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ARTICLE INFO ABSTRACT

Handling Editor: J.E. Fernandez Irrigated agriculture is the dominant user of water globally, but most water withdrawals are not monitored or

reported. As a result, it is largely unknown when, where, and how much water is used for irrigation. Here, we

Keywords: evaluated the ability of remotely sensed evapotranspiration (ET) data, integrated with other datasets, to calculate
OpenET ) irrigation water withdrawals and applications in an intensively irrigated portion of the United States. We
Remote sensing compared irrigation calculations based on an ensemble of satellite-driven ET models from OpenET with reported
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groundwater withdrawals from hundreds of farmer irrigation application records and a statewide flowmeter
database at three spatial scales (field, water right group, and management area). At the field scale, we found that
ET-based calculations of irrigation agreed best with reported irrigation when the OpenET ensemble mean was
aggregated to the growing season timescale (bias = 1.6-4.9 %, R? = 0.53-0.74), and agreement between
calculated and reported irrigation was better for multi-year averages than for individual years. At the water right
group scale, linking pumping wells to specific irrigated fields was the primary source of uncertainty. At the
management area scale, calculated irrigation exhibited similar temporal patterns as flowmeter data but tended to
be positively biased with more interannual variability. Disagreement between calculated and reported irrigation
was strongly correlated with annual precipitation, and calculated and reported irrigation agreed more closely
after statistically adjusting for annual precipitation. The selection of an ET model was also an important
consideration, as variability across ET models was larger than the potential impacts of conservation measures
employed in the region. From these results, we suggest key practices for working with ET-based irrigation data
that include accurately accounting for changes in soil moisture, deep percolation, and runoff; careful verification
of irrigated area and well-field linkages; and conducting application-specific evaluations of uncertainty.

1. Introduction

Irrigated agriculture is the dominant global user of water. Ground-
water supplies an estimated 40 % of global irrigation, with this figure
rising even higher in semi-arid/arid regions or in drought years when
surface water availability is limited (Gleeson et al., 2020). As such,
groundwater use plays a critical role in global food production and trade
(Dalin et al., 2017) and sustaining local and regional economies (Deines

et al., 2020). However, groundwater use can also lead to detrimental
outcomes, such as the depletion of interconnected surface water re-
sources (de Graaf et al., 2019; Zipper et al., 2022), declining water levels
and storage capacity in regionally and globally important aquifers
(Hasan et al., 2023; Jasechko et al., 2024), and associated water scarcity
and insecurity (D’Odorico et al., 2019; Marston et al., 2020). In many
agricultural settings without alternative water sources, pumping re-
ductions are the only currently viable tool available to reduce water
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abstraction and water table decline rates (Butler et al., 2020).

Making informed management decisions requires information about
pumping rates and the anticipated impacts on the environment (Foster
et al., 2020). However, management is challenging because data on the
locations, schedules, and volumes of groundwater withdrawals are
rarely available, even in data-rich countries like the United States
(Marston, Abdallah, et al., 2022). Given the paucity of groundwater
pumping data, emerging application-ready remote sensing products
may be a valuable tool to fill this data gap (Melton et al., 2022). While
flowmeters on pumping wells directly monitor the amount of water
coming out of the ground, which we refer to here as ‘irrigation water
withdrawals’, remotely sensed approaches typically provide data for
spatially distributed evapotranspiration (ET) rates. Satellite-based ET
data can then be incorporated into a water balance or statistical model to
infer ‘irrigation water applications’, or the amount of water that is
applied to a field after accounting for losses (Dhungel et al., 2020; Folhes
et al., 2009; Foster et al., 2019; Laluet et al., 2024). These models can
range from simple annual water balances to detailed daily soil water
balance models tracking multiple components of the water balance such
as infiltration, deep percolation, and runoff. Like all modeled quantities,
however, these ET-based calculations of irrigation are subject to
numerous uncertainties, which can lead to inefficient or inequitable
water management decisions if not well-characterized (Foster et al.,
2020).

Unfortunately, due to the lack of reliable irrigation water withdrawal
and application data for ground reference, there have been limited op-
portunities to evaluate the ability of ET-based approaches to calculate
irrigation withdrawals and applications. While many past studies have
sought to estimate irrigation water use using satellite-based ET data and
other hydrological variables such as soil moisture (Brocca et al., 2018;
Dari et al., 2020; Ketchum et al., 2023), these estimates have typically
been evaluated against aggregated statistics or synthetic model esti-
mates of water use. Other studies use statistical or machine learning
approaches to relate ET to observed water use, but these approaches are
limited in terms of their applicability outside of the model training re-
gion (Filippelli et al., 2022; Majumdar et al., 2022; Wei et al., 2022). As a
result, there is a lack of knowledge about how effectively ET data can be
translated into irrigation water withdrawals and applications across
different spatial scales, from an individual field to a region, which are
relevant to regulatory and management purposes.

Here, we address this gap by comparing calculations of ET-based
irrigation applications and reported irrigation at multiple spatial
scales (field, water right group, management area) within the heavily
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irrigated High Plains Aquifer in the State of Kansas (USA). Reported
irrigation data are from both direct farmer-provided records of irrigation
water applications and a high-quality flowmeter database of irrigation
water withdrawals (Fig. 1). Specifically, we ask:

(1) How well do irrigation calculations derived from remotely sensed
data and other spatial datasets agree with water withdrawal and
application data from flowmeters and farmer records?

(2) What are the major sources of uncertainty in calculating irriga-
tion withdrawals and applications using remotely sensed ET
data?

Addressing these questions provides insights into the potential for
remotely sensed ET products to address critical water challenges and
highlights key future research needed to operationalize ET data for
agricultural water management.

2. Methods
2.1. Study areas and irrigation ground data

We conducted comparisons of ET-based irrigation calculations to in-
situ measurements of groundwater withdrawals and applications at
three spatial scales that address different potential use cases for remotely
sensed irrigation data:

(1) At the field scale (Section 2.1.1), we compared ET-based calcu-
lated irrigation depths to field-resolution irrigation water appli-
cation data from fields where farmers voluntarily shared
irrigation records (field-years of data by region shown in Fig. 2 in
parenthesis).

