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Abstract
Despite significant research efforts in the continuum modeling of biological growth, certain aspects have been overlooked. 
For instance, numerous investigations have examined the influence of morphogenetic cell behaviors, like division and inter-
calation, on the mechanical response of passive (non-growing) tissues. Yet, their impact on active growth dynamics remains 
inadequately explored. A key reason for this inadequacy stems from challenges in the continuum treatment of cell-level 
processes. While some coarse-grained models have been proposed to address these shortcomings, a focus on cell division 
and cell expansion has been missing, rendering them unusable when it comes to modeling growth. Moreover, existing stud-
ies are limited to two-dimensional tissues and are yet to be formally extended to three-dimensional multicellular systems. 
To address these limitations, we here present a generalized multiscale model for three-dimensional aggregates that accounts 
for complex morphogenetic movements that include division, expansion, and intercalation. The proposed continuum theory 
thus allows for a comprehensive exploration into the growth and dissipation mechanics of proliferating aggregates, such as 
spheroids and organoids.
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1  Introduction

Establishing a precise relationship between mechanical 
loading and biological response is crucial for understand-
ing various developmental and pathological processes, such 
as tumor growth (Zhang et al. 2020). Mathematical mod-
eling of growth (volume change) and morphogenesis (shape 
change) has, therefore, remained a central focus in mecha-
nobiology research (Taber 2020). These models primarily 
focus on elucidating the coupling between mechanics and 
the phenomena of growth and morphogenesis. Additionally, 
they inform the design of innovative experiments for mod-
ern tissue and organoid engineering applications (Vernerey 
et al. 2021), by aiding in predictive modeling and suggesting 
plausible mechanisms responsible for a specific response. 
Researchers have thus developed numerous theoretical and 
computational modeling tools aimed at predicting the emer-
gent dynamics of developing tissues under diverse chemi-
cal and mechanical factors. These models can broadly be 

classified based on whether the growing body is considered 
as a continuum object or as a collection of individual cells.

On the continuum front, one of the most prominent theo-
ries for modeling volumetric growth in soft biological mate-
rials is the theory of finite kinematic growth, also referred 
to as morphoelasticity (Goriely 2017). Since its advent, the 
morphoelasticity theory has been applied extensively to 
study several growth-related phenomena (Kuhl 2014). Some 
examples include growth-induced residual stresses (Ambrosi 
and Mollica 2002), stress-modulated growth (Ambrosi and 
Mollica 2004), and tumor morphogenesis (Mills et al. 2014). 
Morphoelasticity theory uses a single second-order tensorial 
variable, called the growth tensor, to phenomenologically 
model macroscopic tissue growth (Rodriguez et al. 1994). 
In reality, however, growth and morphogenesis are medi-
ated at the cellular (and even subcellular) level via multiple 
morphogenetic processes like expansion, division, interca-
lation, and apoptosis. The inability to—capture the macro-
scopic influence of these microscopic events and relate the 
growth tensor to driving mechanisms—is the main limitation 
of morphoelasticity theory (Ambrosi et al. 2011; Jones and 
Chapman 2012).

In this regard, agent-based models (Van Liedekerke et al. 
2015), which consider individual cells, help us understand 
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how cellular activities manifest globally and drive the emer-
gent collective response. For example, vertex- (Lin et al. 
2017) and Voronoi- (Barton et al. 2017) model-based simu-
lations have demonstrated the role of cell–cell interactions 
in growing epithelial monolayers. The proficiency of these 
models lies in their ability to encompass not only cellular 
morphogenetic processes but also cellular properties such 
as stiffness, contractility, and adhesion to name a few. As 
a result, the tissue description provided by these discrete 
methods bears a closer resemblance to biology. Neverthe-
less, even such techniques are not without flaws, with the 
main challenges being the extension to three-dimensional 
complex geometries and the high computational costs 
involved.

This led to several efforts to unify the continuous and 
discrete approaches, intending to develop computationally 
tractable models that can also preserve some cell-level infor-
mation. Researchers have been able to mechanistically incor-
porate cell-scale behavior to model tissue elasticity (Staddon 
et al. 2023; Brodland et al. 2006) and cell rearrangements 
owing to intercalation (Ishihara et al. 2017) within continu-
ous frameworks. To bridge the cell- and tissue scale behav-
iors, these models follow a coarse-grained technique (Graner 
et al. 2008) wherein the effective response at the tissue scale 
is derived in an averaged sense from the individual response 
of constituent cells. While the mathematical formulation 
employed for coarse-graining in these studies is extendable 
to three dimensions, the primary focus, to this date, has been 
on two-dimensional cell monolayers like epithelial tissues. 
Furthermore, the phenomenon of growth which involves cell 
expansion and division (termed together as proliferation) has 
garnered even less attention.

This sets the objective for the current study—to address 
the shortcomings of existing continuum theories and pro-
pose a multiscale modeling framework that comprehensively 
models population growth dynamics. The goal is to refine 
the coarse-grained models with mechanisms like prolif-
eration that hold significance to the growth phenomenon. 
Though some authors have opted for a more computational 
approach (Lejeune and Linder 2017) to achieve this, we 
here are interested in introducing a theoretical tool that can 
be implemented using nonlinear finite element analysis 
(FEA), similar to morphoelasticity. The presented theory 
is an extension of our previous work (Bandil and Vernerey 
2023) on confluent cell monolayers that laid down the fun-
damental ideas regarding the multiscale modeling of cellular 
processes. Here, we not only expand those ideas to three-
dimensional cell ensembles or aggregates but also offer 
novel interpretations of cellular processes-induced inelastic 
deformation.

The article is organized as follows. In Sec. 2, we start by 
providing a concise overview of the classical morphoelastic-
ity theory. Subsequently, we discuss the need to generalize 

the conventional theory to morpho-viscoelasticity that 
accounts for the elasto-visco-plastic behavior of cell aggre-
gates. Section 3 delves into the development of morpho-
viscoelasticity theory. For this, we employ transient network 
theory (TNT) (Vernerey et al. 2017)—a versatile framework 
that has been used to study viscoelasticity due to dynamic 
networks across various systems including plant cell walls 
(Lalitha Sridhar et al. 2018), fire ant aggregations (Vernerey 
et al. 2018), hydrogels (Crespo-Cuevas et al. 2023), and cell 
monolayers (Bandil and Vernerey 2023). This section dis-
cusses the details of the mathematical modeling of elastic 
and inelastic deformation in the aggregate. In Sec. 4, we 
illustrate the developed theory, through simple case studies 
focusing on the mechanics of proliferation and intercalation. 
In particular, we look at how cellular processes control the 
macroscopic stress state and deformation within a growing 
aggregate. Finally, Sec. 5 offers concluding remarks con-
cerning the study’s limitations and identifies open issues 
for future research.

2 � Background

2.1 � Morphoelasticity

Morphoelasticity theory is based on the notion of multiple 
natural configurations, initially proposed to study finite ine-
lastic deformations in solids (Rajagopal 1995). In the context 
of growth, the idea is summarized as follows.

Kinematics. Consider an arbitrary point P inside a con-
tinuum body in its initial (undeformed) configuration B0 . 
Let X be the Lagrangian coordinate of P ∈ B0 in a three-
dimensional Euclidean space with basis ea, (a = 1, 2, 3 ), as 
indicated in Fig. 1. As the body moves in space with time, 
its configuration at any time t is given by B(t) , which is 
called the current configuration. During this motion, each 
point P ∈ B0 with position vector X gets mapped, with one-
to-one and onto correspondence, to its current position in 
B(t) , where the current position is identified by its spatial 
coordinate x(X, t) (see Fig. 1). The tangent mapping from B0 
to B(t) is then described by the deformation gradient tensor 
F(X, t) , defined as:

As per morphoelasticity, the deformation gradient F can be 
multiplicatively decomposed into an elastic component Fe 
and a growth component Fg as (Rodriguez et al. (1994); 
Lubarda and Hoger (2002)):

(1)F ∶=
�x

�X

(2)F = FeFg
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Accordingly, the Jacobian of deformation, given by 
J = detF , follows the split J = JeJg , where Je = detFe and 
Jg = detFg represent, respectively, the volumetric changes 
due to elastic and growth-induced inelastic deformations. 
Upon unloading the current state elastically (i.e., described 
by mapping operator F−1

e
 ), a fictitious configuration, denoted 

by Bn(t) , is obtained (see Fig. 1). This intermediate stress-
free configuration differs from the initial stress-free configu-
ration B0 by a permanent deformation induced by growth. 
Since the elastic deformation Fe is measured from Bn(t) , 
the intermediate state Bn(t) is also referred to as the natural 
configuration. The mapping from B0 to Bn(t) , as mapped 
by growth tensor Fg , can then be interpreted as the motion 
induced by free growth of the body without storage of 
any elastic energy. Hence, the natural state Bn(t) continu-
ously evolves with time under Fg . In rate form, the growth 
kinematics is characterized by the spatial velocity gradi-
ent � = ḞF−1 ( ▪̇ denoting the material time derivative of 
▪ ) which is additively decomposed into � = �e + �g (see 
Appendix Aa). Here, �e = ḞeF

−1
e

 and �g = FeLgF−1
e

 are, respec-
tively, the elastic and growth-induced spatial velocity gra-
dients. The tensor Lg = ḞgF

−1
g

 is interpreted as the velocity 
gradient in the natural configuration Bn(t).

An important concept in morphoelasticity is that of 
incompatibility which relates to growth-induced residual 
stresses (Skalak et al. 1996). The natural state Bn , obtained 
via elastic unloading under F−1

e
 (or equivalently via uncon-

strained growth under Fg ), may not be compatible from a 
continuum standpoint (see Fig. 1). This is due to the fact that 
the unloaded state (or equivalently the freely grown state) 

can only be defined locally and may not lead to a global 
stress-free configuration. Consequently, the tensors Fe and 
Fg cannot, in general, be mathematically written as gradi-
ents of a displacement field. In a nutshell, if Fg results in an 
incompatible deformation, the elastic part Fe acts to restore 
compatibility in the current (deformed) state B . This leads 
to the development of growth-induced residual stresses 
(Garikipati 2009).

