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A B S T R A C T

Irrigated agriculture is the dominant user of water globally, but most water withdrawals are not monitored or 
reported. As a result, it is largely unknown when, where, and how much water is used for irrigation. Here, we 
evaluated the ability of remotely sensed evapotranspiration (ET) data, integrated with other datasets, to calculate 
irrigation water withdrawals and applications in an intensively irrigated portion of the United States. We 
compared irrigation calculations based on an ensemble of satellite-driven ET models from OpenET with reported 
groundwater withdrawals from hundreds of farmer irrigation application records and a statewide flowmeter 
database at three spatial scales (field, water right group, and management area). At the field scale, we found that 
ET-based calculations of irrigation agreed best with reported irrigation when the OpenET ensemble mean was 
aggregated to the growing season timescale (bias = 1.6–4.9 %, R2 = 0.53–0.74), and agreement between 
calculated and reported irrigation was better for multi-year averages than for individual years. At the water right 
group scale, linking pumping wells to specific irrigated fields was the primary source of uncertainty. At the 
management area scale, calculated irrigation exhibited similar temporal patterns as flowmeter data but tended to 
be positively biased with more interannual variability. Disagreement between calculated and reported irrigation 
was strongly correlated with annual precipitation, and calculated and reported irrigation agreed more closely 
after statistically adjusting for annual precipitation. The selection of an ET model was also an important 
consideration, as variability across ET models was larger than the potential impacts of conservation measures 
employed in the region. From these results, we suggest key practices for working with ET-based irrigation data 
that include accurately accounting for changes in soil moisture, deep percolation, and runoff; careful verification 
of irrigated area and well-field linkages; and conducting application-specific evaluations of uncertainty.

1. Introduction

Irrigated agriculture is the dominant global user of water. Ground
water supplies an estimated 40 % of global irrigation, with this figure 
rising even higher in semi-arid/arid regions or in drought years when 
surface water availability is limited (Gleeson et al., 2020). As such, 
groundwater use plays a critical role in global food production and trade 
(Dalin et al., 2017) and sustaining local and regional economies (Deines 

et al., 2020). However, groundwater use can also lead to detrimental 
outcomes, such as the depletion of interconnected surface water re
sources (de Graaf et al., 2019; Zipper et al., 2022), declining water levels 
and storage capacity in regionally and globally important aquifers 
(Hasan et al., 2023; Jasechko et al., 2024), and associated water scarcity 
and insecurity (D’Odorico et al., 2019; Marston et al., 2020). In many 
agricultural settings without alternative water sources, pumping re
ductions are the only currently viable tool available to reduce water 
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abstraction and water table decline rates (Butler et al., 2020).
Making informed management decisions requires information about 

pumping rates and the anticipated impacts on the environment (Foster 
et al., 2020). However, management is challenging because data on the 
locations, schedules, and volumes of groundwater withdrawals are 
rarely available, even in data-rich countries like the United States 
(Marston, Abdallah, et al., 2022). Given the paucity of groundwater 
pumping data, emerging application-ready remote sensing products 
may be a valuable tool to fill this data gap (Melton et al., 2022). While 
flowmeters on pumping wells directly monitor the amount of water 
coming out of the ground, which we refer to here as ‘irrigation water 
withdrawals’, remotely sensed approaches typically provide data for 
spatially distributed evapotranspiration (ET) rates. Satellite-based ET 
data can then be incorporated into a water balance or statistical model to 
infer ‘irrigation water applications’, or the amount of water that is 
applied to a field after accounting for losses (Dhungel et al., 2020; Folhes 
et al., 2009; Foster et al., 2019; Laluet et al., 2024). These models can 
range from simple annual water balances to detailed daily soil water 
balance models tracking multiple components of the water balance such 
as infiltration, deep percolation, and runoff. Like all modeled quantities, 
however, these ET-based calculations of irrigation are subject to 
numerous uncertainties, which can lead to inefficient or inequitable 
water management decisions if not well-characterized (Foster et al., 
2020).

Unfortunately, due to the lack of reliable irrigation water withdrawal 
and application data for ground reference, there have been limited op
portunities to evaluate the ability of ET-based approaches to calculate 
irrigation withdrawals and applications. While many past studies have 
sought to estimate irrigation water use using satellite-based ET data and 
other hydrological variables such as soil moisture (Brocca et al., 2018; 
Dari et al., 2020; Ketchum et al., 2023), these estimates have typically 
been evaluated against aggregated statistics or synthetic model esti
mates of water use. Other studies use statistical or machine learning 
approaches to relate ET to observed water use, but these approaches are 
limited in terms of their applicability outside of the model training re
gion (Filippelli et al., 2022; Majumdar et al., 2022; Wei et al., 2022). As a 
result, there is a lack of knowledge about how effectively ET data can be 
translated into irrigation water withdrawals and applications across 
different spatial scales, from an individual field to a region, which are 
relevant to regulatory and management purposes.

Here, we address this gap by comparing calculations of ET-based 
irrigation applications and reported irrigation at multiple spatial 
scales (field, water right group, management area) within the heavily 

irrigated High Plains Aquifer in the State of Kansas (USA). Reported 
irrigation data are from both direct farmer-provided records of irrigation 
water applications and a high-quality flowmeter database of irrigation 
water withdrawals (Fig. 1). Specifically, we ask:

(1) How well do irrigation calculations derived from remotely sensed 
data and other spatial datasets agree with water withdrawal and 
application data from flowmeters and farmer records?

(2) What are the major sources of uncertainty in calculating irriga
tion withdrawals and applications using remotely sensed ET 
data?

Addressing these questions provides insights into the potential for 
remotely sensed ET products to address critical water challenges and 
highlights key future research needed to operationalize ET data for 
agricultural water management.

2. Methods

2.1. Study areas and irrigation ground data

We conducted comparisons of ET-based irrigation calculations to in- 
situ measurements of groundwater withdrawals and applications at 
three spatial scales that address different potential use cases for remotely 
sensed irrigation data:

(1) At the field scale (Section 2.1.1), we compared ET-based calcu
lated irrigation depths to field-resolution irrigation water appli
cation data from fields where farmers voluntarily shared 
irrigation records (field-years of data by region shown in Fig. 2 in 
parenthesis).

