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ABSTRACT

We introduce and analyze a natural class of nonlinear dynamics for
spin systems such as the Ising model. This class of dynamics is based
on the framework of mass action kinetics, which models the evolu-
tion of systems of entities under pairwise interactions, and captures
a number of important nonlinear models from various fields, in-
cluding chemical reaction networks, Boltzmann’s model of an ideal
gas, recombination in population genetics, and genetic algorithms.
In the context of spin systems, it is a natural generalization of linear
dynamics based on Markov chains, such as Glauber dynamics and
block dynamics, which are by now well understood. However, the
inherent nonlinearity makes the dynamics much harder to analyze,
and rigorous quantitative results so far are limited to processes
which converge to essentially trivial stationary distributions that
are product measures.

In this paper we provide the first quantitative convergence analy-
sis for natural nonlinear dynamics in a combinatorial setting where
the stationary distribution contains non-trivial correlations, namely
spin systems at high temperatures. We prove that nonlinear ver-
sions of both the Glauber dynamics and the block dynamics con-
verge to the Gibbs distribution of the Ising model (with given ex-
ternal fields) in times O(nlog n) and O(log n) respectively, where
n is the size of the underlying graph (number of spins). Given the
lack of general analytical methods for such nonlinear systems, our
analysis is unconventional, and combines tools such as information
percolation (due in the linear setting to Lubetzky and Sly), a novel
coupling of the Ising model with Erd8s-Rényi random graphs, and
non-traditional branching processes augmented by a “fragmenta-
tion" process. Our results extend immediately to any spin system
with a finite number of spins and bounded interactions.
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1 INTRODUCTION

Mass action kinetics is a general framework for studying systems
of interacting entities. The framework emerged in the study of
chemical reaction networks, dating back at least to the seminal work
of Horn and Jackson in the 1970s [11], and has seen a resurgence
of activity in recent years; see the monograph [7]. However, it also
captures a wide range of processes that are of interest in other fields,
including Boltzmann’s model of an ideal gas [1], classical models
of population genetics [10, 22], genetic algorithms in combinatorial
optimization [9, 14], and random sampling [18, 20].

We describe mass action kinetics in the special case where all
interactions are pairwise and homogeneous; this captures most
of the complexity of general systems while keeping notation and
technicalities to a minimum. Let Q denote a finite set of types. A
(quadratic) mass action system is described by a directed graph
whose vertices are unordered pairs of types (o, ¢’), and a directed
edge from (o, 0”) to (z,7’) indicates the presence of a reaction in
which types o, ¢’ combine to produce types 7, 7’. Reactions are
governed by a collision kernel Q(o,0” ; -, ), where Q(c,0” ; 7,7’)
is the probability that the outcome of a reaction involving the pair
(o, 0”) is the pair (7, /).

The state of the system at any time ¢ is fully described by the
vector p;, where p; (o) is the mass of type o at time #, normalized
so that },;cq pr(0) = 1 (ie., the p; (o) can be viewed as concen-
trations, or probabilities). According to the so-called “mass action”
principle, each reaction (o,0’) — (r,7’) takes place at a rate de-
termined by the product of the current masses of types o, ¢’. The
dynamics of the system is now described by the following set of
equations, one for each type 7 € Q:

pra (D)= Y pi(o)pi(0))Qo,0” 5 1,7,

0,07

1.1)

At this level of generality such systems can be arbitrarily badly
behaved (e.g., chaotic), so it is necessary to impose standard reg-
ularity conditions. A mass action system is said to be reversible!
or detailed balanced if there exists a strictly positive mass vector
u = (u(0)) > 0 such that, for all 0, 0", 7, 7/,

p(@)p(e")Q(o,0"; .7') = p(Dp(7)Q(r, 7" 0,07).  (1.2)

Tn the mass action kinetics literature, the term “reversible" has unfortunately been
used to denote the weaker property that Q(o, 0’ ; 7,7") # 0iff Q(z,7"; 0,0”) # 0,
whereas in physics reversibility is synonymous with detailed balance. In this paper,
we shall use the terms “detailed balanced" and “reversible" interchangeably to denote
the stronger condition (1.2).
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It is easy to check that any such p is necessarily an equilibrium
or stationary point for the dynamics (1.1). A mass action system
may have many positive equilibrium points, but if any one of them
satisfies the detailed balance condition then they all do. We stress
that we do not require the kernel Q to be irreducible (i.e., the
directed graph describing it need not be strongly connected), and
that the dynamics will in general have conserved quantities.

The mass action system defined in (1.1) can be viewed as a natural
nonlinear analog of a reversible Markov chain, whose dynamics
takes the form psy1(7) = X5 pr(0)Q(0; 7), where now Q(o; 7) is
the transition matrix of the chain and the reversibility condition is
1(0)Q(o; 1) = u(r)Q(7; o) for all o, 7. In the linear setting, there
are well known criteria for convergence to stationarity and there is
a vast literature on mixing times of reversible Markov chains and
their algorithmic applications to sampling, approximate counting
and integration, statistical physics, etc. By contrast, in the nonlinear
setting even the most basic questions are still open: for example, the
Global Attractor Conjecture [7] asserts that any detailed balanced?
mass action system converges to a fixed point when started from
any initial point po with full support. (In fact many stationary points
may exist, but only one is consistent with any given py.) And even
in particular cases of interest where convergence has been proved,
almost nothing is known about the rate of convergence (the analog
of the mixing time for Markov chains).

In the discrete combinatorial setting, one of very few examples
for which useful bounds on the convergence rate are known is the
classical Hardy-Weinberg model of genetic recombination [10, 22].
Here the types are bit strings Q = {0, 1}" (each bit representing an
allele on a chromosome), and a reaction between two strings o, o’
involves picking a “crossover" subset A C {1,...,n} of positions
according to some probabilistic rule and exchanging the bits in A
between o and ¢’ to obtain two new strings r, /. (For example,
one classical rule is to pick i € {0,...,n} v.ar. and let A consist
of the first i bits.) It is well known that this dynamics converges
to the distribution y in which all bits are independent, with the
marginal probabilities of a 1 at each position given by those in the
initial distribution py. In [4, 17], the rate of convergence was related
precisely to the rate at which the strings are fragmented by the
repeated random cuts A, thus enabling very precise estimates of
the convergence time for any choice of crossover rule.

The above analysis relies crucially on the fact that in the equi-
librium distribution all bits are independent. When there is even a
small amount of correlation, there appear to be no techniques avail-
able to obtain useful bounds on convergence rates. In this paper,
we address this question for arguably the most natural example
in which correlations arise, namely the Ising model of statistical
physics, a very simple model of nearest-neighbor interactions on
a graph. Here the types are spin configurations o € Q = {+1}V
which assign one of two possible spin values +1 to each vertex of a
graph G = (V, E). The probability of any configuration o is given
by the Gibbs distribution:

Z Jxyoxoy + Z hxax}, (1.3)

Hyn(o) = —— eXP{
x,yev xeV

2 Actually, this property is conjectured to hold under the weaker condition known as
“complex balance" [7].
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where h = {hy}yev is a vector of real numbers whose entry hy
represents the external field at vertex x, and J = {Jxy}x,yev is a
symmetric real matrix whose entry Jxy represents the interaction
between spins at adjacent vertices x, y. (When there is no edge be-
tween x and y, Jxy = 0.) The normalizing factor Zj, is the partition
function. Note that we allow the interactions Jx to be either posi-
tive (favoring neighbors with aligned spins) or negative (favoring
non-aligned spins), and the fields hy to be either positive (favoring
+1 spins) or negative (favoring —1 spins). Setting J = A, where
B > 0 and A is the adjacency matrix of G, corresponds to the stan-
dard ferromagnetic Ising model on G at inverse temperature f. Note
also that the trivial case J = 0 corresponds to independent spins as
in the Hardy-Weinberg model above. We emphasize that, although
for simplicity we develop our results for the specific case of the
Ising model, they hold equally for any spin system with a constant
number of different spins and bounded pairwise interactions (such
as the g-state Potts model); see Section 5 for more detail.

