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Abstract: We introduce and analyze a natural class of nonlinear dynamics for spin
systems such as the Ising model. This class of dynamics is based on the framework of
mass action kinetics, which models the evolution of systems of entities under pairwise
interactions, and captures a number of important nonlinear models from various fields,
including chemical reaction networks, Boltzmann’s model of an ideal gas, recombination
in population genetics and genetic algorithms. In the context of spin systems, it is a natural
generalization of linear dynamics based on Markov chains, such as Glauber dynamics and
block dynamics, which are by now well understood. However, the inherent nonlinearity
makes the dynamics much harder to analyze, and rigorous quantitative results so far
are limited to processes which converge to essentially trivial stationary distributions
that are product measures. In this paper we provide the first quantitative convergence
analysis for natural nonlinear dynamics in a combinatorial setting where the stationary
distribution contains non-trivial correlations, namely spin systems at high temperatures.
We prove that nonlinear versions of both the Glauber dynamics and the block dynamics
converge to the Gibbs distribution of the Ising model (with given external fields) in times
O(n log n) and O(log n) respectively, where n is the size of the underlying graph (number
of spins). Given the lack of general analytical methods for such nonlinear systems, our
analysis is unconventional, and combines tools such as information percolation (due
in the linear setting to Lubetzky and Sly), a novel coupling of the Ising model with
Erdős-Rényi random graphs, and non-traditional branching processes augmented by a
“fragmentation” process. Our results extend immediately to any spin system with a finite
number of spins and bounded interactions.
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1. Introduction

Mass action kinetics is a general framework for studying systems of interacting entities.
The framework emerged in the study of chemical reaction networks, dating back at least
to the seminal work of Horn and Jackson in the 1970s [29], and has seen a resurgence
of activity in recent years; see the monograph [23]. However, it also captures a wide
range of processes that are of interest in other fields, including Boltzmann’s model of
an ideal gas [7], classical models of population genetics [27,54], genetic algorithms in
combinatorial optimization [25,38], and random sampling [44,47].

We describe mass action kinetics in the special case where all interactions are pair-
wise and homogeneous; this captures most of the complexity of general systems while
keeping notation and technicalities to a minimum. Let � denote a finite set of types.
A (quadratic) mass action system is described by a directed graph whose vertices are
ordered pairs of types (Ã, Ã ′), and a directed edge from (Ã, Ã ′) to (Ä, Ä ′) indicates the
presence of a reaction in which types Ã, Ã ′ combine to produce types Ä, Ä ′. Reactions
involving a specific pair (Ã, Ã ′) are governed by a collision kernel Q(Ã, Ã ′ ; · , · ), where
Q(Ã, Ã ′ ; Ä, Ä ′) is the probability that the outcome of the reaction is the pair (Ä, Ä ′). We
assume throughout the symmetry property Q(Ã, Ã ′ ; Ä, Ä ′) = Q(Ã ′, Ã ; Ä ′, Ä ).

The state of the system at any time t is fully described by the vector pt , where pt (Ã )

is the mass of type Ã at time t , normalized so that
∑

Ã∈� pt (Ã ) = 1 (i.e., the pt (Ã ) can
be viewed as concentrations, or probabilities). The initial state is denoted p0. According
to the so-called “mass action" principle, each reaction (Ã, Ã ′) → (Ä, Ä ′) takes place at
a rate determined by the product of the current masses of types Ã, Ã ′. The dynamics of
the system is described by the following set of equations,1 one for each type Ä ∈ �:

pt+1(Ä ) =
∑

Ã,Ã ′,Ä ′

pt (Ã )pt (Ã
′)Q(Ã, Ã ′ ; Ä, Ä ′). (1.1)

At this level of generality such systems can be arbitrarily badly behaved (e.g., chaotic),
so it is necessary to impose standard regularity conditions. A mass action system is said
to be reversible2 or detailed balanced if there exists a strictly positive mass vector
μ = (μ(Ã )) > 0 such that

μ(Ã)μ(Ã ′)Q(Ã, Ã ′ ; Ä, Ä ′) = μ(Ä)μ(Ä ′)Q(Ä, Ä ′ ; Ã, Ã ′), ∀ Ã, Ã ′, Ä, Ä ′. (1.2)

It is easy to check that any such μ is necessarily an equilibrium or stationary point for
the dynamics (1.1). A mass action system may have many positive equilibrium points,
but it is known (see, e.g., [23], and also Proposition 2.10 in this paper) that if any one of
them satisfies the detailed balance condition then they all do. We stress that we do not

require the kernel Q to be irreducible (i.e., the directed graph describing it need not be
strongly connected).

The mass action system defined in (1.1) above can be viewed as a natural nonlin-
ear analog of a reversible Markov chain, whose dynamics takes the form pt+1(Ä ) =∑

Ã pt (Ã )Q(Ã ; Ä), where now Q(Ã ; Ä) is the transition matrix of the chain and the re-
versibility condition is μ(Ã)Q(Ã ; Ä) = μ(Ä)Q(Ä ; Ã) for all Ã, Ä . In the linear setting,

1 We give the dynamics in discrete time here; a continuous time version, in which the Q(Ã, Ã ′ ; · , · ) are
reaction rates can be defined analogously in the obvious way.

2 In the mass action kinetics literature, the term “reversible" has unfortunately been used to denote the
weaker property that Q(Ã, Ã ′ ; Ä, Ä ′) �= 0 iff Q(Ä, Ä ′ ; Ã, Ã ′) �= 0, whereas in physics reversibility is syn-
onymous with detailed balance. In this paper, we shall use the terms “detailed balanced" and “reversible"
interchangeably to denote the stronger condition (1.2).
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there are well known criteria for convergence to stationarity and there is by now a vast
literature on mixing times of reversible Markov chains and their algorithmic applications
to sampling, approximate counting and integration, statistical physics, etc. By contrast,
in the nonlinear setting even the most basic questions are still open: for example, the
Global Attractor Conjecture [23] asserts that any detailed balanced3 mass action system
converges to a stationary point when started from any initial point p0 with full support.
(In fact many stationary points may exist, but only one is consistent with any given
initial condition p0.) And even in particular cases of interest where convergence has
been proved, almost nothing is known about the rate of convergence (the analog of the
mixing time for Markov chains).

In the discrete combinatorial setting, one of very few examples for which useful
bounds on the convergence rate are known is the classical Hardy-Weinberg model of
genetic recombination [27,54]. Here the types are bit strings � = {0, 1}n (each bit
representing an allele on a chromosome), and a reaction between two strings Ã, Ã ′

involves picking a “crossover" subset � ⊆ {1, . . . , n} of positions according to some
probabilistic rule and exchanging the bits in � between Ã and Ã ′ to obtain two new strings
Ä, Ä ′. (For example, one classical rule is to pick i ∈ {0, . . . , n} u.a.r. and let � consist
of the first i bits.) It is well known that this dynamics converges to the distribution μ

in which all bits are independent, with the marginal probabilities of a 1 at each position
given by those in the initial distribution p0. In [11,43], the rate of convergence was
related precisely to the rate at which the strings are fragmented by the repeated random
cuts �, thus enabling very precise estimates of the convergence time for any choice of
crossover rule.

The above analysis relies crucially on the fact that in the equilibrium distribution all
bits are independent. When there is even a small amount of correlation, there appear to
be no techniques available to obtain useful bounds on convergence rates. In this paper,
we address this question for arguably the most natural example in which correlations
arise, namely the Ising model of statistical physics. Here the types are spin configurations
Ã ∈ � = {±1}V which assign one of two possible spin values ±1 to each vertex of a
graph G = (V, E). The Gibbs distribution is given by

μJ,h(Ã ) =
1

ZJ,h

exp

{
1

2

∑

x,y∈V

JxyÃxÃy +
∑

x∈V

hxÃx

}
, (1.3)

where h = {hx }x∈V is a vector of real numbers whose entry hx represents the external

field at vertex x , and J = {Jxy}x,y∈V is a symmetric real matrix whose entry Jxy

represents the interaction between spins at adjacent vertices x, y. (When there is no
edge between x and y, Jxy = 0.) The normalizing factor ZJ,h is the partition function.
Note that we allow the interactions Jxy to be either positive (ferromagnetic) or negative
(antiferromagnetic), and the fields hx to be either positive (favoring +1 spins) or negative
(favoring −1 spins). Setting J = β A, where β > 0 and A is the adjacency matrix of G,
corresponds to the standard ferromagnetic Ising model on G at inverse temperature β.
We emphasize that, while for simplicity we develop our results for the specific case
of the Ising model, they hold equally for any spin system with a constant number of
different spins and bounded pairwise interactions (such as the q-state Potts model); see
Sect. 5 for more detail.

