of H are
positive. The structure tensor H thus provides a measure
of the deformed shape of the mean cell (see Fig. 3). When
Y1 =¥, =y3; = 1/3, the tensor H reduces to H = (1/3)I
which denotes an isotropic (or spherical) mean cell.

The next task is to understand how the texture tensor M
carries the notion of deformation under F (or ). Before
that, it is important to explore the nature of the body’s
response under deformation. For this, we look at the pdf
po(X,ry) = p(X,ry,0) of segment vectors in their initial
(undeformed) conformations r, in state 3, where x = X. Fol-
lowing the TNT, the isotropic response of an elastic solid
implies that the distribution given by the pdf p, is such that
it results in an isotropic texture tensor M,(X) of the form:

MyX) = /pO(X,rO)rO ®rydQ = my(X)I (10)
Q

where M(X) = M(X, 0) is the texture tensor in 53, and m is
statistically related to the lengths, r,, of segment vectors in
their initial (undeformed) conformations r,, (see Appendix
Ad for details). In this study, we limit ourselves to isotropic
solids (see Fig. 3). The initial (undeformed) volume V,(X)
of the mean cell thus becomes v, - 4z/3)\/atdt, = @r /3
Consequently, the initial (undeformed) volume %{(X) of the
continuum point at X can be calculated as ¥, = N,V,,, where
Ny(X) = N(X, 0) is the initial number of cells in the aggre-
gate. Note that in continuum mechanics, the impression of
continuum ‘point’ (or ‘particle’) refers to a part of the body
with some volume as opposed to some point mass (Holzapfel
2000). We now move ahead to characterize deformation in
terms of the texture tensor M(x, ¢).

3.3 Evolution of the texture tensor

Consider a network with n(x, r) vectors in the deformed
state 3(¢) at any time ¢. As the continuum point P, located
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(a) Division

(b) Intercalation

Fig.4 Illustration of cell rearrangements resulting in creation and loss of segment vectors during a division and b intercalation

at position x, deforms under spatial velocity gradient
?(x,1), the underlying segment vectors are assumed to
deform affinely under £ as i = £r. This affine assumption
entails that the macroscopic tensor fields—deformation
gradient F (and consequently £)—are translated uniformly
throughout the conformation space Q. In other words, F
(and consequently #) are independent of conformation
r. In addition to segment vectors changing their confor-
mations with rate £, some new segment vectors can be
created while some existing segment vectors can be lost
from the network. This situation arises when cells rear-
range under division (see Fig. 4a) and/or intercalation (see
Fig. 4b). All of these events contribute to modifying the
current pdf p(x,r,t), which is shown in Appendix Ae to
follow the given evolution equation, known as the Fok-
ker—Planck equation:

p=-t: ((% ®(pr)) —kc<1 —%)p(- —kzp—j;p (11)
Here (:) denotes the double dot product and
fx, 1) = n(x,1)/n, is the fraction of the current number of
segment vectors in the network. n, > n is an arbitrary con-
stant that denotes the maximum number of segment vectors
that can be present in the network. Each term in Eq. (11)
can be now understood as follows. The first term models
change in pdf p owing to affine kinematics. The second term
accounts for the creation (or appearance) of new segment
vectors with a kinetic rate k.(x, ). The newly created seg-
ment vectors follow a distribution given by pdf p.(x,r,1).
The third term models the loss (or disappearance) of existing
segment vectors with a kinetic rate k;(x,r, ). The last term
represents the change in pdf p due to an effective change in
the number of segment vectors owing to creation and loss
events.

Note. In general, the loss rate k; can be a function of cur-
rent conformation r. This situation could arise when cells
have a ‘preferred direction’ for rearrangement. For example,
during convergent extension, cells intercalate preferentially

along the dorsal-ventral (DV) axis (Keller et al. 2000) to
achieve tissue elongation. In this case, k; would be different
for conformations oriented along the DV axis than the con-
formations aligned perpendicular to it. In this situation, the
response of the solid would be direction-dependent, result-
ing in anisotropic behavior. This is beyond the scope of the
current study.

Owing to isotropy restriction, k; = k;(x, ) here becomes
independent of r, consequently yielding (see Appendix Ae):

o)

Since the texture tensor M directly depends on the pdf p (via
Eq. (8)), we can obtain, using the Fokker—Planck Eq. (11),
the expression for Lie derivative L(M), as:

LM) = M— M - M¢eT = —kc<1 _%>Mc_k1M—§

13)
where M, = [, p.r ® rdQ is the mean conformation ten-
sor corresponding to newly created vectors. The tensor M,
can thus be used, to denote the mean cell configuration that
would be attained as a result of cell rearrangement. It can be
seen from Egs. (12) and (13) that £(M) models the rate of
inelastic deformation owing to cell rearrangements, which
are characterized by rates k, and k;. Now recall the discus-
sion from sec. 2.1 regarding the significance of Lie deriva-
tive in representing inelastic deformation. We see, from
Egs. (12) and (13), that in the absence of rearrangements,
i.e., when k, = k; = 0, L(M) vanishes, implying that L(M)
measures the rate of inelastic deformation owing to cell rear-
rangements. However, £(M) may not characterize the total
inelastic deformation in the aggregate, as explained in the
following sections.
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3.4 Inelastic deformation

As mentioned previously, cellular processes-induced inelastic
(irreversible and time-dependent) deformation can be inter-
preted in terms of network remodeling. We show here that
remodeling can be the result of two types of events, which we
denote here as extrinsic and intrinsic remodeling. Extrinsic
remodeling occurs at the level of a group of segment vectors
changing their connectivity. In contrast, intrinsic remodeling
manifests as an evolution of individual segment vectors’ inher-
ent properties. We now discuss each of the modes of remod-
eling with the help of suitable examples.

Note—For clarity of notation, we will omit the arguments
x and ¢ here on and only use them ad hoc. Furthermore, any
statistical quantity and ISV introduced henceforth will gener-
ally depend on x and 7 unless otherwise specified.

3.4.1 Extrinsic remodeling

Extrinsic remodeling refers to changes in the network connec-
tivity or topology. Modifying the network topology requires
breaking some of the existing connections (or links) and form-
ing new ones. Recognizing that these actions mean the same as
the loss and creation of segment vectors, cell rearrangements-
induced inelastic deformation can be deemed as extrinsic
remodeling. Since cell rearrangements alter network topology
(see Fig. 4), they are also called topological transitions. Math-
ematically, extrinsic remodeling (or topological transitions) is
thus represented by changes in the pdf p owing to rates k_, k;,
and f/f in the Fokker—Planck Eq. (11). Consequently, the Lie
derivative L(M) (Eq. (13)) of the texture tensor can now be
interpreted as the rate of inelastic deformation due to extrin-
sic remodeling events (or topological transitions). Let us now
explore extrinsic remodeling with the help of the example of
cell intercalation.