The classical Glauber dynamics for the Ising model picks a ran-
dom vertex x € V at each step and resamples the spin at x according
to the correct conditional distribution given its neighboring spins;
this Markov chain converges to the Gibbs distribution (1.3) from
any initial configuration. The analogous nonlinear mass action ki-
netics is defined by equation (1.1) with the following kernel: Given
two configurations o, ¢/, pick a random vertex x and exchange the
spins oy, 0%, obtaining two new configurations z,7’. The transi-
tion probabilities Q(o, o’ ; 7,7") are chosen to satisfy the detailed
balance condition (1.2), where y = pj, is the Gibbs distribution.
We emphasize that, in contrast to Glauber dynamics, here the sys-
tem is evolving endogenously via pairwise interactions between
configurations, rather than via exogenously applied spin updates.
Our first result shows that this dynamics converges to the Gibbs
distribution (1.3), where the fields h are determined by the marginal
probabilities of the spins at each vertex in the initial distribution.
(The fact that the marginals determine a unique vector of fields h
follows from standard convexity arguments; see, e.g., [6].)

THEOREM 1.1. Let p; denote the distribution at timet for the above
mass action kinetics for the Ising model with interactions J starting
from any initial distribution po, and let h be the unique choice of
external fields such that the marginal probabilities at each vertex
x € V in pyy, are the same as those in po. Then p; converges to jiyy,
ast — oo,

Note that, unlike the standard Glauber dynamics, the nonlinear
dynamics has conserved quantities—namely, the marginal probabil-
ities of the spins at each vertex—and the values of these invariants
determine which of the family of stationary points the dynamics
converges to. This phenomenon is typical in mass action kinetics.
The key to our proof of Theorem 1.1 is establishing an irreducibility
property: along any trajectory, the probability of any configuration
eventually remains uniformly bounded away from zero.

We pause to briefly mention some features of mass action kinet-
ics that make its analysis much more complex than that of Glauber
dynamics, and which explain the lack of quantitative convergence
results. First, as noted above, there are in general multiple equi-
librium points, which are characterized by conserved quantities.
Second, unlike the linear case, the total variation distance to station-
arity is not monotonically decreasing [2, Remark 2.7] and there are
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no simple coupling arguments to rely upon. Finally, the nonlinear-
ity means that we do not have at our disposal a spectral theory and
other functional analysis tools that have proved so powerful in the
analysis of Markov chains. As usual in kinetic theory, a natural way
to study convergence to stationarity here is to use relative entropy,
which provides a monotonically decreasing functional; however,
quantitative analysis of this quantity is a notoriously difficult prob-
lem in the nonlinear setting, which has so far been solved only in
the non-interacting case (genetic recombination) [3, 4].

Our main result establishes tight bounds on the rate of conver-
gence for this nonlinear dynamics in the so-called “high-temperature"
regime, when the interactions are non-trivial but relatively weak.
Specifically, the condition we require is that max,ey Zyev | Jeyl <
do for some absolute constant g > 0, i.e., the aggregated strength of
all interactions at any given vertex is not too large. This condition
mirrors the standard Dobrushin condition for Glauber dynamics,
which gives a non-trivial sufficient condition for rapid mixing (see,
e.g., [23]). We state this result in the following theorem.

THEOREM 1.2. In the scenario of Theorem 1.1, with the additional
assumption that maxyecy Zyev |Jxyl < & for an absolute con-
stant 8o > 0, the rate of convergence of p; to uy, is given by

—ct
lpr = pynllTy < Cne™® /n
for absolute constants C, ¢ > 0, where || - ||ty denotes total variation
distance. Thus in particular the time required to achieve variation
distance ¢ is t = O(nlog(n/¢)).

We note that this upper bound on convergence time is (up to con-
stants) the same as for the genetic recombination model discussed
above in which just a single allele is exchanged between the strings
at each step [17], and is therefore also tight by virtue of the lower
bound in the same paper. That model is equivalent to the trivial case
of the Ising model in which there are no interactions (Jxy = 0 for all
x,y), with the hy determined by the marginal probabilities at each
allele x (and the spins +1 identified with the bits 1, 0). However,
as we explain in Section 1.1 below, the correlations present in the
Ising model make the analysis much more challenging.

We also consider a “block” version of the nonlinear dynamics,
in which o, ¢’ exchange spins at a random subset A C V of ver-
tices (rather than just at a single randomly chosen vertex). The
kernel Q(o, 0’ ; 7,7") is again determined by the detailed balance
condition (1.2), and the basic convergence result in Theorem 1.1
still holds. Under the same Dobrushin-type condition on the inter-
actions as in Theorem 1.2, we again obtain a tight bound on the
convergence rate:

THEOREM 1.3. With the same notation and assumptions as in
Theorem 1.2, the variation distance of the block version of the mass
action kinetics for the Ising model satisfies

2 —ct
llpe = ypliTy < Cn®e™¢
for absolute constants C, ¢ > 0. Thus in particular the time required
to achieve variation distance ¢ ist = O(log(n/¢)).

Note that convergence here is exponentially faster than in the
single-vertex version of Theorem 1.2, reflecting the fact that this
version is non-local and changes large portions of the configurations
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at each step. Again, the bound of Theorem 1.3 matches the lower
bound for zero interaction [17].

We stress that the goal of this paper is not to design an efficient
algorithm for sampling configurations of the Ising model. Such
algorithms, based on standard linear Glauber dynamics, are already
known throughout the high-temperature regime. Rather, our goal is
to analyze the rate of convergence of a natural nonlinear dynamics,
for the first time in a model with correlations. We view this as a
first step towards a better understanding of such dynamics and
the techniques needed to understand them; in addition to their
inherent interest, these techniques may lead to algorithmic appli-
cations in future. Our work can be viewed as an extension of the
successful application of a TCS lens in the analysis of mixing times
of linear dynamics (Markov chains), which, as is well known, has
seen both mathematical and algorithmic applications over many
years. However, we point out that our convergence analysis in
Theorems 1.2 and 1.3 actually does yield polynomial time sampling
algorithms based on simulation of the respective nonlinear dynam-
ics. We outline these algorithms, together with some associated
open questions, in Section 5.

We also point out a further interesting algorithmic aspect of our
results. Recall that our nonlinear processes sample from an Ising
Gibbs measure iy y,, where the fields h are determined implicitly by
the marginals at each site. It is these marginals (not the fields) that
are specified by the initial distribution py. (As far as we are aware,
all existing sampling algorithms for the Ising model require the
specification of the fields h rather than the marginals.) Additionally,
our processes can be used to learn the fields h corresponding to
given marginals, an inverse problem that is also of independent
interest (see [15] for a survey of such inverse problems): given
samples from iy}, produced by the nonlinear dynamics, standard
methods can be used to infer the field vector h.

1.1 Techniques

We begin by describing the earlier approach of [17] to analyzing the
rate of convergence of the simpler population genetics dynamics,
which corresponds to the trivial case of the Ising model with no
interactions (J = 0). Since the equilibrium distribution here consists
of independent bits, the analysis is relatively straightforward given
the following insight. The derivation of an individual o at time ¢ can
be viewed as a binary tree going backwards in time, in which each
individual inherits a random subset of its bits from each of its two
parents according to the random crossover subset A. We may there-
fore follow the derivation of the n bits in ¢ back in time, until each
of these bits is derived from a distinct individual at time 0. At that
point we can deduce that the bits of ¢ are independently sampled
from their respective marginal distributions, so ¢ is in equilibrium.
The analysis therefore reduces to the question of how many steps
are needed until all the n bits are separated, or “fragmented", under
the repeated action of partition by the random crossover subset A,
which in turn is a straightforward combinatorial calculation.

In the case where correlations are present in the equilibrium
distribution, as in the Ising model, the above analysis breaks down
because it is no longer sufficient to consider only fragmentation of
the bits: indeed, the process must involve not only the breakdown
of correlations in the initial distribution, but also, crucially, the
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creation of the correct equilibrium correlations as mandated by
the Gibbs distribution (1.3). Moreover, the process by which an
individual inherits bits from its parents is no longer independent
of the parents, but dictated by a complex function of both parents.