Constitutive relations. Based on finite inelasticity, the 
complete mechanical response of a growing body under 
externally applied loads and constraints can be decoupled 
into elastic and inelastic. The elastic response, which corre-
sponds to the deformation from Bn to B , is characterized by 
suitable constitutive relations while the growth-induced ine-
lastic deformation is prescribed in terms of certain evolution 
laws. Considering the growing body as a hyperelastic solid, 
its elastic response involves introducing a strain-energy den-
sity �n(Fe) . Here, the subscript n denotes that the energy 
density is defined as stored energy per unit natural volume 
(Huang et al. 2021). Furthermore, if the elastic response is 
isotropic, �n(Fe) should be expressed as an isotropic scalar 
function of the form:

where be = FeF
T
e
 is the elastic left Cauchy–Green deforma-

tion tensor and I1, I2, I3 are the invariants of be . In this special 
case of isotropy, the Cauchy stress tensor � can be derived 
from �n(be) using (see Appendix Ab):

(3)�n(Fe) = �n(be) = �n(I1, I2, I3)

Fig. 1   Illustration of different frames as per morphoelasticity theory. Also shown is a cell aggregate and its corresponding network of segment 
vectors r embedded within point P ∈ B(t)
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Thus, capturing the elastic response of a growing isotropic 
solid requires the knowledge of spatial tensor be(x, t) at all 
times t. This is achieved by solving the following evolution 
equation (see Appendix Ac):

where L(▪) denotes the Lie derivative of a tensor field ▪ 
and dg is growth-induced inelastic flow rate. In continuum 
mechanics, the Lie derivative is a very useful quantity as it 
can be used to directly measure the rate of inelastic deforma-
tion in the solid (in this case dg ). To understand this, con-
sider the case when L(be) = 0 , which consequently yields 
be = FFT = b , where b is the left Cauchy–Green deforma-
tion tensor. This result implies that when L(be) vanishes, the 
spatial tensor be convects with the flow under � and thus, the 
deformation is purely elastic. However, in case L(be) ≠ 0 , 
the deformation contains an inelastic part, expressed by the 
inelastic flow rate dg , which can be derived as dg = �gbe + be�T

g
 

(see Appendix Ac), where �g = FeḞgF
−1
g
F−1
e

 . Therefore, to 
complete the model, we need to specify a growth law in 
terms of Fg(X, t) . For isotropic growth, Fg is an isotropic 
tensor of the form Fg = gI , where g(X, t) is called the growth 
ratio and I is the second-order identity matrix. Consequently, 
the flow rate dg for isotropic growth becomes:

2.2 � Why morpho‑viscoelasticity?

The classical morphoelasticity theory discussed above 
assumes the growing body remains elastic over the growth 
timescale (Jones and Chapman 2012). This assumption 
limits the application of morphoelasticity theory to multi-
cellular systems or aggregates that exhibit complex elasto-
visco-plastic behavior (Preziosi et al. 2010). This behavior 
is attributed to mechanisms that can relax the stress at the 
time scale of growth. These mechanisms include cellular 
activities like adhesion bonds remodeling, cell neighbor 
exchange, and cell division. Thus, to effectively model 
aggregate growth, it is crucial to integrate these cell-scale 
activities as additional inelastic deformations into the mor-
phoelasticity theory. While some attempts in this direction 
have been made in the past by phenomenologically reflecting 
dissipative mechanisms (Ambrosi and Preziosi 2009; Yan 
et al. 2021), a more detailed exploration into the individual 
role of cellular processes is warranted, given their significant 
influence on the mechanics of concentrated aggregates.

(4)� =
2

Je

��n

�be
be

(5)L(be) = ḃe − �be − be�
T = −dg

(6)dg = 2
ġ

g
be

For instance, volumetric growth in dense cell aggre-
gates, like spheroids, is primarily driven by a process 
called proliferation (Gillies and Cabernard 2011; Zhao 
et al. 2022), which involves two concurrent yet funda-
mentally distinct processes: (i) cell expansion denoting 
an increase in cell size and (ii) cell division denoting an 
increase in cell number. Given that proliferation drives 
growth, it becomes imperative to differentiate between 
expansion and division as they exhibit different mechano-
sensitivity and exert different effects on the growth dynam-
ics. While cell expansion is a non-dissipative process, cell 
divisions can result in stress relaxation (Wyatt et al. 2015). 
Another cellular mechanism of importance is intercalation 
which involves an exchange of neighbors. A noteworthy 
study, relevant to our purpose, was conducted by Marmot-
tant et al. (2009) in which the authors performed parallel 
plate compression experiments on non-proliferating aggre-
gates. They observed that aggregates exhibited elastic, vis-
cous, and plastic behaviors owing to intercalation.

For these reasons, we here develop a proliferation-based 
continuum theory for aggregate growth in which cells can 
simultaneously expand, divide, and intercalate. Since 
the developed theory accounts for the visco-hyperelastic 
response of the growing aggregate, we term it as morpho-
viscoelasticity. Moreover, the theory follows a bottom-up 
methodology based on coarse-graining, resulting in a mul-
tiscale model. This entails the use of appropriate statistical 
quantities and internal state variables (ISVs) that facili-
tate the translation of microscopic cell-scale information 
to the macro-level. Such an approach offers three main 
advantages: (1.) establishing a clear correlation between 
continuum laws and underlying mechanisms, (2.) effective 
modeling of complex feedback and mechanosensitivity, 
and (3.) distinguishing between the effects of different cel-
lular activities that might seem similar if considered in a 
phenomenological manner.

3 � Morpho‑viscoelasticity through the lens 
of the transient network theory

To implement the bottom-up approach for deriving our 
constitutive relations, we employ the theoretical frame-
work of transient network theory (TNT) wherein each 
continuum point is imagined to consist of an underlying 
network of vectors (Vernerey et al. 2017). A complete 
description of macroscopic mechanical behavior at a point 
is then provided by the statistics of the network embedded 
within that point. We now discuss TNT in the context of 
confluent cell ensembles (Bandil and Vernerey 2023).
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3.1 � Network representation of aggregate

Consider a continuum point P ∈ B(t) with spatial coordi-
nate x . Assuming that the continuum body is sufficiently 
large in comparison with the characteristic dimension of 
the constituent cell, the point P , on a mesoscale, can be 
envisioned as an aggregate of a large number of cells (see 
Fig. 1). The same aggregate can be conceptualized as a net-
work of segment vectors r , where r signifies a physical con-
nection between the geometric centers of two adjacent cells 
sharing a junction. In other words, r denotes a topological 
link between two neighboring cell sites (or nodes) and the 
aggregate can be viewed as a network of many such links 
(see Fig. 1). Now, in addition to being elastically deformed, 
the cells comprising the aggregate may also be simultane-
ously expanding, dividing, and intercalating. This behavior 
can alternatively be interpreted in terms of the network of 
segment vectors where the network stores energy while con-
currently remodeling. The deformed state of the aggregate 
(engrained within point P at coordinate x and time t) can 
thus be determined from a corresponding deformation in 
the network. To establish this correspondence, let us first 
mathematically quantify the relationship between cells and 
segment vectors.

For ease of demonstration, we focus here on a two-
dimensional (2D) network, although the formulation can be 
extended to three dimensions (3D). Consider a cell mon-
olayer, represented as a 2D network of vectors r , as shown in 
Fig. 2a. The geometry of any random cell I can be approxi-
mated from the conformation tensor MI , defined by (Graner 
et al. (2008)):

(7)MI ∶=
1

nI

nI∑
J=1

rIJ ⊗ rIJ

where nI is the number of neighbors of cell I, rIJ is the seg-
ment vector between cell I and its neighbor J, and ⊗ denotes 
the dyadic product. The shape of cell I is then estimated by 
the eigenvalues and eigendirections of the conformation ten-
sor MI , represented by a confidence ellipse (ellipsoid in 3D), 
as shown in Fig. 2b. More precisely, the dimensions of the 
semi-major axes and the principal directions of the ellipse 
(ellipsoid in 3D) are, respectively, given by the square roots 
of the eigenvalues and the eigendirections of the associated 
conformation tensor. For example, the volume VI of the con-
fidence ellipsoid for a cell I (in 3D) can be calculated from 
MI as VI = (4�∕3)

√
detM.

The above illustration shows how the network of seg-
ment vectors and the aggregate of cells can be considered as 
‘mathematical duals’ of each other. We are now interested 
in bridging the gap between the fine scales (individual seg-
ments) and the coarse scales (network level). To do this, we 
make use of the mean-field approximation, by which the 
network deformation is approximated as the averaged defor-
mation of its constituent vectors. For the deformed network 
state to be representative of the macroscopic deformation at 
coordinate x and time t, this averaging must be statistically 
homogeneous. This means that the continuum description 
provided by the network should be independent of network 
size. In the TNT, the network size is measured by the total 
number, say n(x, t) , of vectors comprising the network. To 
satisfy statistical homogeneity, the network should be large 
enough so that the averaged result becomes independent of 
n(x, t) . Therefore, one can imagine the network (or corre-
spondingly the aggregate) to be composed of a large number 
n(x, t) of vectors (or correspondingly N(x, t) of cells) at any 
instant. Given this, the segment vector r = (rx, ry, rz) can be 
treated as a continuous random variable that assumes all 
possible conformations, i.e., rx, ry, rz ∈ (−∞,∞) , in a con-
formation space Ω ∈ ℝ

3 . Here, Ω can be understood as some 
virtual or theoretical space, with basis {rx, ry, rz} , in which 

Fig. 2   a Cell monolayer as a 2D network of segment vectors. b Illustration of conformation tensor as an ellipse (in blue) for a cell I. c Conforma-
tion space Ω ∈ ℝ

3
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each coordinate denotes a segment vector r , as shown in 
Fig. 2c.