(2) At the water right scale (Section 2.1.2), we focused on a 255 km2 

groundwater management area, the Sheridan-6 Local Enhanced 
Management Area (SD-6 LEMA; blue area in Fig. 1 and Fig. 2). We 
subdivided the SD-6 LEMA into water right groups (WRGs) made 
up of non-overlapping combinations of pumping wells, fields, and 
authorized places of use and compared ET-based irrigation vol
umes to total water withdrawals within each WRG.

(3) At the management area scale (Section 2.1.2), we compared ET- 
based irrigation volumes to total reported irrigation water with
drawals within the entire SD-6 LEMA.

Conducting our analysis at these three spatial scales allowed us to 

Precipitation (gridMET) Irrigation Status (AIM)Evapotranspiration (OpenET)

Irrigation Depth 1. Assess agreement 
between ET-based irrigation 
calculations and reported 
irrigation water withdrawals 
and applications.

2. Identify uncertainty 
sources at each scale.

Water right groups:
Compare to flowmeters

Management area:
Compare to total for all 
flowmeters in area

Fields:
Compare to farmer data

10 km

Fig. 1. Overview of study including key input datasets (OpenET: Melton et al., 2022; gridMET: Abatzoglou, 2013; AIM: Deines, Kendall, Crowley, et al., 2019), 
spatial scales, and study objectives. The images show the area in and around the Sheridan-6 Local Enhanced Management Area (SD-6 LEMA; blue outline), the 
location of which is shown in Fig. 2.

S. Zipper et al.                                                                                                                                                                                                                                   Agricultural Water Management 303 (2024) 109036 

2 



leverage independent data sources for comparison (farmer records at the 
field scale, a state database at the water right and management area 
scales) and assess different aspects of uncertainty.

2.1.1. Individual fields
We collected field-resolution irrigation application information from 

four farmers willing to share this information with us. Farmers were 
contacted directly based on existing personal relationships and through 
regional organizations such as groundwater management districts and 
asked to provide applied irrigation volumes for as many fields as they 
were willing to share at the finest possible temporal resolution. We also 
requested either data files or annotated pictures showing the irrigated 
extent for each field so we could extract satellite-based ET data for each 
field. Therefore, unlike the management area and WRG scale compari
sons described in Section 2.1.2, for the field-scale comparison we had 
information on actual places of use and irrigated extent. Irrigation data 
varied in format, including minute-resolution water use from irrigation 
control software, irregularly timed sub-annual water use based on pe
riodic visits to flowmeters, and annual values based on flowmeter data 
that farmers associated with specific fields. For this study, all data were 
aggregated to the annual total depth of applied irrigation. In total, we 
received data for 43 fields between 2016 and 2022, totaling 239 field- 
years of data. Following Ott et al. (2024), we screened out any fields 
where the ratio of irrigation to the difference of ET (from the OpenET 
ensemble mean) and effective precipitation was <0.5 or >1.5, since this 
suggests potential errors in reported irrigation data. To protect the pri
vacy of the farmers involved (Zipper, Stack Whitney, et al., 2019), the 
locations of the fields are only shown here at the resolution of federal 
agricultural reporting districts (Fig. 2). The data span three of the five 
reporting districts that overlie the High Plains Aquifer, with the most 
fields in west-central and northwest Kansas (note: one field, just across 
the border in Nebraska, is included with the NW Kansas district). None 
of the fields included within this dataset are within the SD-6 LEMA.

2.1.2. Sheridan-6 Local Enhanced Management Area
The SD-6 LEMA covers 255 km2 in northwest Kansas, much of which 

is used to grow irrigated corn, soybeans, sorghum, and wheat (Fig. 2). 
The SD-6 LEMA was formed when local irrigators, concerned about 
declining groundwater levels, proposed an allocation of 1397 mm (55”) 
of water over a five-year period, which represented an approximate 
20 % reduction in pumping rates compared to historical averages 
(Drysdale and Hendricks, 2018). After approval by the state’s chief en
gineer, this allocation was codified in law for a five-year period begin
ning in 2013. The irrigators within the SD-6 LEMA have since renewed 
for two additional five-year periods (2018–2022 and 2023–2027). To 
date, the SD-6 LEMA exceeded the original conservation goals and 
reduced irrigation water withdrawals by 26–31 % (Deines, Kendall, 

Butler, et al., 2019; Drysdale and Hendricks, 2018) and slowed water 
table decline rates (Butler et al., 2020; Whittemore et al., 2023) with 
only minor negative impacts on yield and none on profitability (Golden, 
2018). As such, the SD-6 LEMA is a successful example of 
irrigator-driven groundwater conservation (Marston, Zipper, et al., 
2022) and has motivated the development of additional conservation 
approaches around the state (Steiner et al., 2021).

We selected the SD-6 LEMA as the focus of our management area and 
water right scale comparison because conservation practices have led to 
high irrigation efficiencies of producers in the SD-6 LEMA with rela
tively little wasted irrigation water (e.g., deep percolation from return 
flows or major fluxes of soil evaporation caused by excessive irrigation; 
Deines et al., 2021). High irrigation efficiency suggests that irrigation 
water withdrawals and applications should be approximately equal, and 
ET-based approaches should be particularly effective for calculating 
irrigation volumes in this setting. Additionally, due to numerous past 
studies of groundwater use in the SD-6 LEMA (Deines et al., 2021; 
Deines, Kendall, Butler, et al., 2019; Dhungel et al., 2020; Drysdale and 
Hendricks, 2018; Glose et al., 2022; Whittemore et al., 2023), we have a 
high degree of confidence in the accuracy of the irrigation withdrawal 
data for the SD-6 LEMA.