3 Actually, this property is conjectured to hold under the weaker condition known as “complex balance"
[23]; see also Sect. 2.6.
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The classical Glauber dynamics for the Ising model picks a random vertex x ∈ V at
each step and resamples the spin at x according to the correct conditional distribution
given its neighboring spins; this Markov chain converges to the Gibbs distribution (1.3)
from any initial configuration. The analogous nonlinear mass action kinetics is defined
by equation (1.1) with the following kernel: Given two configurations Ã, Ã ′, pick a
random vertex x and exchange the spins Ãx , Ã

′
x , obtaining two new configurations Ä, Ä ′.

The transition probabilities Q(Ã, Ã ′ ; Ä, Ä ′) are chosen to satisfy the detailed balance
condition (1.2), where μ = μJ,h is the Gibbs distribution. We emphasize that, in contrast
to Glauber dynamics, here the system is evolving endogenously via pairwise interactions
between configurations, rather than via exogenously applied spin updates. Our first result
shows that this dynamics converges to the Gibbs distribution (1.3), where the fields h

are determined by the marginal probabilities of the spins at each vertex in the initial
distribution. (The fact that the marginals determine a unique vector of fields h follows
from standard convexity arguments; see, e.g., [18].)

Theorem 1.1. Let pt denote the distribution at time t for the above mass action kinetics

for the Ising model with interactions J starting from any initial distribution p0, and let h

be the unique choice of external fields such that the marginal spin probabilities at each

vertex x ∈ V in μJ,h are the same as those in p0. Then pt converges to μJ,h as t →∞.

Note that, unlike the standard Glauber dynamics, the nonlinear dynamics has con-
served quantities—namely, the marginal probabilities of the spins at each vertex—and
the values of these conserved quantities determine which of the family of stationary
points the dynamics converges to. This phenomenon is typical in mass action kinetics.
The key to our proof of Theorem 1.1, which is based on an earlier argument in [44] (see
Remark 2.12), is establishing an irreducibility property, namely that along any trajectory,
the probability of any configuration eventually remains uniformly bounded away from
zero.

We pause to briefly mention some features of mass action kinetics that make its anal-
ysis much more complex than that of Glauber dynamics, and which explain the lack
of quantitative convergence results. First, as noted above, there are in general multiple
equilibrium points, which are characterized by conserved quantities. Second, in contrast
to the linear case, the total variation distance to stationarity is not monotonically decreas-
ing (see [10, Remark 2.7]) and there are no simple coupling arguments to rely upon.
Finally, the nonlinearity means that we do not have at our disposal a spectral theory and
other functional analysis tools that have proved so powerful in the analysis of Markov
chains. As usual in kinetic theory, a natural way to study convergence to stationarity
here is to use relative entropy, which provides a monotonically decreasing functional;
however, quantitative analysis of this quantity is a notoriously difficult problem in the
nonlinear setting, which has so far been solved only in the non-interacting case (genetic
recombination) [11,12].

Our main result establishes tight bounds on the rate of convergence for this nonlinear
dynamics in the so-called “high-temperature" regime, when the interactions are non-
trivial but relatively weak. Specifically, the condition we require is that maxx∈V

∑
y∈V

|Jxy | ≤ ·0 for some absolute constant ·0 > 0, i.e., the aggregated strength of all
interactions at any given vertex is not too large. This condition mirrors the standard
Dobrushin condition for Glauber dynamics, which gives a non-trivial sufficient condition
for rapid mixing (see, e.g., [55]). We state this result in the following theorem.

Theorem 1.2. In the scenario of Theorem 1.1, with the additional assumption that

maxx∈V

∑
y∈V |Jxy | ≤ ·0 for an absolute constant ·0 > 0, the rate of convergence
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of pt to μJ,h is given by

‖pt − μJ,h‖TV ≤ Cne−ct/n

for absolute constants C, c > 0, where ‖ · ‖TV denotes total variation distance. Thus in

particular the time required to achieve variation distance ¸ is t = O(n log(n/¸)).

We note that this upper bound on convergence time is (up to constants) the same as
for the analogous version of the genetic recombination model discussed above (where
just a single allele is exchanged between the strings at each step) [43], and is therefore
also tight by virtue of the lower bound in the same paper. That model is equivalent to the
trivial case of the Ising model in which there are no interactions (Jxy = 0 for all x, y),
with the hx determined by the marginal probabilities at each allele x (and the spins ±1
identified with the bits 1, 0). However, as we explain in Sect. 1.1 below, the correlations
present in the Ising model make the analysis much more challenging.

We also consider a “block" version of the nonlinear dynamics, in which Ã, Ã ′ ex-
change their spins at a random subset � ⊆ V of vertices (rather than just at a single
randomly chosen vertex). The kernel Q(Ã, Ã ′ ; Ä, Ä ′) is again determined by the detailed
balance condition (1.2), and the basic convergence result in Theorem 1.1 still holds. Un-
der the same Dobrushin-type condition on the interactions as in Theorem 1.2, we again
obtain a tight bound on the convergence rate:

Theorem 1.3. With the same notation and assumptions as in Theorem 1.2, the variation

distance of the block version of the mass action kinetics for the Ising model satisfies

‖pt − μJ,h‖TV ≤ Cn2e−ct

for absolute constants C, c > 0. Thus in particular the time required to achieve variation

distance ¸ is t = O(log(n/¸)).

Note that convergence here is exponentially faster than in the single-vertex version of
Theorem 1.2, reflecting the fact that this version is non-local and changes large portions
of the configurations at each step. Again, the bound of Theorem 1.3 matches the lower
bound for zero interaction [43].

We stress that the goal of this paper is not to design an efficient algorithm for sampling
configurations of the Ising model. Such algorithms, based on standard linear Glauber
dynamics, are already known throughout the high-temperature regime. Rather, our goal
is to analyze the rate of convergence of a natural nonlinear dynamics, for the first time
in a model with correlations. We view this as a first step towards a better understanding
of such dynamics and the techniques needed to understand them; in addition to their
inherent interest, these techniques may lead to algorithmic applications in future. Our
work can be viewed as an extension of the successful application of a TCS lens in the
analysis of mixing times of linear dynamics (Markov chains), which, as is well known,
has seen both mathematical and algorithmic applications over many years. However,
we should point out that our convergence analysis in Theorems 1.2 and 1.3 actually
does yield polynomial time sampling algorithms based on simulation of the respective
nonlinear dynamics. We outline these algorithms, together with some associated open
questions, in Sect. 5 at the end of the paper.

We also point out a further interesting algorithmic aspect of our results. Recall that
our nonlinear processes sample from an Ising Gibbs measure μJ,h, where the fields h are
determined implicitly by the marginals at each site. It is these marginals (not the fields)
that are specified by the initial distribution p0. (As far as we are aware, all existing
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sampling algorithms for the Ising model require the specification of the fields h rather
than the marginals.) Thus our processes can be viewed as a novel, direct method for
constructing a maximum entropy distribution subject to these marginal constraints, an
important problem in its own right (see, e.g., [47]). Additionally, our processes can be
used to learn the fields h corresponding to given marginals, an inverse problem that
is also of independent interest (see [40] for a survey of such inverse problems): given
samples from μJ,h produced by the nonlinear dynamics, standard methods can be used
to infer the field vector h.

1.1. Techniques. We begin by describing the earlier approach of [43] to analyzing the
rate of convergence of the simpler population genetics dynamics, which corresponds to
the trivial case of the Ising model with no interactions (J = 0). Since the equilibrium
distribution here consists of independent bits, the analysis is relatively straightforward
once one observes the following insight. The derivation of an individual Ã at time t can
be viewed as a binary tree going backwards in time, in which each individual inherits a
random subset of its bits from each of its two parents according to the random crossover
subset �. We may therefore follow the derivation of the n bits in Ã back in time, until
each of these bits is derived from a distinct individual at time 0. At that point we can
deduce that the bits of Ã are independently sampled from their respective marginal
distributions, so Ã is in equilibrium. The analysis therefore reduces to the question of
how many steps are needed until all the n bits are separated, or “fragmented", under
the repeated action of partition by the random crossover subset �, which in turn is a
straightforward combinatorial calculation. (See Sect. 2.4 for a more detailed description
of this process.)

In the case where correlations are present in the equilibrium distribution, as in the
Ising model, the above analysis breaks down because it is no longer sufficient to consider
only fragmentation of the bits: indeed, the process must involve not only the breakdown
of correlations in the initial distribution, but also, crucially, the creation of the correct
equilibrium correlations as mandated by the Gibbs distribution (1.3). Moreover, the
process by which an individual inherits bits from its parents is no longer independent of
the parents, but dictated by a complex function of both parents.

To account for this, we appeal to the information percolation framework developed
by Lubetzky and Sly [35] in the context of Glauber dynamics for the Ising model. This
framework suggests that we keep track of a “dependence cluster" going back in time,
which records the neighboring spins that have influenced each spin in our current con-
figuration. In the linear setting of [35], it can be shown (under a similar high-temperature
assumption to ours) that this cluster is dominated by a subcritical branching process and
thus will die out with large probability: the equilibrium correlations are then implicitly
encoded by the history of this process. The time until the process dies out gives a bound
on the mixing time.