3.2 � Mean conformation tensor (texture tensor)

An averaged depiction of the network can now be indicated 
by a mean conformation tensor, M(x, t) , defined as the mean 
of r⊗ r over space Ω , i.e.,

where p(x, r, t) is a probability density function (pdf) that 
measures the likelihood of a segment vector to exist in con-
formation r ∈ Ω . The mean conformation tensor, also com-
monly known as texture tensor (Aubouy et al. 2003; Ishi-
hara et al. 2017; Graner et al. 2008), represents the averaged 
geometry of cells in the aggregate in the form of a mean cell. 
That is the tensor M(x, t) describes the averaged deformed 
shape and size of the cells comprising the aggregate. Note 
that the texture tensor M is statistically homogeneous, and 
thus, allows us to connect micro- and macro-level descrip-
tions. To show how M geometrically represents the mac-
roscopic deformed state at a continuum point, we employ 
another well-known macroscopic quantity called structure 
tensor, denoted by H(x, t) (Kao et al. 2011). Let a1, a2, a3 be 
the eigendirections1 of M . The texture tensor M can now 
be split as M = Tr (M)H , where the structure tensor H is 
given by:

Here �1, �2, �3 are the eigenvalues of H and denote shape 
parameters that control the shape anisotropy of M . The 
shape parameters verify the conditions 0 < 𝛾1, 𝛾2, 𝛾3 < 1 

(8)M(x, t) ∶= ∫Ω

p(x, r, t) r⊗ r dΩ

(9)H = 𝛾1a1 ⊗ a1 + 𝛾2a2 ⊗ a2 + 𝛾3a3 ⊗ a3

and �1 + �2 + �3 = 1 . These conditions on shape param-
eters ensure that Tr (H) = 1 and the eigenvalues of H are 
positive. The structure tensor H thus provides a measure 
of the deformed shape of the mean cell (see Fig. 3). When 
�1 = �2 = �3 = 1∕3 , the tensor H reduces to H = (1∕3)I 
which denotes an isotropic (or spherical) mean cell.

The next task is to understand how the texture tensor M 
carries the notion of deformation under F (or � ). Before 
that, it is important to explore the nature of the body’s 
response under deformation. For this, we look at the pdf 
p0(X, r0) = p(X, r0, 0) of segment vectors in their initial 
(undeformed) conformations r0 in state B0 where x = X . Fol-
lowing the TNT, the isotropic response of an elastic solid 
implies that the distribution given by the pdf p0 is such that 
it results in an isotropic texture tensor M0(X) of the form:

where M0(X) = M(X, 0) is the texture tensor in B0 and m0 is 
statistically related to the lengths, r0 , of segment vectors in 
their initial (undeformed) conformations r0 (see Appendix 
Ad for details). In this study, we limit ourselves to isotropic 
solids (see Fig. 3). The initial (undeformed) volume V0(X) 
of the mean cell thus becomes V0 = (4�∕3)

√

detM0 = (4�∕3)m3∕2
0

 . 
Consequently, the initial (undeformed) volume V0(X) of the 
continuum point at X can be calculated as V0 = N0V0 , where 
N0(X) = N(X, 0) is the initial number of cells in the aggre-
gate. Note that in continuum mechanics, the impression of 
continuum ‘point’ (or ‘particle’) refers to a part of the body 
with some volume as opposed to some point mass (Holzapfel 
2000). We now move ahead to characterize deformation in 
terms of the texture tensor M(x, t).

3.3 � Evolution of the texture tensor

Consider a network with n(x, t) vectors in the deformed 
state B(t) at any time t. As the continuum point P , located 

(10)M0(X) = ∫Ω

p0(X, r0) r0 ⊗ r0 dΩ = m0(X)I

Fig. 3   Geometric illustration of mean conformation tensor M in the initial and current frames. The eigenvalues ( �2
1
, �2

2
, �2

3
 ) of M can be 

expressed in terms of shape parameters �1, �2, �3 as �2
1
= Tr (M)�1 , �22 = Tr (M)�2 , and �2

3
= Tr (M)�3

1  For an isotropic solid, the eigendirections ( a1, a2, a3 ) would be the 
principal directions of elastic stretch  in the spatial frame. This will 
become clear in sec. 3.5 on elastic deformation.
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at position x , deforms under spatial velocity gradient 
�(x, t) , the underlying segment vectors are assumed to 
deform affinely under � as ṙ = �r . This affine assumption 
entails that the macroscopic tensor fields—deformation 
gradient F (and consequently �)—are translated uniformly 
throughout the conformation space Ω . In other words, F 
(and consequently � ) are independent of conformation 
r . In addition to segment vectors changing their confor-
mations with rate � , some new segment vectors can be 
created while some existing segment vectors can be lost 
from the network. This situation arises when cells rear-
range under division (see Fig. 4a) and/or intercalation (see 
Fig. 4b). All of these events contribute to modifying the 
current pdf p(x, r, t) , which is shown in Appendix Ae to 
follow the given evolution equation, known as the Fok-
ker–Planck equation:

Here ( ∶ )  denotes the double dot product and 
f (x, t) = n(x, t)∕nt is the fraction of the current number of 
segment vectors in the network. nt > n is an arbitrary con-
stant that denotes the maximum number of segment vectors 
that can be present in the network. Each term in Eq. (11) 
can be now understood as follows. The first term models 
change in pdf p owing to affine kinematics. The second term 
accounts for the creation (or appearance) of new segment 
vectors with a kinetic rate kc(x, t) . The newly created seg-
ment vectors follow a distribution given by pdf pc(x, r, t) . 
The third term models the loss (or disappearance) of existing 
segment vectors with a kinetic rate kl(x, r, t) . The last term 
represents the change in pdf p due to an effective change in 
the number of segment vectors owing to creation and loss 
events.

Note. In general, the loss rate kl can be a function of cur-
rent conformation r . This situation could arise when cells 
have a ‘preferred direction’ for rearrangement. For example, 
during convergent extension, cells intercalate preferentially 

(11)ṗ = −� ∶

(
𝜕

𝜕r
⊗ (pr)

)
− kc

(
1 −

1

f

)
pc − klp −

ḟ

f
p

along the dorsal–ventral (DV) axis (Keller et al. 2000) to 
achieve tissue elongation. In this case, kl would be different 
for conformations oriented along the DV axis than the con-
formations aligned perpendicular to it. In this situation, the 
response of the solid would be direction-dependent, result-
ing in anisotropic behavior. This is beyond the scope of the 
current study.

Owing to isotropy restriction, kl = kl(x, t) here becomes 
independent of r , consequently yielding (see Appendix Ae):

Since the texture tensor M directly depends on the pdf p (via 
Eq. (8)), we can obtain, using the Fokker–Planck Eq. (11), 
the expression for Lie derivative L(M) , as:

where Mc = ∫
Ω
pc r⊗ r dΩ is the mean conformation ten-

sor corresponding to newly created vectors. The tensor Mc 
can thus be used, to denote the mean cell configuration that 
would be attained as a result of cell rearrangement. It can be 
seen from Eqs. (12) and (13) that L(M) models the rate of 
inelastic deformation owing to cell rearrangements, which 
are characterized by rates kc and kl . Now recall the discus-
sion from sec. 2.1 regarding the significance of Lie deriva-
tive in representing inelastic deformation. We see, from 
Eqs. (12) and (13), that in the absence of rearrangements, 
i.e., when kc = kl = 0 , L(M) vanishes, implying that L(M) 
measures the rate of inelastic deformation owing to cell rear-
rangements. However, L(M) may not characterize the total 
inelastic deformation in the aggregate, as explained in the 
following sections.

(12)
ḟ

f
= kc

(
1

f
− 1

)
− kl

(13)

L(M) = Ṁ − �M −M�
T = −kc

(
1 −

1

f

)
Mc − klM −

ḟ

f
M

Fig. 4   Illustration of cell rearrangements resulting in creation and loss of segment vectors during a division and b intercalation
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3.4 � Inelastic deformation

As mentioned previously, cellular processes-induced inelastic 
(irreversible and time-dependent) deformation can be inter-
preted in terms of network remodeling. We show here that 
remodeling can be the result of two types of events, which we 
denote here as extrinsic and intrinsic remodeling. Extrinsic 
remodeling occurs at the level of a group of segment vectors 
changing their connectivity. In contrast, intrinsic remodeling 
manifests as an evolution of individual segment vectors’ inher-
ent properties. We now discuss each of the modes of remod-
eling with the help of suitable examples.

Note—For clarity of notation, we will omit the arguments 
x and t here on and only use them ad hoc. Furthermore, any 
statistical quantity and ISV introduced henceforth will gener-
ally depend on x and t unless otherwise specified.

3.4.1 � Extrinsic remodeling

Extrinsic remodeling refers to changes in the network connec-
tivity or topology. Modifying the network topology requires 
breaking some of the existing connections (or links) and form-
ing new ones. Recognizing that these actions mean the same as 
the loss and creation of segment vectors, cell rearrangements-
induced inelastic deformation can be deemed as extrinsic 
remodeling. Since cell rearrangements alter network topology 
(see Fig. 4), they are also called topological transitions. Math-
ematically, extrinsic remodeling (or topological transitions) is 
thus represented by changes in the pdf p owing to rates kc , kl , 
and ḟ∕f  in the Fokker–Planck Eq. (11). Consequently, the Lie 
derivative L(M) (Eq. (13)) of the texture tensor can now be 
interpreted as the rate of inelastic deformation due to extrin-
sic remodeling events (or topological transitions). Let us now 
explore extrinsic remodeling with the help of the example of 
cell intercalation.