Irrigation withdrawal data were aggregated from the Water Infor
mation Management and Analysis System (WIMAS; https://geohydro. 
kgs.ku.edu/geohydro/wimas/) database maintained by the Kansas 
Department of Agriculture - Division of Water Resources and the Kansas 
Geological Survey. Withdrawal data are at the resolution of points of 
diversion, which in the SD-6 region correspond exclusively to pumping 
wells since there are no surface water resources used for irrigation. The 
data are high quality, as all non-domestic pumping wells in the state of 
Kansas are required to use a totalizing flow meter subject to accuracy 
checks from the Kansas Department of Agriculture with strong penalties 
for falsifying flow meter data or drilling illegal wells (Butler et al., 
2016). Therefore, we do not believe there is significant under-reported 
or non-reported irrigation water use in the area. The WIMAS database 
also includes reported total irrigated acreage in each year, though unlike 
water use, the reported irrigated acreage is not subject to verification 
and therefore the accuracy is unknown. In the SD-6 LEMA, we conducted 
our comparison at two spatial scales:

• For the water right group (WRG) scale comparison, we established 
non-overlapping groups of water withdrawals and applications by 
combining wells, water rights, and authorized places of use as in 
Earnhart and Hendricks (2023). This aggregation was necessary due 
to the complexities of agricultural water management that make it 
impossible to quantify the water use for a specific field from the 
WIMAS data alone: (i) a single well may provide water to multiple 
fields; (ii) a single field may receive water from multiple wells; (iii) a 
single water right may cover multiple wells and fields; and (iv) ir
rigators are only required to report the authorized place of use and 
the total number of acres irrigated, not the specific locations where 
water was used within the authorized area in a specific year. For each 
WRG, we then summed the total reported annual water withdrawals 
for all wells within the WRG.

• For the management area scale comparison, we summed the total 
annual withdrawals from all irrigation wells within the SD-6 LEMA 
boundaries. For any water rights that had authorized places of use 
both inside and outside the LEMA (n = 9, or 6 % of the total water 
right groups), we scaled the total water use based on the proportion 
of total estimated irrigated area that was within the LEMA for that 
well. This is the approach used in Brookfield et al. (2024) and is 
extended here through additional analyses of uncertainty, the use of 
effective precipitation for estimating irrigation depths, and com
parison to other spatial scales.

The SD-6 LEMA comparisons were conducted for the period 
2016–2020, as that is the extent covered by all necessary input datasets 

Fig. 2. Map of the state of Kansas subdivided into agricultural reporting dis
tricts. The number of field-years of data at the field scale are shown in paren
theses for the northwest (NW), north-central (NC), west-central (WC), and 
southwest (SW) reporting districts within the state. The location of the 
Sheridan-6 (SD-6) Local Enhanced Management Area is shown in blue. The 
Kansas portion of the High Plains Aquifer is shown in gray.
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(described in Section 2.2).

2.2. Calculating irrigation from ET data

We integrated ET data with several other geospatial datasets to 
calculate irrigation volumes and/or depths (Fig. 1). We extracted 
OpenET data from Google Earth Engine at a monthly time step for 
2016–2022 (Melton et al., 2022). OpenET includes ET data from six 
different satellite-driven models, as well as an ensemble mean. The 
models included are DisALEXI (Anderson et al., 2007, 2018), eeMETRIC 
(Allen et al., 2005, 2007, 2011), geeSEBAL (Bastiaanssen et al., 1998; 
Laipelt et al., 2021), PT-JPL (Fisher et al., 2008), SIMS (Melton et al., 
2012; Pereira, Paredes, Melton, et al., 2020), and SSEBop (Senay et al., 
2022). The ensemble mean was calculated as the mean of all models, 
with outlier values from the ensemble identified based on median ab
solute deviations and removed prior to averaging (Volk et al., 2024). The 
OpenET products were validated against 70 eddy covariance towers 
deployed at agricultural sites spanning a range of climate and land cover 
conditions across the western US and generally had a strong agreement, 
with all models within +/- 15 % of growing season mean flux tower ET 
averaged across all sites (Melton et al., 2022). A subsequent evaluation 
affirmed the accuracy of the ET data from OpenET via comparison to a 
total of 141 sites with eddy covariance towers, along with seven sites 
with Bowen ratio systems and four weighing lysimeters, finding that the 
growing season ensemble ET values for cropland had a mean absolute 
error of 78.1 mm (13.0 %) and a mean bias error of −11.9 mm (2.0 %). 
The overall accuracy for cropland sites was the best of any land cover 
type evaluated, and performance for annual crops, including corn, 
soybeans, and wheat, was particularly strong (Volk et al., 2024). How
ever, there were no eddy covariance towers near our study area - the 
closest irrigated fields with eddy covariance towers were in Mead, NE, 
where annual precipitation is ~50 % greater than western Kansas - and 
therefore OpenET’s accuracy for irrigated agriculture in semi-arid con
ditions typical of the western High Plains Aquifer has not been locally 
assessed.

OpenET data and precipitation data (from the 4 km gridMET data; 
Abatzoglou, 2013) were averaged for each field. For the field-resolution 
comparison, field boundaries, crop type, and irrigation status were 
defined based on information provided by farmers. For the management 
area and WRG comparisons, field boundaries were defined based on a 
Kansas-specific modification of the US Department of Agriculture 
(USDA) Common Land Unit dataset (Gao et al., 2017; MardanDoost 
et al., 2019), annual crop type from the USDA Cropland Data Layer 
(USDA, 2022), and field-resolution irrigation status from the Annual 
Irrigation Maps (AIM) dataset (Deines, Kendall, Crowley, et al., 2019). 
For crop type and irrigation status, we summarized the rasterized input 
data to a single categorical value for each field based on the most 
common raster value.

To estimate irrigation using our ET data (Fig. 1), we calculated the 
precipitation deficit (ET - effective precipitation) for each field 
(Figure S1) and masked it to only fields mapped as irrigated by AIM 
(Figure S2). Effective precipitation was calculated as precipitation from 
gridMET minus deep percolation out of the bottom of the root zone, 
which we estimated as a function of precipitation based on 2013–2017 
deep percolation estimates from Deines et al. (2021) (regressions shown 
in Figure S3). This method does not account for soil moisture storage 
from year-to-year, so we did these calculations at three timescales: the 
growing season (April-October), the calendar year (January-December), 
and the water year (October-September). This allowed us to test the 
degree to which the timescale of aggregation influenced agreement 
between calculated and reported irrigation withdrawal data. Since 
negative irrigation depths are not physically possible, for any irrigated 
fields with a negative precipitation deficit we set the irrigation depth to 
0 mm, though this was rare and negative precipitation deficits were 
typically associated with fallow, non-irrigated fields (Figure S1). Irri
gation depth was calculated separately for each year and each model (six 

ET models, as well as the ensemble mean). To convert field-resolution 
irrigation depths to irrigation volumes for comparison with pumping 
data, we multiplied the calculated irrigation depth by the area within 
each field that was mapped as irrigated in AIM. Since there are no sur
face water rights in this region, we assumed that all irrigation was 
sourced from groundwater.