Intercalation. Intercalation, also commonly called T1 tran-
sitions, is a process that involves an exchange or swapping of
neighbors without altering the cell count N. That is, intercala-
tion results in a change in network topology without affecting
the number n of segment vectors, as shown in Fig. 4b. At this
point, we invoke the relationship between n and N, given by
n = zN, where z measures the averaged number of neighbors
or links per cell and is assumed to be constant. Hence change
in cell count directly relates to the change in the number of
segment vectors, measured by rate f/f = n/n = N/N. Now
for T1 transitions, we have N/N = f/f = 0, which gives
(from Eq. (12)):

h(%—l) =K (14)
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Substituting the above relation into Eq. (13), we obtain the
rate of inelastic deformation due to T1 transitions, given by
L(M) as:

LM) = —kr(M —My) s)

where k;(= k;) is the rate of T1 transitions and is simply
given by the kinetic rate k; of loss of segment vectors. The
tensor M (= M) is the extrinsically remodeled mean cell
configuration as a result of intercalation.

3.4.2 Intrinsic remodeling

As opposed to extrinsic remodeling, intrinsic remodeling
does not alter the topology of the network. That is, the Lie
derivative £(M) remains unaffected by this kind of remod-
eling (from Eq. (13)). Instead, intrinsic remodeling trans-
forms the intrinsic (or inherent) attributes of the individual
segment vectors themselves. A key cellular process that
triggers intrinsic remodeling is that of cell expansion as
discussed below.

Expansion. In discrete simulations (Barton et al. 2017),
the process of cell expansion is modeled as an increase in
the preferred (or natural) volume of the cells. Following
this, cell expansion can be modeled as an increase in the
natural volume, denoted by V, (x, ), of the mean cell. The
origin of natural volume V, can be understood as follows.
Consider a fictitious network in which all the constituent
segment vectors, at any time, are in their natural (or relaxed)
conformations, denoted by r,,. Let the distribution of natural
conformations in this fictitious network be given by some
pdf p,(x,r,, t). Consequently, we can define a fictitious tex-
ture tensor, M, (x, t), given by:

M, (x,1) = /p,,(x,rn,t)rn@’rndQ (16)
Q

where the tensor M, represents the natural mean cell. The
cell expansion process can now be understood as segment
vectors changing or remodeling their natural conformations,
which in turn alters the pdf p,,, leading to the evolution of the
natural mean cell configuration M, (see Fig. 5). The material
time derivative of M, then, represents the rate of inelastic
deformation owing to intrinsic remodeling. The notion of the
evolution of a natural mean cell under expansion is similar
to the evolution of natural (stress-free) state 5, under F,
in morphoelasticity. Therefore, the natural mean cell can
also be recognized as the state of the mean cell that would
be attained under unconstrained expansion. This further
denotes that the initial natural mean cell coincides with the
initial (undeformed) mean cell given by M|,. Therefore, we
obtain the initial conditions on M, and p, as M, (0) = M,

and p,(0) = p,.
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Fig.5 Illustration of a fictitious network (denoted by red dashed
links) and associated mean cell M, undergoing intrinsic remodeling
under isotropic cell expansion

From the above initial conditions, we see that the initial
shape of the natural mean cell is described by M,,, which, in
this study, is spherical owing to solid isotropy. Furthermore,
suppose the response of the isotropic solid under intrinsic
remodeling remains isotropic. In that case, the natural mean
cell preserves its spherical geometry and only evolves via
a change in its volume V, = (47 /3)4/det M,,. Under these
circumstances, the natural mean cell configuration can be
represented by an isotropic form of the tensor M, = m,I,
where m,, is an ISV that is statistically related to the natural
conformation lengths r,,, akin to m,. From M,(0) = M, we
obtain the initial condition m,,(0) = mon ISV m,,. In the pre-
sent work, we only focus on isotropic responses, i.e., the rate
of inelastic deformation owing to intrinsic remodeling can
be measured in terms of scalar quantity, 71,. Figure 5 shows
that in the case of isotropy, the fictitious network is simply a
photographic enlargement of the initial (undeformed) state.
This also entails the fact that no topological rearrangements
occur in the evolving fictitious network.

Finally, we can complete the cell expansion model by
prescribing an evolution equation for m,, or more precisely
V,=@nr/ 3)m2/ 2 For convenience, we introduce a normal-
ized measure for V,, denoted by ¢; and defined as:

= Ve ()" 17
a=y= () a

where recall that V|, characterizes the mean cell volume in
B,. From Eq. (17),¢; is an ISV that measures permanent
volumetric deformation owing to the inelastic process of cell
expansion, hence termed as inelastic expansion ratio. An
evolution law for the increase in V,, can now be prescribed in
terms of §; which, in this study, is assumed to follow a simple

exponential kinetics with expansion rate kj as (Barton et al.
(2017)):

& = kgg, (18)

3.4.3 Combined extrinsic and intrinsic remodeling

Unlike T1 transition which only contributes to extrinsic
remodeling and cell expansion which only contributes to
intrinsic remodeling, the process of cell division contributes
to both modes of remodeling. In other words, it not only
modifies the Lie derivative £(M) via topological changes
(see Fig. 4a) but also alters the natural mean cell configura-
tion M,,. Let us first deduce the rate L(M) of topological
transition-induced inelastic deformation due to division fol-
lowed by the effect of division on the natural mean cell, as
characterized by Vn (or £,). The process of cell division has
classically been modeled, similar to expansion, with expo-
nential kinetics as (Montel et al. (2012)):

1 =kpn (19)

where n = N /N, is the cell number ratio and kj, is the associ-
ated division rate. Here, recall that N, is the initial number
of cells at a material point in B3;,. Akin to T1 transitions, the
division rate kj, is also given by the loss rate k;. In terms of
the ratio 7 /f, we write f/f = N/N = i/n = kp, = k,, which
when substituted in Eq. (12), gives:

L) =«
5(;—)—3 @

Further substituting the above into Eq. (13), we obtain the
Lie derivative owing to division as:

LM) = =2k, (M - M) 21

where the tensor M,(= M), analogous to M, is the extrin-
sically remodeled mean cell configuration due to division.
From Eqgs. (15) and (21), we observe that the inelastic defor-
mation induced by topological changes under cell division
is similar to that of T1 transitions. However, differences in
behavior may arise due to variations in the mechanosensi-
tivities of the rates kj, and k;, as discussed later in sec. 4.
To understand the role of cell divisions in intrinsic
remodeling, we again resort to the division algorithm imple-
mented in discrete cell-based models (Barton et al. 2017).
According to this, as the volume V = (4 /3)y/det M of
the mean cell exceeds a certain threshold V*, where V* is a
constant, it splits into two daughter cells, each with volume
VI2. According to this, cell division is an isochoric inelastic
process that induces no permanent volume change. In finite
inelasticity theories like morphoelasticity, the permanent
volume change is measured in terms of volume ratio J; (J,
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in morphoelasticity), defined as the ratio of natural volume
to initial (undeformed) volume at a continuum point. For our
system, we can calculate J; as:

gt N
7 A A (22)

where ¥, = NV, is the macroscopic natural volume. Further
assuming no cell expansion (i.e., k; = 0), enforcing the con-
dition J; = 0 and using Egs. (19) and (22), we get:
e G_ i :
Ji=nli+n{;=0 = E:_Z = §=-kp§;  (23)
This simple relation indicates that cell division, in addition
to increasing the cell count #, also reduces the natural mean
cell volume V,, (equivalently m,). Although expansion and
division occur simultaneously during proliferation, they are
independently regulated processes. In other words, divi-
sion can occur without expansion, and expansion can occur
without division (Ateshian et al. 2012). Consequently, the
mechanics of proliferation can be modeled by superimpos-
ing deformations induced by both these inelastic processes.
Hence, we combine Eqs. (18) and (23) to obtain the govern-
ing equation for proliferation in terms of ; as:

& = (kg — kp)¢; 24)

which shows that division competes with the kinetics of
expansion during proliferation. Equation (24) thus represents
intrinsic remodeling owing to proliferation.

Following ¢;, we introduce a dimensionless measure for
mean cell volume V, given by ISV { = V/V,, and termed as
cell size ratio. The division criterion is then fulfilled when
the cell size ratio { exceeds a certain threshold {* = V*/V,.
The volume ratio J = det F' can then be expressed in terms
of ISVsn and ¢ as:

14 NV
J = A ng (25)

where 7'= NV is the macroscopic total volume. Note that
this expression for J explicitly separates the total volume
change into—a change in cell count n and a change in cell
size {, thus accounting for proliferation-driven growth. Fur-
ther identifying J, = V/V, as the elastic volumetric defor-
mation, we can write { = J,{; and J = J,J; = J n{;, where
recall that J; = »n{; is the inelastic (or permanent) volumetric
deformation.

3.5 Elastic deformation
Classical morphoelasticity theory (Ambrosi and Mollica

2002) focuses solely on intrinsic remodeling due to volu-
metric growth (or cell expansion), while coarse-grained
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models (Ishihara et al. 2017; Graner et al. 2008) consider
only extrinsic remodeling from topological transitions. This
is evident from the corresponding Lie derivatives: £(b,) (Eq.
(5)), which does not account for extrinsic remodeling events,
and L(M) (Eq. (13)), which does not capture intrinsic remod-
eling. Thus, to measure elastic deformation in proliferating
aggregates, we require a quantity that encompasses both—
extrinsic remodeling (i.e., £(M)) and intrinsic remodeling
(i.e., the evolution of the natural mean cell configuration
M,). To address this, we introduce the normalized texture
tensor, denoted by u, defined as:

K= —M (26)

The tensor u, then, provides an accurate measure of elastic
deformation in the network, as discussed below. It is first
important to mention that Eq. (26) assumes an isotropic
response of the solid, characterized by tensors M|, = myl
and M, = m,I. If the solid’s response is anisotropic, these
tensors will, in general, no longer remain isotropic, and con-
sequently, the Eq. (26) will need to be modified to account
for anisotropy. To now illustrate that the normalized texture
tensor p is a true descriptor of elastic deformation, it would
be sufficient to show that its Lie derivative £(u) provides a
complete depiction of inelastic deformation in the network.
The Lie derivative L(u), as derived using Eqgs. (13), (17),
and (26), is expressed as:

L) = ji—tu—pt" = = L) - 39# 27)

m, 3 gi

From the above equation, we see that the normalized texture
tensor u evolves under extrinsic as well as intrinsic remod-
eling. The current morpho-viscoelasticity theory (as given
by L(u)) thus effectively couples growth mechanics with
viscous dissipation. In contrast to existing elastic-visco-
growth theories (Ambrosi and Preziosi 2009), we here do
not explicitly decompose the inelastic part (i.e., F e_lF ) into
viscous and growth deformations. Instead, we here (implic-
itly) categorize total inelastic deformation into extrinsic and
intrinsic remodeling owing to different cellular processes.
This approach of interpreting cellular processes-induced
inelastic deformations in terms of network remodeling not
only allows us to bridge the cell and tissue scale behavior
but also comprehensively model the individual effects of the
involved cellular processes (see Table 1).

Let us now consider the case when L£(u) vanishes, i.e.,
no network remodeling occurs. In this situation, the normal-
ized texture tensor becomes y = FuyF T where Ho = p(0)
can be evaluated as py=M(0)/m,(0)=M,/my=1.
From this result, we get u = FFT = b, which shows that
the normalized texture tensor u reduces to the classical b
tensor. In the general case, when L(u) # 0, the tensor u
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Table 1 Comparison among various continuum models for tissues and cell aggregates

Continuum model Cell-level Extrinsic remodeling Intrinsic remodeling
description
Intercalation Division Expansion Division
Morphoelasticity (Rodriguez et al. 1994; Ambrosi and Mollica 2002) 4
Elasto-visco-growth (Ambrosi and Preziosi 2009; Yan et al. 2021) v v v
Coarse-grained (Ishihara et al. 2017; Graner et al. 2008 v v
TNT (current model) v v v v v

thus bears resemblance to tensor b, and consequently is
directly related to F,. However, in contrast to morphoe-
lasticity and other elasto-visco-plastic theories (Preziosi
et al. 2010) where b, = F F ET, we here do not mathemati-
cally express u in terms of F,. Nevertheless, it is still
interesting to show that u is indeed related to F,. For
this, we take the determinant of relation (26) and obtain,

det u = (det M)/mz =(V/V,)? = Je2 = (det F,)?, and thus,

J, = \/det p (28)

Moreover, when the mean cell is in its natural state, i.e.,
M=M,=m,], we obtain y =1, signifying no elastic
deformation or equivalently ', = I. Again note that the fact
pu =1 in the natural state is a consequence of isotropy. The
key takeaway is that, for an isotropic solid, the macroscopic
elastic deformation can be fully computed from the normal-
ized texture tensor u. Consequently, the material constitutive
relations for energy density y,, (Eq. (3)) and Cauchy stress

tensor 6 (Eq. (4)) can be formulated in terms of u as:
2 dy,

v,(w) = w(l,, 5, 1;) and o = Z Y H 29)

where I}, I,, I; are now the invariants of tensor .