Intercalation. Intercalation, also commonly called T1 tran-
sitions, is a process that involves an exchange or swapping of 
neighbors without altering the cell count N. That is, intercala-
tion results in a change in network topology without affecting 
the number n of segment vectors, as shown in Fig. 4b. At this 
point, we invoke the relationship between n and N, given by 
n = zN , where z measures the averaged number of neighbors 
or links per cell and is assumed to be constant. Hence change 
in cell count directly relates to the change in the number of 
segment vectors, measured by rate ḟ∕f = ṅ∕n = Ṅ∕N . Now 
for T1 transitions, we have Ṅ∕N = ḟ∕f = 0 , which gives 
(from Eq. (12)):

(14)kc

(
1

f
− 1

)
= kl

Substituting the above relation into Eq. (13), we obtain the 
rate of inelastic deformation due to T1 transitions, given by 
L(M) as:

where kT (= kl) is the rate of T1 transitions and is simply 
given by the kinetic rate kl of loss of segment vectors. The 
tensor MT (= Mc) is the extrinsically remodeled mean cell 
configuration as a result of intercalation.

3.4.2 � Intrinsic remodeling

As opposed to extrinsic remodeling, intrinsic remodeling 
does not alter the topology of the network. That is, the Lie 
derivative L(M) remains unaffected by this kind of remod-
eling (from Eq. (13)). Instead, intrinsic remodeling trans-
forms the intrinsic (or inherent) attributes of the individual 
segment vectors themselves. A key cellular process that 
triggers intrinsic remodeling is that of cell expansion as 
discussed below.

Expansion. In discrete simulations (Barton et al. 2017), 
the process of cell expansion is modeled as an increase in 
the preferred (or natural) volume of the cells. Following 
this, cell expansion can be modeled as an increase in the 
natural volume, denoted by Vn(x, t) , of the mean cell. The 
origin of natural volume Vn can be understood as follows. 
Consider a fictitious network in which all the constituent 
segment vectors, at any time, are in their natural (or relaxed) 
conformations, denoted by rn . Let the distribution of natural 
conformations in this fictitious network be given by some 
pdf pn(x, rn, t) . Consequently, we can define a fictitious tex-
ture tensor, Mn(x, t) , given by:

where the tensor Mn represents the natural mean cell. The 
cell expansion process can now be understood as segment 
vectors changing or remodeling their natural conformations, 
which in turn alters the pdf pn , leading to the evolution of the 
natural mean cell configuration Mn (see Fig. 5). The material 
time derivative of Mn , then, represents the rate of inelastic 
deformation owing to intrinsic remodeling. The notion of the 
evolution of a natural mean cell under expansion is similar 
to the evolution of natural (stress-free) state Bn under Fg 
in morphoelasticity. Therefore, the natural mean cell can 
also be recognized as the state of the mean cell that would 
be attained under unconstrained expansion. This further 
denotes that the initial natural mean cell coincides with the 
initial (undeformed) mean cell given by M0 . Therefore, we 
obtain the initial conditions on Mn and pn as Mn(0) = M0 
and pn(0) = p0.

(15)L(M) = −kT (M −MT )

(16)Mn(x, t) = ∫Ω

pn(x, rn, t) rn ⊗ rn dΩ
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From the above initial conditions, we see that the initial 
shape of the natural mean cell is described by M0 , which, in 
this study, is spherical owing to solid isotropy. Furthermore, 
suppose the response of the isotropic solid under intrinsic 
remodeling remains isotropic. In that case, the natural mean 
cell preserves its spherical geometry and only evolves via 
a change in its volume Vn = (4�∕3)

√
detMn . Under these 

circumstances, the natural mean cell configuration can be 
represented by an isotropic form of the tensor Mn = mnI , 
where mn is an ISV that is statistically related to the natural 
conformation lengths rn , akin to m0 . From Mn(0) = M0 , we 
obtain the initial condition mn(0) = m0 on ISV mn . In the pre-
sent work, we only focus on isotropic responses, i.e., the rate 
of inelastic deformation owing to intrinsic remodeling can 
be measured in terms of scalar quantity, ṁn . Figure 5 shows 
that in the case of isotropy, the fictitious network is simply a 
photographic enlargement of the initial (undeformed) state. 
This also entails the fact that no topological rearrangements 
occur in the evolving fictitious network.

Finally, we can complete the cell expansion model by 
prescribing an evolution equation for mn , or more precisely 
Vn = (4�∕3)m

3∕2
n  . For convenience, we introduce a normal-

ized measure for Vn , denoted by �i and defined as:

where recall that V0 characterizes the mean cell volume in 
B0 . From Eq. (17), �i is an ISV that measures permanent 
volumetric deformation owing to the inelastic process of cell 
expansion, hence termed as inelastic expansion ratio. An 
evolution law for the increase in Vn can now be prescribed in 
terms of �i which, in this study, is assumed to follow a simple 

(17)�i ∶=
Vn

V0

=

(
mn

m0

)3∕2

exponential kinetics with expansion rate kE as (Barton et al. 
(2017)):

3.4.3 � Combined extrinsic and intrinsic remodeling

Unlike T1 transition which only contributes to extrinsic 
remodeling and cell expansion which only contributes to 
intrinsic remodeling, the process of cell division contributes 
to both modes of remodeling. In other words, it not only 
modifies the Lie derivative L(M) via topological changes 
(see Fig. 4a) but also alters the natural mean cell configura-
tion Mn . Let us first deduce the rate L(M) of topological 
transition-induced inelastic deformation due to division fol-
lowed by the effect of division on the natural mean cell, as 
characterized by V̇n (or 𝜁̇i ). The process of cell division has 
classically been modeled, similar to expansion, with expo-
nential kinetics as (Montel et al. (2012)):

where � = N∕N0 is the cell number ratio and kD is the associ-
ated division rate. Here, recall that N0 is the initial number 
of cells at a material point in B0 . Akin to T1 transitions, the 
division rate kD is also given by the loss rate kl . In terms of 
the ratio ḟ∕f  , we write ḟ∕f = Ṅ∕N = 𝜂̇∕𝜂 = kD = kl , which 
when substituted in Eq. (12), gives:

Further substituting the above into Eq. (13), we obtain the 
Lie derivative owing to division as:

where the tensor MD(= Mc) , analogous to MT , is the extrin-
sically remodeled mean cell configuration due to division. 
From Eqs. (15) and (21), we observe that the inelastic defor-
mation induced by topological changes under cell division 
is similar to that of T1 transitions. However, differences in 
behavior may arise due to variations in the mechanosensi-
tivities of the rates kD and kT , as discussed later in sec. 4.

To understand the role of cell divisions in intrinsic 
remodeling, we again resort to the division algorithm imple-
mented in discrete cell-based models (Barton et al. 2017). 
According to this, as the volume V = (4�∕3)

√
detM of 

the mean cell exceeds a certain threshold V∗ , where V∗ is a 
constant, it splits into two daughter cells, each with volume 
V/2. According to this, cell division is an isochoric inelastic 
process that induces no permanent volume change. In finite 
inelasticity theories like morphoelasticity, the permanent 
volume change is measured in terms of volume ratio Ji ( Jg 

(18)𝜁̇i = kE𝜁i

(19)𝜂̇ = kD𝜂

(20)
kc

2

(
1

f
− 1

)
= kD

(21)L(M) = −2kD
(
M −MD

)

Fig. 5   Illustration of a fictitious network (denoted by red dashed 
links) and associated mean cell Mn undergoing intrinsic remodeling 
under isotropic cell expansion
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in morphoelasticity), defined as the ratio of natural volume 
to initial (undeformed) volume at a continuum point. For our 
system, we can calculate Ji as:

where Vn = NVn is the macroscopic natural volume. Further 
assuming no cell expansion (i.e., kE = 0 ), enforcing the con-
dition J̇i = 0 and using Eqs. (19) and (22), we get:

This simple relation indicates that cell division, in addition 
to increasing the cell count � , also reduces the natural mean 
cell volume Vn (equivalently mn ). Although expansion and 
division occur simultaneously during proliferation, they are 
independently regulated processes. In other words, divi-
sion can occur without expansion, and expansion can occur 
without division (Ateshian et al. 2012). Consequently, the 
mechanics of proliferation can be modeled by superimpos-
ing deformations induced by both these inelastic processes. 
Hence, we combine Eqs. (18) and (23) to obtain the govern-
ing equation for proliferation in terms of �i as:

which shows that division competes with the kinetics of 
expansion during proliferation. Equation (24) thus represents 
intrinsic remodeling owing to proliferation.

Following �i , we introduce a dimensionless measure for 
mean cell volume V, given by ISV � = V∕V0 and termed as 
cell size ratio. The division criterion is then fulfilled when 
the cell size ratio � exceeds a certain threshold �∗ = V∗∕V0 . 
The volume ratio J = det F can then be expressed in terms 
of ISVs � and � as:

where V = NV  is the macroscopic total volume. Note that 
this expression for J explicitly separates the total volume 
change into—a change in cell count � and a change in cell 
size � , thus accounting for proliferation-driven growth. Fur-
ther identifying Je = V∕Vn as the elastic volumetric defor-
mation, we can write � = Je�i and J = JeJi = Je��i , where 
recall that Ji = ��i is the inelastic (or permanent) volumetric 
deformation.

