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Abstract

Recent evidence suggests that androgens are a potent driver of growth during late the pri-
mary stage of ovarian follicle development in teleosts. We have previously shown that the
non-aromatizable androgen, 11-ketotestosterone (11-KT), both advances ovarian follicle
growth in vivo and dramatically alters the primary growth ovarian transcriptome in coho
salmon. Many of the transcriptomic changes pointed towards 11-KT driving process associ-
ated with the transition to a secondary growth phenotype. In the current study, we implanted
previtellogenic early secondary growth coho salmon with cholesterol pellets containing 11-
KT and performed RNA-Seq on ovarian tissue after 3 days in order to identify alterations to
the ovarian transcriptome in early secondary growth. We identified 8,707 contiguous
sequences (contigs) that were differentially expressed (DE) between control and 11-KT
implanted fish and were able to collapse those to 3,853 gene-level IDs, more than a 3-fold
more DE contigs than at the primary growth stage we reported previously. These contigs
included genes encoding proteins involved in steroidogenesis, vitellogenin and lipid uptake,
follicle stimulating hormone signaling, growth factor signaling, and structural proteins, sug-
gesting androgens continue to promote previtellogenic secondary growth.

Introduction

In fish, the development of a competent oocyte is divided into three general stages: primary
growth, secondary growth, and maturation [1,2]. These stages are under the control of numer-
ous endocrine and paracrine factors [1], and recent studies using teleost models indicate that
androgenic and estrogenic steroids play stage-specific roles in regulating development [2].
During the perinucleolar stage of primary growth, exposure to a non-aromatizable andro-
gen, 11-ketotestosterone [11-KT] was effective in increasing the volume of ovarian follicles of
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coho salmon [3,4] and Atlantic cod [5]. Treatment with estradiol-17 [E2] was less effective in
coho salmon; 20 days of in vivo exposure to E2 was required before a significant increase in
volume occurred [6], in contrast to 10 days of treatment with 11-KT [4]. These results suggest
that androgen signaling may be a primary steroidal driver of growth at this stage. Conversely,
in vivo [6,7] or vitro [3] treatment with E2 promoted the formation of cortical alveoli, an indi-
cator of secondary follicle development. This effect was absent in 11-KT treated follicles during
primary growth.

In a previous study using deep transcriptome sequencing, hundreds of ovarian follicle tran-
scripts in which expression levels were altered by in vivo 11-KT treatment were identified,
prior to development of the secondary follicle phenotype [4]. These included transcripts
encoding proteins involved in steroidogenesis and steroid action, growth factor signaling, and
the extracellular matrix. Pathway analysis identified biological functions and canonical path-
ways that were potentially altered, including ovarian development, tissue differentiation and
remodeling, and lipid metabolism. Plasma E2 levels were also increased by this treatment, as
well as fsh transcript levels, both hallmarks of entry into secondary growth [8,9]. Together,
these results suggest that androgens promote both primary ovarian follicle development, and
the transition into secondary ovarian follicle growth.

Secondary growth is characterized by the activation of the brain-pituitary-gonads axis that
results in an increase in ovarian E2 synthesis via Fsh signaling. The presence of cortical alveoli
is a histological indicator of entry into secondary growth in coho salmon [8]. Several lines of
evidence implicate androgens in early secondary ovarian follicle development as well. 11-KT
promotes the accumulation of lipids and an increase in size of previtellogenic eel follicles [10-
12]. In early secondary coho salmon follicles, in vitro treatment with 11-KT was as effective as
E2 in increasing the size of ovarian follicles, although E2 caused a much greater increase in
cortical alveoli [3]. While the growth and cytological effects of these steroids (androgens in
particular) on follicle growth have been characterized in several species, there are fewer data
on mechanisms driving them. In order to identify the mechanisms underlying the growth-pro-
moting actions of androgens in early secondary growth, we implanted female coho salmon
containing ovaries at the cortical alveolus stage with sustained release pellets containing
11-KT. Changes in the ovarian follicle transcriptome were determined using RNA-Seq fol-
lowed by pathway analysis after three days.

Methods
Chemicals and general animal procedures

11-Ketotestosterone was purchased from Steraloids (Newport, RI). Cholesterol was purchased
from Sigma-Aldrich (St. Louis, MO). L-15, hematoxylin, eosin, and diethyl ether were pur-
chased from Thermo Fisher Scientific (Waltham, MA). Bouin’s fixative was purchased from
Ricca Chemical Company (Arlington, TX).

Juvenile coho salmon (Issaquah Hatchery stock, Issaquah, WA) were reared at the hatchery
facilities of the Northwest Fisheries Science Center, Seattle, WA under simulated natural pho-
toperiod in re-circulated 10-11°C fresh water, under an approved protocol according to guide-
lines established by the Institutional Animal Care and Use Committee, University of
Washington (protocol 4078-04). Fish were fed twice daily with a commercial feed (BioDiet,
Bio-Oregon, Longview, WA) according to the manufacturer’s guidelines.

Genetic sex was determined using an established sex marker in tagged fish. Genetic females
were segregated into an all-female stock which was reared as previously described [4]. At the
termination of experiments, fish were anesthetized in buffered 0.05% tricaine methanesulfo-
nate until movement of the gill operculum ceased. Fork length and body weight were
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measured. Blood was collected from the caudal vein and immediately transferred to heparin-
ized microcentrifuge tubes and placed on ice. Blood plasma was separated by centrifugation at
1200 x g for 15 minutes. After decapitation, ovaries were removed and weighed and then
either snap frozen in liquid nitrogen or fixed in Bouin’s fixative for histological analysis.