(2) At the water right scale (Section 2.1.2), we focused on a 255 km?
groundwater management area, the Sheridan-6 Local Enhanced
Management Area (SD-6 LEMA; blue area in Fig. 1 and Fig. 2). We
subdivided the SD-6 LEMA into water right groups (WRGs) made
up of non-overlapping combinations of pumping wells, fields, and
authorized places of use and compared ET-based irrigation vol-
umes to total water withdrawals within each WRG.

(3) At the management area scale (Section 2.1.2), we compared ET-
based irrigation volumes to total reported irrigation water with-
drawals within the entire SD-6 LEMA.

Conducting our analysis at these three spatial scales allowed us to

Water right groups:
Compare to flowmeters

7 glgr/g;;re to farmer data|jua 1. Assess agreement
between ET-based irrigation

calculations and reported
irrigation water withdrawals
and applications.

Management area: 2. ldentify uncertainty
T~ Compare to total for all |
flowmeters in area

sources at each scale.

Fig. 1. Overview of study including key input datasets (OpenET: Melton et al., 2022; gridMET: Abatzoglou, 2013; AIM: Deines, Kendall, Crowley, et al., 2019),
spatial scales, and study objectives. The images show the area in and around the Sheridan-6 Local Enhanced Management Area (SD-6 LEMA; blue outline), the

location of which is shown in Fig. 2.
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Fig. 2. Map of the state of Kansas subdivided into agricultural reporting dis-
tricts. The number of field-years of data at the field scale are shown in paren-
theses for the northwest (NW), north-central (NC), west-central (WC), and
southwest (SW) reporting districts within the state. The location of the
Sheridan-6 (SD-6) Local Enhanced Management Area is shown in blue. The
Kansas portion of the High Plains Aquifer is shown in gray.

leverage independent data sources for comparison (farmer records at the
field scale, a state database at the water right and management area
scales) and assess different aspects of uncertainty.

2.1.1. Individual fields

We collected field-resolution irrigation application information from
four farmers willing to share this information with us. Farmers were
contacted directly based on existing personal relationships and through
regional organizations such as groundwater management districts and
asked to provide applied irrigation volumes for as many fields as they
were willing to share at the finest possible temporal resolution. We also
requested either data files or annotated pictures showing the irrigated
extent for each field so we could extract satellite-based ET data for each
field. Therefore, unlike the management area and WRG scale compari-
sons described in Section 2.1.2, for the field-scale comparison we had
information on actual places of use and irrigated extent. Irrigation data
varied in format, including minute-resolution water use from irrigation
control software, irregularly timed sub-annual water use based on pe-
riodic visits to flowmeters, and annual values based on flowmeter data
that farmers associated with specific fields. For this study, all data were
aggregated to the annual total depth of applied irrigation. In total, we
received data for 43 fields between 2016 and 2022, totaling 239 field-
years of data. Following Ott et al. (2024), we screened out any fields
where the ratio of irrigation to the difference of ET (from the OpenET
ensemble mean) and effective precipitation was <0.5 or >1.5, since this
suggests potential errors in reported irrigation data. To protect the pri-
vacy of the farmers involved (Zipper, Stack Whitney, et al., 2019), the
locations of the fields are only shown here at the resolution of federal
agricultural reporting districts (Fig. 2). The data span three of the five
reporting districts that overlie the High Plains Aquifer, with the most
fields in west-central and northwest Kansas (note: one field, just across
the border in Nebraska, is included with the NW Kansas district). None
of the fields included within this dataset are within the SD-6 LEMA.

2.1.2. Sheridan-6 Local Enhanced Management Area

The SD-6 LEMA covers 255 km? in northwest Kansas, much of which
is used to grow irrigated corn, soybeans, sorghum, and wheat (Fig. 2).
The SD-6 LEMA was formed when local irrigators, concerned about
declining groundwater levels, proposed an allocation of 1397 mm (55”)
of water over a five-year period, which represented an approximate
20 % reduction in pumping rates compared to historical averages
(Drysdale and Hendricks, 2018). After approval by the state’s chief en-
gineer, this allocation was codified in law for a five-year period begin-
ning in 2013. The irrigators within the SD-6 LEMA have since renewed
for two additional five-year periods (2018-2022 and 2023-2027). To
date, the SD-6 LEMA exceeded the original conservation goals and
reduced irrigation water withdrawals by 26-31 % (Deines, Kendall,
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Butler, et al., 2019; Drysdale and Hendricks, 2018) and slowed water
table decline rates (Butler et al., 2020; Whittemore et al., 2023) with
only minor negative impacts on yield and none on profitability (Golden,
2018). As such, the SD-6 LEMA is a successful example of
irrigator-driven groundwater conservation (Marston, Zipper, et al.,
2022) and has motivated the development of additional conservation
approaches around the state (Steiner et al., 2021).

We selected the SD-6 LEMA as the focus of our management area and
water right scale comparison because conservation practices have led to
high irrigation efficiencies of producers in the SD-6 LEMA with rela-
tively little wasted irrigation water (e.g., deep percolation from return
flows or major fluxes of soil evaporation caused by excessive irrigation;
Deines et al., 2021). High irrigation efficiency suggests that irrigation
water withdrawals and applications should be approximately equal, and
ET-based approaches should be particularly effective for calculating
irrigation volumes in this setting. Additionally, due to numerous past
studies of groundwater use in the SD-6 LEMA (Deines et al., 2021;
Deines, Kendall, Butler, et al., 2019; Dhungel et al., 2020; Drysdale and
Hendricks, 2018; Glose et al., 2022; Whittemore et al., 2023), we have a
high degree of confidence in the accuracy of the irrigation withdrawal
data for the SD-6 LEMA.