3.5 � Elastic deformation

Classical morphoelasticity theory (Ambrosi and Mollica 
2002) focuses solely on intrinsic remodeling due to volu-
metric growth (or cell expansion), while coarse-grained 

(22)Ji =
Vn

V0

=
NVn

N0V0

= ��i

(23)J̇i = 𝜂̇𝜁i + 𝜂𝜁̇i = 0 ⟹
𝜁̇i

𝜁i
= −

𝜂̇

𝜂
⟹ 𝜁̇i = −kD𝜁i

(24)𝜁̇i = (kE − kD)𝜁i

(25)J =
V

V0

=
NV

N0V0

= ��

models (Ishihara et al. 2017; Graner et al. 2008) consider 
only extrinsic remodeling from topological transitions. This 
is evident from the corresponding Lie derivatives: L(be) (Eq. 
(5)), which does not account for extrinsic remodeling events, 
and L(M) (Eq. (13)), which does not capture intrinsic remod-
eling. Thus, to measure elastic deformation in proliferating 
aggregates, we require a quantity that encompasses both—
extrinsic remodeling (i.e., L(M) ) and intrinsic remodeling 
(i.e., the evolution of the natural mean cell configuration 
Mn ). To address this, we introduce the normalized texture 
tensor, denoted by � , defined as:

The tensor � , then, provides an accurate measure of elastic 
deformation in the network, as discussed below. It is first 
important to mention that Eq. (26) assumes an isotropic 
response of the solid, characterized by tensors M0 = m0I 
and Mn = mnI . If the solid’s response is anisotropic, these 
tensors will, in general, no longer remain isotropic, and con-
sequently, the Eq. (26) will need to be modified to account 
for anisotropy. To now illustrate that the normalized texture 
tensor � is a true descriptor of elastic deformation, it would 
be sufficient to show that its Lie derivative L(�) provides a 
complete depiction of inelastic deformation in the network. 
The Lie derivative L(�) , as derived using Eqs. (13), (17), 
and (26), is expressed as:

From the above equation, we see that the normalized texture 
tensor � evolves under extrinsic as well as intrinsic remod-
eling. The current morpho-viscoelasticity theory (as given 
by L(�) ) thus effectively couples growth mechanics with 
viscous dissipation. In contrast to existing elastic-visco-
growth theories (Ambrosi and Preziosi 2009), we here do 
not explicitly decompose the inelastic part (i.e., F−1

e
F ) into 

viscous and growth deformations. Instead, we here (implic-
itly) categorize total inelastic deformation into extrinsic and 
intrinsic remodeling owing to different cellular processes. 
This approach of interpreting cellular processes-induced 
inelastic deformations in terms of network remodeling not 
only allows us to bridge the cell and tissue scale behavior 
but also comprehensively model the individual effects of the 
involved cellular processes (see Table 1).

Let us now consider the case when L(�) vanishes, i.e., 
no network remodeling occurs. In this situation, the normal-
ized texture tensor becomes � = F�0F

T , where �0 = �(0) 
can be evaluated as �0 = M(0)∕mn(0) = M0∕m0 = I  . 
From this result, we get � = FFT = b , which shows that 
the normalized texture tensor � reduces to the classical b 
tensor. In the general case, when L(�) ≠ 0 , the tensor � 

(26)� ∶=
1

mn

M

(27)L(�) = �̇ − �� − ��
T =

1

mn

L(M) −
2

3

𝜁̇i

𝜁i
�
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thus bears resemblance to tensor be and consequently is 
directly related to Fe . However, in contrast to morphoe-
lasticity and other elasto-visco-plastic theories (Preziosi 
et al. 2010) where be = FeF

T
e
 , we here do not mathemati-

cally express � in terms of Fe . Nevertheless, it is still 
interesting to show that � is indeed related to Fe . For 
this, we take the determinant of relation (26) and obtain, 
det � = (detM)∕m3

n
= (V∕Vn)

2 = J2
e
= (det Fe)

2 , and thus,

Moreover, when the mean cell is in its natural state, i.e., 
M = Mn = mnI , we obtain � = I , signifying no elastic 
deformation or equivalently Fe = I . Again note that the fact 
� = I in the natural state is a consequence of isotropy. The 
key takeaway is that, for an isotropic solid, the macroscopic 
elastic deformation can be fully computed from the normal-
ized texture tensor � . Consequently, the material constitutive 
relations for energy density �n (Eq. (3)) and Cauchy stress 
tensor � (Eq. (4)) can be formulated in terms of � as:

where I1, I2, I3 are now the invariants of tensor �.

4 � Model illustration

In this section, we demonstrate the use of the TNT-based 
morpho-viscoelasticity theory. The key element of the cur-
rent model is that Eq. 5 in morphoelasticity can now be 
generalized using morpho-viscoelasticity to:

where dE, dT and dD are, respectively, the inelastic flow rates 
due to expansion, T1 transition, and division. The above 
equation considers the fact that expansion, T1 transition, 
and division are independent processes, each exerting its 
effect on aggregate mechanics. Let us now derive explicit 

(28)Je =
√
det �

(29)�n(�) = �(I1, I2, I3) and � =
2

Je

��n

��
�

(30)L(�) = �̇ − �� − ��
T = −dE − dT − dD

expressions for dE, dT and dD from the Lie derivative L(�) 
(Eq. (27)).

For illustrative purposes, we will be examining an exam-
ple problem solved using the classical morphoelasticity the-
ory by Ambrosi and Mollica (2002). Investigating the same 
example problem using the morpho-viscoelasticity theory 
allows us to not only illustrate the current model but also 
make direct comparisons with the existing morphoelasticity 
theory. For these reasons, we employ the same hyperelas-
tic material model for �n as used by Ambrosi and Mollica 
(2002), which is the Blatz-Ko hyperelasticity material model 
given by:

where I1 = Tr (�) , Je =
√
det � , G and q are material 

parameters related to the linear elasticity constants: Young’s 
modulus E and Poisson’s ratio � , through the relationships 
G = E∕(2(1 + �)) and q = −2�∕(1 − 2�) . Note that the 
strain-energy density provided by Eq. (31) accommodates 
elastic compressibility and material isotropy. The Cauchy 
stress tensor � can then be derived from Eq. (29), resulting 
in:

Notice that the stress-free ( � = 0 ) configuration is repre-
sented by � = I which is also the initial condition on �.

4.1 � Expansion

We have already seen that expansion does not involve any 
topological changes (or extrinsic remodeling) and only con-
tributes to L(�) through the evolution of �i . Substituting Eq. 
(18) into Eq. (27) yields the associated flow rate dE as:

The crucial point is that cell expansion is the sole inelas-
tic mechanism that effectively leads to permanent volume 
change. Other inelastic mechanisms like division and 

(31)�n =
G

2

[(
I1 − 3

)
−

2

q

(
Jq
e
− 1

)]

(32)� =
G

Je

[
−(Je)

qI + �
]

(33)dE =
2

3
kE�

Table 1   Comparison among various continuum models for tissues and cell aggregates

Continuum model Cell-level 
description

Extrinsic remodeling Intrinsic remodeling

Intercalation Division Expansion Division

Morphoelasticity (Rodriguez et al. 1994; Ambrosi and Mollica 2002) ✓

Elasto-visco-growth (Ambrosi and Preziosi 2009; Yan et al. 2021) ✓ ✓ ✓

Coarse-grained (Ishihara et al. 2017; Graner et al. 2008 ✓ ✓

TNT (current model) ✓ ✓ ✓ ✓ ✓
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intercalation do not induce any permanent volume alterations 
at the macroscale. Therefore, since the morphoelasticity 
theory only accounts for inelastic volumetric deformation, 
the expansion model in the current theory must degenerate 
to morphoelasticity theory in case of isotropic growth. That 
is dE and dg must be equivalent in case �g = ġ∕gI , which 
gives:

The above relationship illustrates that isotropic cell 
expansion leads to isotropic volumetric growth, given by 
�g = (kE∕3)I . The only distinction between the expansion 
model in the current theory and classical morphoelasticity 
lies in characterizing the driving force for active deforma-
tion in terms of an expansion law for kE rather than a growth 
law for �g.

We now demonstrate the above idea by solving a simple 
problem of homogeneous deformation of a multicellular 
spheroid. This example serves to understand how the TNT 
model aligns with morphoelasticity theory in the absence 
of topological rearrangements (i.e., when kD, kT = 0 and 
resultantly dD, dT = 0 ). In this case, the governing equation 
(30) for the evolution of elastic deformation tensor � , using 
Eq. (33), becomes:

The example problem we look at involves a cylindrical sphe-
roid grown inside a rigid cylinder as shown in Fig. 6a. Since 
the spheroid is unable to deform radially (and circumferen-
tially), the kinematics is described by deformation gradient 
F (and equivalently by velocity gradient � ) of the form:

(34)
ġ

g
=

kE

3

(35)�̇ = �� + ��
T −

2

3
kE�

where � is the stretch ratio along the vessel or z axis. More-
over, we assume that the driving force for deformation is 
provided by active cell expansion occurring at a constant 
rate kE = k0

E
 . Substituting kE = k0

E
 in Eq. (34) and applying 

the initial condition g(t = 0) = 1 , results in an isotropic and 
homogeneous form of volumetric growth law represented as:

The stretch ratio � can be found by first numerically inte-
grating the Eq. (35) using the forward Euler scheme. Once 
we determine �(t) , we then impose the traction-free bound-
ary condition on the z surfaces of the spheroid to obtain 
�(t) . Given the homogeneity of the deformation fields, 
the boundary condition simplifies to �zz = 0 , where �zz 
represents the z component of the Cauchy stress tensor 
� = Diag{�rr, �rr, �zz} , with �rr being the radial (and hoop) 
stress component. The resulting plots for radial stress �rr 
(Fig. 6b) and stretch ratio � (Fig. 6c) as functions of g are 
consistent with the analytical solutions derived by Ambrosi 
and Mollica (2002) using morphoelasticity. Hence, the key 
takeaway from this illustration is that the morpho-viscoe-
lasticity theory converges to morphoelasticity theory for 
isotropic growth in the absence of any rearrangements 
(i.e., when kD, kT = 0).