Experimental procedures

Female juvenile coho salmon (121+2.8 g, 2-years of age) were implanted with either blank cho-
lesterol pellets or cholesterol pellets containing 10 pug 11-KT. The amount of steroid included
in the pellets was determined in preliminary experiments to result in significant but physiolog-
ically relevant increases in plasma steroid levels. As in our previous study [4], pellets contain-
ing 11-KT were incubated for 24 hours in sterile L-15 media (Thermo Fisher Scientific) and
were then washed with L-15 prior to implantation to temper the initial release rate. Fish were
lethally sampled after 3 days. At that time, fork length, body weight, and gonad weight were
measured, and blood and ovaries were collected as described above. Histological screening
eliminated any female that displayed overtly asynchronous ovarian stages or were not at the
cortical alveolus stage, and frozen ovarian samples from control, and 11-KT treated females
(N = 3 per group) were selected for RNA-Seq analysis.

Sex steroid assays

Steroids were double extracted from 250 ul of plasma using diethyl ether (1.5 mlx 2) and
extracts were evaporated under a nitrogen gas stream, then re-suspended in appropriate buff-
ers as previously described [4]. Plasma 11-KT levels were measured by enzyme-linked immu-
noassay [13] using tracer and secondary antibody coated plates from Cayman Chemicals (Ann
Arbor, MI) and primary antibody donated by David Kime (University of Sheffield, UK).
Plasma E2 was measured by radioimmunoassay, as described by Sower and Schreck [14], and
modified by Fitzpatrick et al. [15].

Histological analysis

Fixed ovarian tissues were washed with 70% ethanol, dehydrated in increasing concentrations
of ethanol and xylene, and embedded in paraffin wax. Sections with a thickness of 5 pum were
cut and mounted on microscope slides and stained with hematoxylin and eosin. Average ovar-
ian follicle volume was calculated from at least 15 follicles per sample, measuring follicles that
were sectioned through the nucleus of the oocyte with an image analysis system (NIS-ele-
ments, Nikon, USA), as described previously [3], and oocytes were scored for stage based on
previously published criteria [3,8].

RNA extraction

Total RNA was extracted using Qiagen RNEasy mini kit (Qiagen, Hilden, Germany) according
to the manufacturer’s guidelines. RNA pellets were re-suspended in DNAse/RNAse free water
(Sigma-Aldrich). Total RNA concentrations in extracts were determined using a NanoDrop
ND-100 (NanoDrop Technologies, Wilmington, DE).

RNA-Seq and pathway analysis of alteration in the ovarian transcriptome

i. Sample preparation. Total ovarian RNA (200 ng) was submitted to Omega Bio-Tek Inc
(Norcross, GA) for quality checking, library preparation (poly A selected), and 100 base pair,
paired-end sequencing.
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ii. RNA-seq analysis. Bioinformatic analyses were performed using the DRAP pipeline as
previously described [4,16]. Briefly, sequences were quality trimmed using Trim Galore v0.4.0
[17] and assembled into a de novo backbone with Drap v1.8 [16] and Oases v0.2.09 [18] using
the kmer values of 19, 23, 25, 27, 31, and 35. Contiguous sequences (contigs) that had FPKM
(fragments per kilobase of transcript per million mapped reads) greater than 1 and had
sequence lengths greater than 200 bp were retained. These contigs were annotated using BlastX
against the NCBI non-redundant protein database (nr) and partially non-redundant nucleo-
tide database (nt); only sequences with an E-value <-05 were retained. Gene level count esti-
mates were made using RSEM v.1.2.31 [19] and bowtie2 v2.2.6 [20] and differential expression
was determined using DESeq2 [21]. Contigs with a P-adjusted (P-adj) value <0.1 were consid-
ered significantly altered between control and 11-K. To control for sequencing errors and dif-
ferences in sequencing depth leading to misidentification of differential expression of contigs
with low read counts, those contigs with a basemean <10 were excluded from further analysis.
Gene clustering was performed using cluster::agnes package in R with the Spearman method
[22]; data were log, transformed and centered on a mean expression value to improve visuali-
zation of expression differences.

iii. Pathway analysis. Ingenuity Pathway Analysis™ (IPA) software was used to conduct
pathway and network analyses and predict the effects of steroid treatment on biological func-
tions. Contigs were initially mapped to zebrafish orthologs using BLASTN against the Ensembl
Danio rerio gene database (v.Zv9.72). However, some zebrafish genes have not been mapped to
mammalian orthologs, so the remaining contigs were mapped to the Homo sapiens transcript
database (v.GRCH37.72) for inclusion in IPA. If more than one contig (P<0.05) mapped to
the same gene, the average expression value of those contigs was used as the gene expression
value in further analyses. The expression patterns of the zebrafish and human gene orthologs
were compared to the IPA database to estimate altered canonical pathways and biological func-
tions (Fisher exact test P<0.05 [-log;o P-value >1.3]). This program generates networks that
maximize the connectivity of genes with significantly altered expression based on known func-
tional interactions [23], predicts alterations in biological function, and predicts both upstream
and downstream regulators given the direction of expression differences in given gene sets. A
z-score was calculated to identify predicted increases or decreases in biological functions in
treated samples relative to controls. The z-score is a statistical measure of the match between
expected and observed gene expression direction. Zebrafish nomenclature is used throughout
when referring to fish species, although due to the use of this software, human gene names are
used in places where annotation to the zebrafish database was not possible.