Irrigation withdrawal data were aggregated from the Water Infor-
mation Management and Analysis System (WIMAS; https://geohydro.
kgs.ku.edu/geohydro/wimas/) database maintained by the Kansas
Department of Agriculture - Division of Water Resources and the Kansas
Geological Survey. Withdrawal data are at the resolution of points of
diversion, which in the SD-6 region correspond exclusively to pumping
wells since there are no surface water resources used for irrigation. The
data are high quality, as all non-domestic pumping wells in the state of
Kansas are required to use a totalizing flow meter subject to accuracy
checks from the Kansas Department of Agriculture with strong penalties
for falsifying flow meter data or drilling illegal wells (Butler et al.,
2016). Therefore, we do not believe there is significant under-reported
or non-reported irrigation water use in the area. The WIMAS database
also includes reported total irrigated acreage in each year, though unlike
water use, the reported irrigated acreage is not subject to verification
and therefore the accuracy is unknown. In the SD-6 LEMA, we conducted
our comparison at two spatial scales:

e For the water right group (WRG) scale comparison, we established
non-overlapping groups of water withdrawals and applications by
combining wells, water rights, and authorized places of use as in
Earnhart and Hendricks (2023). This aggregation was necessary due
to the complexities of agricultural water management that make it
impossible to quantify the water use for a specific field from the
WIMAS data alone: (i) a single well may provide water to multiple
fields; (ii) a single field may receive water from multiple wells; (iii) a
single water right may cover multiple wells and fields; and (iv) ir-
rigators are only required to report the authorized place of use and
the total number of acres irrigated, not the specific locations where
water was used within the authorized area in a specific year. For each
WRG, we then summed the total reported annual water withdrawals
for all wells within the WRG.

For the management area scale comparison, we summed the total
annual withdrawals from all irrigation wells within the SD-6 LEMA
boundaries. For any water rights that had authorized places of use
both inside and outside the LEMA (n = 9, or 6 % of the total water
right groups), we scaled the total water use based on the proportion
of total estimated irrigated area that was within the LEMA for that
well. This is the approach used in Brookfield et al. (2024) and is
extended here through additional analyses of uncertainty, the use of
effective precipitation for estimating irrigation depths, and com-
parison to other spatial scales.

The SD-6 LEMA comparisons were conducted for the period
2016-2020, as that is the extent covered by all necessary input datasets
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(described in Section 2.2).
2.2. Calculating irrigation from ET data

We integrated ET data with several other geospatial datasets to
calculate irrigation volumes and/or depths (Fig. 1). We extracted
OpenET data from Google Earth Engine at a monthly time step for
2016-2022 (Melton et al., 2022). OpenET includes ET data from six
different satellite-driven models, as well as an ensemble mean. The
models included are DisALEXI (Anderson et al., 2007, 2018), eeMETRIC
(Allen et al., 2005, 2007, 2011), geeSEBAL (Bastiaanssen et al., 1998;
Laipelt et al., 2021), PT-JPL (Fisher et al., 2008), SIMS (Melton et al.,
2012; Pereira, Paredes, Melton, et al., 2020), and SSEBop (Senay et al.,
2022). The ensemble mean was calculated as the mean of all models,
with outlier values from the ensemble identified based on median ab-
solute deviations and removed prior to averaging (Volk et al., 2024). The
OpenET products were validated against 70 eddy covariance towers
deployed at agricultural sites spanning a range of climate and land cover
conditions across the western US and generally had a strong agreement,
with all models within +/- 15 % of growing season mean flux tower ET
averaged across all sites (Melton et al., 2022). A subsequent evaluation
affirmed the accuracy of the ET data from OpenET via comparison to a
total of 141 sites with eddy covariance towers, along with seven sites
with Bowen ratio systems and four weighing lysimeters, finding that the
growing season ensemble ET values for cropland had a mean absolute
error of 78.1 mm (13.0 %) and a mean bias error of —11.9 mm (2.0 %).
The overall accuracy for cropland sites was the best of any land cover
type evaluated, and performance for annual crops, including corn,
soybeans, and wheat, was particularly strong (Volk et al., 2024). How-
ever, there were no eddy covariance towers near our study area - the
closest irrigated fields with eddy covariance towers were in Mead, NE,
where annual precipitation is ~50 % greater than western Kansas - and
therefore OpenET’s accuracy for irrigated agriculture in semi-arid con-
ditions typical of the western High Plains Aquifer has not been locally
assessed.

OpenET data and precipitation data (from the 4 km gridMET data;
Abatzoglou, 2013) were averaged for each field. For the field-resolution
comparison, field boundaries, crop type, and irrigation status were
defined based on information provided by farmers. For the management
area and WRG comparisons, field boundaries were defined based on a
Kansas-specific modification of the US Department of Agriculture
(USDA) Common Land Unit dataset (Gao et al., 2017; MardanDoost
et al., 2019), annual crop type from the USDA Cropland Data Layer
(USDA, 2022), and field-resolution irrigation status from the Annual
Irrigation Maps (AIM) dataset (Deines, Kendall, Crowley, et al., 2019).
For crop type and irrigation status, we summarized the rasterized input
data to a single categorical value for each field based on the most
common raster value.

To estimate irrigation using our ET data (Fig. 1), we calculated the
precipitation deficit (ET - effective precipitation) for each field
(Figure S1) and masked it to only fields mapped as irrigated by AIM
(Figure S2). Effective precipitation was calculated as precipitation from
gridMET minus deep percolation out of the bottom of the root zone,
which we estimated as a function of precipitation based on 2013-2017
deep percolation estimates from Deines et al. (2021) (regressions shown
in Figure S3). This method does not account for soil moisture storage
from year-to-year, so we did these calculations at three timescales: the
growing season (April-October), the calendar year (January-December),
and the water year (October-September). This allowed us to test the
degree to which the timescale of aggregation influenced agreement
between calculated and reported irrigation withdrawal data. Since
negative irrigation depths are not physically possible, for any irrigated
fields with a negative precipitation deficit we set the irrigation depth to
0 mm, though this was rare and negative precipitation deficits were
typically associated with fallow, non-irrigated fields (Figure S1). Irri-
gation depth was calculated separately for each year and each model (six

Agricultural Water Management 303 (2024) 109036

ET models, as well as the ensemble mean). To convert field-resolution
irrigation depths to irrigation volumes for comparison with pumping
data, we multiplied the calculated irrigation depth by the area within
each field that was mapped as irrigated in AIM. Since there are no sur-
face water rights in this region, we assumed that all irrigation was
sourced from groundwater.

2.3. Assessing approaches for improving irrigation calculations

Our approach to estimating irrigation adopts several assumptions,
including that there is minimal runoff or fluxes of water apart from
precipitation, irrigation, deep percolation and evaporation. While past
work has suggested that there is virtually no runoff under conservation
practices in the SD-6 LEMA (Deines et al., 2021), these assumptions may
be less appropriate in other parts of the state, in particular the 4
field-years of data in the north-central region (Fig. 2). Additionally,
there may be differences in the relationship between precipitation and
deep percolation in other regions given that irrigation efficiency is
particularly high in the SD-6 LEMA.