4.2 � T1 transition

As T1 transitions result only in extrinsic remodeling, the 
𝜁̇i∕𝜁i term in Eq. (27) vanishes and we get, by substituting 
Eq. (15) into Eq. (27), the inelastic flow rate dT as:

(36)F = Diag{1, 1, 𝜆} ⟹ � = Diag

{
0, 0,

𝜆̇

𝜆

}

(37)g(t) = exp

(
k0
E

3
t

)

Fig. 6   a Schematic of spheroid growing inside a rigid cylinder. b Normalized radial wall stress �rr∕G . c Spheroid volume ratio J = det F (same 
as stretch ratio � in this example)
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where �T = MT∕mn , akin to MT , represents the preferred 
state the cells aim to attain via intercalating, and thus 
informs about the flow  resulting from T1 transitions. Unlike 
cell expansion which is an isotropic process, topological 
transitions, in general, exhibit directionality.2 Hence, effec-
tive mathematical modeling of the topological transitions 
requires including the directional bias. For example, cells in 
a stretched monolayer dissipate stresses by adopting a less 
elongated (or distorted) geometry through intercalation, as 
shown in Fig. 7(Ishihara et al. 2017; Bandil and Vernerey 
2023). This behavior can be modeled by prescribing an iso-
tropic form to the tensor �T , i.e., �T = �TI , where �T is 
yet unknown. To find the unknown �T , we make use of the 
fact that T1 transitions do not induce any permanent volume 
change (as can be seen from Eq. (22)). From this, we can 
obtain the tensor �T (see Appendix Af) as:

which when substituted into Eq. (38) yields the T1 transi-
tion-induced flow rate dT as:

We show in Appendix Ag, how the inelastic flow rate dT in 
Eq. (40) satisfies dissipation inequality and hence is thermo-
dynamically admissible. Notice from Eq. (40) that in case 
the elastic deformation in cells is isotropic (i.e., the tensor 
� is isotropic), then the flow rate dT vanishes, meaning that 
intercalation does not induce any effective deformation at 
the macroscale in this scenario.

Another important feature of T1 transitions is that cells 
can only intercalate if they are distorted beyond a certain 
threshold (Marmottant et al. 2009). To account for this yield 
behavior, we first need a measure of elastic distortion in the 

(38)dT = kT (� − �T )

(39)�T =
3

Tr (�−1)
I

(40)dT = kT

(
� −

3

Tr (�−1)
I

)

cells. For this, we introduce another ISV, denoted by � , and 
defined as:

where �′ denotes the deviatoric (traceless) part of � given 
by:

Recognize that the expression for � in Eq. (41) is analogous 
to the von Mises stress used in J2 flow plasticity theory with 
the deviatoric part of � used instead of Cauchy stress � . Fur-
ther using Eq. (9) and considering that principal directions 
a1, a2, a3 align with the coordinate system’s axes, we can 
rewrite � in terms of shape parameters �1, �2, �3 as:

It can be seen from the above expression that there is no 
distortion (i.e., � = 0 ) only if �1 = �2 = �3 = 1∕3 (in which 
case �� = 0 ). Any deviation of � from 0, thus, indicates the 
extent of elastic distortion in cell shape. Notably, like I1 , � 
is also an invariant of � . As the driving force for the process 
of T1 transition comes from elastic distortion � , the yield 
phenomena can be modeled in terms of the kinetic rate kT as:

and kT = 0 , otherwise. This definition for the kinetic rate 
kT ensures that cells can only intercalate (i.e., dT ≠ 0 ) if 
they are distorted beyond a threshold �∗ . Thus allowing 
us to capture the complex elasto-visco-plastic behavior in 
terms of a scalar ISV kT . Different functional forms for kT (�) 
can be proposed depending on the nature of T1 transitions. 
To further simplify the model, we assume that kT = k0

T
 , if 

𝜒 > 𝜒∗ , and kT = 0 , otherwise. This straightforward expres-
sion allows us to qualitatively model the influence of T1 
transitions on the mechanics of a growing aggregate, which 
is the primary objective of this study.

4.2.1 � Effect of T1 transition on constrained spheroid 
growth

To show the effect of T1 transition on growth mechanics, we 
study the same problem of the homogeneous growth of the 
constrained cylindrical spheroid (see schematic of Fig. 8), 
as studied in the previous sec. 4.1. In this example, we con-
sider that cells can only expand (with the rate kE = k0

E
 ) and 

intercalate without dividing (i.e., kD = 0 ). The governing Eq. 
(35) for �̇ for this case becomes, using Eq. (40):

(41)� ∶=

√
3

2
�� ∶ ��

(42)�
� =

�

I1
−

1

3
I = H −

1

3
I

(43)

� =

√
3

2

[(
�1 −

1

3

)2

+
(
�2 −

1

3

)2

+
(
�3 −

1

3

)2
]
≥ 0

(44)kT = kT (𝜒) if 𝜒 > 𝜒∗

Fig. 7   Biased T1 transitions

2  This directionality has nothing to do with the change in material 
orientation and effectively its response to deformation.
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Following the same solution procedure mentioned earlier, 
we plot the results in Fig. 8 for different values of T1 transi-
tion rate k0

T
 , where k0

T
= 0 denotes the results of morphoe-

lasticity. We observe that as soon as cells start intercalating 
(i.e., when � exceeds �∗ ), distortion � (Fig. 8c) decreases 
with increase in k0

T
 . Notably, � approaches a homeostatic 

value (equal to �∗ ) for higher values of k0
T
 . The reduction 

in cell distortion � is associated with the directional bias 
of T1 transitions. When the mean cell shape is elastically 
distorted (beyond yield), cells intercalate, resulting in a more 
spherical mean cell geometry and thus reduced � . T1 transi-
tions have been observed to relieve stresses in passive tis-
sues and aggregates (Ishihara et al. 2017; Marmottant et al. 
2009). Figure 8a illustrates how cells dissipate wall stress 
�rr through intercalation in a growing aggregate. Relaxa-
tion of compressive stress �rr is accompanied by an increase 
in elastic volumetric deformation Je (which is < 1 due to 
compression). This consequently increases cell size � = Je�i 
(Fig. 8d) and the spheroid volume J = JeJi (Fig. 8b). Since 
� = 1 owing to k0

D
= 0 , we can write for this example:

(45)�̇ = �𝜇 + ��
T −

2

3
k0
E
� − kT

(
� −

3

Tr (�−1)
I

)

As J̇e∕Je > 0 due to relaxation under T1 transitions, we see 
that T1 transitions promote both cell size � and volumetric 
growth J. Overall we observe that T1 transitions can influ-
ence cell shape ( � ) and size ( � ) within a growing aggregate 
by relaxing stresses. The degree of relaxation is contingent 
upon the intercalation rate k0

T
 , with higher rates leading 

to greater relaxation and isotropicity. Moreover, we also 
showed how the elasto-visco-plastic behavior of cell aggre-
gates can be modeled by simply considering kT (�).

4.3 � Division and proliferation

As division contributes to both extrinsic as well as intrinsic 
remodeling, the inelastic flow rate dD can be derived using 
Eqs. (21) and (23) as (see Appendix Ah):

where the tensor �D = MD∕mn models the favored or the 
desired state that cells aim to attain, on average, by undergo-
ing division. The topological changes induced by division 
also exhibit directionality, akin to T1 transitions. In the case 

(46)
𝜁̇

𝜁
=

J̇e

Je
+ k0

E
and

J̇

J
=

J̇e

Je
+ k0

E

(47)dD = kD

(
4

3
� − 2�D

)

Fig. 8   Effect of biased T1 transition on: a normalized radial wall stress �rr∕G , b spheroid volume ratio J (same as stretch ratio � in this exam-
ple), c cell shape distortion � , and d cell size ratio � , as plotted against growth ratio g. Simulation parameters: �∗ = 0.3 and q = −2
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of division, directionality comes from the axis or orientation 
of cell division. Studies (Wyatt et al. 2015; Xu et al. 2016) 
show that cells in a stretched monolayer preferentially divide 
along their long axis instead of randomly chosen axes. In 
this way, they can dissipate more energy while preserving 
homeostasis and isotropic packing. This ‘long axis’ rule can 
be implemented using the tensor �D which drives the flow 
under division (Bandil and Vernerey 2023). We first make 
use of the fact that biased divisions result in isotropic dis-
tributions as cells endeavor to achieve spherical geometries 
(see Fig. 9). This behavior is similar to that of T1 transitions 
and hence translates to �D being an isotropic tensor. Com-
bined with the inelastic incompressibility (or isochoric) con-
straint condition on division, we obtain (see Appendix Ah):

Substituting �D from Eq. (48) in Eq. (47) yields the result-
ant macroscopic inelastic flow due to biased or oriented cell 
division as:

Appendix Ai shows how the above flow rate for division is 
thermodynamically admissible. From Eq. (49), if the cur-
rent deformed state of the aggregate is unbiased (i.e., � is 
isotropic), then division does not induce any inelastic flow 
(i.e., dD = 0 ). In this case, the sole impact of division is in 
increasing the cell count � and decreasing natural volume 
�i . However, when cells are elastically distorted (i.e., 𝜒 > 0 ) 
and exhibit unique principal directions, biased cell divisions 
affect the stress state of the system as we will see further.

Note on kD : According to Xu et al. (2016), the larger the 
cell size−higher the probability of division. This implies that 
rate kD = kD(�) , where the dependency has been proposed 
as an exponential form (Xu et al. (2016)):

and kD = 0 , otherwise. Here k0
D
 sets the upper limit on divi-

sion rate, �∗ = V∗∕V0 is the threshold size ratio modeling 

(48)�D =
2

Tr (�−1)
I

(49)dD = kD

(
4

3
� −

4

Tr (�−1)
I

)

(50)kD = k0
D

(
1 − exp

(
−𝜚D

[
𝜁 − 𝜁∗

]))
if 𝜁 > 𝜁∗

aggregate plasticity due to division (Xu et al. 2015), and �D 
is a sensitivity parameter.

Apart from controlling the aggregate’s stress state (Xu 
et al. 2016), cell division also plays an important role in 
maintaining the homeostatic state of cell packing (Farhadifar 
et al. 2007; Wyatt et al. 2015). To illustrate these concepts, 
we now explore the influence of division on spheroid growth 
mechanics by considering two cases: (1.) free growth and 
(2.) constrained growth.