Results
Morphometrics and sex steroid levels

No significant treatment effects on fish selected for analysis were observed between control
and treated samples with regard to fork length (21.6+0.2 cm), body weight (121.6+2.8 g), GSI
(0.4+0.02), ovarian follicle volume (0.044+0.004 mm?), or gross ovarian follicle morphology.
All samples selected for sequencing displayed an early to mid-cortical alveolus stage phenotype
(Fig 1A-1C). The mean plasma 11-KT level in control fish was 0.12+0.04 ng/ml. In samples
selected for RNA-Seq, treatment with 11-KT for 3 days significantly increased plasma 11-KT
levels to 18.5+3.7 ng/ml (Fig 1D) but did not alter E2 levels (0.240.1 ng/ml).

RNA-seq

Sequencing resulted in 1.6 billion total reads from 9 samples (Table 1). Following quality trim-
ming and pairing, greater than 99.7% of reads were retained. De novo assembly generated
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Fig 1. Ovarian stage and plasma sex steroid levels. Ovarian tissue from fish displaying early secondary growth

ovarian follicles with similar cortical alveoli abundance were chosen from each treatment, (A) control, (B) 11-KT, for
RNA-seq analysis. Scale bar = 200pm. Plasma 11-KT (C) and E2 (D) levels were measured three days after implant in
control and 11-KT treated samples (N = 3). Asterisks indicate significant elevation in plasma steroid levels (P <0.05).

https://doi.org/10.1371/journal.pone.0311628.g001

Table 1. Summary statistics of the RNA-Seq pipeline.

Treatment Sample Raw Reads Paired Reads Trimmed Reads Mapped Reads Percent Mapped

Control 1 164.464,526 82,232,263 82,071,323 66,591,651 81.14
2 214,106,184 10,753,092 106,790,936 86,663,462 81.15
3 170,020,428 85,005,214 84,830,356 67,743,146 79.86
Average 182,860,379 91,430,190 91,230,872 77,203,304 80.72
11-KT Treated 1 174,052,222 87,026,111 86,854,547 71,104,279 81.87
2 170,960,500 58,480,250 85,297,177 69,699,048 81.71
3 168,526,044 84,263,022 84,100,132 67,897,057 80.73
Average 171,179,589 85,589,794 85,417,285 69,566,795 81.44
Additional reads included in backbone | 1 190,527,516 95,263,758 95,048,317 76,101,066 79.97
2 168,924,010 84,462,055 84,209,920 68,399,236 81.22
3 175,561,102 87,780,551 87,606,079 71,701,627 81.85
Average 178,337,543 89,168,771 88,954,772 72,036,976 81.01

Total 1,597,132,532 798,566,266 796,808,787 579,217,921 Avg. = 81.06

Number of raw reads, number of paired reads, number after quality trimming, number mapped, and percent of reads mapped for Control, 11-KT treated, and

additional reads included in creation of backbone but not used in the differential expression analyses.

https://doi.org/10.1371/journal.pone.0311628.t001
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63,423 contigs between 201 bp and 15,353 bp with a mean contig length of 1,673 bp. Eighty-
one percent of reads were mapped to the de novo backbone. A total of 63,048 of these contigs
(99.4%) were annotatable.

RNA-seq analysis identified 8,707 contigs that were differentially expressed (DESeq2, P-
adjusted <0.1) from controls in 11-KT (Fig 2A). Cluster analysis of differentially expressed
contigs in 11-KT treated samples (Fig 2B) demonstrated distinct differences in expression pat-
terns between control and treatment groups.

Alterations in the ovarian transcriptome induced by short-term 11-KT
treatment

Of the 63,423 contigs generated, 43,820 (69%) were annotated to zebrafish or human gene
orthologs and mapped to IPA. Duplicate contigs were collapsed to the gene-ID level using the
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Fig 2. The expression of contigs in ovaries from females following short term treatment with 11-KT. All contigs
with a calculated p-adjusted value (-Log;), plotted by fold change (Log,). Black dots represent contigs significantly
altered by 11-KT (A). Cluster analysis (DESeq2) of differentially expressed contigs (DESeq2, basemean>10, P-adj<0.1)
after three days of 11-KT treatment (B). Expression of contigs (rows) is displayed for three independent samples
(columns), with red representing up-regulation and green representing down-regulation from the mean expression
value (white) of each contig. Each column represents data from ovaries of a single individual.

https://doi.org/10.1371/journal.pone.0311628.g002
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Fig 3. The expression of contigs altered by 11-KT treatment related to the morphology and function of the
ovarian follicle. The fold expression compared to controls is displayed for contigs mapped to genes involved in (A)
steroidogenesis, (B) vitellogenesis and lipid uptake and processing, (C) Fsh signaling, (D) the extracellular matrix, and
(E) tgfb superfamily members.

https://doi.org/10.1371/journal.pone.0311628.g003

average expression value relative to controls, resulting in 3,853 genes with expression altered
by 11-KT (P-adjusted <0.1).

Exposure to 11-KT altered the expression of genes that encode proteins involved in steroid
synthesis or metabolism (Fig 3A), proteins involved in vitellogenin and lipid uptake and pro-
cessing (Fig 3B), proteins that mediate Fsh signaling or expression (Fig 3C), extracellular
matrix proteins (Fig 3D), and growth factors (Fig 3E).