To account for this, we appeal to the information percolation
framework developed by Lubetzky and Sly [13] in the context of
Glauber dynamics for the Ising model. This framework suggests
that we keep track of a “dependence cluster" going back in time,
which records the neighboring spins that have influenced each spin
in our current configuration. In the linear setting of [13], it can be
shown (under a similar high-temperature assumption to ours) that
this cluster is dominated by a subcritical branching process and
thus will die out with large probability: the equilibrium correlations
are then implicitly encoded by the history of this process. The time
until the process dies out gives a bound on the mixing time.

In our nonlinear setting, the dependence clusters are no longer
describable in terms of a simple branching process, but rather by a
new type of process that combines branching with fragmentation, a
process we refer to as “fragmentation plus noise." The first main in-
gredient of our analysis is the precise construction of such a process
and the proof that it encodes the dependence structure of the nonlin-
ear dynamics. The second main ingredient is the proof that, under
the high-temperature assumption maxyey X yev [Jxyl < do, the
fragmentation plus noise process is subcritical and therefore dies
out with large probability on a suitable time scale. To establish this
latter fact, we introduce a non-standard form of “high-temperature
expansion" for the dependence structure obtained by a coupling
with non-uniform Erd8s-Rényi random graphs. We refer the reader
to Section 3 for a more technical high-level description of these
ideas.

1.2 Related Work

Due to space constraints, we refer the reader to the full version of
the paper [5] for a detailed account of related work, including more
background on mass action kinetics, the Boltzmann equation, and
other classes of nonlinear Monte Carlo processes.

1.3 Organization of the Paper

In Section 2 we formally define both of our nonlinear dynamics
and establish some of their basic properties, including a proof of
our convergence result, Theorem 1.1. In Section 3 we analyze the
convergence rate for the nonlinear block dynamics, culminating
in a proof of Theorem 1.3; prior to embarking on the details, we
provide in Section 3.1 a more technical, high-level sketch of our
approach. In Section 4 we apply a similar approach, though substan-
tially different in detail, to analyze the nonlinear Glauber dynamics
and prove Theorem 1.2. We conclude with some additional observa-
tions, extensions and open problems in Section 5. In light of space
constraints, we defer many proofs and technical details to the full
version [5].

2 PRELIMINARIES

2.1 The Ising Model

We recall from the introduction the definition (1.3) of the Ising
model via its Gibbs distribution i y,. Note that we allow arbitrary
edge-dependent interactions J = {/xy }x,yev and arbitrary external
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fields h = {hy }xecy. When all the external fields are zero we write
simply yj. We identify the set of vertices (or sites) V with [n], and

denote the set of spin configurations by Q = {+1} (n]

REMARK 2.1. For simplicity we have taken a model with no bound-
ary conditions. However, there is no difficulty in extending our results
to the case of a Gibbs measure with arbitrary boundary conditions, i.e.,
when the spins in some subset Vo C V are pinned to given values £1.
This generalization is achieved by taking limits hy — oo for all
x € Vp that are pinned to the values +1, respectively.

2.2 The Nonlinear Dynamics

Let P(Q) denote the set of probability measures on Q. We define
the nonlinear (mass action) dynamics as the dynamical system p +—
T: (p), where To(p) = p € P(Q) is the initial distribution, T;(p) €
P (Q) is the distribution after ¢ steps, and T; (p) = T;-1(p) o Tr—1(p).
Here one step of the dynamics is defined, as in equation (1.1) of the
introduction, by

prpopi= Y p@)p(a)Qoo s, (1)

where, for each 0,0” € Q,Q(0,0”; -,-) € P(Q X Q) is a probability
measure satisfying the reversibility condition

w(o)p(oaHQ(o, 0" ; 1,7') = u(n)pu(r")Q(r, v’ ; 0,0"), Yo,0o’, 7,7,

(2.2)
for some p € P(Q) with gy > 0. It will be convenient later to
write (2.1) in the equivalent form

prpopi= ) po)p(a)Q(lad), (23)
o,0’

where, for fixed 0,0’ € Q, the distribution Q(-|0,0”) € P(Q) is
defined by

O(r]o,0’) = Z Q0,0 ; 1, 7).

7€Q

In this paper we take y = yy 1, as the Ising measure (1.3) and consider
two natural choices of the kernel Q that satisfy (2.2), which we now
describe.

(2.4)

2.2.1  Nonlinear Block Dynamics. The first model, which we refer
to as the nonlinear block dynamics, corresponds to interactions in
which a pair of configurations (o, ¢”) exchange their spins at an
arbitrary, randomly chosen subset A C [n] of sites, i.e.,

(0,0") > (0AGhe, TpOAC), (2.5)

where UAO'/'\c denotes the element of Q with entries oy for x € A
and oy, for x € A° = [n] \ A. Here, to ensure reversibility, the set
A is chosen with probability proportional to p(opayc)p(o) opc).
Thus the associated kernel is defined as

B 2Acy ,U(O—AU, c)ﬂ(U;\UAC)lr=UAU;\C 1T,=O-AO-AC

Yacy p(oad (o) oac)

’

Qj(o,0"; 1,7)

(2.6)
Note that transitions of the form (2.5) can only produce pairs (7, 7")
that belong to the equivalence class

C(0,0") = {(oAThc, opoAe), ACV}.

Thus the kernel (2.6) defines a (linear) Markov chain on the pair
space Q X Q that is in general not irreducible, and whose commu-
nicating classes are precisely C(c, o’). Note also that the kernel Qy
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depends on p = pyy, only through the interaction J and is insensi-
tive to the choice of fields h. Indeed, once o, ¢’ are given, then for
any (7,7') € C(0,0’) and (5,1") € C(0,0”) one has

ma(Dpgn(T) pyw (Dpywe ()

o (mMpgn (') pyw (Mpgw (')
Thus, w.l.o.g., we may take h = 0, and p = pj = p1j 9, in the definition
of the kernel (2.6). The kernel @j in (2.6) is an example of a so-called
“folding" transformation [21].

Observe that, for all h € R", the reversibility condition (2.2)
holds in the form

Vhh' e R™.

(@)@ (0,0 s .7) = iy (Dpyu(IQ (5.7 s 0,0,
(2.7)
for all 0,0’, 7,7’ € Q. Thus, for a fixed interaction J, the kernel
Qj is reversible w.r.t. all measures {y5y, h € R"}. In particular, all
these measures are stationary for the dynamics (2.1), i.e.,

Hih©Hph = fgn,  VheER?, (2.8)

as can be easily checked from reversibility.

We note that in the case J = 0, the nonlinear block dynamics
reduces to the uniform crossover model from population genetics
[3, 17]. In this case, the stationary distributions jj, are just product
measures over spins with marginals determined by h.

2.2.2  Nonlinear Glauber Dynamics. In our second model, the con-
figurations o, o’ exchange their spins at a single randomly chosen
site x € [n], i.e.,

(0,0") - (Uxo'fn]\{x}s X0 n]\{x})-

By analogy with the familiar Glauber dynamics (a Markov chain
that updates the spin at one site in each step), we refer to this as
the nonlinear Glauber dynamics. As usual, to ensure reversibility
w.rt. flyh, we need to perform such an exchange with an appropriate
probability ax (a, 0”). Specifically, we use the generic dynamics (2.1)
with the kernel

’ /7 1 ’ ’
Qo0 1,17) = - ZQJ,X(O',O' i1, 7),

xeV

(2.9)

where
Qx(0.0"307) = ax(0,0)rmgr0r | Ar=0lotm)
+(1 = ax (0,0 Nr=c1r=c,
and
(0207 1\ ) H(OXO[m]\ (x})
#(0x0 1\ (o)) H(T%O )\ (x}) + H()p(0”)

ax(o,0’) =

Once again, the Markov chain on pairs Q X Q defined by the kernel
(2.9) is not irreducible, and the kernel Qy depends on y = pyy,
only through the interaction J. As in (2.7)-(2.8), reversibility and
stationarity of all measures pyy, can be easily checked.