2.3. Assessing approaches for improving irrigation calculations

Our approach to estimating irrigation adopts several assumptions, 
including that there is minimal runoff or fluxes of water apart from 
precipitation, irrigation, deep percolation and evaporation. While past 
work has suggested that there is virtually no runoff under conservation 
practices in the SD-6 LEMA (Deines et al., 2021), these assumptions may 
be less appropriate in other parts of the state, in particular the 4 
field-years of data in the north-central region (Fig. 2). Additionally, 
there may be differences in the relationship between precipitation and 
deep percolation in other regions given that irrigation efficiency is 
particularly high in the SD-6 LEMA.

We assessed both our confidence in and potential impacts of errors in 
irrigated area classification. In the SD-6 LEMA area, we evaluated con
fidence in the field-resolution irrigation classifications by evaluating the 
area of fields with a mixture of irrigated and non-irrigated pixels in the 
AIM dataset. The irrigation confidence results suggested that this irri
gation status mapping approach was more likely to overestimate, rather 
than underestimate, irrigated area (Figure S4, Figure S5) due to field 
boundaries not perfectly aligning with on-the-ground management di
visions. To address this, we used the fraction of each field that was 
mapped as irrigated to scale from calculated irrigation depths to irri
gation volumes so that potentially non-irrigated portions of otherwise 
irrigated fields were not included in volume estimation. To determine 
the potential impacts of uncertainty in irrigated area on our results, as 
well as potential errors associated with defining WRGs, we also 
compared reported irrigated acreage for all the wells in the WRG (from 
the WIMAS database) to the estimated irrigated acreage from AIM for 
irrigated fields in the WRG. We then repeated our comparison of WRG- 
scale reported and calculated irrigation water use for only WRGs where 
the reported and estimated irrigated area agreed within 10 %.

Additionally, at the management area scale, we evaluated the degree 
to which a locally-informed bias correction approach could be used to 
improve agreements between calculated and reported irrigation. This 
approach, which we call ‘precipitation-adjusted irrigation calculations’, 
involved developing a linear regression between the irrigation volume 
residual and precipitation, and then using this linear relationship to 
adjust ET-based irrigation calculations. This adjustment is useful in both 
highlighting potential mechanisms for disagreement between calculated 
and observed irrigation and to demonstrate an approach for either 
spatial or temporal extrapolation from locations/time periods with well- 
monitored irrigation to locations/time periods where irrigation is not 
monitored.

3. Results

3.1. Field-scale comparison

At the field scale, we first evaluated the timescale for aggregating the 
calculated precipitation deficit at which calculated and reported irri
gation agreed best. We found that using the growing season for aggre
gation consistently provided the best agreement in terms of percent bias, 
mean absolute error (MAE), slope of the relationship between calculated 
and reported irrigation, and R2 (Fig. 3). This was true across most ET 
algorithms and fit metrics, and for all subsequent analyses at the field, 
WRG, and management area scale, we used the growing season time
scale of aggregation for irrigation calculations. Slope values tended to be 
<1 for all ET models at the annual scale (Fig. 3, Table 1). The slope of the 
relationship between calculated and reported irrigation can be an 
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indicator of irrigation efficiency (Ott et al., 2024), and the slope < 1 may 
reflect lower irrigation efficiencies and increased non-evaporative losses 
(such as deep percolation or runoff), particularly since our effective 
precipitation relationship was based on the data from the SD-6 LEMA 
and the field-scale analysis did not include fields within the LEMA 
(Figure S3). Agreement for individual years did not appear to vary 
systematically as a function of the region within the state, though the 
dataset was not evenly distributed among regions with most of the fields 

in either west-central or northwest Kansas (71.5 % and 21.8 % of total 
field-years, respectively; Fig. 2) which are climatically very similar.

Comparing across OpenET models, we found that the OpenET 
ensemble mean tended to provide the best agreement with reported 
irrigation at the annual timescale, with a MAE of 81 mm, bias of 4.9 %, 
slope of 0.88, and R2 of 0.53 (Table 1). This slope (0.88) closely matches 
typical irrigation efficiencies for the region (0.9; Deines et al., 2021), 
suggesting that losses in the irrigation conveyance system and wind-drift 
evaporation are approximately 12 % of pumped water. When averaged 
across multiple years, the error in each model was substantially reduced 
(Fig. 4, Table 1). The choice of model also contributed to variability for 
both individual years and multi-year averages. While the ensemble 
mean provided the best overall agreement between calculated and re
ported data, there was also good agreement with reported data for 
irrigation calculations using DisALEXI and PT-JPL. In contrast, eeMET
RIC and SSEBop tended to overestimate at high levels of irrigation, 
geeSEBAL tended to underestimate across the range of irrigation depths, 
and SIMS tended to overestimate across the range of irrigation depths 
(Fig. 4). The high calculated irrigation volumes from SIMS make sense 
due to the formulation of this model, which assumes well-watered 
conditions sufficient to meet the needs of the satellite-observed crop 
density (Melton et al., 2012). Even irrigated crops in this region likely 
experience periodic water stress during the growing season, as evi
denced by the narrow distribution of SIMS ET data with respect to other 
models (Figure S6).

3.2. SD-6 LEMA water right group comparison

For the WRG-scale comparison, the growing season-based irrigation 
volumes from the ensemble ET were used, since this had the best 
agreement at the field scale where there are fewer sources of uncertainty 
(Section 3.1). The calculated irrigation volumes showed substantially 
more interannual variability than reported irrigation volumes at the 
WRG scale, with ET-based irrigation volumes positively biased relative 
to reported volumes for most WRGs (Table 2). While there was a positive 
bias across all years, the greatest positive bias was during dry years such 
as 2020 (Fig. 5a). When averaged across all five years, the scatter in the 
agreement between estimated and reported irrigation volumes was 
dramatically reduced (Fig. 5c), leading to a decrease in MAE and in
crease in slope and R2 relative to the annual-resolution comparison 
(Table 2).

The correlation between calculated and reported irrigation was 
worse for irrigation depths (Fig. 5b, Fig. 5d) than volumes (Fig. 5a, 
Fig. 5c), though irrigation volumes were more consistently positively 
biased than depths (Table 2). Overall, our results indicate that uncer
tainty in estimated irrigation depth is greater than uncertainty in esti
mated irrigated volume, which is further supported by the field-scale 
comparison in Section 3.1 and has been observed in other ET-based 
irrigation comparisons in Nevada and Oregon (Ott et al., 2024). 
Nevertheless, place of use and irrigation status are important potential 
drivers of disagreement between calculated and reported irrigation 
volumes. While there was a positive correlation between reported and 
estimated irrigated area, the irrigated area within WRGs based on AIM 
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Fig. 3. Agreement between field-resolution reported and calculated irrigation 
based on different aggregation timescales. Fit metrics shown include bias 
(better performance = closer to 0), mean absolute error (MAE; better perfor
mance = closer to 0), R2 (better performance = closer to 1), and slope (better 
performance = closer to 1).