In our nonlinear setting, the dependence clusters are no longer describable in terms
of a simple branching process, but rather by a new type of process that combines branch-
ing with fragmentation, a process we refer to as “fragmentation plus noise." The first
main ingredient of our analysis is the precise construction of such a process and the
proof that it encodes the complex dependence structure of the nonlinear dynamics.
The second main ingredient is the proof that, under the high-temperature assumption
maxx∈V

∑
y∈V |Jxy | ≤ ·0, the fragmentation plus noise process has a subcritical behav-

ior and therefore dies out with large probability on a suitable time scale. To establish
this latter fact, we introduce a non-standard form of “high-temperature expansion" for
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the dependence structure obtained by a coupling with non-uniform Erdős-Rényi random
graphs. We refer the reader to Sect. 3.1 for a more technical high-level description of
these ideas.

1.2. Related work. The framework of mass action kinetics was first introduced in the
chemical reaction networks literature, most notably in the landmark paper of Horn and
Jackson [29]. The dynamics defined in (1.1) above, generalized to allow interactions
between arbitrary numbers of types, models chemical processes in an obvious way.
The recent monograph of Feinberg [23] describes the state of the art in the area. While
almost nothing is known about rates of convergence, much effort has been devoted to a
proof of the Global Attractor Conjecture mentioned earlier; indeed, the original paper
[29] contained this as a theorem, but the authors later retracted it and restated it as
a conjecture [28]. Since then there have been numerous attempts at a proof, including
recent papers that handle various special cases, typically based on rather severe structural
conditions on the set of reactions (such as forming a single connected component)—see,
e.g., [1,2,19,21,26,41]. The Conjecture remains open.

Several other important classes of dynamics fit into the mass action framework, the
most classical of which is Boltzmann’s model of an ideal gas [7], where the types are
momentum values of the molecules and interactions correspond to (randomized) colli-
sions between pairs of them.4 In this case the dynamics (1.1) is the so-called Boltzmann

equation, which remains a major object of study in mathematical physics today (see [51]
for a survey). Another famous example is Hardy-Weinberg recombination in population
genetics, as described earlier. The same dynamics can also be used to model the “recom-
bination" step in genetic algorithms [25,38], where two (or more) candidate solutions to
a combinatorial optimization problem are combined to produce new solutions; here the
mass action dynamics is typically combined with a “selection" operator that weeds out
less desirable solutions. The viewpoint taken in this paper, where mass action kinetics
are viewed as a nonlinear version of the Markov chain Monte Carlo method for sampling
combinatorial structures from a given distribution, was first proposed in [44] and later
explored in a different context in [47]. Negative results on the worst-case computational
complexity of simulating mass action kinetics were derived in [4]. Mass action kinetics
resembles certain more refined MCMC approaches that are used in practice for numer-
ical simulations of spin systems such as the Ising model, including replica Monte Carlo
[48], parallel tempering [31] and—most closely—cluster Monte Carlo [30]; these are
in fact linear dynamics, but because they update a set of configurations in a dependent
way, they can be viewed as approximate finite realizations of nonlinear dynamics.

As discussed earlier, there are almost no quantitative results on the rate of convergence
of mass action kinetics in combinatorial settings, the main exception being genetic
recombination [11,12,43]. There is a vast and still evolving literature on convergence
rates of the Boltzmann equation (see, e.g., [20,32,37,51]), which however is tailored to
the specifics of that model and does not seem to generalize.

Finally we mention the more general class of so-called “nonlinear Markov chains",
which (in discrete time) are stochastic processes (X t ) in which the distribution of X t

depends not only on the previous state X t−1 but also (in an arbitrarily complex way) on the
distribution of X t−1. (Mass action kinetics as discussed above is a particular example
where the dependence is quadratic.) This class was formally introduced by McKean
[36], who studied the continuous time version and its deep relationships to nonlinear

4 Here the set of types is continuous rather than discrete, as in our setting.
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parabolic equations, including the Boltzmann equation, and other kinetic models. These
nonlinear systems arise naturally as the limit of large finite mean-field particle systems
through the so-called “propagation of chaos" [8,13–17,32,33,37,49,52]. Several works
have been devoted to the development of nonlinear Markov chain Monte Carlo methods
[3,9,22,39,45,53], but in contrast with the classical (linear) Markov chain framework,
quantitative results on convergence to stationarity are very limited and difficult to obtain.

1.3. Organization of the paper. In Sect. 2 we formally define both of our nonlinear
dynamics and establish some of their basic properties, including a proof of a general
convergence result, Theorem 2.8, which we then use to prove Theorem 1.1. In Sect. 3 we
proceed with our quantitative analysis of the convergence rate for the nonlinear block
dynamics, culminating in a proof of Theorem 1.3; prior to embarking on the details,
we provide in Sect. 3.1 a more technical, high-level sketch of our approach. In Sect. 4
we apply a similar approach, though substantially different in detail, to analyze the
nonlinear Glauber dynamics and prove Theorem 1.2. We conclude with some additional
observations, extensions and open problems in Sect. 5.

2. Preliminaries

2.1. The Ising model. We recall from the introduction the definition (1.3) of the Ising
model via its Gibbs distribution μJ,h. Note that we allow arbitrary edge-dependent
interactions J = {Jxy}x,y∈V and arbitrary external fields h = {hx }x∈V . When all the
external fields are zero we write simply μJ. We identify the set of vertices (or sites) V

with [n], and denote the set of spin configurations by � = {±1}[n].

Remark 2.1. For simplicity we have taken a model with no boundary conditions. How-
ever, there is no difficulty in extending our analysis and results to the case of a Gibbs
measure with arbitrary boundary conditions, i.e., when the spins in some subset V0 ⊆ V

are pinned to given values ±1. This generalization can be easily achieved by taking
limits hx →±∞ for all x ∈ V0 that are pinned to the values ±1, respectively.

2.2. The nonlinear dynamics. Let P(�) denote the set of probability measures on �, and
P+(�) ⊆ P(�) the set of measures with full support, i.e. p ∈ P+(�) iff p(ω) > 0 for
all ω ∈ �. We consider nonlinear (mass action) dynamics {pt }t≥0 on the set of types �

as defined in (1.1) of the introduction, with some kernel Q satisfying the symmetry
Q(Ã, Ã ′ ; Ä, Ä ′) = Q(Ã ′, Ã ; Ä ′, Ä ). We shall also assume that Q satisfies the reversibility
condition

μ(Ã)μ(Ã ′)Q(Ã, Ã ′ ; Ä, Ä ′) = μ(Ä)μ(Ä ′)Q(Ä, Ä ′ ; Ã, Ã ′), ∀ Ã, Ã ′, Ä, Ä ′, (2.1)

for some μ ∈ P+(�).

We view this dynamics as a dynamical system p �→ Tt (p), where T0(p) = p ∈ P(�)

is the initial distribution, Tt (p) ∈ P(�) is the distribution after t steps, and Tt (p) =
Tt−1(p) ◦ Tt−1(p). Here one step of the dynamics is defined, as in (1.1), by

p �→ p ◦ p :=
∑

Ã,Ã ′,Ä ′

p(Ã )p(Ã ′)Q(Ã, Ã ′ ; Ä, Ä ′). (2.2)
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It will be convenient later to write (2.2) in the equivalent form

p �→ p ◦ p :=
∑

Ã,Ã ′

p(Ã )p(Ã ′)Q(· | Ã, Ã ′), (2.3)

where, for fixed Ã, Ã ′ ∈ �, the distribution Q(· | Ã, Ã ′) ∈ P(�) is defined by

Q(Ä | Ã, Ã ′) :=
∑

Ä ′∈�

Q(Ã, Ã ′ ; Ä, Ä ′). (2.4)

In this paper we take μ = μJ,h as the Ising measure (1.3) and consider two natural
choices of the kernel Q that satisfy (2.1), which we now describe.

2.2.1. Nonlinear block dynamics The first model, which we refer to as the nonlinear

block dynamics, corresponds to interactions in which a pair of configurations (Ã, Ã ′)

exchange their spins at an arbitrary, randomly chosen subset � ⊆ [n] of sites, i.e.,

(Ã, Ã ′) �→ (Ã ′�Ã�c , Ã�Ã ′�c), (2.5)

where Ã�Ã ′�c denotes the element of � with entries Ãx for x ∈ � and Ã ′x for x ∈ �c =
[n]\�. Here, to ensure reversibility, the set � is chosen with probability proportional to
μ(Ã ′�Ã�c )μ(Ã�Ã ′�c ). Thus the associated kernel is defined as

QJ(Ã, Ã ′ ; Ä, Ä ′) =

∑
�⊆V μ(Ã ′�Ã�c )μ(Ã�Ã ′�c)1Ä=Ã ′�Ã�c 1Ä ′=Ã�Ã ′

�c∑
A⊆V μ(Ã ′AÃAc )μ(ÃAÃ ′Ac )

. (2.6)

Note that transitions of the form (2.5) can only produce pairs (Ä, Ä ′) that belong to the
equivalence class

C(Ã, Ã ′) =
{
(Ã ′�Ã�c , Ã�Ã ′�c ), � ⊆ V

}
.