2.3 Conservation Laws

In both dynamics defined above, the map p — p o p conserves
the marginal probabilities of spins at every vertex, i.e., for every
x € [n], and for any p € P(Q), one has

(pop)x = px, (2.10)
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where pyx(a) := p(ox = a), a € {—1,1}, denotes the marginal of p
at x. It is convenient to state the following stronger property. Let us
define the commutative convolution product of two distributions
p.q € P(Q) by

pogi=3 3 (p(@)a(e) +p()a(@) O 0,0,

o,0’

(2.11)

where Q is defined by (2.4) and (2.6) for the nonlinear block dy-
namics and by (2.4) and (2.9) for the nonlinear Glauber dynamics,
respectively. Note that the notation (2.11) is consistent with (2.3).

LEMMA 2.2. Both of the above dynamics satisfy

(pogx= % (px + qx)-
In particular, the conservation law (2.10) holds.

The proof, which is deferred to the full version, follows easily from
the fact that, in both dynamics, spins are simply exchanged between
o,0’, as well as from the symmetry of @ w.rt. o,0”.

2.4 The Derivation Tree and Fragmentation

Throughout the paper, the following view of the nonlinear dynamics
will be central. By definition, T; (p) is the result of repeated pairwise
interactions and can be represented as the distribution at the root
of a binary “derivation" tree, where each leaf is equipped with the
distribution p € P(Q), and recursively, starting from the leaves,
each internal node is assigned the distribution p; o pp where p1, p2
represent the distributions assigned to the left and right descendants
of that node; see Figure 1 for a schematic picture of the case t = 2.

(propz2)o(psops)

Piop2

Figure 1: Graphical representation of the distribution (p; o p;) o
(ps3 o pa) at time ¢ = 2 when each leaf i = 1,...,4 is equipped with
distribution p;. When p; = p Vi, the distribution at the root is T (p).

We focus now on the simple case J = 0, i.e., no correlations be-
tween spins. Under block dynamics, the configuration 7 at the root
of the tree (at time t) is constructed according to the random parti-
tion (A, A°) of V, which is equivalent to drawing each spin 7, from
the configuration at the left or right child node with probability %
independently for each site x € V. Continuing down the tree in the
same fashion, we see that each spin at the root is drawn from one
of the 2! leaves (at time 0), independently and uniformly at random.
Thus this process induces a partition of the sites V into 2¢ disjoint
subsets (some of which may be empty), where the fth subset con-
sists of those sites that draw their spin from the configuration at
leaf ¢.

Now let A denote the event that none of the 2! subsets in this
partition contains more than one site; equivalently, each spin in 7 is
drawn from a distinct leaf. We call A the “complete fragmentation”
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event. Note that, conditional on A, the distribution of the config-
uration 7 at the root is just the product 7 := ®ycypx, since there
are no remaining correlations between spins. Hence we may write

Te(p) = v(A) w + v(A) q(1), (2.12)

for some other distribution g(t), where v denotes the uniform dis-
tribution over all 2 — 1 independent random subsets A occurring
in the tree.

We can use (2.12) to obtain an upper bound on the convergence
time for the nonlinear block dynamics when J = 0, as was done
in [17]. First, we claim that v(A°) < (})27". To see this, note that
for any given pair of distinct sites x,y € V, the probability that x, y
are not separated after ¢ levels of the successive partitioning process
is 27, and then take a union bound over pairs. Hence by (2.12),
taking t = O(log(n/¢)) ensures that ||7~}(p) — rxlltv £ &, so the
convergence time is O(log(n/¢)).

For the nonlinear Glauber dynamics with J = 0 a similar analysis
applies, except that now each node in the tree chooses one random
spin from the left child and the remainder from the right child. The
complete fragmentation event A now corresponds to isolating each
of the n bits in this process, which is just a coupon-collecting event
for n = |V| coupons. Thus we have v(A°) < n(1 - %)t < ne~t/n
(where now v denotes the uniform distribution over all 2¢ — 1
independent choices of random spins occurring in the tree), which
by (2.12) implies a convergence time of O(nlog(n/¢)).

When J # 0, so that correlations are present, it is no longer possi-
ble to reduce the analysis of convergence to the fragmentation event,
because in the stationary distribution spins are not independent.
Thus to prove Theorems 1.2 and 1.3 we will need to augment the
simple derivation process above to obtain a more complex process
that we call “fragmentation with noise" (see Sections 3 and 4).

2.5 Convergence to Stationarity

In this subsection we prove convergence of both nonlinear dynam-
ics to the stationary distribution yj, as claimed in Theorem 1.1.

As we have seen, reversibility implies that, for a fixed interaction
matrix J, the Ising measures gy, defined in (1.3) are all stationary,
regardless of the choice of h. In fact, these are the only stationary
distributions, as proved in [4]:

LEMMA 2.3. [4, Lemma 3.2] For both the above dynamics, for any
fixed interaction matrix ], a distribution yu € P(Q) is stationary for
(2.3) if and only if i has the form (1.3) for some choice of the fields h.

We now state a general convergence criterion for reversible mass
action dynamics, based on the notion of irreducibility.

DEFINITION 2.4. We say that an initial distribution p € P(Q) is
irreducible for a given mass action system with kernel Q if there exist
&> 0 andty such that T; (p)(r) > ¢ forallt > ty and all T € Q.

Thus irreducibility says that the trajectory of the dynamics starting
from p eventually remains bounded away from the boundary of
the simplex.

THEOREM 2.5. Suppose the kernel Q is reversible w.r.t. some distri-
bution p > 0 and has non-zero diagonals (i.e, Q(o,0’;0,0”) > 0 for
all 0,0”). Then for any initial distribution p that is irreducible, the
general nonlinear dynamics defined in (1.1) satisfies T;(p) — v as
t — oo, where v > 0 is stationary.

520

Pietro Caputo and Alistair Sinclair

A continuous time version of this convergence criterion is al-
ready known in the reaction networks literature [19] for the wider
class of “complex balanced" mass action systems. In the full version
of this paper [5], we present a self-contained proof in discrete time
for complex balanced systems. The key idea in the proof is to show
that the relative entropy D (T;(p)||v) w.r.t. any stationary v > 0 is
monotonically strictly decreasing unless p is stationary. Moreover,
by standard compactness and continuity arguments, any trajectory
has a convergent subsequence whose limit v is stationary; and, by
irreducibility, it must be the case that v > 0. Finally, we can deduce
that D(T; (p)|lv) — D(v|lv) = 0, giving the required convergence.

In light of Theorem 2.5, to prove convergence it suffices to prove
that our particular mass action systems are irreducible.

We say that a measure p € P(Q) has nondegenerate marginals if
there exists § > 0 such that

min min
x€V ae{-1,+1}

px(a) =26 >0. (2.13)

In what follows we shall assume that the initial distribution p satis-
fies this condition. This is actually no loss of generality since one
can restrict to the nondegenerate spins and consider the degenerate
spins as a fixed boundary condition, or pinning; see Remark 2.1.

LEMMA 2.6. For any Ising interaction matrixJ, any initial distribu-
tion p € P(Q) with nondegenerate marginals is irreducible for both
the nonlinear block dynamics and the nonlinear Glauber dynamics.

We defer the proof of this lemma to the full version. The main
idea of the proof is that every interaction can be decomposed as a
convex combination of a pure product kernel (in which spins are
exchanged between input configurations o, ¢’ independently, i.e.,
according to the J = 0 dynamics) and some other more complex
kernel. Crucially, by virture of the fragmentation analysis in (2.12),
and using (2.13), the product kernel eventually gives rise to a uni-
formly positive distribution, and this property is preserved over all
future times.

We note that Theorem 1.1 provides no quantitative estimate at
all on the rate of convergence to stationarity. In particular, there is
no explicit dependence on the size of the system n. In analogy with
the mixing time analysis for linear Markov chains, in the remainder
of the paper we will study the rate of convergence to equilibrium
under the assumption that the interactions in J are sufficiently weak
(usually referred to as the “high temperature" regime).