We assessed both our confidence in and potential impacts of errors in
irrigated area classification. In the SD-6 LEMA area, we evaluated con-
fidence in the field-resolution irrigation classifications by evaluating the
area of fields with a mixture of irrigated and non-irrigated pixels in the
AIM dataset. The irrigation confidence results suggested that this irri-
gation status mapping approach was more likely to overestimate, rather
than underestimate, irrigated area (Figure S4, Figure S5) due to field
boundaries not perfectly aligning with on-the-ground management di-
visions. To address this, we used the fraction of each field that was
mapped as irrigated to scale from calculated irrigation depths to irri-
gation volumes so that potentially non-irrigated portions of otherwise
irrigated fields were not included in volume estimation. To determine
the potential impacts of uncertainty in irrigated area on our results, as
well as potential errors associated with defining WRGs, we also
compared reported irrigated acreage for all the wells in the WRG (from
the WIMAS database) to the estimated irrigated acreage from AIM for
irrigated fields in the WRG. We then repeated our comparison of WRG-
scale reported and calculated irrigation water use for only WRGs where
the reported and estimated irrigated area agreed within 10 %.

Additionally, at the management area scale, we evaluated the degree
to which a locally-informed bias correction approach could be used to
improve agreements between calculated and reported irrigation. This
approach, which we call ‘precipitation-adjusted irrigation calculations’,
involved developing a linear regression between the irrigation volume
residual and precipitation, and then using this linear relationship to
adjust ET-based irrigation calculations. This adjustment is useful in both
highlighting potential mechanisms for disagreement between calculated
and observed irrigation and to demonstrate an approach for either
spatial or temporal extrapolation from locations/time periods with well-
monitored irrigation to locations/time periods where irrigation is not
monitored.

3. Results
3.1. Field-scale comparison

At the field scale, we first evaluated the timescale for aggregating the
calculated precipitation deficit at which calculated and reported irri-
gation agreed best. We found that using the growing season for aggre-
gation consistently provided the best agreement in terms of percent bias,
mean absolute error (MAE), slope of the relationship between calculated
and reported irrigation, and R? (Fig. 3). This was true across most ET
algorithms and fit metrics, and for all subsequent analyses at the field,
WRG, and management area scale, we used the growing season time-
scale of aggregation for irrigation calculations. Slope values tended to be
<1 for all ET models at the annual scale (Fig. 3, Table 1). The slope of the
relationship between calculated and reported irrigation can be an
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Fig. 3. Agreement between field-resolution reported and calculated irrigation
based on different aggregation timescales. Fit metrics shown include bias
(better performance = closer to 0), mean absolute error (MAE; better perfor-
mance = closer to 0), R? (better performance = closer to 1), and slope (better
performance = closer to 1).

indicator of irrigation efficiency (Ott et al., 2024), and the slope < 1 may
reflect lower irrigation efficiencies and increased non-evaporative losses
(such as deep percolation or runoff), particularly since our effective
precipitation relationship was based on the data from the SD-6 LEMA
and the field-scale analysis did not include fields within the LEMA
(Figure S3). Agreement for individual years did not appear to vary
systematically as a function of the region within the state, though the
dataset was not evenly distributed among regions with most of the fields
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in either west-central or northwest Kansas (71.5 % and 21.8 % of total
field-years, respectively; Fig. 2) which are climatically very similar.

Comparing across OpenET models, we found that the OpenET
ensemble mean tended to provide the best agreement with reported
irrigation at the annual timescale, with a MAE of 81 mm, bias of 4.9 %,
slope of 0.88, and R%0f 0.53 (Table 1). This slope (0.88) closely matches
typical irrigation efficiencies for the region (0.9; Deines et al., 2021),
suggesting that losses in the irrigation conveyance system and wind-drift
evaporation are approximately 12 % of pumped water. When averaged
across multiple years, the error in each model was substantially reduced
(Fig. 4, Table 1). The choice of model also contributed to variability for
both individual years and multi-year averages. While the ensemble
mean provided the best overall agreement between calculated and re-
ported data, there was also good agreement with reported data for
irrigation calculations using DisSALEXI and PT-JPL. In contrast, eeMET-
RIC and SSEBop tended to overestimate at high levels of irrigation,
geeSEBAL tended to underestimate across the range of irrigation depths,
and SIMS tended to overestimate across the range of irrigation depths
(Fig. 4). The high calculated irrigation volumes from SIMS make sense
due to the formulation of this model, which assumes well-watered
conditions sufficient to meet the needs of the satellite-observed crop
density (Melton et al., 2012). Even irrigated crops in this region likely
experience periodic water stress during the growing season, as evi-
denced by the narrow distribution of SIMS ET data with respect to other
models (Figure S6).

3.2. SD-6 LEMA water right group comparison

For the WRG-scale comparison, the growing season-based irrigation
volumes from the ensemble ET were used, since this had the best
agreement at the field scale where there are fewer sources of uncertainty
(Section 3.1). The calculated irrigation volumes showed substantially
more interannual variability than reported irrigation volumes at the
WRG scale, with ET-based irrigation volumes positively biased relative
to reported volumes for most WRGs (Table 2). While there was a positive
bias across all years, the greatest positive bias was during dry years such
as 2020 (Fig. 5a). When averaged across all five years, the scatter in the
agreement between estimated and reported irrigation volumes was
dramatically reduced (Fig. 5c), leading to a decrease in MAE and in-
crease in slope and R? relative to the annual-resolution comparison
(Table 2).

The correlation between calculated and reported irrigation was
worse for irrigation depths (Fig. 5b, Fig. 5d) than volumes (Fig. 5a,
Fig. 5¢), though irrigation volumes were more consistently positively
biased than depths (Table 2). Overall, our results indicate that uncer-
tainty in estimated irrigation depth is greater than uncertainty in esti-
mated irrigated volume, which is further supported by the field-scale
comparison in Section 3.1 and has been observed in other ET-based
irrigation comparisons in Nevada and Oregon (Ott et al., 2024).
Nevertheless, place of use and irrigation status are important potential
drivers of disagreement between calculated and reported irrigation
volumes. While there was a positive correlation between reported and
estimated irrigated area, the irrigated area within WRGs based on AIM

Table 1
Fit statistics for field-resolution comparison between calculated and reported irrigation application depths based on growing season timescale of aggregation.
MAE [mm] Bias [%] Slope R?