4 Model illustration

In this section, we demonstrate the use of the TNT-based
morpho-viscoelasticity theory. The key element of the cur-
rent model is that Eq. 5 in morphoelasticity can now be
generalized using morpho-viscoelasticity to:

L(p) = p—Cpu—pt" = —dy—d; —d, (30)

where d, d; and d, are, respectively, the inelastic flow rates
due to expansion, T1 transition, and division. The above
equation considers the fact that expansion, T1 transition,
and division are independent processes, each exerting its
effect on aggregate mechanics. Let us now derive explicit

expressions for di,d; and d, from the Lie derivative L(u)
(Eq. (27)).

For illustrative purposes, we will be examining an exam-
ple problem solved using the classical morphoelasticity the-
ory by Ambrosi and Mollica (2002). Investigating the same
example problem using the morpho-viscoelasticity theory
allows us to not only illustrate the current model but also
make direct comparisons with the existing morphoelasticity
theory. For these reasons, we employ the same hyperelas-
tic material model for y, as used by Ambrosi and Mollica
(2002), which is the Blatz-Ko hyperelasticity material model
given by:

v, =5 (11—3)—2(13—1) (31)
where I, = Tr(u), J, = y/det u, G and g are material
parameters related to the linear elasticity constants: Young’s
modulus E and Poisson’s ratio v, through the relationships
G=E/2(1 +v)) and g =—-2v/(1 —2v). Note that the
strain-energy density provided by Eq. (31) accommodates
elastic compressibility and material isotropy. The Cauchy
stress tensor ¢ can then be derived from Eq. (29), resulting
in:

c = Jg[—(le)ql + (32)

Notice that the stress-free (¢ = 0) configuration is repre-
sented by u = I which is also the initial condition on u.

4.1 Expansion

We have already seen that expansion does not involve any
topological changes (or extrinsic remodeling) and only con-
tributes to L(u) through the evolution of {;. Substituting Eq.
(18) into Eq. (27) yields the associated flow rate d, as:
2

dp = 3 EH (33)
The crucial point is that cell expansion is the sole inelas-
tic mechanism that effectively leads to permanent volume
change. Other inelastic mechanisms like division and
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Fig.6 a Schematic of spheroid growing inside a rigid cylinder. b Normalized radial wall stress o,,/G. ¢ Spheroid volume ratio J = det F (same

as stretch ratio A in this example)

intercalation do not induce any permanent volume alterations
at the macroscale. Therefore, since the morphoelasticity
theory only accounts for inelastic volumetric deformation,
the expansion model in the current theory must degenerate
to morphoelasticity theory in case of isotropic growth. That
is dy and d, must be equivalent in case £, = g/gl, which
gives:

gt (34)

The above relationship illustrates that isotropic cell
expansion leads to isotropic volumetric growth, given by
¢, = (kg/3)I. The only distinction between the expansion
model in the current theory and classical morphoelasticity
lies in characterizing the driving force for active deforma-
tion in terms of an expansion law for kj rather than a growth
law for Z,.

We now demonstrate the above idea by solving a simple
problem of homogeneous deformation of a multicellular
spheroid. This example serves to understand how the TNT
model aligns with morphoelasticity theory in the absence
of topological rearrangements (i.e., when kj, k; = 0 and
resultantly d;,,d; = 0). In this case, the governing equation
(30) for the evolution of elastic deformation tensor u, using
Eq. (33), becomes:

. T 2

p=7Cpu+pt - ngM (35)
The example problem we look at involves a cylindrical sphe-
roid grown inside a rigid cylinder as shown in Fig. 6a. Since
the spheroid is unable to deform radially (and circumferen-
tially), the kinematics is described by deformation gradient
F (and equivalently by velocity gradient ) of the form:
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F = Diag{l1, 1, 1} = ¢ = Diag{O, 0, %} (36)
where A is the stretch ratio along the vessel or z axis. More-
over, we assume that the driving force for deformation is
provided by active cell expansion occurring at a constant
rate k = k). Substituting k; = k? in Eq. (34) and applying
the initial condition g(+ = 0) = 1, results in an isotropic and
homogeneous form of volumetric growth law represented as:

kO
g(n) = exp(fr)

The stretch ratio A can be found by first numerically inte-
grating the Eq. (35) using the forward Euler scheme. Once
we determine u(?), we then impose the traction-free bound-
ary condition on the z surfaces of the spheroid to obtain
A®). Given the homogeneity of the deformation fields,
the boundary condition simplifies to 6., = 0, where o,
represents the z component of the Cauchy stress tensor
o = Diag{o,,, 0,,, ..}, with 5,, being the radial (and hoop)
stress component. The resulting plots for radial stress o,,
(Fig. 6b) and stretch ratio A (Fig. 6¢) as functions of g are
consistent with the analytical solutions derived by Ambrosi
and Mollica (2002) using morphoelasticity. Hence, the key
takeaway from this illustration is that the morpho-viscoe-
lasticity theory converges to morphoelasticity theory for
isotropic growth in the absence of any rearrangements
(i.e., when kp, kp = 0).

(37

4.2 T1 transition

As T1 transitions result only in extrinsic remodeling, the
¢;/¢; term in Eq. (27) vanishes and we get, by substituting
Eq. (15) into Eq. (27), the inelastic flow rate d as:
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dy = kr(u— py) (38)

where u; = M;/m,, akin to M, represents the preferred
state the cells aim to attain via intercalating, and thus
informs about the flow resulting from T1 transitions. Unlike
cell expansion which is an isotropic process, topological
transitions, in general, exhibit dilrectionality.2 Hence, effec-
tive mathematical modeling of the topological transitions
requires including the directional bias. For example, cells in
a stretched monolayer dissipate stresses by adopting a less
elongated (or distorted) geometry through intercalation, as
shown in Fig. 7(Ishihara et al. 2017; Bandil and Vernerey
2023). This behavior can be modeled by prescribing an iso-
tropic form to the tensor ur, i.e., uy = ppl, where py is
yet unknown. To find the unknown p;, we make use of the
fact that T1 transitions do not induce any permanent volume
change (as can be seen from Eq. (22)). From this, we can
obtain the tensor p; (see Appendix Af) as:

_3 g
Tr(u=)

which when substituted into Eq. (38) yields the T1 transi-
tion-induced flow rate d; as:

3
T @

Hr = 39)

dr = ky <ﬂ

We show in Appendix Ag, how the inelastic flow rate d; in
Eq. (40) satisfies dissipation inequality and hence is thermo-
dynamically admissible. Notice from Eq. (40) that in case
the elastic deformation in cells is isotropic (i.e., the tensor
H is isotropic), then the flow rate d, vanishes, meaning that
intercalation does not induce any effective deformation at
the macroscale in this scenario.