4.3.1 � Effect of division on free spheroid growth

Here, we demonstrate how homeostasis can be mod-
eled using Eq. (24) through a simple example. Consider a 
freely proliferating aggregate under a constant expansion 
rate kE = k0

E
 . Owing to homogeneous expansion, no elastic 

energy is being stored during the process. In such a situation, 
since elastic volumetric deformation Je = 1 , we have � = �i 
and hence the cell size ratio � follows the same evolution 
equation (24) as �i . From Fig. 10a, we see that with time, a 
steady state is reached and the mean cell size attains homeo-
stasis (i.e., 𝜁̇ = k0

E
− kD = 0 ). We can find out this steady-

state value, say � ss , by simply equating kD in Eq. (50) to k0
E
 , 

resulting in:

The above solution reveals that homeostasis can only be 
achieved if the maximum division rate k0

D
 is more than the 

expansion rate k0
E
 . If k0

E
> k0

D
 , then 𝜁̇ > 0 always, resulting 

in a continuous increase in mean cell size throughout the 
growth process (see Fig. 10a). In this case, division rate 
kD < k0

E
 (see Fig. 10b) and expansion dominate proliferation. 

This provides us with valuable insights into the relative rates 
of expansion and division within a growing population. With 
the aid of ISVs ( kE, kD, �i, �, � ), we can now also distinguish 
between the growth modes. To comprehend this, we employ 
the relationship in Eq. (25) which implies that:

During the transient phase ( 𝜁̇ ≠ 0 ), volumetric growth 
includes both an increase in cell size � and an increase in 
cell number � . However, when homeostasis is attained under 
suitable conditions, volumetric growth becomes entirely 
driven by the increase in cell number.

(51)� ss = �∗ −
1

�D
ln

(
1 −

k0
E

k0
D

)

(52)J̇

J
=

𝜂̇

𝜂
+

𝜁̇

𝜁

Fig. 9   Biased division
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4.3.2 � Effect of division on constrained spheroid growth

Let us now solve the same example problem of constrained 
growth (see the schematic of Fig. 11) as introduced in 
sec. 4.1. The difference is that in addition to expanding, 
cells in the constrained spheroid can now also divide. In 

this case, since the cells are proliferating, the governing 
equation for �i is given by Eq. (24) and the evolution Eq. 
(35) now becomes:

Fig. 10   a Cell size ratio � and b normalized division rate kD∕k0E , as plotted against time t for different values of rate k0
D
 . Unit of t is [1∕k0

E
] . Simu-

lation parameters: �∗ = 1.3 and �D = 10

Fig. 11   Effect of biased division on: a normalized radial wall stress �rr∕G , b spheroid volume ratio J (same as stretch ratio � in this example), c 
cell shape distortion � , and d cell size ratio � , as plotted against growth ratio g. Simulation parameters: �∗ = 1.3 , q = −2 , and �D = 10
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As demonstrated in Fig. 11, once the cells start dividing 
(i.e., � exceeds �∗ ), distortion � (Fig. 11c) and size ratio 
� (Fig. 11d), decrease with increase in k0

D
 , with the effect 

on cell size � being significant. Again, since the mean cell 
shape is distorted under the confinement of the matrix, cell 
division results in a more ordered (or isotropic) packing, 
and thus reduced � . Additionally, cell divisions have been 
observed to fluidize tissue by relieving stresses (Xu et al. 
2016). This stress relaxation is evident in our results from 
Fig. 11a, which shows dissipation of wall stress �rr through 
division. One of the most notable effects of division is 
displayed in the mean cell size ratio � (Fig. 11d), wherein 
we observe that � eventually reaches a steady-state value 
for a high division rate of k0

D
= 5 . As shown in Fig. 11b, 

the model predicts that cell division promotes volumetric 
growth, leading to an overall increase in spheroid size with 
an increasing k0

D
 . This response can be understood as fol-

lows. Substituting � = Je�i in Eq. (52) and further using Eqs. 
(24) and (19), Eq. (52) can be rewritten as:

This simple relation shows that the overall volumetric defor-
mation can be split into elastic volumetric deformation Je 
and expansion ( kE ) induced inelastic deformation. In this 
specific example problem, where kE = k0

E
 is constant, the 

mechanism through which division influences the global 
spheroid size J is via relaxing compressive stress, thereby 
increasing Je (see inset of Fig. 11b) and consequently leading 
to an increase in J.

Broadly speaking, the behavior of growing spheroid 
in response to division follows similar trends to those 
observed with intercalation (Fig. 8) in terms of stress relaxa-
tion (Figs. 8a and 11a) and promoting volumetric growth 
(Figs. 8b and 11b). However, the primary distinction lies 
in the fact that T1 transitions strongly regulates � , while 
division significantly affects � . This disparity arises because 
shape distortion � is the driving force for T1 transitions, 
whereas size ratio � drives division. As a result, T1 tran-
sitions help maintain cell shape (distortion) at its homeo-
static value of �∗ , while division aids in maintaining cell 
size at its homeostatic value which depends on other factors 
including �∗ . We notice from Figs. 8c,d and 11c,d that in 
the absence of any rearrangements (i.e., when k0

T
, k0

D
= 0 ), 

cells undergo continuous distortion with growth, assum-
ing highly deformed ellipsoidal shapes. Concurrently, 
cells exhibit volume expansion reaching large sizes. Both 
of these scenarios seem biologically improbable, as cells 
within spheroids are observed to maintain their shapes and 

(53)�̇ = �𝜇 + ��
T −

2

3
k0
E
� − kD

(
4

3
� −

4

Tr (�−1)
I

)

(54)J̇

J
=

J̇e

Je
+ kE

sizes at moderate values, a state referred to as homeostasis 
(Tzur et al. 2009). This observation suggests that additional 
mechanisms (such as division and T1 transition) that regu-
late cell shape and size need to be taken into account while 
modeling the growth of spheroids.

5 � Conclusion

To summarize, we here have presented a morpho-viscoelas-
tic continuum theory to model growth in three-dimensional 
proliferating dense cell aggregates such as spheroids and 
organoids. Using the transient network theory, we have 
generalized the existing continuum mechanical models for 
confluent tissues in multiple ways: (1.) Additional inelastic 
mechanisms, namely division and intercalation, have been 
included. (2.) The model can now differentiate between dif-
ferent modes of growth (proliferation)—increase in cell size 
via expansion and increase in cell number via division. (3.) 
The model facilitates a thorough elucidation of the complex 
interplay between cell-level mechanics and aggregate-level 
growth. This involves the characterization of different cel-
lular activities in terms of suitable ISVs and continuum field 
variables (4.) The model introduces a generalized measure 
of elastic deformation, given by normalized texture tensor, 
which incorporates all the cellular processes-induced inelas-
tic mechanisms.

One of the most noteworthy contributions of the current 
study is to provide novel interpretations of inelastic defor-
mations in an aggregate. We showed how inelastic deforma-
tion can be categorized into extrinsic and intrinsic network 
remodeling, where extrinsic remodeling deals with topo-
logical changes while intrinsic remodeling corresponds to 
changes in the properties of constituent network elements, 
in this case segment vectors. This categorization allowed 
us to comprehensively understand the influence of each of 
the cellular mechanisms—expansion, division, and inter-
calation—at the macroscale. For instance, we showed how 
division, which is one of the most prominent cellular mor-
phogenetic processes, remodels the network extrinsically 
as well as intrinsically. Owing to this feature, we can now 
thoroughly model dissipation due to cell rearrangements 
alongside proliferation in aggregates under various loading 
and constraint conditions.

While the proposed model endeavors to make notable 
advancements in the mathematical modeling of growth, 
it is not without its limitations. One of the present for-
mulation’s major shortcomings is in characterizing aniso-
tropic growth. Biological growth is not always isotropic. 
For instance, in cardiac and arterial tissues, the growth is 
characterized by an anisotropic form of the growth tensor 
(Ambrosi et al. 2011; Rodriguez et al. 1994). For such 
cases, the current formulation will need to be modified to 
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account for anisotropicity in the cell-level micro-structure 
driving growth. This will require redefining the material 
model for capturing anisotropic elastic response (Holzap-
fel et al. 2004). We recognize this as a promising prospect 
to further enhance the applicability of our framework. In 
this study, we solved simple example problems involv-
ing homogeneous deformation. To fully demonstrate the 
potential of the developed theory, it will be necessary to 
implement the model within the numerical framework of 
finite element analysis (FEA). This will enable us to study 
more intricate problems such as morphogenesis of tumor 
spheroids (Cheng et al. 2009; Kulwatno et al. 2021), tis-
sue growth in polymeric scaffolds (Dhote and Vernerey 
2014; Vernerey 2016), and mechanics of growth-induced 
residual stresses (Ambrosi and Mollica 2004).

Appendix

(a)	 Derivation of � = �e + �g . Following the multipli-
cative decomposition F = FeFg , the spatial velocity 
gradient � = ḞF−1 can then be written as: 

 where the first term is called the elastic part of � and 
is denoted by �e , while the second term is the growth 
part denoted by �g . Therefore, we have: 

(b)	 Derivation of �(be) . We start by employing the Clau-
sius–Duhem inequality for an open system, expressed 
in the spatial frame as (Huang et al. 2021): 

 where D  is the mechanical dissipation rate, � is spatial 
mass density (defined as mass per unit current volume), 
and Ψ is the Helmholtz-free energy per unit mass. The 
strain-energy density �n can be written in terms of Ψ 
as �n = �nΨ , where �n = Je� is called the natural mass 
density (defined as mass per unit natural volume). The 
term 𝜌Ψ̇ can now be written as: 

 Substituting the above into Clausius–Duhem (Eq. 
(57)), we get: 

(55)

� =
(
ḞeFg + FeḞg

)
F−1
g
F−1
e

= ḞeFgF
−1
g
F−1
e

+ FeḞgF
−1
g
F−1
e

= ḞeF
−1
e

+ FeḞgF
−1
g
F−1
e

(56)�e = ḞeF
−1
e

and �g = FeḞgF
−1
g
F−1
e

(57)D = � ∶ � − 𝜌Ψ̇ ≥ 0

(58)𝜌Ψ̇ =
1

Je
𝜓̇n −

1

Je

𝜌̇n

𝜌n
𝜓n

 where the material time derivative 𝜓̇n can be written 
(for isotropic material where �n = �n(be) ) as: 

 Using the above expression in Eq. (59), we get: 