Table 1 
Fit statistics for field-resolution comparison between calculated and reported irrigation application depths based on growing season timescale of aggregation.

MAE [mm] Bias [%] Slope R2

Model Annual Multi-Year Annual Multi-Year Annual Multi-Year Annual Multi-Year
DisALEXI 85 52 1.9 −1.5 0.83 1.18 0.48 0.71
eeMETRIC 126 93 27.7 22.7 0.59 0.88 0.46 0.66
Ensemble 81 48 4.9 1.6 0.88 1.22 0.53 0.74
geeSEBAL 136 126 −34.0 −35.2 0.79 1.31 0.46 0.73
PT-JPL 95 69 −11.9 −13.3 0.96 1.38 0.41 0.60
SIMS 182 158 47.5 41.8 0.81 0.99 0.37 0.47
SSEBop 96 52 10.8 6.5 0.65 1.03 0.47 0.76
Average 115 86 6.7 3.2 0.79 1.14 0.45 0.67
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only matched the reported irrigated area in the WIMAS database for 
approximately half of WRG-years (321 of 680 within 10 %). Differences 
between reported and calculated irrigated area were mostly distributed 
around the 1:1 line, with a slight positive bias for calculated irrigated 
area (Fig. 6). On average, the estimated irrigated area was 6.9 % higher 
than the reported irrigated area (median = 1.1 %).

This disagreement may be due to errors in reported irrigated area 
and calculated irrigated area as well as difficulties in identifying annual 
places of use for each WRG. While irrigated area is required for annual 
water use reports, water use reports do not include spatial information 
specifying where the water was actually used, and total irrigated area is 
not subject to verification or enforcement penalties (unlike reported 
water use). Therefore, it is unknown how accurate the reported data are, 
but one plausible explanation for the disagreement in estimated and 
reported irrigated area is uncertainty in field or parcel boundaries, 
particularly related to corners of parcels that are irrigated with center- 
pivot systems. Since the field boundary dataset we are using was origi
nally based on 2007 common land units (CLUs) mapped by the USDA 
with some refinements (Gao et al., 2017), it may not accurately delin
eate fields that harbor differently managed component areas. For 
example, a square quarter section containing a center pivot might 
consist of separate CLUs for the irrigated circle and the non-irrigated 
corners, or it might simply be the quarter section boundary with mul
tiple records for differently managed subfields used when the farmer 
signs up for federal government programs such as crop insurance. In the 
latter case, the entire field would be classified as irrigated based on our 
assignment of irrigation by majority, even though the ~20 % of the field 
in the corners would not be reported as irrigated by the farmer. This is 
consistent with our observation that there tended to be more 
low-confidence classifications for irrigated fields than non-irrigated 
fields (Figure S4), and supports our approach using the fraction of the 
field that was mapped as irrigated to scale from calculated irrigation 

depth to volume (see Section 2.2). Areas of low-confidence classifica
tions were often field corners (Figure S5), suggesting that the misclas
sification of non-irrigated corners as irrigated due to insufficiently 
refined field boundaries may have a slight contribution to overestimated 
irrigation volumes at both the WRG and management area scales.

To assess the potential impacts of errors in irrigated area classifica
tion, we repeated the analysis using only WRGs and years where the 
reported and estimated irrigated area agreed within 10 % (Fig. 7 and 
‘Area Agree’ columns in Table 2). The results of this comparison had a 
smaller positive bias for both irrigation volumes and depths, with overall 
the best agreement observed for multi-year average volumes (Fig. 7c). 
While the annual-resolution irrigation depths had a similar overall 
correlation (R2 = 0.35 in Fig. 5b and R2 = 0.40 in Fig. 7b), the corre
lation between five-year average calculated and reported irrigation 
depth improved when only using WRGs with strong irrigated area 
agreement (R2 = 0.32, Fig. 7d) compared to using all WRGs within the 
LEMA (R2 = 0.05, Fig. 5d).

3.3. Management area comparison

At the scale of the SD-6 LEMA, the ET-based irrigation volumes are 
the same order of magnitude as the reported withdrawal volumes but 
have a positive bias and greater interannual variability (Fig. 8a, 
Table 3). The best-performing model depends on the fit metric being 
used (Table 3, ‘Calc.’ column). For instance, the average MAE and bias 
values were lowest for geeSEBAL, while SIMS had the slope closest to 1 
and the ensemble mean and SIMS had the highest R2. Since we observed 
an overestimate across all models, the relatively lower MAE and bias for 
geeSEBAL reflects its consistently low estimates of ET relative to other 
algorithms (as observed for the field-scale analysis; Fig. 4). The high R2 

values we observe across all models (generally R2 ~ 0.9), combined with 
the relatively high MAEs (~0.5–2.5 ×107 m3, which is approximately 
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average, both colored by the region within the state. Calculated irrigation is based on growing season timescale of aggregation. In each panel, the gray line indicates 
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Table 2 
Fit statistics for WRG comparison for all WRGs (data points shown in Fig. 5) and those with irrigated area agreement (data points shown Fig. 7).

MAE Bias [%] Slope R2

Model All WRGs Area Agree All WRGs Area Agree All WRGs Area Agree All WRGs Area Agree
Annual Irrigation Volume [x105 m3] 0.92 0.66 57 % 40 % 0.53 0.64 0.72 0.83
Annual Irrigation Depth [mm] 98.76 93.81 42 % 38 % 0.54 0.56 0.35 0.40
Average Irrigation Volume [x105 m3] 0.86 0.67 57 % 41 % 0.57 0.68 0.79 0.89
Average Irrigation Depth [mm] 90.97 89.88 41 % 39 % 0.44 0.58 0.05 0.32
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equal to typical irrigation withdrawals for the management area) and a 
slope substantially lower than one (Table 3) collectively support our 
interpretation that the ET-based irrigation calculations capture appro
priate temporal patterns of variability in estimated irrigation, but tend 
to overestimate both the average magnitude and degree of interannual 
variability in irrigation volumes.