Model Annual Multi-Year Annual Multi-Year Annual Multi-Year Annual Multi-Year
DisALEXI 85 52 1.9 -1.5 0.83 1.18 0.48 0.71
eeMETRIC 126 93 27.7 22.7 0.59 0.88 0.46 0.66
Ensemble 81 48 4.9 1.6 0.88 1.22 0.53 0.74
geeSEBAL 136 126 —34.0 —35.2 0.79 1.31 0.46 0.73
PT-JPL 95 69 -11.9 -13.3 0.96 1.38 0.41 0.60
SIMS 182 158 47.5 41.8 0.81 0.99 0.37 0.47
SSEBop 96 52 10.8 6.5 0.65 1.03 0.47 0.76
Average 115 86 6.7 3.2 0.79 1.14 0.45 0.67
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Table 2
Fit statistics for WRG comparison for all WRGs (data points shown in Fig. 5) and those with irrigated area agreement (data points shown Fig. 7).
MAE Bias [%] Slope R?

Model All WRGs Area Agree All WRGs Area Agree All WRGs Area Agree All WRGs Area Agree
Annual Irrigation Volume [x10° m?] 0.92 0.66 57 % 40 % 0.53 0.64 0.72 0.83
Annual Irrigation Depth [mm] 98.76 93.81 42 % 38 % 0.54 0.56 0.35 0.40
Average Irrigation Volume [x10° m®] 0.86 0.67 57 % 41% 0.57 0.68 0.79 0.89
Average Irrigation Depth [mm] 90.97 89.88 41 % 39 % 0.44 0.58 0.05 0.32

only matched the reported irrigated area in the WIMAS database for
approximately half of WRG-years (321 of 680 within 10 %). Differences
between reported and calculated irrigated area were mostly distributed
around the 1:1 line, with a slight positive bias for calculated irrigated
area (Fig. 6). On average, the estimated irrigated area was 6.9 % higher
than the reported irrigated area (median = 1.1 %).

This disagreement may be due to errors in reported irrigated area
and calculated irrigated area as well as difficulties in identifying annual
places of use for each WRG. While irrigated area is required for annual
water use reports, water use reports do not include spatial information
specifying where the water was actually used, and total irrigated area is
not subject to verification or enforcement penalties (unlike reported
water use). Therefore, it is unknown how accurate the reported data are,
but one plausible explanation for the disagreement in estimated and
reported irrigated area is uncertainty in field or parcel boundaries,
particularly related to corners of parcels that are irrigated with center-
pivot systems. Since the field boundary dataset we are using was origi-
nally based on 2007 common land units (CLUs) mapped by the USDA
with some refinements (Gao et al., 2017), it may not accurately delin-
eate fields that harbor differently managed component areas. For
example, a square quarter section containing a center pivot might
consist of separate CLUs for the irrigated circle and the non-irrigated
corners, or it might simply be the quarter section boundary with mul-
tiple records for differently managed subfields used when the farmer
signs up for federal government programs such as crop insurance. In the
latter case, the entire field would be classified as irrigated based on our
assignment of irrigation by majority, even though the ~20 % of the field
in the corners would not be reported as irrigated by the farmer. This is
consistent with our observation that there tended to be more
low-confidence classifications for irrigated fields than non-irrigated
fields (Figure S4), and supports our approach using the fraction of the
field that was mapped as irrigated to scale from calculated irrigation

depth to volume (see Section 2.2). Areas of low-confidence classifica-
tions were often field corners (Figure S5), suggesting that the misclas-
sification of non-irrigated corners as irrigated due to insufficiently
refined field boundaries may have a slight contribution to overestimated
irrigation volumes at both the WRG and management area scales.

To assess the potential impacts of errors in irrigated area classifica-
tion, we repeated the analysis using only WRGs and years where the
reported and estimated irrigated area agreed within 10 % (Fig. 7 and
‘Area Agree’ columns in Table 2). The results of this comparison had a
smaller positive bias for both irrigation volumes and depths, with overall
the best agreement observed for multi-year average volumes (Fig. 7c).
While the annual-resolution irrigation depths had a similar overall
correlation (R? = 0.35 in Fig. 5b and R? = 0.40 in Fig. 7b), the corre-
lation between five-year average calculated and reported irrigation
depth improved when only using WRGs with strong irrigated area
agreement (R? = 0.32, Fig. 7d) compared to using all WRGs within the
LEMA (R? = 0.05, Fig. 5d).

3.3. Management area comparison

At the scale of the SD-6 LEMA, the ET-based irrigation volumes are
the same order of magnitude as the reported withdrawal volumes but
have a positive bias and greater interannual variability (Fig. 8a,
Table 3). The best-performing model depends on the fit metric being
used (Table 3, ‘Calc.” column). For instance, the average MAE and bias
values were lowest for geeSEBAL, while SIMS had the slope closest to 1
and the ensemble mean and SIMS had the highest R2. Since we observed
an overestimate across all models, the relatively lower MAE and bias for
geeSEBAL reflects its consistently low estimates of ET relative to other
algorithms (as observed for the field-scale analysis; Fig. 4). The high R
values we observe across all models (generally R? ~ 0.9), combined with
the relatively high MAEs (~0.5-2.5 %107 m®, which is approximately
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Fig. 5. Comparison of reported irrigation for each water right group (WRG) to ET-based irrigation calculation using the ensemble ET. (a) Annual irrigation volume
for each WRG; (b) Annual irrigation depth for each WRG; (c) Average irrigation volume for each WRG; (d) Average irrigation depth for each WRG. In each plot, the
gray line shows a 1:1 agreement between reported and estimated irrigation. Calculated irrigation is based on growing season timescale of aggregation.
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Fig. 6. Comparison between reported irrigated area (from WIMAS) and esti-
mated irrigated area (from AIM and authorized places of use) within each water
right group in the SD-6 LEMA. Points colored orange have an agreement within
10 % and the orange line shows 1:1 agreement.

equal to typical irrigation withdrawals for the management area) and a
slope substantially lower than one (Table 3) collectively support our
interpretation that the ET-based irrigation calculations capture appro-
priate temporal patterns of variability in estimated irrigation, but tend
to overestimate both the average magnitude and degree of interannual
variability in irrigation volumes.