Another important feature of T1 transitions is that cells
can only intercalate if they are distorted beyond a certain
threshold (Marmottant et al. 2009). To account for this yield
behavior, we first need a measure of elastic distortion in the

2 This directionality has nothing to do with the change in material
orientation and effectively its response to deformation.

cells. For this, we introduce another ISV, denoted by y, and
defined as:

R é 1o gy
= \/2;4 ‘H 41)

where y’ denotes the deviatoric (traceless) part of u given
by:

X

H=17-3 =H—§I 42)

Recognize that the expression for y in Eq. (41) is analogous
to the von Mises stress used in J, flow plasticity theory with
the deviatoric part of u used instead of Cauchy stress o. Fur-
ther using Eq. (9) and considering that principal directions
a,,a,,a; align with the coordinate system’s axes, we can
rewrite y in terms of shape parameters y,, y,, ¥ as:

2 2 2
re B3 a1 -] o
43)
It can be seen from the above expression that there is no
distortion (i.e., y = 0) only if y; = ¥, = y3 = 1/3 (in which
case g’ = 0). Any deviation of y from 0, thus, indicates the
extent of elastic distortion in cell shape. Notably, like 7, y
is also an invariant of u. As the driving force for the process
of T1 transition comes from elastic distortion y, the yield
phenomena can be modeled in terms of the kinetic rate k; as:

ky = kp(y) if x> x* (44)

and k; = 0, otherwise. This definition for the kinetic rate
k; ensures that cells can only intercalate (i.e., d # 0) if
they are distorted beyond a threshold y*. Thus allowing
us to capture the complex elasto-visco-plastic behavior in
terms of a scalar ISV k;. Different functional forms for k()
can be proposed depending on the nature of T1 transitions.
To further simplify the model, we assume that k; = k(}, if
x > x*¥ and k; = 0, otherwise. This straightforward expres-
sion allows us to qualitatively model the influence of T1
transitions on the mechanics of a growing aggregate, which
is the primary objective of this study.

4.2.1 Effect of T1 transition on constrained spheroid
growth

To show the effect of T1 transition on growth mechanics, we
study the same problem of the homogeneous growth of the
constrained cylindrical spheroid (see schematic of Fig. 8),
as studied in the previous sec. 4.1. In this example, we con-
sider that cells can only expand (with the rate k, = kg) and
intercalate without dividing (i.e., k;, = 0). The governing Eq.
(35) for ju for this case becomes, using Eq. (40):
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Following the same solution procedure mentioned earlier,
we plot the results in Fig. 8 for different values of T1 transi-
tion rate k9, where k9 = 0 denotes the results of morphoe-
lasticity. We observe that as soon as cells start intercalating
(i.e., when y exceeds y*), distortion y (Fig. 8c) decreases
with increase in kg. Notably, y approaches a homeostatic
value (equal to y*) for higher values of kg. The reduction
in cell distortion y is associated with the directional bias
of T1 transitions. When the mean cell shape is elastically
distorted (beyond yield), cells intercalate, resulting in a more
spherical mean cell geometry and thus reduced y. T1 transi-
tions have been observed to relieve stresses in passive tis-
sues and aggregates (Ishihara et al. 2017; Marmottant et al.
2009). Figure 8a illustrates how cells dissipate wall stress
o,, through intercalation in a growing aggregate. Relaxa-
tion of compressive stress o,, is accompanied by an increase
in elastic volumetric deformation J, (which is < 1 due to
compression). This consequently increases cell size { = J,¢;
(Fig. 8d) and the spheroid volume J = J,J; (Fig. 8b). Since
n = lowing to k% = 0, we can write for this example:

i=Cu+pue’
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g=J—"+kg and §=J—e+kg (46)

e

As J,/J, > 0 due to relaxation under T1 transitions, we see
that T1 transitions promote both cell size { and volumetric
growth J. Overall we observe that T1 transitions can influ-
ence cell shape (y) and size ({) within a growing aggregate
by relaxing stresses. The degree of relaxation is contingent
upon the intercalation rate k¥, with higher rates leading
to greater relaxation and isotropicity. Moreover, we also
showed how the elasto-visco-plastic behavior of cell aggre-
gates can be modeled by simply considering k().

4.3 Division and proliferation

As division contributes to both extrinsic as well as intrinsic
remodeling, the inelastic flow rate d}, can be derived using
Egs. (21) and (23) as (see Appendix Ah):

dp = kD(%”_zﬂD) 47)

where the tensor u;, = M,/m, models the favored or the
desired state that cells aim to attain, on average, by undergo-
ing division. The topological changes induced by division
also exhibit directionality, akin to T1 transitions. In the case
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Fig.9 Biased division

of division, directionality comes from the axis or orientation
of cell division. Studies (Wyatt et al. 2015; Xu et al. 2016)
show that cells in a stretched monolayer preferentially divide
along their long axis instead of randomly chosen axes. In
this way, they can dissipate more energy while preserving
homeostasis and isotropic packing. This ‘long axis’ rule can
be implemented using the tensor u;, which drives the flow
under division (Bandil and Vernerey 2023). We first make
use of the fact that biased divisions result in isotropic dis-
tributions as cells endeavor to achieve spherical geometries
(see Fig. 9). This behavior is similar to that of T1 transitions
and hence translates to u;, being an isotropic tensor. Com-
bined with the inelastic incompressibility (or isochoric) con-
straint condition on division, we obtain (see Appendix Ah):

2

=—< 1
Ho = T gun

(48)
Substituting u,, from Eq. (48) in Eq. (47) yields the result-
ant macroscopic inelastic flow due to biased or oriented cell
division as:

4 4
9o = o34 75 )

Appendix Ai shows how the above flow rate for division is
thermodynamically admissible. From Eq. (49), if the cur-
rent deformed state of the aggregate is unbiased (i.e., u is
isotropic), then division does not induce any inelastic flow
(i.e., dp = 0). In this case, the sole impact of division is in
increasing the cell count # and decreasing natural volume
¢;- However, when cells are elastically distorted (i.e., y > 0)
and exhibit unique principal directions, biased cell divisions
affect the stress state of the system as we will see further.