Thus the kernel (2.6) defines a (linear) Markov chain on the pair space � × � that
is in general not irreducible, and whose communicating classes are precisely C(Ã, Ã ′).
Note also that the kernel QJ depends on μ = μJ,h only through the interaction J

and is insensitive to the choice of fields h. Indeed, once Ã, Ã ′ are given, then for any
(Ä, Ä ′) ∈ C(Ã, Ã ′) and (η, η′) ∈ C(Ã, Ã ′) one has

μJ,h(Ä )μJ,h(Ä ′)

μJ,h(η)μJ,h(η′)
=

μJ,h′(Ä )μJ,h′(Ä
′)

μJ,h′(η)μJ,h′(η
′)

, ∀ h, h′ ∈ R
n .

Thus, w.l.o.g., we may take h = 0, and μ = μJ = μJ,0, in the definition of the
kernel (2.6). The kernel QJ in (2.6) is an example of a so-called “folding" transformation
[50].

Observe that, for all h ∈ R
n , the reversibility condition (2.1) holds in the form

μJ,h(Ã )μJ,h(Ã ′)QJ(Ã, Ã ′ ; Ä, Ä ′) = μJ,h(Ä )μJ,h(Ä ′)QJ(Ä, Ä
′ ; Ã, Ã ′), (2.7)

for all Ã, Ã ′, Ä, Ä ′ ∈ �. Thus, for a fixed interaction J, the kernel QJ is reversible w.r.t.
all measures {μJ,h, h ∈ R

n}. In particular, all these measures are stationary for the
dynamics (2.2), i.e.,

μJ,h ◦ μJ,h = μJ,h , ∀ h ∈ R
n, (2.8)

as can be easily checked from reversibility.
We note that in the case of zero interactions, i.e., J = 0, the nonlinear block dynamics

reduces to the uniform crossover model from population genetics [12,43]. In this case,
the stationary distributions μJ,h are just product measures over spins with marginals
determined by h.
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2.2.2. Nonlinear Glauber dynamics In our second model, the configurations Ã, Ã ′ ex-
change their spins at a single randomly chosen site x ∈ [n], i.e.,

(Ã, Ã ′) �→ (Ã ′xÃ[n]\{x}, ÃxÃ
′
[n]\{x}).

By analogy with the familiar Glauber dynamics (a Markov chain that updates the spin at
one site in each step), we refer to this as the nonlinear Glauber dynamics. As usual, to
ensure reversibility w.r.t. μJ,h, we need to perform such an exchange with an appropriate
probability αx (Ã, Ã ′). Specifically, we use the generic dynamics (2.2) with the kernel

QJ(Ã, Ã ′ ; Ä, Ä ′) =
1

n

∑

x∈V

QJ,x (Ã, Ã ′ ; Ä, Ä ′), (2.9)

where

QJ,x (Ã, Ã ′ ; Ä, Ä ′) := αx (Ã, Ã ′)1Ä=Ã ′x Ã[n]\{x}1Ä ′=Ãx Ã ′[n]\{x}
+ (1− αx (Ã, Ã ′))1Ä=Ã 1Ä ′=Ã ′ ,

and

αx (Ã, Ã ′) :=
μ(Ã ′xÃ[n]\{x})μ(ÃxÃ

′
[n]\{x})

μ(Ã ′xÃ[n]\{x})μ(ÃxÃ
′
[n]\{x}) + μ(Ã)μ(Ã ′)

.

Once again, the Markov chain on pairs �×� defined by the kernel (2.9) is not irreducible,
and the kernel QJ depends on μ = μJ,h only through the interaction J. As in (2.7)-(2.8),
reversibility and stationarity of all measures μJ,h can be easily checked.

2.3. Conservation laws. In both dynamics defined above, the map p �→ p◦ p conserves
the marginal probabilities of spins at every vertex, i.e., for every x ∈ [n], and for any
p ∈ P(�), one has

(p ◦ p)x = px , (2.10)

where px (a) := p(Ãx = a), a ∈ {−1, 1}, denotes the marginal of p at x . It is convenient
to state the following stronger property. Let us define the commutative convolution
product of two distributions p, q ∈ P(�) by

p ◦ q :=
1

2

∑

Ã,Ã ′

(
p(Ã )q(Ã ′) + p(Ã ′)q(Ã )

)
Q(· | Ã, Ã ′), (2.11)

where Q is defined by (2.4) and (2.6) for the nonlinear block dynamics and by (2.4) and
(2.9) for the nonlinear Glauber dynamics, respectively. Note that the notation (2.11) is
consistent with (2.3).

Lemma 2.2. Both of the above dynamics satisfy

(p ◦ q)x =
1
2

(px + qx ).

In particular, the conservation law (2.10) holds.
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Proof. The proof is a consequence of the fact that, in both dynamics, spins are simply
exchanged between Ã, Ã ′, as well as the symmetry of QJ. For the kernel (2.6) we compute

∑

Ä,Ä ′

QJ(Ã, Ã ′ ; Ä, Ä ′)1Äx=a =

∑
�⊆V μ(Ã ′�Ã�c )μ(Ã�Ã ′�c )(1Ã ′x=a,��x + 1Ãx=a,� ��x )

∑
A⊆V μ(Ã ′

A
ÃAc )μ(ÃAÃ ′

Ac )

= 1Ãx=a +

∑
�⊆V μ(Ã ′�Ã�c )μ(Ã�Ã ′�c )(1Ã ′x=a − 1Ãx=a)1��x∑

A⊆V μ(Ã ′
A
ÃAc )μ(ÃAÃ ′

Ac )
.

By symmetry,

1

2

∑

Ä,Ä ′

(
QJ(Ã, Ã ′ ; Ä, Ä ′) + QJ(Ã

′, Ã ; Ä, Ä ′)
)
1Äx=a =

1

2
(1Ãx=a + 1Ã ′x=a).

In conclusion,

(p ◦ q)x (a) =
1

2

∑

Ã,Ã ′

(
p(Ã )q(Ã ′) + p(Ã ′)q(Ã )

)
Q(· | Ã, Ã ′)

=
1

2

∑

Ã,Ã ′

p(Ã )q(Ã ′)
∑

Ä,Ä ′

(
QJ(Ã, Ã ′ ; Ä, Ä ′) + QJ(Ã

′, Ã ; Ä, Ä ′)
)
1Äx=a

=
1

2

∑

Ã,Ã ′

p(Ã )q(Ã ′)(1Ãx=a + 1Ã ′x=a) =
1

2
(px (a) + qx (a)). (2.12)

This proves the lemma for the nonlinear block dynamics. To prove it for the nonlinear
Glauber dynamics, observe that in this case by (2.9) one has

∑

Ä,Ä ′

QJ(Ã, Ã ′ ; Ä, Ä ′)1Äx=a = 1Ãx=a +
1

n
αx (Ã, Ã ′)(1Ã ′x=a − 1Ãx=a).

By the symmetry αx (Ã, Ã ′) = αx (Ã
′, Ã ),

1

2

∑

Ä,Ä ′

(
QJ(Ã, Ã ′ ; Ä, Ä ′) + QJ(Ã

′, Ã ; Ä, Ä ′)
)
1Äx=a =

1

2
(1Ãx=a + 1Ã ′x=a),

and the conclusion follows as in (2.12). ��

2.4. The derivation tree and fragmentation. Throughout the paper, the following view
of the nonlinear dynamics will be central. By definition, Tt (p) is the result of repeated
pairwise interactions and can be represented as the distribution at the root of a binary
“derivation" tree, where each leaf is equipped with the distribution p ∈ P(�), and
recursively, starting from the leaves, each internal node is assigned the distribution p1◦p2

where p1, p2 represent the distributions assigned to the left and right descendants of that
node; see Fig. 1 for a schematic picture of the case t = 2.

We focus now on the simple case J = 0, i.e., no correlations between spins. Under
block dynamics, the configuration Ä at the root of the tree (at time t) is constructed
according to the random partition (�,�c) of V , which is equivalent to drawing each spin
Äx from the configuration at the left or right child node with probability 1

2
, independently

for each site x ∈ V . Continuing down the tree in the same fashion, we see that each spin
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Fig. 1. Graphical representation of the distribution (p1 ◦ p2) ◦ (p3 ◦ p4) at time t = 2 when each leaf
i = 1, . . . , 4 is equipped with distribution pi . When pi = p ∀i , the distribution at the root is T2(p)

at the root is drawn from one of the 2t leaves (at time 0), independently and uniformly
at random. Thus this process induces a partition of the sites V into 2t disjoint subsets
(some of which may be empty), where the �th subset consists of those sites that draw
their spin from the configuration at leaf �.