3 THE NONLINEAR BLOCK DYNAMICS

Let T;(p), t € N, denote the evolution of the initial distribution p €
P (Q) under the nonlinear block dynamics (2.6). From Theorem 1.1
we know that for any fixed interaction matrix J, and any p € P(Q),
one has the convergence T;(p) — pjp ast — oo, where h is the
unique vector of external fields such that py}, and the initial state
p have the same marginals at x, for all x € V. Our main result for
the nonlinear block dynamics (Theorem 1.3 in the introduction)
establishes a tight bound on the rate of convergence as a function of
the cardinality n = |V|, under the Dobrushin-type high-temperature
condition on the interaction matrix J, namely

m)?x Z |]xy| < do,
yev

(3.1)

for an absolute constant §p > 0.
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3.1 Main Ideas of the Proof

Before embarking on the details of the proof, we give a high level
description of the main steps. By symmetry we may rewrite the
operator (2.11) in the form

(Pop® = p(@q(e") Y ¥(Alo,0 ) rgyor.

ATV
where

p(oaoy e p(onone)
Yacv H(oad))p(aloae)

y(Alo,o’) = (3.2)
Thus, for each 0,0” € Q, y(-| 0, ¢’) is a probability measure over
subsets A C V. It will be convenient to view the distribution
y(- | o, 0”) as a spin system, i.e., a probability measure over spin con-
figurations n € {—1,+1}", by identifying nx = +1 with x € A and
nx = —1 with x ¢ A. Recall that in the non-interacting case J = 0,
the distribution y(- | o, 6”) does not depend on the pair (o, ¢”), and
is simply the product of Bernoulli measures with parameter 1/2. As
described in Section 2.4, the dynamics is then entirely governed by
the fragmentation process that starts with the set V and recursively
splits sets of vertices uniformly at random until it reaches a collec-
tion of singletons. The simple argument given in that section then
gives a convergence time of O(log(n/¢)); see [3, 17] for a detailed
analysis of the non-interacting case.

When there is a nontrivial interaction J # 0, this straightforward
analysis breaks down. Our proof of Theorem 1.3 is based on a cou-
pling argument that allows us to reduce the problem to the analysis
of a more general process in which the fragmentation mechanism
is perturbed by a “local growth" process arising from the correla-
tions inherent in the interactions. The main idea is that if the local
growth is sufficiently sparse, then the underlying fragmentation
dominates and eventually the memory of the initial distribution
(except for the marginals) is lost.

The first step in the proof is to couple the above random vari-
able n with distribution y(- | 0, 0”) with a random subgraph G of
the complete graph K, having a suitable distribution v, i.e., we shall
write

r(loa) =Y v ye(-10.0)),

G

(3.3)

where the sum extends over all possible subgraphs G C K}, and
YG (-] o,0”) is a probability measure on Q for each realization G.
The key features of this coupling are:

e the distribution v does not depend on the pair (o, 0”);
e the distribution yG (- | 0, ") depends on the pair (o, ¢”) only
through the spins

ovg = {ox, x €V5}, oy, = {0k x €V},

where Vi denotes the vertex set of G; and
e under y5(-| 0,0”), the random variables {,, y € V' \ Vg}

are i.i.d. Bernoulli with parameter 1/2.
Actually, it will be crucial that v can be taken to be the inhomoge-
neous Erdés-Rényi random graph with edge weights proportional
to

)ny = eyl _q,

This ensures that, under the assumption (3.1), the graph G will
be sufficiently sparse and the size of the connected components
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will satisfy good tail bounds. Note that the expression (3.3) can be
seen as a form of high-temperature expansion [8] for the measure
y(-| 0, 0’). However, a standard high-temperature expansion would
produce an expression of the form (3.3) with real-valued coefficients
v(G) which depend on (o, ¢”), while it is crucial for our coupling
argument that v be a probability measure independent of (o, c”).

Armed with the coupling (3.3), we consider all 2! — 1 inter-
actions in the derivation tree of Section 2.4 that produce the fi-
nal distribution T;(p). For each interaction we use a realization
of the graph G and we specify a realization B of the Bernoulli
random variables with parameter 1/2 which determine 7, for
y € V \ V. We then compute the resulting distribution. Letting
(é, E) = (G1,B1), ..., (Gyt_q, Byt _1) denote the vector of all such
realizations, we may then write

L(p)= ), WGCB)T(p|G,B),
(G.B)

(3.4)

where V is a suitable distribution over the realizations (5 E) and
T (p| G, E) € P(Q) represents the distribution at time ¢ conditional
on the realizations (é é) The important point here is that v is
independent of the initial conditions, and therefore all correlations
in the initial distribution appear only in the measures T; (p | G, B)
Moreover, the measure v can naturally be interpreted as a stochastic
process that combines fragmentation with local growth.

The second main ingredient in the proof of Theorem 1.3 is the
identification of an event &; for this process, roughly represent-
ing the fact that within time ¢ all fragments have reached their
minimum size, and such that

V(&) 2 1-Anfet! (3.5)
for some absolute constants A, b > 0. The nature of the event &;
will be such that

T,(p|G,B)=T:(p'|G,B), (GB)e& (3.6)

for all p, p’ € P(Q) which have the same marginals at every vertex
x € V. Once these facts are established, (3.4), (3.5) and (3.6) imply
that for any such p, p’ € P(Q) one has

ITe(p) = Te(p)llv < An®e bl

This implies the result of Theorem 1.3 by taking p” = 5.
We now turn to proofs of the various claims sketched above.

3.2 Coupling with Inhomogeneous Erdés-Rényi
Random Graphs

We start by observing that for every fixed 0,0’ € Q, there is an

interaction matrix J = J(o,¢”) such that the set of spins to be

exchanged, y(- | 0, 0”) from (3.2), is itself an Ising Gibbs measure K5

as defined in (1.3).

LEMMA 3.1. Foranyo,o’ € Q, we have y(-|o0,0’) = K> ie.,

y(nlo, O',) oc exp{% Z jxy’]x’?y} s 3.7)

x,yev

neQ,

where the interaction matrixJ = J(o, ') is given by

]xy = 2]xy0'x0'y1xeD(a,o')1y€D(a,a’)
andD(o,0’) ={z €V : 0, # 0}}.
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The proof is an elementary calculation and is deferred.

It follows from Lemma 3.1 that for any fixed pair 0,0’ € Q,if 5 €
Q is distributed according to y (- | o, ¢”), then {1y, x € V\ D(0,0”)}
is the Bernoulli measure with parameter 1/2 and, independently,
{oxhx,x € D(0,0”)} is the Ising measure on D(o, ¢’) with zero
external fields and interaction 2J.

For our purposes, the problem with the representation of y (- | 7, o)
in Lemma 3.1 is that it is structurally highly dependent on the config-
urations o, o’ through the set D(c, ¢”). Our goal in this subsection
is to formulate an alternative representation, in Lemma 3.2 below,
that overcomes this problem.

Let G be the set of all subgraphs of the complete graph K,, over
V C [n] with isolated vertices removed, and write (&) for the
set of probability measures over G. Thus G € G can be viewed
as a collection of unordered pairs {x,y} for x,y € V. Note that
G € G need not be connected and can be the empty graph (with
no vertices). We write Vg, Eg for the vertex and edge set of G € G,
respectively.

LEMMA 3.2. Let vy be the inhomogeneous Erd6s-Rényi measure
associated with the weights /lxy = etlhyl — 1, ie.,

11(G) o ]—[ (e*lhvl 1) (3.8)

{x.y}€Eg
Then

v(lo,0") = D" v(G) o (-l ove, o) ® Beyyy, (3),
Geg

where, for any G € G, pg (- | ovg, U(/G) is a probability measure on

{~1,+1}V6 that depends on 0,0’ only through the spins oy, a{,C

andBey\y,, (%) is the Bernoulli probability measure on {—1,+1 JAALCH
which assigns independently the values +1 with probability 1/2 to
each x € V' \ Vig. Moreover, the probability measure jg (- | oy, 0{,6)
has the product structure

k
IlG(‘ | O.VG’O.(/G) = ®j=1 ,uGi(‘ | O.VGL"O.{/Gi)’

where Gy, . .., Gy are the connected components of G.

We defer the rather technical proof of this lemma to the full
version [5].