Subsequent analyses suggest that estimates of non-evaporative 
components of the water balance, such as deep percolation and root 
zone soil moisture storage changes, are a potential mechanism for this 
positive bias and increased variability because they can represent a 
potential source or sink for water that is not captured by our precipi
tation deficit calculation. The potential importance of deep percolation 
and soil moisture storage are suggested by Fig. 8b, which shows that 
growing season precipitation is strongly correlated with the difference 
between the ET-based irrigation volumes and the reported groundwater 
withdrawals. The consistent positive bias in all years indicates that our 
effective precipitation estimates may be too low, while the strong cor
relation with precipitation suggests that the difference is driven by hy
drologic dynamics. The ET-based approaches overestimated the 
reported irrigation volumes by the greatest amount in dry years, such as 
2020, and the smallest amount in wet years, such as 2019 (Fig. 4a). We 
found that a precipitation-based bias correction (described in Section 
2.3 and shown as precipitation-adjusted annual irrigation in Fig. 8c) had 
a substantially better agreement with reported irrigation values, with 
reductions in MAE by an order of magnitude, and four of the models and 
the ensemble mean had slopes between 0.9 and 1.1 after adjustment 
(Table 3, ‘Precip-Adj.’ column).

4. Discussion

We found that there was generally a positive correlation between 
calculated and reported irrigation at the field, WRG, and management 
area scales. The agreement was the best at the field scale, where we 
found that the growing season timescale of aggregation and the OpenET 
ensemble mean provided the closest match to reported irrigation. At the 
WRG and management area scales, we observed substantially more 
variability in the ET-based irrigation calculations than reported irriga
tion, which appeared to be associated with uncertainties in linking 
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Fig. 5. Comparison of reported irrigation for each water right group (WRG) to ET-based irrigation calculation using the ensemble ET. (a) Annual irrigation volume 
for each WRG; (b) Annual irrigation depth for each WRG; (c) Average irrigation volume for each WRG; (d) Average irrigation depth for each WRG. In each plot, the 
gray line shows a 1:1 agreement between reported and estimated irrigation. Calculated irrigation is based on growing season timescale of aggregation.
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Fig. 7. Same as Fig. 5, but only for WRGs where reported and calculated irrigated area agreed within 10 % (i.e., orange points in Fig. 6). Each panel shows: (a) 
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irrigated areas to places of use and non-evaporative components of the 
water balance, such as deep percolation and runoff used to calculate 
effective precipitation and year-to-year variability in soil moisture 
storage. Here, we discuss key sources of uncertainty that may have 
contributed to differences between reported and calculated irrigation 
and how those may affect the utility of ET-based irrigation products for 
research and management.

4.1. Sources of uncertainty in estimating irrigation from ET data

We identified and evaluated several sources of uncertainty that may 
explain differences between satellite ET-based and reported irrigation 
water withdrawals and applications, including (i) accounting for non- 
evaporative water balance components such as changes in soil mois
ture storage and effective precipitation; (ii) accurate identification of 
irrigated area, including linking fields to wells; and (iii) variability 
among ET models.

4.1.1. Soil moisture changes and effective precipitation
Quantifying non-evaporative components of the water balance such 

as year-to-year changes in soil moisture, deep percolation, and runoff 
appeared to be an important driver of uncertainty in our analysis at all 
three spatial scales. Since our approach relies on a relatively simple 
water balance (ET - effective precipitation) to estimate applied irriga
tion, the positive bias we observe at the WRG and management area 
scales suggests that we may be underestimating effective precipitation. 
Therefore, one contributing factor to our observed overestimates of 
irrigation may be the relatively simple approach we used to estimate 
effective precipitation, which was based on a regional regression for 
deep percolation (Figure S3). While runoff may be a source of error in 
our simple water balance approach for some locations (e.g. fields with 
larger slopes), it is regionally a small component of the water balance 
and is unlikely to explain systematic patterns of model errors observed 
across our study area (Deines et al., 2021). The consistent positive 
precipitation deficit for rainfed corn (Fig. 9) further suggests that 
effective precipitation is being underestimated by our approach, and 
calculating effective precipitation using a field-specific soil water bal
ance model approach such as ETDemands (Allen et al., 2020) could help 
to improve overall agreement. Issues with ET data may also be greater 
during wet conditions, as we would expect greater errors in calculated 
ET, and therefore irrigation, for periods or regions with increased cloud 
cover that affect the optical and thermal bands of satellites used by ET 
models. Since cloud cover is associated with precipitation events, this 
may have an outsized effect on estimating ET and irrigation during times 
when soil moisture is being replenished.

While the overall positive bias suggests issues with effective pre
cipitation calculations, the strong relationship between the calculated 
irrigation residual and precipitation (Fig. 8b) suggests that year-to-year 
changes in root zone soil moisture are also a source of uncertainty. 
Holding all other aspects of the water balance constant, if soil moisture 
storage decreased during the dry 2020 growing season, this would cause 
an increased overestimate of irrigation since some of the ET in 2020 was 
using soil moisture that fell in previous years, such as the relatively wet 

2019. However, variability in individual producer irrigation behavior 
across years may also contribute to the increased interannual variability 
in the ET-based irrigation volumes observed in Fig. 8 compared to the 
reported irrigation volumes. For example, previous research in the 
neighboring state of Nebraska has shown that metered groundwater use 
typically exceeds crop water requirements in wetter and average rainfall 
years while farmers are observed to adopt more water-efficient irriga
tion practices in drier years to reduce non-consumptive water losses, 
likely motivated by a combination of the higher costs of irrigation and 
greater likelihood of experiencing irrigation system capacity constraints 
in drought years (Foster et al., 2019).

Furthermore, our ET-based irrigation volumes did not account for 
leakage in irrigation systems and other losses of water between where it 
is pumped from the ground but before it reaches the field, though based 

Table 3 
Fit statistics for LEMA-scale OpenET-WIMAS comparison for each timescale of aggregation and model. ‘Calc.’ = calculated irrigation without adjustment (Fig. 8a), 
‘Precip.-Adj.’ = precipitation-adjusted irrigation (Fig. 8c). Calculated irrigation is based on growing season timescale of aggregation.