Now let A denote the event that none of the 2t subsets in this partition contains
more than one site; equivalently, each spin in Ä is drawn from a distinct leaf. We call A

the “complete fragmentation" event. Note that, conditional on A, the distribution of the
configuration Ä at the root is just the product π := ⊗x∈V px , since there are no remaining
correlations between spins. Hence we may write

Tt (p) = ν(A) π + ν(Ac) q(t), (2.13)

for some other distribution q(t), where ν denotes the uniform distribution over all 2t −1
independent random subsets � occurring in the tree.

We can use (2.13) to obtain an upper bound on the convergence time for the nonlinear
block dynamics when J = 0, as was done in [43]. First, we claim that ν(Ac) ≤

(
n
2

)
2−t .

To see this, note that for any given pair of distinct sites x, y ∈ V , the probability that
x, y are not separated after t levels of the successive partitioning process is 2−t , and
then take a union bound over pairs. Hence by (2.13), taking t = O(log(n/¸)) ensures
that ‖Tt (p)− π‖TV ≤ ¸, so the convergence time is O(log(n/¸)).

For the nonlinear Glauber dynamics with J = 0 a similar analysis applies, except that
now each node in the tree chooses one random spin from the left child and the remainder
from the right child. The complete fragmentation event A now corresponds to isolating
each of the n bits in this process, which is just a coupon-collecting event for n = |V |
coupons. Thus we have ν(Ac) ≤ n(1− 1

n
)t ≤ ne−t/n (where now ν denotes the uniform

distribution over all 2t − 1 independent choices of random spins occurring in the tree),
which by (2.13) implies a convergence time of O(n log(n/¸)).

When J �= 0, so that correlations are present, it is no longer possible to reduce
the analysis of convergence to the above simple fragmentation process, because the
mechanism by which a configuration inherits spins from its parents depends on the
actual configurations at the parent nodes. Thus to prove Theorems 1.2 and 1.3 we will
need to augment the simple derivation process above to obtain a more complex process
that we call “fragmentation with noise" (see Sects. 3 and 4).

2.5. Irreducibility. Next we establish a rough lower bound on the probability of any
configuration after a sufficiently long time. This observation will be key to our proof
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of convergence in the next subsection. We note that the lack of such a lower bound is
the principle obstacle to proving the Global Attractor Conjecture for general reversible
mass action systems.

The following definition captures the desired property.

Definition 2.3. We say that an initial distribution p ∈ P(�) is irreducible for a given
mass action system with kernel Q if there exist ¸ > 0 and t0 such that Tt (p)(Ä ) ≥ ¸ for
all t ≥ t0 and all Ä ∈ �.

Thus irreducibility says that the trajectory of the dynamics starting from p eventually
remains bounded away from the boundary of the simplex. Note that, under this definition,
irreduciblity is a property of initial distributions: i.e., for a given kernel Q, some initial
distributions may be irreducible while others are not.

In what follows we shall assume that the initial distribution p of our dynamical system
has nondegenerate marginals, by which we mean that there exists · > 0 such that

min
x∈V

min
a∈{−1,+1}

px (a) ≥ · > 0. (2.14)

This is actually no loss of generality since one can otherwise restrict to the nondegenerate
spins and consider the degenerate spins as a fixed boundary condition, or pinning; see
Remarks 2.1 and 2.11.

Lemma 2.4. For any interaction matrix J, any initial distribution p ∈ P(�) with non-

degenerate marginals is irreducible for both the nonlinear block dynamics and the non-

linear Glauber dynamics.

Proof. Let us first consider the nonlinear block dynamics (2.6). We note that for a fixed
interaction matrix J ∈ R

n×n , there exists a constant ·J > 0 such that

μJ(Ã )μJ(Ã
′) ≥ ·J , ∀ Ã, Ã ′ ∈ �.

(Recall that QJ,h = QJ does not depend on h, so since we are discussing a property
of QJ we may take h = 0.) It follows from (2.6) that

QJ(Ã, Ã ′ ; Ä, Ä ′) = ·J 2−n
∑

�⊆V

1Ä=Ã ′�Ã�c 1Ä ′=Ã�Ã ′
�c

+ (1− ·J)Q̂J(Ã, Ã ′ ; Ä, Ä ′),

where, for each Ã, Ã ′, Q̂J(Ã, Ã ′ ; ·, ·) ∈ P(�×�) is some probability distribution that
we do not need to describe explicitly. Therefore, from (2.3),

(p ◦ p) = ·J2−n
∑

�⊆V

(p� ⊗ p�c) + (1− ·J)�̂(p), (2.15)

where (p� ⊗ p�c)(Ä ) = p�(Ä�)p�c(Ä�c ) denotes the product of marginals of p on �,
�c, and �̂(p) ∈ P(�) is some new distribution. We may interpret (2.15) as saying that
the outcome of each interaction is, with probability (at least) ·J, equal to the factorized
distribution p� ⊗ p�c , where � is chosen u.a.r. among all subsets of V . Now note that
the map p �→ 2−n

∑
�⊆V p�⊗ p�c corresponds to one step of the block dynamics when

J = 0. Writing T̃t (p) for the t-step evolution of this J = 0 dynamics, and noting from
the tree representation that the construction of Tt (p) involves N := 2t − 1 interactions,
we may rewrite (2.15) as

Tt (p) = ·N
J T̃t (p) + (1− ·N

J )T̂t (p), (2.16)
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where T̂t (p) ∈ P(�) is again some other distribution that we will not describe.
To complete the argument, we appeal to the analysis of the J = 0 case from the

previous subsection. Specifically, we use equation (2.13) together with the analysis of the
complete fragmentation event A, which implies that ν(A) ≥ 1

2
for t ≥ t0 = �2 log2 n�,

to deduce that T̃t0(p)(Ä ) ≥ 1
2
π(Ä) for all Ä ∈ �. Here π is the stationary distribution

for the J = 0 case, which is just the product π := ⊗x∈V px , and the assumption (2.14)
implies π(Ä) ≥ ·n for all Ä . Plugging these observations into (2.16) gives

Tt0(p)(Ä ) ≥ 1
2

·
N0

J ·n , ∀ Ä ∈ �, (2.17)

where N0 = 2t0 − 1. This proves the claim for t = t0 with ¸ = 1
2

·
N0

J ·n . To prove it
for all t ≥ t0, observe that if t ≥ t0 then Tt (p) = Tt0(Tt−t0(p)). Since by Lemma 2.2,
Tt−t0(p) has the same marginals as p, we can apply the bound (2.14) to Tt−t0(p) with
the same constant ·. Using (2.17) with p replaced by Tt−t0(p) yields Tt (p)(Ä ) ≥ ¸ with
the same ¸ for all t ≥ t0. This completes the proof of the lemma for the nonlinear block
dynamics.

To prove it for the nonlinear Glauber dynamics we follow the same reasoning. We
first observe that for some ·J > 0 one has

αx (Ã, Ã ′) ≥ ·J, ∀ x ∈ V, Ã, Ã ′ ∈ �

and therefore (2.15) now takes the form

p ◦ p = ·J
1

n

∑

x∈V

px ⊗ p[n]\{x} + (1− ·J)�̂(p),

for some new measure �̂(p) ∈ P(�). We may again write the expression (2.16), where
now T̃t (p) is the t-step evolution of the J = 0 nonlinear Glauber dynamics, p �→
px ⊗ p[n]\{x} with x ∈ V chosen uniformly at random. (Incidentally, it is interesting to

note that, in contrast with the block dynamics, the process T̃t (p) here is actually linear
in p, since the marginals px are constants of the motion.)

Following the same reasoning as above, again using equation (2.13) from the previous
subsection together with the analysis of the complete fragmentation event A (which in
this case corresponds to coupon-collecting) leads to ν(A) ≥ 1

2
for t ≥ t0 = n�1+log n�,

which in turn with the assumption (2.14) implies T̃t0(p)(Ä ) ≥ ·n/2 for all Ä ∈ �. It
follows that

Tt0(p)(Ä ) ≥ 1
2

·
t0
J ·n , ∀ Ä ∈ �.

The desired conclusion for all t ≥ t0 follows as in the block dynamics case. ��

Remark 2.5. For (linear) Markov chains, an irreducibility statement as in Lemma 2.4
immediately implies exponential convergence to stationarity (at some possibly very
slow rate). For the nonlinear dynamics considered here, however, it is an open question
whether this holds. We will see in the next subsection that Lemma 2.4 is enough to
ensure convergence, though without any information about the rate; one reason why this
may be delicate is the fact that, for our nonlinear dynamics, the total variation distance
to stationarity is in general not monotonically decreasing [10, Remark 2.7]. However,
our main results (Theorems 1.2 and 1.3 in the introduction) do imply exponential con-
vergence in the high-temperature regime (i.e., when the interactions in J are sufficiently
weak).
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2.6. Convergence to stationarity. As we have seen, reversibility implies that, for a fixed
interaction matrix J, the Ising measures μJ,h defined in (1.3) are all stationary, regardless
of the choice of h. In fact, these are the only stationary distributions, as proved in [11]:

Lemma 2.6. [11, Lemma 3.2] For both the above dynamics, for any fixed interaction

matrix J, a distribution μ ∈ P(�) is stationary for (2.3) if and only if μ has the form (1.3)
for some choice of the fields h.