Pathway analysis

IPA software was used to identify canonical pathways and biological functions altered by 3
days of 11-KT exposure. A total of 263 and 12 canonical pathways were significantly associated
(-Logio P > 1.31) with 11-KT (Table 2) treatment. A total of 49 canonical pathways were pre-
dicted to be significantly altered by the IPA z-score algorithm following 11-KT treatment. Of
these, two of the pathways most significantly associated with our dataset that had significant z-
scores are involved in cell adhesion to the extracellular matrix: integrin signaling (-Log;o

P =13.00, z-score = 3.53) and actin cytoskeleton signaling (-Log;o P = 8.87, z-score = 2.26).
Additional pathways significantly associated with 11-KT treatment included insulin receptor
signaling (-Log;o p = 9.40), estrogen receptor signaling (-Log, P = 7.75), androgen signaling
(-Logio P = 7.12), GnRH signaling (-Log;o P = 5.05), and clathrin-mediated endocytosis signal-
ing (-Log;o P = 6.89).
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Table 2. Canonical pathways identified in ovaries of females treated with 11-KT for three days, identified by Inge-

nuity® pathway analysis software.

Ingenuity Canonical Pathways altered by 11-KT at day 3
Germ Cell-Sertoli Cell Junction Signaling
Integrin Signaling

Remodeling of Epithelial Adherens Junctions
Rac Signaling

Epithelial Adherens Junction Signaling
Sertoli Cell-Sertoli Cell Junction Signaling
Molecular Mechanisms of Cancer

Insulin Receptor Signaling

Signaling by Rho Family GTPases

Actin Cytoskeleton Signaling

Pyridoxal 5’-phosphate Salvage Pathway
Breast Cancer Regulation by Stathmin1
Neuregulin Signaling

Phagosome Maturation

Tight Junction Signaling

PI3K/AKT Signaling

RhoA Signaling

Huntington’s Disease Signaling

mTOR Signaling

NGF Signaling

Estrogen Receptor Signaling

RhoGDI Signaling

AMPK Signaling

Glucocorticoid Receptor Signaling
14-3-3-mediated Signaling

ILK Signaling

Ephrin Receptor Signaling

Mitotic Roles of Polo-Like Kinase

Fcy Receptor-mediated Phagocytosis in Macrophages and Monocytes
Protein Ubiquitination Pathway
Androgen Signaling

Prostate Cancer Signaling
Clathrin-mediated Endocytosis Signaling
ERK/MAPK Signaling

HIPPO signaling

Regulation of eIF4 and p70S6K Signaling
NRF2-mediated Oxidative Stress Response
TGEF-B Signaling

Superpathway of Inositol Phosphate Compounds
Regulation of Actin-based Motility by Rho
IGF-1 Signaling

Reelin Signaling in Neurons

Gap Junction Signaling

Telomerase Signaling

RAR Activation

-Log (P-value)

13.00
13.00
10.80
10.40
10.20
10.20
9.54
9.40
9.32
8.87
8.68
8.64
8.54
8.51
8.41
8.29
8.07
8.00
7.85
7.78
7.75
7.73
7.68
7.56
7.49
7.37
7.22
7.18
7.16
7.14
7.12
7.01
6.89
6.71
6.64
6.57
6.52
6.49
6.49
6.42
6.35
6.28
6.25
6.18
6.07

Z-score

3.53
0.89
0.57

0.94
1.73
2.26

1.18
2.24
0.91
1.66
1.94

-2.45
0.58

0.71
1.78
1.70
0.26
2.40

0.66

2.3
0.00
2.12
2.96
0.93

1.86
2.54

ratio of genes
73/173
86/219
37/68
52/117
60/146
69/178
117/374
57/141
85/247
79/228
33/65
74/208
40/88
56/144
62/167
50/124
49/122
80/241
69/199
47/117
50/128
62/173
66/189
90/287
50/130
67/196
61/174
31/66
39/93
81/255
46/116
39/94
66/197
66/199
36/86
55/157
64/193
36/87
73/230
37/91
41/106
37/92
57/168
42/111
62/190

Pathway, -Log,o P-value, z-score, ratio of genes represented in data set to total genes reported in pathway. Top 45

pathways displayed. Gray shaded rows indicate pathways predicted to be significantly altered by 11-KT treatment.

https://doi.org/10.1371/journal.pone.0311628.t002
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Fig 4. Biological functions in the ovary altered by 11-KT treatment. Many biological functions were predicted to be
altered in response to 11-KT treatment by IPA pathway analysis, including cellular functions, movement, and
morphology, as well as lipid metabolism. Functions are predicted to be activated or inactivated based on a positive or
negative z-score (top axis, >2 or <-2 is considered significantly predictive). The P-value (white dots, lower axis, -Log;o
P >1.3 [P <0.05]) indicates the likelihood that a function is accurately associated with the genes in our data set.
Arrows indicate—Log;, P-value is greater than the bounds of the axis. Bar color indicates biological functions within
the same category.

https://doi.org/10.1371/journal.pone.0311628.g004

IPA was used to predict changes in biological functions following 11-KT exposure. 11-KT
treatment led to the predicted significant alteration (|z| >2) of 26 biological functions in the
ovary. Many of these biological functions in the ovary of 11-KT treated fish were in categories
related to cellular processes (Fig 4), but also to lipid metabolism and organismal survival.