MAE [x107 m3] Bias [%] Slope R2

Model Calc. Precip-Adj. Calc. Precip-Adj. Calc. Precip-Adj. Calc. Precip-Adj.
DisALEXI 0.73 0.35 36 % 0 % 0.46 0.58 0.68 0.47
eeMETRIC 1.71 0.18 84 % 0 % 0.41 0.95 0.86 0.82
Ensemble 1.11 0.12 55 % 0 % 0.50 1.00 0.92 0.93
geeSEBAL 0.51 0.18 16 % 0 % 0.43 0.85 0.88 0.78
PT-JPL 0.87 0.13 43 % 0 % 0.50 0.96 0.90 0.89
SIMS 2.53 0.12 125 % 0 % 0.64 1.01 0.91 0.92
SSEBop 1.00 0.13 49 % 0 % 0.52 0.97 0.90 0.88
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on the high efficiency in the SD-6 LEMA area we expect that these losses 
are minimal (~10 %, consistent with other estimates). However, in 
settings with lower irrigation efficiencies, non-consumptive losses of 
applied irrigation water such as deep percolation or runoff would likely 
be missed by ET-based irrigation estimation methods and can have a 
significant impact on estimated irrigation water use (Puy et al., 2022). 
Our analysis suggests that, for annual or finer temporal resolutions 
and/or settings with lower irrigation efficiency, the use of more complex 
water balance approaches, such as soil water balance models (Dhungel 
et al., 2020; Kharrou et al., 2021; Pereira, Paredes, and Jovanovic, 2020; 
Zhang et al., 2023), will be necessary to accurately disentangle the rates, 
locations, and timing of irrigation applications. To facilitate these ap
proaches, there may be promise through the assimilation of additional 
data sets such as in situ or remotely sensed soil moisture (Dari et al., 
2020; Filippelli et al., 2022; Jalilvand et al., 2019, 2023; Laluet et al., 
2024; Paolini et al., 2023).

4.1.2. Linking wells to irrigated fields
Challenges in linking specific wells to irrigated fields appeared to 

cause disagreement between reported and calculated irrigation at the 
WRG spatial scale. This source of uncertainty is supported by several 
lines of evidence. At the field scale, where irrigated extents were known 
and verified by the farmers sharing their irrigation data, we generally 
saw the best agreement between calculated and reported irrigation 
(Fig. 4), while at the WRG scale there was substantial disagreement 
between estimated and reported irrigated area (Fig. 6). At the WRG 
scale, our ET-based calculations of irrigation volume were better 
correlated with flowmeter data than calculations of irrigation depth 
(Fig. 5), consistent with results from the nearby Colorado portion of the 
Republican River Basin (Filippelli et al., 2022), and agreement improved 
when focusing only on WRGs where reported and estimated irrigated 
area were similar (Fig. 7). The weaker relationship between calculated 
and reported irrigation depth, compared to irrigation volume, reflects 
the importance of irrigated area as a determinant of overall irrigation 
volumes (Lamb et al., 2021; Puy et al., 2021; Wei et al., 2022).

While the irrigation extent dataset we used is the best-available for 
this region and consistently shows differences in precipitation deficit 
between irrigated and rainfed corn, there is also substantial overlap 
between their distributions, suggesting that some degree of misclassifi
cation is practically assured (Fig. 9). Based on our analysis, local errors 
in irrigation status maps are likely fairly evenly distributed between 
under- and over-estimating irrigated area, with a slight bias towards 
overestimated irrigated area (Fig. 6). This may be particularly chal
lenging in relatively small unirrigated portions of otherwise irrigated 
fields, such as the non-irrigated corners of center-pivot systems 
(Figure S5). Additionally, irrigation mapping can be particularly chal
lenging during wet years, such as 2019 when there is the greatest 
overlap between rainfed and irrigated distributions, because the differ
ences in canopy cover and greenness between irrigated and rainfed 
fields are smaller (Xu et al., 2019).

Accurately linking the point of water diversion with the place where 
that water is applied was a major challenge in our analysis and has been 
identified as a key source of uncertainty in other domains (Ott et al., 
2024). While developing these links may not be needed for many ap
plications, such as regional water balance assessments, connecting the 
point of diversion with place of use is critical to evaluate irrigation 
application depths and to assess the effectiveness of conservation mea
sures and the ultimate impacts of pumping on other aspects of regional 
agrohydrological systems such as streamflow (Kniffin et al., 2020; 
Zipper, Carah, et al., 2019; Zipper et al., 2021), aquifer dynamics 
(Feinstein et al., 2016; Peterson and Fulton, 2019; Wilson et al., 2021), 
or groundwater-dependent ecosystems (Tolley et al., 2019). Despite 
exceptionally high-quality water use data for the state of Kansas, the 
limited linkages between the point of diversion and actual place of use 
highlights a key data gap for the application of remotely sensed irriga
tion data for hydrogeological research and management, and a 

necessary improvement for field-level operationalization.

4.1.3. Variability among ET models
The selection of ET model also led to substantial variability in the 

estimated irrigation depths, with a relatively consistent ordering across 
models (from lowest to highest): geeSEBAL, DisALEXI, PT-JPL, SSEBop, 
Ensemble, eeMETRIC, SIMS (Fig. 4, Fig. 8). Since the effective precipi
tation input data used to estimate irrigation was the same for all models, 
this variability in estimated irrigation among the models can be attrib
uted entirely to differences in the approaches used by each ET model, 
and variability can be quite substantial. For example, for irrigated corn 
in the SD-6 LEMA, the medians span 156–270 mm across ET models in a 
given year (Fig. 10), which approaches the magnitude of total applied 
irrigation water and greatly exceeds the magnitude of the conservation 
actions put in place in this region (Whittemore et al., 2023). The vari
ability among models may be due to differences in the approaches to 
computation of the sensible heat flux used in each of the five energy 
balance models, differences in the spatial scale of key meteorological 
inputs for the DisALEXI, PT-JPL and geeSEBAL models, and model as
sumptions, especially for SIMS, which assumes well-watered conditions. 
This underscores the importance of local model accuracy assessments to 
identify the models that perform best for the crop types and irrigation 
management practices that are most prevalent in the region.

In the absence of suitable independent dataset for use in a local or 
regional accuracy assessment, OpenET recommends use of the ensemble 
ET value, which has been shown to perform best overall for the western 
U.S. across most accuracy metrics (Melton et al., 2022; Volk et al., 
2024). Our results support this recommendation, as we found that the 
model ensemble was generally among the best-performing approaches 
to calculating irrigation (Table 1, Table 3), particularly after statistically 
adjusting to account for potential errors in effective precipitation cal
culations (Fig. 8c). This suggests that the ensemble mean would be a 
reasonable approach to use across our study region until additional local 
accuracy assessments can be conducted.