We now address the convergence result claimed in Theorem 1.1 in the introduction,
which we restate here more formally.

Theorem 2.7. Fix an interaction matrix J. For any initial distribution p ∈ P(�) with

nondegenerate marginals, both the nonlinear block dynamics and the nonlinear Glauber

dynamics satisfy the convergence

‖Tt (p)− μJ,h‖TV → 0 ast →∞,

where h is the unique choice of external fields such that μJ,h and p have the same

marginals, i.e., (μJ,h)x = px for all x ∈ V .

We will prove Theorem 2.7 as a consequence of a more general convergence theorem
(Theorem 2.8 below), together with the irreducibility property established in Lemma 2.4.

Our general convergence theorem is based on the following more abstract framework
for mass action kinetics. Given a finite space of types �, consider the nonlinear mass
action dynamics Tt (p) ∈ P(�) defined by Tt (p) = Tt−1(p) ◦ Tt−1(p), T0(p) = p,
where the collision operator ◦ is defined as in (2.2), and Q is now a generic probability
kernel on �×�, i.e., Q(Ã, Ã ′; Ä, Ä ′) ≥ 0 for all Ã, Ã ′, Ä, Ä ′ ∈ � and

∑

Ä,Ä ′∈�

Q(Ã, Ã ′; Ä, Ä ′) = 1, ∀ Ã, Ã ′ ∈ �.

As always we assume the mild exchange symmetry property

Q(Ã, Ã ′ ; Ä, Ä ′) = Q(Ã ′, Ã ; Ä ′, Ä ). (2.18)

Indeed, as a consequence of (2.18), we may actually assume w.l.o.g. that Q satisfies the
additional symmetries

Q(Ã, Ã ′; Ä, Ä ′) = Q(Ã, Ã ′; Ä ′, Ä ) = Q(Ã ′, Ã ; Ä, Ä ′), ∀ Ã, Ã ′, Ä, Ä ′ ∈ �.

(2.19)

To see this, note that because of the symmetry of the factor p(Ã )p(Ã ′) in the dynam-
ics 2.2, one can always replace Q in (2.2) by the symmetrized kernel

Q̄(Ã, Ã ′; Ä, Ä ′) =
1

2
(Q(Ã, Ã ′; Ä, Ä ′) + Q(Ã ′, Ã ; Ä, Ä ′))

without altering the dynamics. Using (2.18), we immediately see that this symmetrized
kernel satisfies (2.19). Accordingly, we will assume (2.19) from now on.

We also assume that the kernel has positive diagonal elements, i.e.,

Q(Ã, Ã ′; Ã, Ã ′) > 0, ∀ Ã, Ã ′ ∈ �; (2.20)

in particular, this rules out periodic behavior. However, note that, as usual, we do not

assume that Q is irreducible. We will also not assume that Q is reversible (detailed
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balanced), as it is in our Ising model systems; rather, it will be enough to assume the
weaker property that there exists a strictly positive distribution μ ∈ P+(�) such that

∑

Ã,Ã ′∈�

μ(Ã)μ(Ã ′)Q(Ã, Ã ′; Ä, Ä ′) = μ(Ä)μ(Ä ′), ∀ Ä, Ä ′ ∈ �. (2.21)

This is equivalent to saying that the product distribution μ ⊗ μ ∈ P(� × �) is Q-
invariant, i.e., (μ⊗μ)Q = μ⊗μ. If (2.21) holds for some positive μ, we say that Q is
balanced.5 Note that if Q is detailed balanced (reversible), as defined in (2.1), then it is
also balanced. Moreover, it is easy to check that any μ satisfying (2.21) must necessarily
also be stationary for the mass-action dynamics defined by Q. Indeed, for any balanced
system, it will follow from the proof of Theorem 2.8 below that the converse is also true:
any stationary μ must satisfy (2.21) (see Proposition 2.10).

The following general theorem says that, for any mass action kernel satisfying the
above properties, irreducibility of the initial distribution (as specified in Definition 2.3)
is sufficient to guarantee convergence.

Theorem 2.8. Suppose the kernel Q satisfies (2.19) and (2.20), and is also balanced.

Then, for any irreducible initial distribution p, we have that Tt (p) → ν as t →∞ for

some stationary ν ∈ P+(�). Moreover, ν ⊗ ν is Q-invariant.

Note that, in general, the limit point ν will depend on the initial distribution p.
The first ingredient in the proof of Theorem 2.8 is decay of relative entropy. Let

D(·‖·) denote the relative entropy, or KL-divergence, for probability measures on �.

I.e., D(p‖q) :=
∑

ω∈� p(ω) log
p(ω)
q(ω)

.

Lemma 2.9. Suppose the kernel Q satisfies (2.19) and (2.20). If Q is balanced w.r.t. μ,

then

D(p ◦ p‖μ) < D(p‖μ), (2.22)

for any non-stationary p ∈ P(�).

Proof. Define ρ := p⊗ p and π := μ⊗μ. The assumption that Q is balanced w.r.t. μ

implies that πQ = π , while the fact that p is not stationary implies that ρQ �= ρ. Now
we may equivalently write the operation (2.2) in the form

(p ◦ p)(Ä ) =
∑

Ã,Ã ′,Ä ′

ρ(Ã, Ã ′)Q(Ã, Ã ′ ; Ä, Ä ′) =
∑

Ä ′

(ρQ)(Ä, Ä ′). (2.23)

Equation (2.23) suggests a two-step decomposition of p �→ p ◦ p. The first step is a
mapping on the pair space � × �, which takes the product distribution ρ = p ⊗ p to
the distribution ρQ (which is not typically a product). The second step is the mapping
back down to � obtained by marginalizing out the second element Ä ′ of the pair. We
argue that each of these steps separately decreases the relative entropy w.r.t. μ, the first
step yielding a strict decrease whenever p is not stationary.

For the first step, note that Q defines one step of a Markov chain on �×�. Simple
convexity considerations imply the inequality D(ρQ‖π) ≤ D(ρ‖π). We claim the
stronger property that

D(ρQ‖π) < D(ρ‖π) (2.24)

5 In the chemical reaction networks literature, this property is known as “complex balance".
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whenever ρQ �= ρ. To prove this, we use the following basic fact that applies to any
(not necessarily irreducible or reversible) Markov chain with a finite state space, with
positive diagonal entries, and with an everywhere positive stationary distribution π .
Let C1, . . . , Ck denote the communicating classes (irreducible components) associated
with Q. Note that the assumption π > 0 implies that there is no transient state, so that
the Ci partition the state space �×�. Let F = ρ/π denote the density of ρ w.r.t. π and
note that ρQ = ρ iff F is constant within each Ci . Thus, to prove (2.24) it is sufficient
to show that the identity

D(ρQ‖π) = D(ρ‖π) (2.25)

holds iff F is constant within each Ci . Direct computation shows that

D(ρ‖π)−D(ρQ‖π) = π(F log F)− π(Q∗F log Q∗F), (2.26)

where Q∗(u, v) = π(v)Q(v, u)/π(u) is the time-reversal of Q. Clearly, if F is constant
within each Ci then Q∗F = F and (2.25) holds. To see the converse, observe that the
strict convexity of x �→ x log x implies that

H := Q∗(F log F)−Q∗F log Q∗F ≥ 0

and that H(u) = 0 for some state u if and only if F(v′) = F(v) for all v, v′ in the
neighborhood of u in the Markov chain graph (i.e., the set of v such that Q(u, v) > 0).
By the assumption (2.20) of positive diagonal elements for Q, this is equivalent to
F(v) = F(u) for all v such that Q(u, v) > 0. Therefore, H = 0 everywhere implies
that F is constant within each communicating class Ci . On the other hand, it follows
from (2.26) and the invariance πQ∗ = π that (2.25) is equivalent to π(H) = 0, which
by the positivity assumption on π , and the fact that H ≥ 0, is equivalent to H = 0
everywhere. This ends the proof of (2.24).