So far we have not used the weak interaction assumption (3.1),
so Lemma 3.2 holds for arbitrary coefficients Jx,. Next, we observe
that the condition (3.1) implies a strong sparsity property of the
measure vj in Lemma 3.2. From the definition (3.8), this measure is
the inhomogeneous Erdés-Rényi random graph where each edge
e = {x,y}, x,y € V, is included independently with probability

Py = 1— ekl (3.9)
In particular, using (e* —1)e™* < z for z > 0, one has Pxy < 4|]xy|,
and if (3.1) holds, then for any x € V,
VJ(VG 3x) < Z Pxy < 46).
Y y#£x

Moreover, if §y is sufficiently small in (3.1), then for any given x € V
the size of the connected component of G at x has an exponential
tail. We make this precise in Lemma 3.6 below.
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3.3 Fragmentation with Noise

We now develop the main construction behind the convergence
result in Theorem 1.3. It is based on a perturbed fragmentation
process, i.e., a process that combines the random fragmentation of
the non-interacting case (as described in Section 3.1) with some
competing noise represented by the random graphs encoding de-
pendencies.

Given aset A C [n] and arandom graph G € G with distribution
vy as in Lemma 3.2, we define the random set A’ as the vertex set of
the union of all connected components of G that have non-empty
intersection with A. More formally, write G = UleGi where G;j are
the connected components of G and let

G(A) = U Gi.
i:VGiﬁA¢0

Then we set A" = V(4). We may sample A’ starting from A by a
breadth-first search, i.e., by revealing sequentially for each x € A
the neighborhood of x in G, then recursively the neighborhood of
each vertex revealed at the previous step, and so on until there are
no more neighbors to reveal. Clearly, A’ may contain sites that are
not in A. However, if x € ANV then x ¢ A IFA\ A # 0, for
every x € A\ A’, we independently declare x to be in or out by a
fair coin flip. We thus obtain two random sets Aj, and Agyt, such
that
Ajn UAout = A \ A > Ajn N Aout = 0.
Next, for any A C [n], we define two sets @ (A), P1(A) by

Do(A) =Dy (A) =0, if |A| <1, (3.10)

and
Do(A) = A" UAy, ©1(A) =A"UAy, if |JA| >2. (3.11)

DEFINITION 3.3. The fragmentation plus noise process 73, t =
0,1,... is the random process defined as follows. For each t € N,
F+ consists of 2! labeled fragments, i.e., (possibly empty) subsets

Flm, . .,Fz(f), Fi(t) C [n], obtained by repeated application of the
following rule. At time zero we have ¥y = [n], i.e., Fl(o) = [n]. At time

teN, iffq = (Fl(t_l), . ..,F(t_l)), then for each i independently,

2t=1
we replace Fl.(t_l) by (<I>0(Fi(t_1)), CI>1(Fi<t_l))) where ®y, ®1 are the
random maps defined by (3.10)~(3.11), so that

7= (FD.. D)
= (@(F"™ D), @y (FUD), L oo (FS), @0 (FESY))

2t-1 2t-1
We say that the process dies out if there is a time t such that all

fragments are empty, i.e., Fi(t) =0 foralli=1,...,2". With slight
abuse of notation, we write F; = (0 for the latter event.

REMARK 3.4. In the non-interacting caseJ = 0 one has pxy = 0
for all {x,y}, and thus A’ = 0, ®9(A) = Ap, P1(A) = Aout and
A = (Dg(A), P1(A)) is one step of a pure fragmentation process,
where the set A is partitioned into two subsets using independent
fair coin flips for each vertex. In this case Fl.(t) N F;t) = 0 for all

ij=1,...,2¢ and for all t € N. In particular, it is not hard to see
that in this case

P(F: #0) <n(n-1)271%, t=1,2... (3.12)
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Indeed, by construction ¥; # 0 implies that there exist two vertices
x,y € [n] that belong to the same fragment up to timet — 1. Thus
(3.12) follows as in the analysis in Section 2.4. In the interacting case,
there is a first stage where the set A grows according to the local
branching at every x € A, and the fragmentation occurs only on those
vertices that have an empty neighborhood in G. Our main technical
result below establishes that the fragmentation plus noise process also
satisfies a bound of the form (3.12), with a slightly weaker exponential
decay rate, provided (3.1) holds for a suitably small 6y > 0.

LEMMA 3.5. Forany § € (0, 1), there exists 8y > 0, and a constant
Cs > 0 such that if (3.1) holds with constant &y then

P(F; # 0) < n’Cs (2-08)"¢, r=1,2,...

ProoF. The event ¥; # 0 implies that there exists a fragment
Fi(t_l) at time ¢ — 1 that has cardinality |Fl.(t_1)| > 2. Indeed, by
construction, if all fragments have size at most 1 at time ¢ — 1, then
F7 = 0; see (3.10). Since there are 2/~! fragments at time ¢ — 1, and
since all the Fi(t_l) have the same distribution, by a union bound it
suffices to show that for any § € (0, 1),

JP(|F1(H)| >2) <n’Cs(4-6)7"%, t=1,2,..., (3.13)

provided (3.1) holds with a sufficiently small §y > 0. To prove (3.13)
we shall use a stochastic domination argument that bounds the
evolution of the fragment Fl( t=1)
labeled branching processes.

Consider n independent processes XY := {Xfy, t=01,...}
y € [n], such that for each y € [n], XY is the labeled branching
process with Xoy = {y} and such that, at time ¢ € N, each individual
with label x in the (¢ — 1)-th generation independently gives birth
to the set of individuals U C [n] with offspring distribution

%(1 - Px)
26eg V1(G) 1g(x)=U

,t > 1 by means of independent

U= U= :
0 or {x},(3.14)
Ul =2,

px(U) = {
where G(x) denotes the connected component of G containing x
and, for any x € [n],

l_[ (1-pxz) = Z v1(G) 1G(x)20
ze[n]\{x} Geg
is the probability that x has a non-empty neighborhood in the
random graph defined by (3.9). Notice that by definition either
G(x) is empty or |G(x)| > 2, and therefore (3.14), for any x € [n],
defines a probability measure on subsets of [n]: a sample U from
Hx is obtained by first sampling the neighborhood G(x) from vy; if
|G(x)| = 2 then we set U = G(x); if G(x) = 0 then we flip a fair
coin and set U = 0 if heads and U = {x} if tails.

Let NY(¢) denote the size of the whole population of the labeled
branching process XY at time ¢t — 1, i.e., the total number of indi-
viduals generated up to time ¢ — 1. The proof of Lemma 3.5 is based
on the following bound on the exponential moment of the random
variable NY(t), whose proof is deferred to the full version of the

paper.

px =1-—

LEMMA 3.6. Foralla € (0,1), there exists & > 0 and Cg > 0 such
that if (3.1) holds with constant &y then, for ally € [n] and allt € N,

E[2°N'()] < ¢,
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Now denote by X ;/ the set of all individuals generated at the ¢-th

step, i.e., the £-th generation of the process XY, and let |X [y| denote
its cardinality. With this notation, an inspection of the definition of

(z-1)
Fy

the fragmentation plus noise process shows that is stochas-

tically dominated by the union of the X¥’s, i.e., {Fl([_l), t € N}
and the independent processes {XY, y € [n]} can be coupled so
that, forany £ =1,2,...,

-1
s 3 XL
ye([n]

(3.15)

The main observation at this point is that the event |F1(t_ b | = 2,by

the definition of fragmentation plus noise, implies that |F1([_1) | >2

forall 1 < ¢ < t, which by the domination (3.15) implies that at all
times 1 < ¢ <t — 1 one has

2

IX/| > 2.
yeln]

For this to happen there must be two processes XY, X* and a
time s < ¢ such that both XY, X? are alive up to time s and such
that XY has at least two individuals in each generation from time
s + 1 to time t — 1. For example, taking s = ¢ — 1, this includes the
case where both XY, X are alive up to time ¢ — 1, while taking s = 0
it includes the case where all processes die at the first time step,
except for XY which has |X{,y| >2forall1 < ¢ <t—1 Werefer to
Figure 2 for an illustrative example.

Figure 2: Illustration of the event in (3.16). The dashed line repre-
sents a time s up to which both processes XV and X* have cardinality
at least 1 and after which the process XY has cardinality at least 2.