 For a hyperelastic material, the first term vanishes, 
resulting in: 

(c)	 Derivation of L(be) . Starting with be = FeF
T
e
 , taking 

the material time derivative we get: 

 Substituting Ḟe = �eFe (from Eq. (56)) in above, we 
get: 

 Further using �e = � − �g , we obtain, 

 The Lie derivative of spatial tensor be , defined by 
L(be) ∶= ḃe − �be − be�

T , can be expressed in terms 
of �g using above expression as: 

 where dg = �gbe + be�
T
g
 is the growth-induced 

inelastic f low rate. When Fg = gI  ,  we get 
�g = FeLgF

−1
e

= ġ∕gI , which yields dg = 2ġ∕gbe.
(d)	 Derivation of M0 . Let r0 = [rx0, ry0, rz0] denote a ran-

dom segment vector in the network embedded inside 
an arbitrary Lagrangian coordinate X ∈ B0 . The mean 
conformation tensor M0 is then given by: 

 where ⟨▪⟩ is the mean of ▪ over conformation space Ω . 
For  an  i so t rop ic  d i s t r ibu t ion ,  we  have 
⟨rx0ry0⟩ = ⟨ry0rz0⟩ = ⟨rx0rz0⟩ = 0  a n d 
⟨r2

x0
⟩ = ⟨r2

y0
⟩ = ⟨r2

z0
⟩ . Let r0 be the length of segment 

(59)D = � ∶ � −
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Je
𝜓̇n +

1

Je

𝜌̇n

𝜌n
𝜓n ≥ 0
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dt
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��n
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��n
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(62)� =
2

Je

��n

�be
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(63)ḃe = ḞeF
T
e
+ FeḞ

T

e

(64)
ḃe = �eFeF

T
e
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T
e
�
T
e
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T
e

(65)ḃe = �be + be�
T −
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�gbe + be�

T
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)

(66)L(be) = −
(
�gbe + be�

T
g

)
= −dg

(67)M0 = ⟨r0 ⊗ r0⟩ =

⎡⎢⎢⎣
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⟩ ⟨rx0ry0⟩ ⟨rx0rz0⟩
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vector r0 . Hence r2
0
= r2

x0
+ r2

y0
+ r2

z0
 . Taking the mean, 

we get ⟨r2
0
⟩ = ⟨r2

x0
⟩ + ⟨r2

y0
⟩ + ⟨r2

z0
⟩ . From isotropy, we 

have ⟨r2
x0
⟩ = ⟨r2

y0
⟩ = ⟨r2

z0
⟩ = ⟨r2

0
⟩∕3 . The tensor M0 in 

Eq. (67) thus becomes: 

 The scalar m0 = ⟨r2
0
⟩∕3 thus provides us with a meas-

ure of the average of the square of segment vector 
lengths in the network at initial equilibrium (i.e., B0 ). 
Similarly, the natural (or current equilibrium) configu-
ration of the network, for an isotropic solid, is given by 
the tensor Mn = mnI , where mn = ⟨r2

n
⟩∕3 measures the 

average of the square of the natural lengths rn of the 
segment vectors.

(e)	 Evolution equation for the pdf p. We start by introduc-
ing a statistical quantity, �(x, r, t) = f (x, t)p(x, r, t) , 
which measures the fraction of segment vectors exist-
ing in conformation r per unit conformation space. The 
fraction f can be expressed in terms of � as: 

 Now consider an arbitrary fixed control volume 𝜔 ⊂ Ω 
bounded by surface �� as shown in Fig. 12. Let n� be 
the number of segment vectors inside � at any time t. 
An evolution equation for � (and consequently for the 
pdf p) can be derived by writing the conservation equa-
tion for n� = nt ∫� � d� (Note that nt is some constant). 
Now each point in conformation space Ω , denoted by 
vector r , moves with velocity ṙ = �r (using the affine 
assumption). Net influx, say Q, of vectors through the 
surface �� into the domain � is then given by: 

(68)M0 =
⟨r2

0
⟩

3

⎡⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎦
=

⟨r2
0
⟩

3
I = m0I

(69)f (x, t) =
n(x, t)

nt
= ∫Ω

�(x, r, t) dΩ

 where n is the normal to the elementary surface ds and 
the ∇ operator is defined in the basis {rx, ry, rz} . Q here 
measures net change in the number of segment vectors 
inside the domain � due to convection (or flow) under 
� . Additionally, new segment vectors can be created 
or some existing segment vectors can be lost under 
(inelastic) rearrangement events. The conservation 
equation for n� can now written as: 

 where �c and �l are, respectively, the source (creation) 
and sink (loss) terms. Since the above conservation 
equation holds for any arbitrary domain 𝜔 ⊂ Ω , we can 
write from localization: 

 The Fokker–Planck equation, which is the material 
time derivative ṗ = dp∕dt , can now be derived from 
p = �∕f  and Eq. (72) as: 

 The terms �c and �l are given by: 

 Substituting Eq. (74) into Eq. (73), we get: 

 As can be seen from above, p evolves under (1.) spatial 
velocity gradient and (2.) topological transitions.  The 
rate ḟ  can be derived using Eqs. (72) and (74) as: 
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(using divergence theorem)
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(75)
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Fig. 12   Control volume � in the conformation space Ω
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 Note that above we have assumed that kl is independ-
ent of r.

(f)	 Derivation for �T . For T1 transitions, we have the fol-
lowing governing equation: 

 Pre-multiplying the above equation and then taking its 
Trace, we get: 

 Applying Jacobi’s formula on the LHS term, 
which gives Tr (�−1

�̇) = 2J̇e∕Je , and recognizing 
Tr (�−1��) = Tr (�) = Tr (�T ) = J̇∕J , the above equa-
tion becomes: 

 Further employing J = JeJi , we get: 

 Now, T1 transition is an isochoric inelastic process, 
i.e., J̇i∕Ji = 0 . Furthermore, for biased T1 transitions, 
we have �T = �TI (an isotropic tensor). Substituting 
these into Eq. (79), we finally obtain: 

(g)	 Thermodynamic admissibility for dT . To show that 
derived constitutive laws for T1 transition ( dT ) and 
division ( dD ) are thermodynamically admissible, we 
employ the Clausius–Duhem inequality in Eq. (59). 
Given that the strain-energy density �n = �n(�) , we 
have (from Eq. (30)): 

 Substituting the above into Clausius–Duhem inequality 
(Eq. (59)) results in: 

(76)

ḟ = ∫Ω

d𝜙

dt
dΩ

= kc(1 − f ) − f ∫Ω

klp dΩ

= kc(1 − f ) − klf

�̇ = �� + ��
T − kT

(
� − �T

)

(77)
Tr (�−1�̇) = Tr (�−1��) + Tr (�T )

− kT
(

Tr (I) − Tr (�−1�T )
)

(78)2
J̇e

Je
= 2

J̇

J
− kT

(
3 − Tr (�−1

�T )
)

(79)kT
(
3 − Tr (�−1

�T )
)
= 2

J̇i

Ji

�T =
3

Tr (�−1)
I

(80)
�̇n = 2

��n

��
�:� −

��n

��
:dE

−
��n

��
:dD −

��n

��
:dT

 In above equation, DT and DD represent, respectively, 
dissipation due to T1 transition and division. Let us 
look at dissipation due to T1 transition given by: 

 Identifying from Eq (40) that dT is symmetric (i.e., 
dT
T
= dT ), we can write: 

 In above equation, I1 = Tr (�) and I3 = det� are first 
and thirds invariants, respectively, of � and we have 
used the fact that �n does not depend on the second 
invariant I2 (i.e., ��n∕�I2 = 0 ). Further substituting dT 
from Eq. 40 into above gives: 

 Now, kT , Je and ��n∕�I1 are all ≥ 0 . For DT ≥ 0 to be 
true, the remaining term must satisfy Tr

(
� − �T

) ≥ 0 . 
Using �T from Eq. (39) for biased T1 transition, we 
now need to show: 

 Let � = Diag{a, b, c} in principal coordinates, where 
a, b, c are eigenvalues of tensor � . Since we are deal-
ing with invariants, the choice of the coordinate system 
does not matter. Using this diagonalized form of tensor 
� in above inequality, we get: 

 which is satisfied for all a > 0, b > 0, c > 0.
(h)	 Derivation for �D . Using Eq. (20), the L(�) (Eq. (27)) 

for division can be written as: 

(81)

� =
(

� − 2
Je

��n

��
�
)

:� + 1
Je

��n

��
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+ 1
Je

��n

��
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+ 1
Je

��n

��
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⏟⏞⏞⏞⏟⏞⏞⏞⏟
�D

+ 1
Je

�̇n
�n

�n ≥ 0

(82)DT =
1

Je

��n

��
∶ dT =

1

Je
Tr

(
��n

��
dT
T

)

DT =
1

Je
Tr

(
��n

��
dT

)

=
1

Je
Tr

[(
��n

�I1
I +

��n

�I3
I3�

−1

)
dT

]

=
1

Je

[
��n

�I1
Tr

(
dT

)
+

��n

�I3
I3 Tr

(
�
−1dT

)]

(83)DT =
kT

Je

��n

�I1
Tr

(
� − �T

)

(84)Tr (�)Tr (�−1) ≥ 9

(85)(a + b + c)
(
1

a
+

1

b
+

1

c

) ≥ 9
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 Therefore for division, we have the following govern-
ing equation: 

 Following the similar steps as for T1 transitions in 
Appendix Af, we get: 

 Since the division process is inelastic and isochoric, 
the RHS of the above equation vanishes and gives: 

 For oriented/biased divisions �D = �DI is an isotropic 
tensor. From the above equation, we can obtain: 

(i)	 Thermodynamic admissibility for dD . Following the 
similar steps for T1 transition in Appendix Ag, the dis-
sipation DD due to division can be found as: 

 Substituting �D from Eq. (48) for biased division, the 
inequality DD ≥ 0 becomes: 

 which has been proved already (see Appendix Ag).
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