For the second (marginalization) step, we appeal to the well-known fact that, among
all distributions on � × � with fixed marginals, the relative entropy w.r.t. a product
measure π = μ ⊗ μ is minimized when that distribution is a product distribution.
Namely, if a probability ν ∈ P(� × �) has marginals ν1, ν2 on the first and second
element respectively, one has

D(ν‖μ1 ⊗ μ2) ≥ D(ν1‖μ1) + D(ν2‖μ2), (2.27)

for all probability measures μ1, μ2 ∈ P+(�). To see this, recall the variational principle
for relative entropy, asserting that

D(ν‖ζ ) = sup{ν(F)− log ζ(eF )},

where ν, ζ are arbitrary probability measures and F ranges over all real functions. Now,
take ζ = μ1 ⊗ μ2 and F(Ã, Ã ′) = log f1(Ã ) + log f2(Ã

′) where f1 = ν1/μ1 and
f2 = ν2/μ2, and observe that ν(F) = D(ν1‖μ1) + D(ν2‖μ2) while ζ(eF ) = 1 because
of the product structure. This proves (2.27).

Now, in view of the symmetry (2.19), the marginal of ρQ on the first element of the
pair equals the marginal of ρQ on the second element of the pair, and they are both equal
to p ◦ p. It follows that

D(ρQ‖μ⊗ μ) ≥ 2D(p ◦ p‖μ).
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In conclusion, if p is not stationary we have shown that

D(p‖μ) =
1

2
D(ρ‖π) >

1

2
D(ρQ‖π) ≥ D(p ◦ p‖μ).

This completes the proof of (2.22) and hence the lemma. ��

Proof of Theorem 2.8. Let Q be balanced w.r.t. μ ∈ P+(�). Lemma 2.9 shows that
D(Tt (p)‖μ) is monotonically strictly decreasing with t . Hence, since D(Tt (p)‖μ) ≥ 0,
we know that D(Tt (p)‖μ) converges to a limit, say dμ. By compactness, there exists
ν ∈ P(�) and a subsequence t1, t2, . . . such that Tti (p) → ν as i →∞. Also, it must
be the case that D(Tti (p)‖μ) → D(ν‖μ), and therefore

dμ = D(ν‖μ) = lim
t→∞

D(Tt (p)‖μ) = inf
t∈N

D(Tt (p)‖μ). (2.28)

Moreover, ν must be stationary. To see this, assume for contradiction that it is not. Then,
by Lemma 2.9, one step of the dynamics must strictly decrease the relative entropy and
therefore, for some ¸ > 0,

D(T1(ν)‖μ) ≤ D(ν‖μ)− ¸. (2.29)

On the other hand, by continuity of the map T1 and the function D(·‖μ), since Tti (p) →
ν, there exists t¸ ∈ N sufficiently large such that

D(T1(Tt¸ (p))‖μ) ≤ D(T1(ν)‖μ) + ¸/2.

Combining this with (2.29) gives

D(Tt¸+1(p)‖μ) ≤ D(ν‖μ)− ¸/2,

which contradicts (2.28).
Now note that, if p is irreducible, then it must be the case that ν ∈ P+(�). Thus we

have established that ν is a stationary point with full support. Therefore, we may take
μ = ν in (2.28), so that D(Tt (p)‖ν) → D(ν‖ν) = 0 as t → ∞. The latter implies,
e.g., by Pinsker’s inequality, that Tt (p) → ν, completing the proof. ��

Before proceeding with the proof of Theorem 2.7, we pause to note the following
simple consequences of the arguments given above.

Proposition 2.10. Suppose Q is a balanced kernel satisfying (2.19) and (2.20) and let

p ∈ P(�). Then p is stationary iff p⊗ p is Q-invariant. Moreover, if Q is also detailed

balanced, then p is stationary iff p ⊗ p is Q-reversible (i.e., iff (1.2) holds with μ

replaced by p).

Proof. Set ρ = p ⊗ p. The only nontrivial implications are (a) p ◦ p = p ⇒ ρ is Q-
invariant and (b) if Q is detailed balanced, then p ◦ p = p ⇒ ρ is Q-reversible. The
argument in the proof of Lemma 2.9 shows that if p◦ p = p then ρ is a constant multiple
of μ ⊗ μ over the communicating classes of Q. This implies (a). To prove (b), notice
that if the detailed balance condition (1.2) holds then it continues to hold if μ ⊗ μ is
replaced by any ρ that is a constant multiple of μ⊗ μ over the communicating classes
of Q, since only transitions within such components are relevant in (1.2). ��

We conclude this section with a proof of our convergence result for the nonlinear
Ising model dynamics, Theorem 2.7. This will follow immediately from the general
criterion for convergence in Theorem 2.8, together with the irreducibility property we
proved in Lemma 2.4.
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Proof of Theorem 2.7. In light of Theorem 2.8, it suffices to check that both our kernels
satisfy all the required properties and that any p ∈ P(�) with nondegenerate marginals
is irreducible. The latter fact, for both nonlinear block and Glauber dynamics, is precisely
the statement of Lemma 2.4. The fact that both kernels are balanced follows from the
fact that both are reversible. To check the properties (2.19) and (2.20), notice that the
diagonal entries are positive for both the nonlinear block dynamics and the nonlinear
Glauber dynamics. Moreover, the pair symmetry property (2.19) is easily seen to be
satisfied by the block dynamics kernel (2.6). Finally, the single site kernel as written
in (2.9) does not satisfy (2.19), but it does satisfy the exchange symmetry (2.18) and
hence is equivalent to a symmetrized kernel Q̄ that satisfies (2.19), as discussed earlier.��

Remark 2.11. We proved Lemma 2.4 and Theorem 2.7 under the assumption (2.14) of
nondegenerate marginals. However, there is no difficulty in extending to the general case
of an arbitrary p ∈ P(�), where some spins may be deterministically set to +1 or−1. It
is easy to check that the proofs of Lemmas 2.2 and 2.4 and Theorem 2.7 continue to hold
in this setting, with the external fields at the pinned sites taken to be ±∞ as discussed
in Remark 2.1.

Remark 2.12. Theorem 2.8 shows that, for balanced systems, convergence to a stationary
point with full support is guaranteed provided one can prove that the trajectory starting
from a given initial distribution p eventually remains uniformly bounded away from zero
everywhere; i.e., no type “dies out". This observation is already known in the chemical
reaction networks literature [46]. However, we have provided an alternative proof here
for several reasons: (i) we are working in discrete rather than continuous time as in the
reaction networks community, which necessitates different arguments; (ii) we have made
extensive use of probabilistic, rather than dynamical systems concepts in our proof; and
(iii) we aim to make this paper self-contained. We point out also that our proof follows
the same lines as that in [44, Theorem 2] for the restricted case where Q is symmetric
(i.e., reversible w.r.t. the uniform distribution μ), while correcting some omissions in
that earlier proof: namely, the assumption of positive diagonal elements (2.20) and the
requirement that the initial condition p be irreducible. In light of Theorem 2.8 the key to
the proof of our convergence result Theorem 2.7 for the nonlinear Ising model dynamics
is establishing irreducibility, as we do in Lemma 2.4. With respect to progress on the
Global Attractor Conjecture, the most interesting question here seems to be that of
identifying minimal assumptions on the kernel Q that guarantee such an irreducibility
property; we leave this question for future work.

Theorem 2.7 provides no quantitative estimate on the rate of convergence to sta-
tionarity. In particular, there is no explicit dependence on the size of the system n. In
analogy with the mixing time analysis for linear Markov chains, in the remainder of the
paper we will study the rate of convergence to equilibrium under the assumption that
the interactions in J are sufficiently weak (usually referred to as the “high temperature"
regime).

3. The Nonlinear Block Dynamics

Let Tt (p), t ∈ N, denote the evolution of the initial distribution p ∈ P(�) under the
nonlinear block dynamics (2.6). From Theorem 2.7 we know that for any fixed interaction
matrix J, and any p ∈ P(�), one has the convergence

Tt (p) → μJ,h ast →∞, (3.1)
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where h is the unique vector of external fields such that μJ,h and the initial state p

have the same marginals at x , for all x ∈ V . Our main result for the nonlinear block
dynamics (Theorem 1.3 in the introduction) establishes a tight bound on the rate of
convergence in (3.1) as a function of the cardinality n = |V |, under the Dobrushin-type
high-temperature condition on the interaction matrix J. For convenience we restate this
result here.

Theorem 3.1. There exist absolute constants ·0 > 0, c > 0 and C > 0 such that, if

max
x

∑

y∈V

|Jxy | ≤ ·0, (3.2)

then, for any p ∈ P(�), t ∈ N,

‖Tt (p)− μJ,h‖TV ≤ Cn2e−c t , (3.3)

where h is the unique choice of external fields such that px = (μJ,h)x for all x ∈ [n]. In

particular, for any ¸ > 0, one has ‖Tt (p)−μJ,h‖TV ≤ ¸ as soon as t ≥ 2
c

log n +C1(¸),

where C1(¸) =
1
c

log(C/¸).