Using the independence of XY, X# and the union bound, one has
the estimate

(V| 2 2)

<

y,z€[n] s=0

(3.16)

t-1

P(IX/|>1,Yo<t<s,IX]/| 22, Vs<t<t)
XP(IXf| 21, Vo< £<5s).

Letting NY(t) denote the size of the whole population of XY up to
time t — 1, one has

t t—1
NY(t) = Z X =1+ Z Ix71.
=1 =1

We note that for any s > 0, the event {|X;/| >1, VO < ¢ <s}
implies NY(s + 1) > s + 1, and the events {|X[y| >1,V0<¢<s}
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and {|Xt,y| > 2, Vs < ¢ < t} together imply
NY(t)=2(t—-s—1)+s+1=2t—-s—1.

Therefore, for any fixed a € (0, 1), from Lemma 3.6 and Markov’s
inequality, we obtain that each term in the sum in (3.16) is bounded
by Cg 2724t Tp conclusion, we deduce that

P(F V| > 2) < n?r 22724,

Since a can be taken arbitrarily close to 1, this proves the desired
estimate (3.13) by taking t272% < (4 — §)~* for all ¢ large enough
and adjusting the value of the constant Cg in order to cover all
values of t € N. This completes the proof of Lemma 3.5. ]

3.4 Proof of Theorem 1.3

We now have the tools to conclude the proof of Theorem 1.3, our
main result for nonlinear block dynamics. Recall the construction
of T; (p) in terms of the binary derivation treein Section 2.4.

By the invariance property (2.8), the target measure yjp, can be
obtained at the root by taking the distribution yy} on each leaf.
Thus, Theorem 1.3 says that when each leaf is given a distribution p
with the same marginals as yij, the two distributions T; (p) and pj
can be coupled with an error at most Cn?e~¢* for any t. We shall
actually prove the following stronger result. Let p = (py, ..., por)
and ¢ = (q1, . . ., qot) be arbitrary vectors of distributions in P (Q)
whose marginals on oy at all sites x agree, i.e., p;, q; € P(Q) satisfy

(Pi)x = (Pj)x = (q)x = (¢j)x (3.17)

Let T;(p) (resp., T;(§)) denote the distribution at the root of the
binary tree of depth ¢, where the leaflabeled i = 1, .. ., 2! is equipped
with the distribution p; (resp., q;); recall Figure 1 for the case ¢t = 2.

ij=1,...,2" xeV.

Tueorem 3.7. There exist absolute constants 69 > 0, ¢ > 0 and
C > 0 such that, if (3.1) holds with constant &y then for any choice of
initial distributions p, q as in (3.17),

IT:(P) = Te(§llrv < Cne™¢F,

Clearly, Theorem 3.7 implies Theorem 1.3 since we may take
pi =p € P(Q) and g; = yyp,, where the external fields h are chosen
in such a way that p and yj, have the same marginals.

We shall prove Theorem 3.7 by analyzing the interaction history
backwards in time, i.e., from the root to the leaves. This is remi-
niscent of the coupling from the past approach for linear Markov
chains [16], and to some extent our proof is inspired by ideas that
have been developed in that context. In particular, our proof is
related to the information percolation framework developed by
Lubetzky and Sly in [13].

Each internal node of the tree is associated with an interaction.
For each such interaction we reveal the realization of the graph G
and of the Bernoulli variables B in V'\ V;; that are used in sampling
the random set A with distribution y(- | o, ¢’); see Lemma 3.2. In
this way, starting from the root, we have a pair (G, B), G € G and
a subset B C V' \ Vg is identified with the set where 1, = +1 for
x € V'\ V. Suppose the descendants of the root have distributions
p and q respectively, as in Figure 3. Then, according to Lemma 3.2,
the distribution at the root is given by

poq = Z v(G,B)T(p,q|G,B),
(G.B)

reN. (3.18)
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where v(G, B) = 2-IV\Val vj(G), and, for every realization (G, B),
T(p,q| G, B) € P(Q) is the distribution

T(p,q1G,B)(r) =
D1 p(0)a(0) Y 161 10V, 0h,) Lee (o0 v B) -

y
0,0 nvg

(3.19)

Here, for 7 € Q, the notation 7 ~ (o, o’, Vg, B) is shorthand for

Tx =0x, XEV:ne=+1

(3.20)
x€EV:ine=-1

T~ (o, 6',17VG,B) & { i
Tx = 0,
with the understanding that the value of 7 on V' \ V;; is specified
by BC V\Vg,ie,ny=+1forye Bandny =-1fory ¢ B.
ForeveryG € G,y (- | o, cr"/G) depends on (o, ¢’) only through
(ovg> 0{,6), and for every ny, € {-1,1}'6, 7 € {-1,1}" and
B C V' \ Vg, the condition (3.20) depends on (o, ¢’) only through

{ox, x € Vg UB}, {0y, x € Vg U ((V\Vs)\B)}.

Therefore, to compute the distribution T(p, q | G, B) we only need
the marginals py,up and qy,up’, where B’ = (V \ V) \ B. Note
that we may identity Vg U B with the set ®([n]) and Vg U B’
with the set ®;([n]), where ®¢, ®; are the maps defined in (3.11).
Indeed, by definition of the measure vy, these random sets have
the same distribution since, when A = [n], Vi is equivalent to
A’ and B is equivalent to Ay,. One way to rephrase this is to say
that, as far as the distribution T(p, q | G, B) is concerned, the only
relevant information about the distribution p is contained in the set
®([n]) and the only relevant information about the distribution ¢
is contained in the set ®1([n]).

Figure 3: Graphical representation of the distribution at the
root, when ¢ = 2 and the leaves are equipped with distributions
p’.q.p"”.q" . Each internal node is equipped with a realization of the
random pair (G,B), where G € Gand BC V \ V.

Next, we move one step backwards in time and consider the
interaction which produced the distribution p from the previous
computation. Suppose that p’, ¢’ are the distributions at the two
descendants of p respectively, so that p = p’ o¢/, as in Figure 3. Sup-
pose we revealed the realization (G’, B”) of the graph and Bernoulli
variables associated with this interaction. Note that we can use
the same expressions (3.19)-(3.20) to compute T(p’, ¢’ | G’, B'), pro-
vided we replace (p, q) by (p’,q") and (G, B) by (G’, B’). However,
the key point is that we now only need the marginal of p on the
set ®9([n]), and therefore when we compute T(p’,q’ | G’, B')(7)
as above we can sum away all 7y, y € ®o([n]) so that the indicator
function (3.20) is relevant only for sites x € &y ([n]), and the dis-
tribution of 775, x € Vg N ®o([n]), under pg' (- | o, O'{/G,) is only
influenced by the spins oy, a; fory € G’ (®o([n])), where we recall
that G’ (A) is the union of all connected components of G’ that have
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nonempty intersection with a set A. The latter property is a key con-
sequence of the product structure of the measure yg' (- | oy, 0{,@ ),
see Lemma 3.2. Hence we can neglect all connected components
of G’ that do not intersect ®y([n]) and we can discard the infor-
mation about all Bernoulli variables at sites y € V' \ V5 such that
y & ®o([n]). A close inspection of our definition of the maps @ and
®; then reveals that the only information about the distributions
p’, ¢ that is needed to compute T(p’, ¢’ | G’, B’) is contained in the
mATgInaLS Pl g, (1)) 219 s, @y (1))

Similarly, considering the interaction which produced the distri-
bution g = p”’ oq”’ (see Figure 3), we may fix a realization (G’/, B’")
of the graph and Bernoulli variables and, repeating the above rea-
soning, one has that the only information about the distributions
p”,q"” thatis needed to compute T(p”’,q”’ | G”’, B””) is contained in
the marginals p&)’o@l([n])) and qgl @ ([n])’ Thus after two steps
of the evolution, conditional on the realizations of the variables
(G, B), (G',B’), (G"”,B"), we have obtained a probability measure
at the root depending only on (G, B), (G, B’), (G”",B"")

Pay (@ ([n1))) 901 (@0 ([n])) Poo (@1 ([n]))’ D01 (@1 ([n]))"
Equivalently, using the notation introduced in Definition 3.3, after
two steps we have that correlations of the initial distributions at
the leaves are entirely contained in the fragments

¥ = (FI(Z)’FZ(Z),F?EZ)’FiZ))

= (o (®o([n])), @1(Po([n])), Po(P1([n])), P1(P1([n]))).
ExAMPLE 3.8. Consider the following simple example with n = 4.
Suppose G = {{1,2}}, i.e., G consists of the single edge {1,2} and
suppose that B = 0, i.e., both 3 and 4 are out. This gives Fl(l)
Qo ([n]) = {1.2}, Fz(l) ®1([n]) = {1,2,3,4}. Suppose also that
G’ = {{3,4}}, and B’ = {1}. Thus F.?) = {1}, and F{®) = {2}.
Suppose finally that G’ = 0, B” = {1,2}. Then F3(2) ={1,2}, and
F®

4
steps

= {3,4}. Thus, one has the following fragmentation after two
Fo=11,2,3,4},
F1=({1,2},{1,2,3,4}),
F2 = ({1} {2}, {12}, {3,4}).