Subsequent analyses suggest that estimates of non-evaporative
components of the water balance, such as deep percolation and root
zone soil moisture storage changes, are a potential mechanism for this
positive bias and increased variability because they can represent a
potential source or sink for water that is not captured by our precipi-
tation deficit calculation. The potential importance of deep percolation
and soil moisture storage are suggested by Fig. 8b, which shows that
growing season precipitation is strongly correlated with the difference
between the ET-based irrigation volumes and the reported groundwater
withdrawals. The consistent positive bias in all years indicates that our
effective precipitation estimates may be too low, while the strong cor-
relation with precipitation suggests that the difference is driven by hy-
drologic dynamics. The ET-based approaches overestimated the
reported irrigation volumes by the greatest amount in dry years, such as
2020, and the smallest amount in wet years, such as 2019 (Fig. 4a). We
found that a precipitation-based bias correction (described in Section
2.3 and shown as precipitation-adjusted annual irrigation in Fig. 8c) had
a substantially better agreement with reported irrigation values, with
reductions in MAE by an order of magnitude, and four of the models and
the ensemble mean had slopes between 0.9 and 1.1 after adjustment
(Table 3, ‘Precip-Adj.” column).

4. Discussion

We found that there was generally a positive correlation between
calculated and reported irrigation at the field, WRG, and management
area scales. The agreement was the best at the field scale, where we
found that the growing season timescale of aggregation and the OpenET
ensemble mean provided the closest match to reported irrigation. At the
WRG and management area scales, we observed substantially more
variability in the ET-based irrigation calculations than reported irriga-
tion, which appeared to be associated with uncertainties in linking
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Table 3

Agricultural Water Management 303 (2024) 109036

Fit statistics for LEMA-scale OpenET-WIMAS comparison for each timescale of aggregation and model. ‘Calc.” = calculated irrigation without adjustment (Fig. 8a),
‘Precip.-Adj.” = precipitation-adjusted irrigation (Fig. 8c). Calculated irrigation is based on growing season timescale of aggregation.

MAE [x10” m®] Bias [%] Slope R?
Model Calc. Precip-Adj. Calc. Precip-Adj. Calc. Precip-Adj. Calc. Precip-Adj.
DisALEXI 0.73 0.35 36 % 0% 0.46 0.58 0.68 0.47
eeMETRIC 1.71 0.18 84 % 0% 0.41 0.95 0.86 0.82
Ensemble 1.11 0.12 55 % 0% 0.50 1.00 0.92 0.93
geeSEBAL 0.51 0.18 16 % 0% 0.43 0.85 0.88 0.78
PT-JPL 0.87 0.13 43 % 0% 0.50 0.96 0.90 0.89
SIMS 2.53 0.12 125 % 0% 0.64 1.01 0.91 0.92
SSEBop 1.00 0.13 49 % 0% 0.52 0.97 0.90 0.88
irrigated areas to places of use and non-evaporative components of the
water balance, such as deep percolation and runoff used to calculate 2016
effective precipitation and year-to-year variability in soil moisture 104
storage. Here, we discuss key sources of uncertainty that may have 54
contributed to differences between reported and calculated irrigation
and how those may affect the utility of ET-based irrigation products for 0-
research and management. 2017
101
4.1. Sources of uncertainty in estimating irrigation from ET data 5
We identified and evaluated several sources of uncertainty that may 0
explain differences between satellite ET-based and reported irrigation
water withdrawals and applications, including (i) accounting for non- § 2018
evaporative water balance components such as changes in soil mois- = 101
ture storage and effective precipitation; (ii) accurate identification of E 5
irrigated area, including linking fields to wells; and (iii) variability 5
among ET models. $ 0-
e 2019
4.1.1. Soil moisture changes and effective precipitation 104
Quantifying non-evaporative components of the water balance such
as year-to-year changes in soil moisture, deep percolation, and runoff 5+
appeared to be an important driver of uncertainty in our analysis at all
three spatial scales. Since our approach relies on a relatively simple 0-
water balance (ET - effective precipitation) to estimate applied irriga- 2020
tion, the positive bias we observe at the WRG and management area 10
scales suggests that we may be underestimating effective precipitation.
N . 5+
Therefore, one contributing factor to our observed overestimates of
irrigation may be the relatively simple approach we used to estimate 0L - : . .
effective precipitation, which was based on a regional regression for 0 200 400 600

deep percolation (Figure S3). While runoff may be a source of error in
our simple water balance approach for some locations (e.g. fields with
larger slopes), it is regionally a small component of the water balance
and is unlikely to explain systematic patterns of model errors observed
across our study area (Deines et al., 2021). The consistent positive
precipitation deficit for rainfed corn (Fig. 9) further suggests that
effective precipitation is being underestimated by our approach, and
calculating effective precipitation using a field-specific soil water bal-
ance model approach such as ETDemands (Allen et al., 2020) could help
to improve overall agreement. Issues with ET data may also be greater
during wet conditions, as we would expect greater errors in calculated
ET, and therefore irrigation, for periods or regions with increased cloud
cover that affect the optical and thermal bands of satellites used by ET
models. Since cloud cover is associated with precipitation events, this
may have an outsized effect on estimating ET and irrigation during times
when soil moisture is being replenished.

While the overall positive bias suggests issues with effective pre-
cipitation calculations, the strong relationship between the calculated
irrigation residual and precipitation (Fig. 8b) suggests that year-to-year
changes in root zone soil moisture are also a source of uncertainty.
Holding all other aspects of the water balance constant, if soil moisture
storage decreased during the dry 2020 growing season, this would cause
an increased overestimate of irrigation since some of the ET in 2020 was
using soil moisture that fell in previous years, such as the relatively wet

Growing Season ET - Effective Precipitation [mm]

Rainfed I:I Irrigated

Fig. 9. Distribution of field-resolution growing season ensemble ET - Effective
Precipitation for corn fields in the SD-6 LEMA, separated by year and colored by
irrigation status. The gray shaded interval shows the average annual LEMA
irrigation allocation (279.4 mm) +/- 20 %.