Discussion

Our previous studies on coho salmon have shown that low concentrations of 11-KT induce
growth and development of primary ovarian follicles in vitro and in vivo [6], and dramatically
alter the ovarian transcriptome [4]. Both E2 and 11-KT are potent stimulators of early second-
ary follicle growth [3,6]. In the present study, we used the previously described in vivo steroid
exposure model to undertake deep transcriptome sequencing of ovarian tissue in order to
identify early transcriptional changes resulting from 11-KT exposure during previtellogenic
secondary growth.

After three days of sex steroid exposure, 11-KT dramatically altered the ovarian transcrip-
tome. These widespread transcriptomic changes induced by 11-KT are consistent with a role
for 11-KT in lipid and vitellogenin uptake and processing, and in Fsh signaling, which are hall-
marks of secondary growth [11], as well as cellular development and other cellular processes,
and changes in the extracellular matrix.

The effects of 11-KT on early secondary ovarian follicle transcriptome

In our previous study [4], we exposed female coho salmon in the late perinucleolar stage of pri-
mary growth to 11-KT for 1 and 3 days, and performed RNA-Seq and pathway analyses on
ovarian tissue. We identified numerous differentially expressed genes that encode proteins
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involved in steroidogenesis and steroid action, including follicle stimulating hormone receptor
(fshr). These results implicate androgens in processes that prepare the ovarian follicle for sec-
ondary growth (i.e., Fsh-mediated E2 synthesis). Additionally, we identified canonical path-
ways that indicated potential modifications to the extracellular matrix and potential alterations
in biological functions involved in reproductive development. These results led to the hypothe-
sis that 11-KT plays a major role in primary growth, enhancing the potential for Fsh- and
E2-mediated signaling in secondary growth. Consistent with the potent growth-promoting
effects of 11-KT on early secondary follicles in vitro [3], the large number of contigs (8,707)
and corresponding genes (3,853) that were differentially expressed, and the magnitude of the
fold change in many gene transcripts after 3 days of 11-KT treatment in the current study indi-
cate that the early secondary ovarian follicle is even more sensitive to androgen signaling.

The fundamental difference between the previous study and the current RNA-Seq experi-
ment was the ovarian follicle stage, as identified by histological indices (absence/presence of
cortical alveoli). The ovarian follicles in the present study contained peripheral cortical alveoli
consistent with the morphology of the cortical alveolus stage of early secondary growth. How-
ever, common themes did emerge from the biological functions predicted to be altered after
3-days of 11-KT treatment in the two studies (Fig 5). Biological functions in categories of cell-
to-cell signaling and interaction, cellular development, and cellular movement were activated
(z-score >2) in both studies. The biological functions of morbidity and mortality and organis-
mal death were predicted to be significantly inhibited (z-score <-2) in both studies. These pre-
dictions point towards 11-KT playing a similar role in regulating basic cellular processes and
cell survival at these stages.

Notable follicle stage-associated differences in the transcriptomic response to 11-KT
include genes encoding proteins involved in steroid synthesis and the synthesis of E2 (hsd3b,

Categories Activation z-score Function Annotation
S5 4 3 2 -1 0 1 2 3 45

adhesion of connective tissue cells
adhesion of tumor cell lines

of cells

branching of cells

differentiation of cells
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growth of neurites
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cell movement of carcinoma cell lines

Cell-to-cell Signaling
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|
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cell movement of tumor cell lines
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invasion of cells
invasion of tumor cell lines
invasion of tumor cell lines
migration of cells
migration of cells
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perinatal death
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Fig 5. Altered biological functions in the ovary from categories in common between 11-KT treated primary and
early secondary growth coho salmon. Many of the same processes were predicted to be altered by 11-KT after 3-days
at both late primary growth (white bars) and early secondary growth (gray bars) stages. A previously published DEG
list [4] was interrogated using the IPA biological function analysis and compared with the biological functions
predicted to be altered in the current study. A positive or negative z-score (top axis, >2 or <-2 is considered
significantly predictive). The P-value (white dots, lower axis-Log;o P >1.3 [P <0.05]) indicates the likelihood that a
function is accurately associated with the genes in our data set. Arrows indicate—Log, o P-value is greater than the
bounds of the axis. Starred functions were significantly altered at both stages.

https://doi.org/10.1371/journal.pone.0311628.9005
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cypl9al), even though very similar 11-KT levels were achieved with implants in each RNA-Seq
study. The expression of these genes was significantly increased by 11-KT in primary follicles
[4], but was significantly decreased by 11-KT in early secondary follicles. The products of these
genes both act to catalyze the production of sex steroids, and specifically, cyp19al encodes aro-
matase, the enzyme responsible for the conversion of testosterone (T) to E2. Decreases in
expression indicate that the potential for production of E2 by previtellogenic secondary folli-
cles was reduced by 11-KT, potentially due to the actions of 11-KT at different levels of the
brain-pituitary-ovary axis. 11-KT also altered the expression of several hsd17 genes, with a
notable 15-fold increase in hsd17b4. Multiple hsd17 genes have diverse catalytic functions,
including the interconversion of high-activity, 178-hydroxyl, and low-activity, 17-keto, forms
of C-19 (androgen) and C18 (estrogen) steroids [24]. Transcripts encoding another steroido-
genic enzyme, Srd5a3 were upregulated 5.48—fold after 11-KT exposure. The 5a-reductase
activity of Srd5a3 catalyzes the conversion from T to DHT [25] or potentially promotes con-
version of 11-KT to other potent non-aromatizable androgens [26]. Taken together, these
results suggest that in early secondary growth, 11-KT alters steroidogenic capacity of the ovar-
ian follicle, and in particular, increases the potential for the production of 5a-reduced
androgens.