Note on kj,: According to Xu et al. (2016), the larger the
cell size—higher the probability of division. This implies that
rate k;, = k,({), where the dependency has been proposed
as an exponential form (Xu et al. (2016)):

kp = k) (1 —exp(-op[¢ —¢*])) if ¢>¢* (50)

and kj, = 0, otherwise. Here k% sets the upper limit on divi-
sion rate, * = V*/V, is the threshold size ratio modeling

aggregate plasticity due to division (Xu et al. 2015), and ¢/,
is a sensitivity parameter.

Apart from controlling the aggregate’s stress state (Xu
et al. 2016), cell division also plays an important role in
maintaining the homeostatic state of cell packing (Farhadifar
et al. 2007; Wyatt et al. 2015). To illustrate these concepts,
we now explore the influence of division on spheroid growth
mechanics by considering two cases: (1.) free growth and
(2.) constrained growth.

4.3.1 Effect of division on free spheroid growth

Here, we demonstrate how homeostasis can be mod-
eled using Eq. (24) through a simple example. Consider a
freely proliferating aggregate under a constant expansion
rate kp = k%. Owing to homogeneous expansion, no elastic
energy is being stored during the process. In such a situation,
since elastic volumetric deformation J, = 1, we have { = {;
and hence the cell size ratio ¢ follows the same evolution
equation (24) as ¢;. From Fig. 10a, we see that with time, a
steady state is reached and the mean cell size attains homeo-
stasis (i.e., { = k). — k;, = 0). We can find out this steady-
state value, say {*, by simply equating k;, in Eq. (50) to k%,
resulting in:

1 ky
S | 1= -£ 51
¢ ¢ op n< k%) D

The above solution reveals that homeostasis can only be
achieved if the maximum division rate k% is more than the
expansion rate k). If k. > k) then £ > 0 always, resulting
in a continuous increase in mean cell size throughout the
growth process (see Fig. 10a). In this case, division rate
kp < kg (see Fig. 10b) and expansion dominate proliferation.
This provides us with valuable insights into the relative rates
of expansion and division within a growing population. With
the aid of ISVs (kg, kp, ¢, 1, §), we can now also distinguish
between the growth modes. To comprehend this, we employ
the relationship in Eq. (25) which implies that:

Sy g (52)
Joon ¢

During the transient phase (¢ # 0), volumetric growth
includes both an increase in cell size { and an increase in
cell number #. However, when homeostasis is attained under
suitable conditions, volumetric growth becomes entirely
driven by the increase in cell number.
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(a) Cell size ratio (b) Division rate
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Fig. 10 a Cell size ratio ¢ and b normalized division rate kj,/k%, as plotted against time ¢ for different values of rate k%. Unit of zis[1/ kg]. Simu-
lation parameters: {* = 1.3 and g;, = 10

(a) Radial stress (b) Volume ratio
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Fig. 11 Effect of biased division on: a normalized radial wall stress o,,/G, b spheroid volume ratio J (same as stretch ratio A in this example), ¢
cell shape distortion y, and d cell size ratio ¢, as plotted against growth ratio g. Simulation parameters: {* = 1.3, ¢ = -2, and ¢, = 10

4.3.2 Effect of division on constrained spheroid growth this case, since the cells are proliferating, the governing
equation for ¢; is given by Eq. (24) and the evolution Eq.
Let us now solve the same example problem of constrained  (35) now becomes:
growth (see the schematic of Fig. 11) as introduced in
sec. 4.1. The difference is that in addition to expanding,

cells in the constrained spheroid can now also divide. In
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. 2 4
jr="2Cu+pt" - —koﬂ—kp<§ﬂ

4
3k —I> (53)

Tr(p™")

As demonstrated in Fig. 11, once the cells start dividing
(i.e., ¢ exceeds ¢*), distortion y (Fig. 11c) and size ratio
¢ (Fig. 11d), decrease with increase in k%, with the effect
on cell size { being significant. Again, since the mean cell
shape is distorted under the confinement of the matrix, cell
division results in a more ordered (or isotropic) packing,
and thus reduced y. Additionally, cell divisions have been
observed to fluidize tissue by relieving stresses (Xu et al.
2016). This stress relaxation is evident in our results from
Fig. 11a, which shows dissipation of wall stress o,, through
division. One of the most notable effects of division is
displayed in the mean cell size ratio { (Fig. 11d), wherein
we observe that { eventually reaches a steady-state value
for a high division rate of k?) = 5. As shown in Fig. 11b,
the model predicts that cell division promotes volumetric
growth, leading to an overall increase in spheroid size with
an increasing k%. This response can be understood as fol-
lows. Substituting { = J,¢;in Eq. (52) and further using Eqgs.
(24) and (19), Eq. (52) can be rewritten as:

J _Je

77 + kg (54)

e

This simple relation shows that the overall volumetric defor-
mation can be split into elastic volumetric deformation J,
and expansion (k) induced inelastic deformation. In this
specific example problem, where k; = kg is constant, the
mechanism through which division influences the global
spheroid size J is via relaxing compressive stress, thereby
increasing J, (see inset of Fig. 11b) and consequently leading
to an increase in J.

Broadly speaking, the behavior of growing spheroid
in response to division follows similar trends to those
observed with intercalation (Fig. 8) in terms of stress relaxa-
tion (Figs. 8a and 11a) and promoting volumetric growth
(Figs. 8b and 11b). However, the primary distinction lies
in the fact that T1 transitions strongly regulates y, while
division significantly affects {. This disparity arises because
shape distortion y is the driving force for T1 transitions,
whereas size ratio ¢ drives division. As a result, T1 tran-
sitions help maintain cell shape (distortion) at its homeo-
static value of y*, while division aids in maintaining cell
size at its homeostatic value which depends on other factors
including {*. We notice from Figs. 8c,d and 11c,d that in
the absence of any rearrangements (i.e., when ko, k% =0),
cells undergo continuous distortion with growth, assum-
ing highly deformed ellipsoidal shapes. Concurrently,
cells exhibit volume expansion reaching large sizes. Both
of these scenarios seem biologically improbable, as cells
within spheroids are observed to maintain their shapes and

sizes at moderate values, a state referred to as homeostasis
(Tzur et al. 2009). This observation suggests that additional
mechanisms (such as division and T1 transition) that regu-
late cell shape and size need to be taken into account while
modeling the growth of spheroids.

5 Conclusion

To summarize, we here have presented a morpho-viscoelas-
tic continuum theory to model growth in three-dimensional
proliferating dense cell aggregates such as spheroids and
organoids. Using the transient network theory, we have
generalized the existing continuum mechanical models for
confluent tissues in multiple ways: (1.) Additional inelastic
mechanisms, namely division and intercalation, have been
included. (2.) The model can now differentiate between dif-
ferent modes of growth (proliferation)—increase in cell size
via expansion and increase in cell number via division. (3.)
The model facilitates a thorough elucidation of the complex
interplay between cell-level mechanics and aggregate-level
growth. This involves the characterization of different cel-
lular activities in terms of suitable ISVs and continuum field
variables (4.) The model introduces a generalized measure
of elastic deformation, given by normalized texture tensor,
which incorporates all the cellular processes-induced inelas-
tic mechanisms.