2019. However, variability in individual producer irrigation behavior
across years may also contribute to the increased interannual variability
in the ET-based irrigation volumes observed in Fig. 8 compared to the
reported irrigation volumes. For example, previous research in the
neighboring state of Nebraska has shown that metered groundwater use
typically exceeds crop water requirements in wetter and average rainfall
years while farmers are observed to adopt more water-efficient irriga-
tion practices in drier years to reduce non-consumptive water losses,
likely motivated by a combination of the higher costs of irrigation and
greater likelihood of experiencing irrigation system capacity constraints
in drought years (Foster et al., 2019).

Furthermore, our ET-based irrigation volumes did not account for
leakage in irrigation systems and other losses of water between where it
is pumped from the ground but before it reaches the field, though based
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on the high efficiency in the SD-6 LEMA area we expect that these losses
are minimal (~10 %, consistent with other estimates). However, in
settings with lower irrigation efficiencies, non-consumptive losses of
applied irrigation water such as deep percolation or runoff would likely
be missed by ET-based irrigation estimation methods and can have a
significant impact on estimated irrigation water use (Puy et al., 2022).
Our analysis suggests that, for annual or finer temporal resolutions
and/or settings with lower irrigation efficiency, the use of more complex
water balance approaches, such as soil water balance models (Dhungel
et al., 2020; Kharrou et al., 2021; Pereira, Paredes, and Jovanovic, 2020;
Zhang et al., 2023), will be necessary to accurately disentangle the rates,
locations, and timing of irrigation applications. To facilitate these ap-
proaches, there may be promise through the assimilation of additional
data sets such as in situ or remotely sensed soil moisture (Dari et al.,
2020; Filippelli et al., 2022; Jalilvand et al., 2019, 2023; Laluet et al.,
2024; Paolini et al., 2023).

4.1.2. Linking wells to irrigated fields

Challenges in linking specific wells to irrigated fields appeared to
cause disagreement between reported and calculated irrigation at the
WRG spatial scale. This source of uncertainty is supported by several
lines of evidence. At the field scale, where irrigated extents were known
and verified by the farmers sharing their irrigation data, we generally
saw the best agreement between calculated and reported irrigation
(Fig. 4), while at the WRG scale there was substantial disagreement
between estimated and reported irrigated area (Fig. 6). At the WRG
scale, our ET-based calculations of irrigation volume were better
correlated with flowmeter data than calculations of irrigation depth
(Fig. 5), consistent with results from the nearby Colorado portion of the
Republican River Basin (Filippelli et al., 2022), and agreement improved
when focusing only on WRGs where reported and estimated irrigated
area were similar (Fig. 7). The weaker relationship between calculated
and reported irrigation depth, compared to irrigation volume, reflects
the importance of irrigated area as a determinant of overall irrigation
volumes (Lamb et al., 2021; Puy et al., 2021; Wei et al., 2022).

While the irrigation extent dataset we used is the best-available for
this region and consistently shows differences in precipitation deficit
between irrigated and rainfed corn, there is also substantial overlap
between their distributions, suggesting that some degree of misclassifi-
cation is practically assured (Fig. 9). Based on our analysis, local errors
in irrigation status maps are likely fairly evenly distributed between
under- and over-estimating irrigated area, with a slight bias towards
overestimated irrigated area (Fig. 6). This may be particularly chal-
lenging in relatively small unirrigated portions of otherwise irrigated
fields, such as the non-irrigated corners of center-pivot systems
(Figure S5). Additionally, irrigation mapping can be particularly chal-
lenging during wet years, such as 2019 when there is the greatest
overlap between rainfed and irrigated distributions, because the differ-
ences in canopy cover and greenness between irrigated and rainfed
fields are smaller (Xu et al., 2019).

Accurately linking the point of water diversion with the place where
that water is applied was a major challenge in our analysis and has been
identified as a key source of uncertainty in other domains (Ott et al.,
2024). While developing these links may not be needed for many ap-
plications, such as regional water balance assessments, connecting the
point of diversion with place of use is critical to evaluate irrigation
application depths and to assess the effectiveness of conservation mea-
sures and the ultimate impacts of pumping on other aspects of regional
agrohydrological systems such as streamflow (Kniffin et al., 2020;
Zipper, Carah, et al., 2019; Zipper et al., 2021), aquifer dynamics
(Feinstein et al., 2016; Peterson and Fulton, 2019; Wilson et al., 2021),
or groundwater-dependent ecosystems (Tolley et al., 2019). Despite
exceptionally high-quality water use data for the state of Kansas, the
limited linkages between the point of diversion and actual place of use
highlights a key data gap for the application of remotely sensed irriga-
tion data for hydrogeological research and management, and a
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necessary improvement for field-level operationalization.

4.1.3. Variability among ET models

The selection of ET model also led to substantial variability in the
estimated irrigation depths, with a relatively consistent ordering across
models (from lowest to highest): geeSEBAL, DisALEXI, PT-JPL, SSEBop,
Ensemble, eeMETRIC, SIMS (Fig. 4, Fig. 8). Since the effective precipi-
tation input data used to estimate irrigation was the same for all models,
this variability in estimated irrigation among the models can be attrib-
uted entirely to differences in the approaches used by each ET model,
and variability can be quite substantial. For example, for irrigated corn
in the SD-6 LEMA, the medians span 156-270 mm across ET models in a
given year (Fig. 10), which approaches the magnitude of total applied
irrigation water and greatly exceeds the magnitude of the conservation
actions put in place in this region (Whittemore et al., 2023). The vari-
ability among models may be due to differences in the approaches to
computation of the sensible heat flux used in each of the five energy
balance models, differences in the spatial scale of key meteorological
inputs for the DisALEXI, PT-JPL and geeSEBAL models, and model as-
sumptions, especially for SIMS, which assumes well-watered conditions.
This underscores the importance of local model accuracy assessments to
identify the models that perform best for the crop types and irrigation
management practices that are most prevalent in the region.