Genes and pathways characteristic of the secondary follicle

Given the abundance of differentially expressed genes following 11-KT treatment, we focused
on further analyses on genes and pathways potentially involved in processes characteristic of
early secondary follicle development: (i) vitellogenin (Vtg) and lipid uptake; (ii) Fsh signaling;
(iii) structural changes in the ovarian follicle; and (iv) changes in growth factor signaling.

i. 11-KT effects on gene transcripts involved in vitellogenesis and lipid uptake. After 3
days of treatment with 11-KT, the expression of very low-density lipoprotein receptor/vitello-
genin receptor (vidlr/vtgr), cathepsin d (ctsd), cathepsin z (ctsz), and clathrin light chain a
(clta), clathrin light chain b (cltb), and clathrin heavy chain (cltc) was increased. The proteins
encoded by these genes play fundamental roles in oocyte development, controlling the uptake
of lipids and Vtg during vitellogenesis [2,27].

Teleost vtgr is a splice variant of vldlr, only lacking an O-linked sugar domain, and the
sequence of the contig mapped to vtgr/vidlr in our dataset does not cover that domain. The
contig mapped with 98% identity to rainbow trout vtgr (LOC100136065). In rainbow trout, a
closely related species in the same genus as coho salmon, Vtgr appears to specifically bind Vtg,
whereas additional somatic lipoprotein receptors bind very low-density lipoprotein (V1dl), and
low-density lipoprotein (Ldl) [28].

Most of what is known about the effects of androgens on vitellogenesis or Vtg production is
from studies linking androgen exposure to increases [29,30] or decreases [31] in hepatic Vtg
production. The expression of vtgr has been reported for oocytes of several species and these
studies indicate collectively that transcript levels peak during primary growth and decline
thereafter [32-37]. Transcripts may also be stored and later translated during vitellogenesis
[38]. Conversely, the endocrine or paracrine control of vtgr expression by sex steroids has only
been described in several species, largemouth bass [39] and medaka [40]. E2 was shown to
repress vigr expression [41] and insulin (Ins) increased vigr expression in previtellogenic folli-
cles [39], although co-exposure with Ins and either 11-KT or E2 reduced the Ins-induced
expression in vitro [39], suggesting that androgen and estrogen receptor signaling may regu-
late insulin-mediated pathways [2]. The latter study used very high concentrations of 11-KT or
E2 (500 nM; approximately 151 ng/ml or 135 ng/ml respectively) which is >8-fold higher than
the plasma concentration we achieved with our implants (18.5 ng/ml) and may explain the
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differences in expression following 11-KT exposure in our model. Interestingly, in the present
study, the expression of both ovarian ins and insulin receptor (insr) was reduced with 11-KT
treatment.

The Vtgr protein is active at the oocyte cell surface during vitellogenesis and has been asso-
ciated with endocytotic clathrin-coated pits. Following endocytosis of the Vtg-Vtgr complex,
Vtg is then cleaved into component yolk proteins by lysosomal cathepsins (Cts), which recog-
nize particular amino acid sequences in the Vtg protein. Transcripts for ctsz were expressed in
early vitellogenic follicles in mummichog [42] and throughout vitellogenesis in carp [43], and
increased by 11-KT in this study. In teleosts, Ctsd has been implicated in the cleavage of Vtg
into the three primary yolk components, lipovitellin, phosvitin, and the f’-component [44]. In
coho salmon ovarian follicles, the expression of ctsb was inversely correlated with the transi-
tion to secondary growth, whereas the expression of ctsd and ctsz was unchanged between late
primary and early secondary growth [35]. However, ovarian cathepsins likely undergo post-
transcriptional regulation, and thus transcript levels may not correlate well with enzymatic
activity [44].

A significant characteristic of the transition to secondary growth is accumulation of neutral
lipids in the ooplasm of the oocyte. In the present study, 11-KT altered the expression of lipid
transfer genes in secondary stage follicles. 11-KT decreased expression of apob, a member of
the large lipid transfer protein superfamily that includes Vtg. The protein encoded by apob is
the primary protein component of V1dl and Ldl molecules. The expression of Ldl receptor-
related proteins IrpI (decreased 4.04 fold), Irp1b (increased 2.21 fold), Irp2 (increased 2.11
fold), Irp5 (decreased 1.62 fold), and Irp10 (increased 2.59 fold), and Ldl receptor-related pro-
tein associated protein 1 (Irpap1, increased 1.83 fold) was also altered by 11-KT. These genes
encode conserved proteins that are related to the cell surface Ldl receptor, exhibit similar
endocytosis functions, but also have fundamental roles in a diverse range of intercellular signal
transduction pathways [45], interacting with multiple diverse ligands.