One of the most noteworthy contributions of the current
study is to provide novel interpretations of inelastic defor-
mations in an aggregate. We showed how inelastic deforma-
tion can be categorized into extrinsic and intrinsic network
remodeling, where extrinsic remodeling deals with topo-
logical changes while intrinsic remodeling corresponds to
changes in the properties of constituent network elements,
in this case segment vectors. This categorization allowed
us to comprehensively understand the influence of each of
the cellular mechanisms—expansion, division, and inter-
calation—at the macroscale. For instance, we showed how
division, which is one of the most prominent cellular mor-
phogenetic processes, remodels the network extrinsically
as well as intrinsically. Owing to this feature, we can now
thoroughly model dissipation due to cell rearrangements
alongside proliferation in aggregates under various loading
and constraint conditions.

While the proposed model endeavors to make notable
advancements in the mathematical modeling of growth,
it is not without its limitations. One of the present for-
mulation’s major shortcomings is in characterizing aniso-
tropic growth. Biological growth is not always isotropic.
For instance, in cardiac and arterial tissues, the growth is
characterized by an anisotropic form of the growth tensor
(Ambrosi et al. 2011; Rodriguez et al. 1994). For such
cases, the current formulation will need to be modified to
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account for anisotropicity in the cell-level micro-structure
driving growth. This will require redefining the material
model for capturing anisotropic elastic response (Holzap-
fel et al. 2004). We recognize this as a promising prospect
to further enhance the applicability of our framework. In
this study, we solved simple example problems involv-
ing homogeneous deformation. To fully demonstrate the
potential of the developed theory, it will be necessary to
implement the model within the numerical framework of
finite element analysis (FEA). This will enable us to study
more intricate problems such as morphogenesis of tumor
spheroids (Cheng et al. 2009; Kulwatno et al. 2021), tis-
sue growth in polymeric scaffolds (Dhote and Vernerey
2014; Vernerey 2016), and mechanics of growth-induced
residual stresses (Ambrosi and Mollica 2004).

Appendix

(a)

(b)

Derivation of £ = ¢, + ¢, . Following the multipli-
cative decomposition F = F F, the spatial velocity
gradient # = FF~' can then be written as:

¢ = (F.F,+FF,)F,'F
. ; —1 -1 3 -1 -1
= F,FF'F,' +F FF'F,

—_ T -1 ? —1 -1
= F,F;' +F,F F,'F;

(55)

where the first term is called the elastic part of £ and
is denoted by ¢,, while the second term is the growth
part denoted by Z,. Therefore, we have:

?, = FEF;l and Z,=F

i =11
ngFg F

(56)

Derivation of o(b,) . We start by employing the Clau-
sius—Duhem inequality for an open system, expressed
in the spatial frame as (Huang et al. 2021):

D=c:¢-p¥>0 (57)

where & is the mechanical dissipation rate, p is spatial
mass density (defined as mass per unit current volume),
and YV is the Helmholtz-free energy per unit mass. The
strain-energy density y, can be written in terms of ¥
asy, = p,¥, where p, = J,pis called the natural mass
density (defined as mass per unit natural volume). The
term p¥ can now be written as:

1. 10,
p¥ = J—llln—J—p— n (58)

Substituting the above into Clausius—Duhem (Eq.
(57)), we get:
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(d)

1 1 Py
D=0:1¢€——y,+——"y, >0
c AR (59)

where the material time derivative i, can be written
(for isotropic material where y, = v, (b,)) as:

. dy, _ oy, . oy, o,
W, = = = ﬁ:bk = zﬁb‘,:f+ szt(b”) (60)
Using the above expression in Eq. (59), we get:
2 dy, 1 9y, 1 P
D = - = b, |t —— Lb)+——w, 20
(U ‘/6 abe e) JE abl? ( L) + ‘]E pll Wn - (61)

For a hyperelastic material, the first term vanishes,
resulting in:

2 dy,
=21
°= T,

(62)

Derivation of L(b,) . Starting with b, = F ,F Z, taking
the material time derivative we get:
b, = F,FT +FF' (63)

Substituting F, = ¢ F, (from Eq. (56)) in above, we
get:

b, = ¢,F F +FF'¢!
T (64)
=?¢b,+b,7,
Further using?, = ¢ — t’g, we obtain,
b = eb,+b,2" - (¢, +b.e") (65)

The Lie derivative of spatial tensor b,, defined by
Lb,) :=b,—¢b,—b,€", can be expressed in terms
of £, using above expression as:

L@, = ~(£.b.+b.7) = —d, (66)

where d, =€ b, +b8£§ is the growth-induced
inelastic flow rate. When Fg =gl, we get
¢,=F,LJF," =g/gl whichyieldsd, = 23/gb,.
Derivation of M|, . Let ry = [r,y, ryg, 9] denote a ran-
dom segment vector in the network embedded inside
an arbitrary Lagrangian coordinate X € B5;,. The mean

conformation tensor M|, is then given by:
<r§0> <rx0ry0> <rx0rZO>

M, = (ry®ry) = |(roho) <V§0> (ryor0)
(reor0) <ry0r10> (VZZ())

(67)

where (m) is the mean of m over conformation space Q.
For an isotropic distribution, we have
(roryo) = (ryoro) = (ror) =0 and
(r3) = (rio) = (r%)). Let r;, be the length of segment
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Tz

Fig. 12 Control volume w in the conformation space Q

(e)

vector r(. Hence rg = r ot r ot r . Taking the mean,

we get (r3) = (r3)) + (r ot (r 0) From isotropy, we
have (r2)) = (r 0= (r2)) = (r3)/3. The tensor M, in
Eq. (67) thus becomes:

2 100 2
Mo—u010=ul—mol (68)
001

The scalar m, = (rg) /3 thus provides us with a meas-
ure of the average of the square of segment vector
lengths in the network at initial equilibrium (i.e., ;).
Similarly, the natural (or current equilibrium) configu-
ration of the network, for an isotropic solid, is given by
the tensor M, = m, I, where m, = (r?) /3 measures the
average of the square of the natural lengths r, of the
segment vectors.
Evolution equation for the pdf p. We start by introduc-
ing a statistical quantity, ¢(x,r, ) = f(x,)p(x,r,1),
which measures the fraction of segment vectors exist-
ing in conformation r per unit conformation space. The
fraction f can be expressed in terms of ¢ as:

n(x 1)

f@.n) =

/ dx,r, 1) dQ (69)