4.2. Utility for research and management purposes

As water becomes increasingly scarce, the importance of accurate 
accounting of how, where, when, and how much water is being used is 
becoming more critical. In the US, each state is responsible for admin
istering water rights and regulating water use within their jurisdictional 
boundaries. Water use metering and reporting requirements vary 
significantly between states. Satellite-based ET data could provide a 
nationally consistent approach to computing consumptive use of water 
applied for irrigation, and potentially for estimating the volume of water 
applied for crop irrigation, which is the largest source of consumptive 
water use in the US (Marston et al., 2018). However, these 
satellite-based irrigation calculations need to be comparable to what is 
actually happening on the ground, demonstrating the importance of 
high-fidelity in situ measurements of irrigation. This study was made 
possible by metered groundwater pumping records detailing the loca
tion, amount, and timing of irrigation. Outside of Kansas, metered re
cords of irrigation are rare, with many states not requiring flowmeters 
on agricultural water uses (Marston, Abdallah, et al., 2022). This gap is 
increasingly being filled with reanalysis and ET-based water use prod
ucts (Haynes et al., 2023; Martin et al., 2023). For ET-based irrigation 
data to become more useful to researchers, irrigators, regulators, and 
policymakers, metered irrigation records are needed for other areas with 
different soils, climate, irrigation practices, and cropping patterns to 
evaluate the performance of ET-based irrigation calculations under 
these different conditions.

The sources of uncertainty we discuss in Section 4.1 contributed to 
variable levels of agreement between ET-based and reported water 
withdrawals and applications across the comparisons we conducted. At 
the field scale, we found a generally low bias and slope approaching one 
for the ensemble mean irrigation (Table 1), though the R2 and MAE we 
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observed was lower than assessments elsewhere (e.g., Ott et al., 2024). 
At the management area, we found a strong positive correlation (e.g., R2 

generally above 0.85; Table 3), comparable to other studies using 
remotely sensed data to estimate irrigation depths with statistical 
models (Filippelli et al., 2022; Majumdar et al., 2022; Wei et al., 2022). 
However, we observed a general positive bias and more year-to-year 
variability in ET-based irrigation than in the reported data, with sub
stantial improvements in agreement after adjusting for potential effec
tive precipitation (Fig. 8c). Agreement between calculated and reported 
irrigation was the worst for the WRG-scale comparison, in particular for 
irrigation depths, highlighting the major challenges in linking points of 
diversion to irrigated field extents.

Since errors in estimated irrigation can lead to significant economic 
and hydrological impacts if used for management purposes (Foster et al., 
2020), continued methodological development to overcome the un
certainties described above will be important to advance these tools for 
some applications. For instance, for purposes that require estimating 
long-term average consumptive use, such as calculating the water bal
ance for a large (10 s to 100 s of km) region, the precipitation-adjusted 
spatially- and temporally-aggregated results we show in Fig. 8c might be 
sufficient. For example, the precipitation-adjusted irrigation calculation 
approach we show could be effective for providing accurate irrigation 
calculations extrapolated through space or time. Potential applications 
may include extending irrigation records backwards to years prior to the 
onset of irrigation monitoring, providing rapid information on annual 
irrigation volumes prior to reporting volumes becoming available (a 
process which typically takes several months in this region), or esti
mating irrigation in neighboring areas where agricultural practices are 
similar, but monitoring is unavailable. In areas without any metered 
data that would be capable for training models, approaches based solely 
on irrigated area may provide sufficiently accurate water use estimates 
(Puy et al., 2021), assuming irrigated area is mapped with sufficient 
accuracy.

In contrast, using these data for other purposes, such as monitoring 
within-season irrigation timing and volume from a specific well, would 
require significant improvements in the accuracy of calculated irrigation 
at these finer spatial and temporal scales and careful selection of an 
appropriate ET model. We found that statistical adjustments to ET-based 
irrigation calculations can substantially improve agreement with re
ported values at annual resolution (Fig. 8c), potentially suggesting a 
path towards greater local accuracy, and highlighting the critical 

importance of accurate effective precipitation values and ground-based 
data for comparison. While our precipitation-adjusted approach 
required reported irrigation data, and therefore would not be tractable 
in locations without existing withdrawal monitoring, it may be possible 
to use a limited subset of reporting locations to develop relationships 
that can be applied more broadly (Bohling et al., 2021). Additional 
products, such as high-resolution soil moisture data from remote 
sensing-model integration (Vergopolan et al., 2021), may also provide a 
pathway for bias-correction and/or temporal disaggregation when in
tegrated with field-specific water balance modeling tools (Hoekstra, 
2019). Given that OpenET is a relatively new product (Melton et al., 
2022), continued work on specific research and management applica
tions will provide useful targets for prioritizing efforts to reduce existing 
uncertainties.

5. Conclusions

We evaluated ET-based calculations of irrigation using a simple 
water balance approach and compared to reported irrigation from 
farmer records and a statewide database. We found that the agreement 
between calculated and reported irrigation was best at the field scale, 
where irrigated extent was precisely known, and when aggregating ET 
calculations using the OpenET ensemble mean at the growing season 
timescale. At the WRG and management area scales, there were gener
ally positive correlations between the ET-based approaches and reported 
data, but the ET-based approaches typically demonstrated more vari
ability than reported values and overestimated irrigation, particularly 
during dry years. This may be partially attributed to changes in soil 
moisture storage, the approach used to calculate effective precipitation, 
and challenges linking irrigated area to specific fields. The choice of an 
ET model is an additional source of uncertainty. The uncertainties in ET- 
based irrigation calculations likely exceed the signal of management 
activities in this region, suggesting further methodological refinement is 
needed for applications requiring precise quantification of irrigation 
depth for a given location and/or single year. However, for applications 
focused on relative differences in irrigation intensity across space and/ 
or multi-year average irrigation applications, some of these un
certainties may safely be ignored. This work suggests that ET-based 
approaches to calculating irrigation are a potentially valuable tool for 
developing improved spatial and temporal water use data and will likely 
require application-specific targeted improvements to reduce key 
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uncertainties.
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