In the absence of suitable independent dataset for use in a local or
regional accuracy assessment, OpenET recommends use of the ensemble
ET value, which has been shown to perform best overall for the western
U.S. across most accuracy metrics (Melton et al., 2022; Volk et al.,
2024). Our results support this recommendation, as we found that the
model ensemble was generally among the best-performing approaches
to calculating irrigation (Table 1, Table 3), particularly after statistically
adjusting to account for potential errors in effective precipitation cal-
culations (Fig. 8c). This suggests that the ensemble mean would be a
reasonable approach to use across our study region until additional local
accuracy assessments can be conducted.

4.2. Utility for research and management purposes

As water becomes increasingly scarce, the importance of accurate
accounting of how, where, when, and how much water is being used is
becoming more critical. In the US, each state is responsible for admin-
istering water rights and regulating water use within their jurisdictional
boundaries. Water use metering and reporting requirements vary
significantly between states. Satellite-based ET data could provide a
nationally consistent approach to computing consumptive use of water
applied for irrigation, and potentially for estimating the volume of water
applied for crop irrigation, which is the largest source of consumptive
water use in the US (Marston et al.,, 2018). However, these
satellite-based irrigation calculations need to be comparable to what is
actually happening on the ground, demonstrating the importance of
high-fidelity in situ measurements of irrigation. This study was made
possible by metered groundwater pumping records detailing the loca-
tion, amount, and timing of irrigation. Outside of Kansas, metered re-
cords of irrigation are rare, with many states not requiring flowmeters
on agricultural water uses (Marston, Abdallah, et al., 2022). This gap is
increasingly being filled with reanalysis and ET-based water use prod-
ucts (Haynes et al., 2023; Martin et al., 2023). For ET-based irrigation
data to become more useful to researchers, irrigators, regulators, and
policymakers, metered irrigation records are needed for other areas with
different soils, climate, irrigation practices, and cropping patterns to
evaluate the performance of ET-based irrigation calculations under
these different conditions.

The sources of uncertainty we discuss in Section 4.1 contributed to
variable levels of agreement between ET-based and reported water
withdrawals and applications across the comparisons we conducted. At
the field scale, we found a generally low bias and slope approaching one
for the ensemble mean irrigation (Table 1), though the R? and MAE we
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observed was lower than assessments elsewhere (e.g., Ott et al., 2024).
At the management area, we found a strong positive correlation (e.g., R?
generally above 0.85; Table 3), comparable to other studies using
remotely sensed data to estimate irrigation depths with statistical
models (Filippelli et al., 2022; Majumdar et al., 2022; Wei et al., 2022).
However, we observed a general positive bias and more year-to-year
variability in ET-based irrigation than in the reported data, with sub-
stantial improvements in agreement after adjusting for potential effec-
tive precipitation (Fig. 8c). Agreement between calculated and reported
irrigation was the worst for the WRG-scale comparison, in particular for
irrigation depths, highlighting the major challenges in linking points of
diversion to irrigated field extents.

Since errors in estimated irrigation can lead to significant economic
and hydrological impacts if used for management purposes (Foster et al.,
2020), continued methodological development to overcome the un-
certainties described above will be important to advance these tools for
some applications. For instance, for purposes that require estimating
long-term average consumptive use, such as calculating the water bal-
ance for a large (10 s to 100 s of km) region, the precipitation-adjusted
spatially- and temporally-aggregated results we show in Fig. 8c might be
sufficient. For example, the precipitation-adjusted irrigation calculation
approach we show could be effective for providing accurate irrigation
calculations extrapolated through space or time. Potential applications
may include extending irrigation records backwards to years prior to the
onset of irrigation monitoring, providing rapid information on annual
irrigation volumes prior to reporting volumes becoming available (a
process which typically takes several months in this region), or esti-
mating irrigation in neighboring areas where agricultural practices are
similar, but monitoring is unavailable. In areas without any metered
data that would be capable for training models, approaches based solely
on irrigated area may provide sufficiently accurate water use estimates
(Puy et al., 2021), assuming irrigated area is mapped with sufficient
accuracy.

In contrast, using these data for other purposes, such as monitoring
within-season irrigation timing and volume from a specific well, would
require significant improvements in the accuracy of calculated irrigation
at these finer spatial and temporal scales and careful selection of an
appropriate ET model. We found that statistical adjustments to ET-based
irrigation calculations can substantially improve agreement with re-
ported values at annual resolution (Fig. 8c), potentially suggesting a
path towards greater local accuracy, and highlighting the critical
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importance of accurate effective precipitation values and ground-based
data for comparison. While our precipitation-adjusted approach
required reported irrigation data, and therefore would not be tractable
in locations without existing withdrawal monitoring, it may be possible
to use a limited subset of reporting locations to develop relationships
that can be applied more broadly (Bohling et al., 2021). Additional
products, such as high-resolution soil moisture data from remote
sensing-model integration (Vergopolan et al., 2021), may also provide a
pathway for bias-correction and/or temporal disaggregation when in-
tegrated with field-specific water balance modeling tools (Hoekstra,
2019). Given that OpenET is a relatively new product (Melton et al.,
2022), continued work on specific research and management applica-
tions will provide useful targets for prioritizing efforts to reduce existing
uncertainties.

5. Conclusions

We evaluated ET-based calculations of irrigation using a simple
water balance approach and compared to reported irrigation from
farmer records and a statewide database. We found that the agreement
between calculated and reported irrigation was best at the field scale,
where irrigated extent was precisely known, and when aggregating ET
calculations using the OpenET ensemble mean at the growing season
timescale. At the WRG and management area scales, there were gener-
ally positive correlations between the ET-based approaches and reported
data, but the ET-based approaches typically demonstrated more vari-
ability than reported values and overestimated irrigation, particularly
during dry years. This may be partially attributed to changes in soil
moisture storage, the approach used to calculate effective precipitation,
and challenges linking irrigated area to specific fields. The choice of an
ET model is an additional source of uncertainty. The uncertainties in ET-
based irrigation calculations likely exceed the signal of management
activities in this region, suggesting further methodological refinement is
needed for applications requiring precise quantification of irrigation
depth for a given location and/or single year. However, for applications
focused on relative differences in irrigation intensity across space and/
or multi-year average irrigation applications, some of these un-
certainties may safely be ignored. This work suggests that ET-based
approaches to calculating irrigation are a potentially valuable tool for
developing improved spatial and temporal water use data and will likely
require application-specific targeted improvements to reduce key
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uncertainties.
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