Now consider an arbitrary fixed control volume w C
bounded by surface dw as shown in Fig. 12. Let n,, be
the number of segment vectors inside @ at any time ¢.
An evolution equation for ¢ (and consequently for the
pdf p) can be derived by writing the conservation equa-
tion forn, = n, fH , @ dw (Note that n, is some constant).
Now each point in conformation space €, denoted by
vector r, moves with velocity 7 = €r (using the affine
assumption). Net influx, say Q, of vectors through the
surface dw into the domain w is then given by:

0= —/¢r~nds

- - / V- (¢fr)do (70)

(using divergence theorem)

where n is the normal to the elementary surface ds and

the V operator is defined in the basis {r,,r,, 7, }. O here
measures net change in the number of segment vectors
inside the domain @ due to convection (or flow) under
?. Additionally, new segment vectors can be created
or some existing segment vectors can be lost under
(inelastic) rearrangement events. The conservation
equation for n,, can now written as:

n

o _ /d"’dw - —/V ($er) do
I’l

/5 dw — /é,dco

where &, and &, are, respectively, the source (creation)

and sink (loss) terms. Since the above conservation
equation holds for any arbitrary domain @ C €, we can
write from localization:

de
= V. (ptr)+ & - & (72)

=2 V(g +& - ¢

(71)

The Fokker—Planck equation, which is the material
time derivative p = dp/dt, can now be derived from

p = ¢/f and Eq. (72) as:

dp 1 f
o _p:v L
o (pr) + féc f — P .
_ e (2 L, _f
- f.(ar®(pr))+f§ - 4=
The terms &, and & are given by:
e = k(1 =f)p. and & = kfp (74)
Substituting Eq. (74) into Eq. (73), we get:
s — _pi( 9 i f1-1
p= f.(ar ®(pr)> kc<1 f)pc
, (75)

—kzp—j,-(p

As can be seen from above, p evolves under (1.) spatial
velocity gradient and (2.) topological transitions. The
rate f can be derived using Egs. (72) and (74) as:
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~ d¢ 2 9y, 1 0y
= [ 2240 D=lc-=—Lu):l+-——"ud
/ /gdt <G 7. ou T op F
76) 1 9y, 1 9y, 15
= kc(l—f)—f/kpdQ ( — g b — I d p— "y >0 (8D
o T op Ty o Ty, Y =
= k=N =kf =
T D

®

(@

Note that above we have assumed that k; is independ-
entof r.

Derivation for p; . For T1 transitions, we have the fol-
lowing governing equation:

p=Cpu+pl" —kp(u—pr)

Pre-multiplying the above equation and then taking its
Trace, we get:

Tr(u'j) = Tr(u'€p) + Tr (")

77
—kp(Ted) = Tr(p" uy) 70

Applying Jacobi’s formula on the LHS term,
which gives Tr(u~'jt) = 2J,/J,, and recognizing
Tr(u'¢p) = Tr(£) = Tr(@T) = J/J, the above equa-
tion becomes:

J,

e J _
2J— = 23 —kp (3= Tr(u ' pup)) (78)
Further employing J = J,J,, we get:
-1 Ji
kp(3 = Tr(u'py)) = 27 (719)

L

Now, T1 transition is an isochoric inelastic process,
i.e., J;/J; = 0. Furthermore, for biased T1 transitions,
we have p; = upl (an isotropic tensor). Substituting
these into Eq. (79), we finally obtain:

3

= ——1]I
TP

Thermodynamic admissibility for d; . To show that
derived constitutive laws for T1 transition (d;) and
division (dj,) are thermodynamically admissible, we
employ the Clausius—Duhem inequality in Eq. (59).
Given that the strain-energy density v, = v, (1), we
have (from Eq. (30)):

0 0
W, =2 W"u:f— Yn :dy
ou ou
(80)
oy, oy,
— dp— ——d;
au ou

Substituting the above into Clausius—Duhem inequality
(Eq. (59)) results in:

@ Springer

(h)

In above equation, Z; and Z,, represent, respectively,
dissipation due to T1 transition and division. Let us
look at dissipation due to T1 transition given by:

d d
p= L g = Ly (g
J, ou J ou

e

(82)

Identifying from Eq (40) that d; is symmetric (i.e.,
d; =d;), we can write:

In above equation, /; = Tr(u) and I; = det y are first
and thirds invariants, respectively, of u and we have
used the fact that y, does not depend on the second
invariant /, (i.e., dy,,/0l, = 0). Further substituting d
from Eq. 40 into above gives:

_ kr oy,
T=y, ar

Tr (1 — pr) (83)

Now, k,J, and oy, /01, are all > 0. For 2 > 0 to be
true, the remaining term must satisfy Tr (u — p7) > 0.
Using p; from Eq. (39) for biased T1 transition, we
now need to show:

Tr(u) Tr(u™) > 9 (84)

Let u = Diag{a, b, c}in principal coordinates, where
a, b, c are eigenvalues of tensor u. Since we are deal-
ing with invariants, the choice of the coordinate system
does not matter. Using this diagonalized form of tensor
u in above inequality, we get:
(a+b+c)(1+1+1>>9 85

a b ¢/~ (85)
which is satisfied foralla > 0,6 > 0,¢ > 0.

Derivation for u,, . Using Eq. (20), the L(u) (Eq. (27))
for division can be written as:
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1\ M. f i,
1 24;,‘
= —k\ 1= < |up—kpu—kpu—s-p
< f> PR TR 30T (86)

2
2kppup — 2kpp + ngIl

4
kD(zﬂD - 5#)

Therefore for division, we have the following govern-
ing equation:

. 4
p=Cu+put" - kp(gﬂ - 2MD>
Following the similar steps as for T1 transitions in
Appendix Af, we get:
» J;
kp(4=2Tr(p ' up)) = 27 87)

l

Since the division process is inelastic and isochoric,
the RHS of the above equation vanishes and gives:

kp(4=2Tr(u'up)) =0 (88)

For oriented/biased divisions u;, = upl is an isotropic
tensor. From the above equation, we can obtain:

0T TG
(i) Thermodynamic admissibility for d;, . Following the
similar steps for T1 transition in Appendix Ag, the dis-

sipation Z;, due to division can be found as:

_ kp oy,

D= T, Tr(i”_z’”)) (89)

3
Substituting u;, from Eq. (48) for biased division, the
inequality Z;, > 0 becomes:

Tr(u)Tr(u™") > 9 (90)
which has been proved already (see Appendix Ag).
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