Note that in this example, conditional on the given realizations of the
variables (G, B), (G’, B’), and (G”’, B”"), the distribution p o q at the
root in Figure 3 can be computed only using the marginals

@1y (@23 07 (1,230 (@) 3.4y
of the input distributions p’,q’, p”’, q"’.

Repeating the above procedure one has that, after ¢ steps, con-
ditional on the realizations of all graphs and Bernoulli variables
involved in all 2* — 1 interactions, the only information needed from
leaf i is contained in the marginal of the distribution at that leaf on
the fragment Fl.(t), for each i = 1,...,2¢, as defined in Definition
3.3. The crucial observation is that, as soon as a fragment becomes
either empty or contains one site only, then the information carried
by the corresponding leaf is irrelevant. Indeed, if it is empty this
is obvious, while if it contains one site only then the marginal at
that site is irrelevant since all marginals are fixed. This explains
why we introduced the killing step (3.10) in our definition of the

525

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

fragmentation plus noise process ¥z, which in turn is crucial to the
probability of extinction we are able to establish in Lemma 3.5.
The above discussion shows that, if we denote by

(é, E) = (G(l)’B(l), . .’G(Zt—l),B(zl_l))

the vector of realizations of the random graphs and Bernoulli vari-
ables involved in each interaction at the 2! — 1 internal nodes of
the binary tree of depth ¢, one can write
L) = ), WG.BTL(5|G.B)
(G.B)
where 2t-1
(G, B) = I_[ VJ(G(i)) 2~ IV\Ven |

i=1

(3.21)

is the distribution of the random graphs and Bernoulli variables,
while T; (7 | G, B) is some probability measure that may depend on
(é E) and on p = (p1,..., py) in a complicated way but has the
property that its dependence on the distribution p; from the i-th
leaf occurs only through the marginal of p; on the fragment Fi(t),
In particular, if 7; = 0, ie, Fl.(t) = ( for all i, then Tt(f)> | é, B) =
T;(§| G, B). Thus we have
2.

IT:(P) - T(Plltv < (G, B).
(G.B)¢{F:=0}

Next, we note that

2

(G.B)#{F:=0)
where the latter is the probability estimated in Lemma 3.5. Indeed,
(3.22) is a consequence of our definition of the fragmentation plus
noise process: we have already observed that each step of the frag-
mentation

9G.B)=P(F: #0), teN, (322

FY — @o(F{ ), (R

is produced with the correct distribution, and the product structure
(3.21) of the measure 7(G, B) guarantees that all such steps are
performed independently. From Lemma 3.5 we thus conclude that,
for any § € (0,1), there exists a constant §y > 0 in (3.1), and a
constant Cs > 0 such that

IT:(P) - Te(@ v < n*Cs (2-8)7",

This implies (3.18) (and in fact shows that we can take the constant
c as close as we wish to log 2 provided §y is taken suitably small).
This ends the proof of Theorem 3.7 and thus also of Theorem 1.3. O

t=12,...

4 NONLINEAR GLAUBER DYNAMICS

In this section we prove Theorem 1.2, a O(nlogn) bound on the
convergence time for the nonlinear Glauber dynamics. The proof
follows a similar overall strategy to that of Theorem 1.3, but with
some significant technical differences. Due to lack of space, we defer
the proof to the full version and list here only the main differences.
First, the coupling of the spin exchange process with inhomoge-
neous Erdés-Rényi graphs in Section 3.2 is replaced by a coupling
with inhomogeneous random star graphs centered at a site x. This
reflects the fact that only a single spin is updated at each step, so
the dependencies in the dynamics are restricted to its neighbors.
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Second, in the single-site dynamics, the fragmentation event
becomes the event that every site is hit at least once (i.e., all spins
have been updated), which is just coupon collecting. Thus the
“fragmentation with noise" process of Section 3.3 is replaced by
“coupon collecting with noise", where the noise again models the
growth of dependencies, governed now by the random star graphs.

Finally, as in Section 3, if (3.1) holds with sufficiently small &y,
the resulting branching process can be shown to be subcritical. The
proof of this fact is again quite technical and involves a detour into
continuous time branching processes.

5 REMARKS AND OPEN QUESTIONS

We conclude by briefly mentioning some interesting directions for
further research, along with some additional observations.

(1) Can we prove exponential decay (even with an exponentially
bad dependence on n) for the nonlinear Ising dynamics for arbitrary
interactions J, without the high-temperature condition? Recall that
we did prove convergence for arbitrary J in Theorem 1.1, but unlike
its analogs for linear Markov chains our proof apparently gives
no useful rate information. It is in fact possible that the rate of
convergence is polynomial for arbitrary J, though of course the
high-temperature methods we use, based on limiting the spread of
dependencies, will not work there.

(2) Can our high-temperature condition maxx 2 yev [Jxyl < do
be relaxed to an optimal value for §y, in particular in the case of
the complete graph (mean-field or Curie-Weiss model)? Here all
interactions Jxy = /n, and f# = 1 marks the phase transition. Thus
one might hope to sharpen our results to require only §y < 1 in
this case. One might also hope to replace the #; condition on J by a
spectral condition, as in recent work by Chen and Eldan [6].

(3) Asmentioned in the introduction, our results for the Ising model
generalize to any spin system with a constant number of spins at
each vertex and bounded pairwise interactions, including the g-state
Potts model, under an analogous Dobrushin-type condition (3.1). (In
that condition, the sum is now over the maximum absolute values
of all interactions involving any given site x.) This follows from
the fact that, as can readily be checked, the representation of the
measure y(- | 0,0”) in terms of a two-spin system as described in
Lemma 3.1 still holds in this more general setting, and beyond that
point the rest of the analysis depends only on that representation.

(4) In contrast to linear Markov chains, nonlinear dynamics do not
immediately provide an efficient algorithm for sampling from the
stationary distribution, even when the convergence time is short:
to obtain a single sample from the time-¢ distribution T; (p), we
would naively need to simulate the entire derivation tree of depth ¢,
beginning with 2 independent random samples from p at the leaves.
However, for both of the dynamics we consider here, our analysis
does in fact provide a polynomial time algorithm for sampling from
the stationary distribution yyy,. This is immediately obvious for
the nonlinear block dynamics: since Theorem 1.3 establishes that
t = O(log n) steps are enough for convergence, the entire tree is of
polynomial size and thus can be constructed in polynomial time.
(A detail here is that each interaction in the tree requires sampling
the set of sites A to be exchanged according to the distribution (3.7).
However, this itself is a high-temperature Ising Gibbs measure, and
thus can be sampled from efficiently by other means.)
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An interesting related question is whether a more explicit simu-
lation is possible: namely, starting with a finite population of size
N = poly(n) sampled independently from the initial distribution p,
evolve it via interactions between randomly chosen pairs. The finite
population introduces statistical deviations from T; (p) that need
to be controlled. (This process, which is actually a Markov chain
on a very large state space, is known as the “Kac model" in kinetic
theory [12], and the convergence to the true population is referred
to as “propagation of chaos".) In the non-interacting (population ge-
netics) case, it was shown that a low-degree polynomial population
size does in fact suffice [3, 17]. It would be interesting to see if this
argument can be extended to the Ising model at high temperatures.
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