Pathway analysis also identified several potential canonical pathways and biological func-
tions that further implicate 11-KT treatment with alterations in aspects of ovarian preparation
for vitellogenesis and lipid uptake. The canonical pathways insulin signaling and clathrin-medi-
ated endocytosis signaling were significantly associated with 11-KT treatment, supporting the
previously discussed results. The biological function concentration of lipids, identified from the
differential expression of 267 genes in our dataset, was predicted to be activated in 11-KT
treated samples in comparison to controls, further supporting the hypothesis that 11-KT modu-
lates lipid incorporation in the ovarian follicle. Similar results were observed from 11-KT treat-
ment at the late perinucleolar stage of primary growth [4]. Clearly, 11-KT activates lipid transfer
processes as evidenced by the current and previous studies across a range of teleost species.

ii. 11-KT effects on Fsh signaling in the ovary. The expression of several genes with
known effects on Fsh synthesis or action was altered after three days of 11-KT treatment,
including reduced expression of inha, inhbb, cyp19al, and amh, and increased expression of
amhr2. During secondary growth, Fsh secretion [8,46-48] and the ovarian response to Fsh
stimulation increases [49,50], peaking during vitellogenesis. Ovarian fshr expression follows
this pattern [9,35,51]. Fsh signaling through the Fshr modulates the expression of a number of
genes during early secondary growth [48,52]. We previously showed that in primary follicles,
11-KT increases both fshr expression as well as a major downstream target of Fshr signaling,
cypl9al [4], which encodes the enzyme that converts T to E2. Additionally, plasma E2 was
increased, and we hypothesized that 11-KT functions to prepare the ovarian follicle for Fsh
mediated effects in secondary growth. Expression of cyp19al is generally relatively low prior to
vitellogenesis, and in vitro effects of Fsh on cyp19al expression in previtellogenic salmon have
not been reported, but Fsh increased cypl9ala expression in vitellogenic follicles of rainbow
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trout in vitro [53] and the temporal pattern of plasma E2 and ovarian fshr transcripts are well
correlated [52]. However, in contrast to results from our studies in primary follicles, 11-KT
had no effect on expression of fshr, and cyp19al expression was reduced after 3-days of 11-KT
treatment in early secondary follicles. The reason for these dissimilar effects on expression
between these stages are unclear, but are perhaps due to stage-dependent changes in endocrine
or paracrine feedback of 11-KT on the ovary, and/or alterations in intracellular pathways
mediating the effects of 11-KT.

Levels of two transcripts for inhibin alpha subunit (inha) and inhibin beta b subunit
(inhbb), which encode monomers of the heterodimeric inhibin B protein complex were
decreased following 11-KT treatment. Expression patterns of inhibin subunits (which also
encode the dimeric activin protein complex consisting of two inhibin beta subunits) tend to be
higher during earlier stages of ovarian follicle development [54,55], while the alpha subunit,
and thus mature inhibins, increase in response to Fsh later in development. This suggests
mature activins are produced earlier, potentially regulating early follicular development [56]
while inhibins begin to play a role as follicles shift to Fsh-responsiveness. Interpreting the
impact of inhibins and activins is challenging because of complexity of their structure and lim-
ited information in fishes. Homo or heterodimers of either Inhba and/or Inhbb form activins
that can stimulate Fsh, whereas heterodimers of Inha with Inhba or Inhbb form inhibins that
inhibit Fsh. In non-teleosts inha and inhbb subunits appear to be estrogen responsive [57,58],
and although E2 levels were not significantly increased by 11-KT in this study, paracrine
actions of estrogens on inha and inhbb expression cannot be dismissed.

The expression of amhr was significantly increased while the expression of amh was signifi-
cantly decreased by 11-KT in the current study, indicating androgenic modulation of the Amh
signal in early secondary growth ovarian follicles. In female fish, the role of Amh is not clear,
and although it has been linked to early ovarian development, very little experimental informa-
tion exists regarding its specific actions. It is unknown if Ambh serves a similar function in tele-
ost ovarian follicle progression to that in mammals, where it is also expressed in ovarian
granulosa cells and functions in limiting the progression of follicle development [59], and
maintaining the primordial follicle pool reserve by repressing the FSH signal. Expression of
ambh in female teleosts has been detected in the ovary of multiple species [60], albeit at a lower
level than in testis. Expression is primarily restricted to granulosa cells and in general ambh is
expressed in primary growth follicles, and expression increases in early secondary growth and
during vitellogenesis.

iii. Changes in the expression of genes encoding structural and functional proteins.
Alterations in expression of several genes encoding extracellular matrix (ECM) proteins in
response to 11-KT indicates that 11-KT may be involved in regulating the structure of the
ovarian follicle, as we have reported for primary follicles [4]. As oocytes increase in volume
during the progression through primary and secondary growth stages, the ovarian follicle lay-
ers also undergo numerous changes to maintain structural and biochemical support, and to
increase communication between the components of the ovarian follicle. The ECM interacts
with ovarian follicle cells to regulate gene expression, cell differentiation, and cellular growth
[61,62], and changes in composition may alter growth factor or hormone access to the devel-
oping oocyte [62].

The expression of several collagen type IV isoforms was decreased while the expression of
type VI isoforms was increased by 11-KT treatment. Collagen type IVs are primarily basement
membrane components [63], while type VIs perform various cytoprotective functions in the
ECM [64], including interaction with various membrane receptors involved in intracellular
signaling. The expression of another gene, prolyl 4-hydroxylase, transmembrane (p4htm) was
dramatically increased (>300-fold). The protein encoded by p4htm is a collagen P4h, which in
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addition to its role in oxygen sensing, participates in post-translational folding of collagen
polypeptides and is essential in basement membrane structure during development. [65]. Like-
wise, the expression of decorin (dcn) was increased by 11-KT. Dcn binds type-I collagens and
plays a role in ECM assembly, but also cell cycle regulation and apoptosis [66]. The role of Dcn
in the fish ovary is not well described, although transcript levels correlate with fshr expression,
peak during vitellogenesis in coho salmon [52], and are regulated by Fsh [49].

Facilitating cell-to-cell signaling is a major function of the ECM, and biological functions in
the category of cell-to-cell signaling were significantly activated by 11-KT in both primary [4]
and secondary ovarian follicles (present study). Additionally, the expression of a number of
genes encoding gap junction and tight junction associated proteins, including claudin iso-
forms, which coordinate cell signaling and membrane trafficking [67], was altered by 11-KT in
the present study. In mammals, androgens are involved in regulating the expression of tight
junction protein encoding genes in reproductive tissues [68-70]. This suggests that 11-KT, by
altering the expression of claudins, may be involved in modulating cell signaling and mem-
brane trafficking in the ovarian follicle cell layers. In our previous study, 11-KT altered many
transcripts linked to the ECM, including those encoding numerous forms of collagen and lam-
inin [4]. Together with the present study, this provides compelling evidence that 11-KT modu-
lates the structure of the ECM and may enhance intrafollicular communication.

iv. Changes in growth factor signaling. The expression of several growth factor ligands
and receptors was altered by 11-K: tgf-beta superfamily member ligands bmp7, gdf3, and tgfb3
transcript levels were decreased while receptors acvr2a, bmprla (alk3), tgfbr2, and tgfbr3
(betaglycan) were increased. The increase in receptor expression implies an increase in Tgf-
beta signaling potential. Signaling through these receptors is known to control a wide range of
cell processes and tissue homeostasis. The breadth of Tgf-beta superfamily member genes with
altered expression following 11-KT treatment provides further evidence that androgens may
be involved in mediating many cellular processes in the ovary: IPA™ analysis identified
numerous cellular process pathways in the ovary containing Tgf-beta superfamily ligands and
receptors that were predicted to be significantly activated by 11-KT treatment.

The expression of growth factor receptors igflr and igf2r was increased by 11-KT, implicat-
ing androgens in the modulation of intraovarian Igf signaling. Igfs have various effects on the
teleost ovary, although the majority of studies have focused on the role Igfl and Igf2 in second-
ary follicle steroid production and oocyte maturation [71] or the teleost specific gonadal Igf3
[72,73], a diverse array of Igf binding proteins also regulate signaling [74]. Both Igfl and Igf2
bind Igflr, and only Igflr has been shown to activate signaling pathways [75]. As in mammals,
Igf2r may function to attenuate signaling by binding and internalizing the Igf2 peptides which
are trafficked to lysosomes for degradation [76]. In fish, the primary endocrine source of Igfl
and Igf2 is the liver, which synthesizes and releases them into circulation, although igfl mRNA
has been detected in oocytes and ovarian follicle cells in previtellogenic carp [77]. The IgfI pro-
tein has been localized to ovarian granulosa cells of previtellogenic oocytes in several species
[77-79], where it binds cognate receptors and has been implicated in paracrine/autocrine reg-
ulation in the ovary [80]. Both Igfl and Igflr have been implicated in previtellogenic ovarian
development or function in several species [10,80]. Androgen treatment has also been shown
to stimulate plasma IgfI levels in coho salmon [81]. Thus, the effects of 11-KT on Igf signaling
could involve both endocrine paracrine/autocrine mechanisms.

Conclusions

In this study, we provide further evidence that androgens play important roles in previtello-
genic ovarian follicle development. A non-aromatizable androgen (e.g., 11-KT) cannot be

PLOS ONE | https://doi.org/10.1371/journal.pone.0311628 October 9, 2024 14/20


https://doi.org/10.1371/journal.pone.0311628

PLOS ONE

In vivo treatment with a non-aromatizable androgen alters the ovarian transcriptome of coho salmon

converted to E2. Thus, the 11-KT induced alterations in the ovarian transcriptome are due to
androgen signaling, either directly or indirectly via actions on non-ovarian sites in the brain-
pituitary-ovary axis. The expression of thousands of genes was altered by 11-KT treatment,
across a variety of cellular processes. Importantly, specific increases in expression of vitello-
genic machinery and alterations in Fsh signaling indicate that androgens control important
aspects of the early secondary ovarian follicle phenotype.

The potency and relatively low circulating levels of 11-KT at this stage raises the question of
the precise androgen signaling mechanisms in the ovary, particularly the identity of the endog-
enous androgen ligand. Ar isoforms in several fish species display differences in affinity for
various androgens [82-84], and may mediate different physiological processes. In order to bet-
ter understand androgen mediated effects on ovarian development, a comprehensive analysis
of the ovarian and circulating levels of androgens (including 5o-reduced metabolites) and
their receptor binding characteristics is necessary, as well as an analysis of the proteomic
changes associated with androgen treatment. The potency of the non-aromatizable androgen
11-KT in the ovary at this stage, in concert with the very low endogenous plasma levels sug-
gests an autocrine/paracrine androgen signaling mechanism.

Supporting information

S1 Table. The table lists ovarian contigs regulated by 11-KT after 3 days, identified by
DESeq2 (basemean > 10), showing gene symbol (human ortholog), entrez gene name,
Ensembl/UniProt/SwissProt accession, expr log ratio, expr P-value, number of Qiagen
Ingenuity Pathway Analysis networks, type of protein encoded by gene, Entrez human id,
Entrez mouse id, and Entrez rat id.
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