3.1. Main ideas of the proof. Before embarking on the details of the proof, we give a
high level description of the main steps. By symmetry we may rewrite the operator (2.11)
in the form

(p ◦ q)(Ä ) =
∑

Ã,Ã ′

p(Ã )q(Ã ′)
∑

�⊆V

γ (� | Ã, Ã ′)1Ä=Ã�Ã ′
�c

, (3.4)

where

γ (� | Ã, Ã ′) =
μ(Ã�Ã ′�c )μ(Ã ′�Ã�c )∑

A⊆V μ(ÃAÃ ′Ac )μ(Ã ′AÃAc )
. (3.5)

Thus, for each Ã, Ã ′ ∈ �, γ (· | Ã, Ã ′) is a probability measure over subsets � ⊆ V . It
will be convenient to view the distribution γ (· | Ã, Ã ′) as a spin system, i.e., a probability
measure over spin configurations η ∈ {−1, +1}n , by identifying ηx = +1 with x ∈ �

and ηx = −1 with x /∈ �. Recall that in the non-interacting case J = 0, the distribution
γ (· | Ã, Ã ′) does not depend on the pair (Ã, Ã ′), and is simply the product of Bernoulli
measures with parameter 1/2. As described in Sect. 2.4, the dynamics is then entirely
governed by the pure fragmentation process that starts with the set V and recursively
splits sets of vertices uniformly at random until it reaches a collection of singletons. The
simple argument given in that proof then allows one to obtain (3.3) with C = 1

2
and

c = log 2; see [12,43] for a detailed analysis of the non-interacting case.

When there is a nontrivial interaction J �= 0, this straightforward analysis breaks
down. Our proof of Theorem 3.1 is based on a coupling argument that allows us to
reduce the problem to the analysis of a more general process in which the fragmentation
mechanism is perturbed by a “local growth" process arising from the correlations inherent
in the interactions. The main idea is that if the local growth is sufficiently sparse, then the
underlying fragmentation dominates and eventually the memory of the initial distribution
(except for the marginals) is lost.
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The first step in the proof is to couple the above random variable η with distribution
γ (· | Ã, Ã ′) with a random subgraph G of the complete graph Kn having a suitable
distribution ν, i.e., we shall write

γ (· | Ã, Ã ′) =
∑

G

ν(G) γG(· | Ã, Ã ′) , (3.6)

where the sum extends over all possible subgraphs G ⊆ Kn , and γG(· | Ã, Ã ′) is a
probability measure on � for each realization G. The key features of this coupling are:

• the distribution ν does not depend on the pair (Ã, Ã ′);
• the distribution γG(· | Ã, Ã ′) depends on the pair (Ã, Ã ′) only through the spins

ÃVG
= {Ãx , x ∈ VG}, Ã ′VG

= {Ã ′x , x ∈ VG},

where VG denotes the vertex set of G; and
• under γG(· | Ã, Ã ′), the random variables {ηy, y ∈ V \ VG} are i.i.d. Bernoulli with

parameter 1/2.

Actually, it will be crucial that ν can be taken to be the inhomogeneous Erdős-Rényi
random graph with edge weights proportional to

λxy := e4|Jxy | − 1.

This ensures that, under the assumption (3.2), the graph G will be sufficiently sparse
and the size of the connected components will satisfy good tail bounds. Note that the
expression (3.6) can be seen as a form of high-temperature expansion [24] for the
measure γ (· | Ã, Ã ′). However, a standard high-temperature expansion would produce
an expression of the form (3.6) with real-valued coefficients ν(G) which depend on
(Ã, Ã ′), while it is crucial for our coupling argument that ν be a probability measure

independent of (Ã, Ã ′).
Armed with the coupling (3.6), we consider all 2t − 1 interactions in the derivation

tree of Sect. 2.4 that produce the final distribution Tt (p). For each interaction we use
a realization of the graph G and we specify a realization B of the Bernoulli random
variables with parameter 1/2 which determine ηy for y ∈ V \ VG . We then compute

the resulting distribution. Letting ( �G, �B) = (G1, B1), . . . , (G2t−1, B2t−1) denote the
vector of all such realizations, we may then write

Tt (p) =
∑

( �G, �B)

ν̂( �G, �B) Tt (p | �G, �B) , (3.7)

where ν̂ is a suitable distribution over the realizations ( �G, �B) and Tt (p | �G, �B) ∈ P(�)

represents the distribution at time t conditional on the realizations ( �G, �B). The important
point here is that ν̂ is independent of the initial conditions, and therefore all correlations in

the initial distribution appear only in the measures Tt (p | �G, �B). Moreover, the measure
ν̂ can naturally be interpreted as a stochastic process that combines fragmentation with
local growth.

The second main ingredient in the proof of Theorem 3.1 is the identification of an
event Et for this process, roughly representing the fact that within time t all fragments
have reached their minimum size, and such that

ν̂(Et ) ≥ 1− A n2 e−b t (3.8)
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for some absolute constants A, b > 0. The nature of the event Et will be such that

Tt (p | �G, �B) = Tt (p′ | �G, �B) , ( �G, �B) ∈ Et (3.9)

for all p, p′ ∈ P(�) which have the same marginals at every vertex x ∈ V . Once these
facts are established, (3.7), (3.8) and (3.9) imply that for any such p, p′ ∈ P(�) one
has

‖Tt (p)− Tt (p′)‖TV ≤ ν̂(Ec
t ) max

( �G, �B)

‖Tt (p | �G, �B)− Tt (p′ | �G, �B)‖TV ≤ A n2 e−b t .

This implies the result of Theorem 3.1 by taking p′ = μJ,h.

We now turn to detailed proofs of the various claims sketched above.

3.2. Coupling with inhomogeneous Erdős-Rényi random graphs. We start by observing

that for every fixed Ã, Ã ′ ∈ �, there is an interaction matrix J̃ = J̃(Ã, Ã ′) such that the
set of spins to be exchanged, γ (· | Ã, Ã ′) from (3.5), is itself an Ising Gibbs measure μ

J̃
as defined in (1.3).

Lemma 3.2. For any Ã, Ã ′ ∈ �, we have γ (· | Ã, Ã ′) = μ
J̃
, i.e.,

γ (η | Ã, Ã ′) ∝ exp

§
¨
©

1

2

∑

x,y∈V

J̃xyηxηy

«
¬
­ , η ∈ �, (3.10)

where the interaction matrix J̃ = J̃(Ã, Ã ′) is given by

J̃xy := 2JxyÃxÃy1x∈D(Ã,Ã ′)1y∈D(Ã,Ã ′), D(Ã, Ã ′) := {z ∈ V : Ãz �= Ã ′z}. (3.11)

Proof. Define

ξx := Ãxηx , ηx := 1x∈� − 1x /∈�.

Note that

[Ã�Ã ′�c ]x =
1
2

Ãx (ηx + 1) + 1
2

Ã ′x (1− ηx ),

and therefore

[Ã�Ã ′�c ]x [Ã�Ã ′�c ]y + [Ã ′�Ã�c ]x [Ã
′
�Ã�c ]y =

1
2

ηxηy(Ãx − Ã ′x )(Ãy − Ã ′y)

= 2ξxξy1x∈D(Ã,Ã ′)1y∈D(Ã,Ã ′) .

It follows that

μ(Ã�Ã ′�c )μ(Ã ′�Ã�c) = C(Ã, Ã ′) exp

{ ∑

x,y∈D(Ã,Ã ′)

Jxyξxξy

}
,

where the constant C(Ã, Ã ′) does not depend on �. By definition (3.5) this concludes
the proof. ��
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It follows from Lemma 3.2 that for any fixed pair Ã, Ã ′ ∈ �, if η ∈ � is distributed
according to γ (· | Ã, Ã ′), then {ηx , x ∈ V \D(Ã, Ã ′)} is the Bernoulli measure with pa-
rameter 1/2 and, independently, {Ãxηx , x ∈ D(Ã, Ã ′)} is the Ising measure on D(Ã, Ã ′)

with zero external fields and interaction 2J. For our purposes, the problem with this rep-
resentation of γ (· | Ã, Ã ′) is that it is structurally highly dependent on the configurations
Ã, Ã ′ through the set D(Ã, Ã ′). Our goal in this subsection is to formulate an alternative
representation, in Lemma 3.3 below, that overcomes this problem.

Let G be the set of all subgraphs of the complete graph Kn over V ⊆ [n]with isolated
vertices removed, and write P(G) for the set of probability measures over G. Thus G ∈ G

can be viewed as a collection of unordered pairs {x, y} for x, y ∈ V . Note that G ∈ G

need not be connected and can be the empty graph (with no vertices). We write VG, EG

for the vertex and edge set of G ∈ G, respectively.

Lemma 3.3. Let νJ be the inhomogeneous Erdős-Rényi random graph measure associ-

ated with the weights λxy = e4|Jxy | − 1, i.e.,

νJ(G) ∝
∏

{x,y}∈EG

(e4|Jxy | − 1). (3.12)

Then

γ (· | Ã, Ã ′) =
∑

G∈G

νJ(G) μG(· | ÃVG
, Ã ′VG

)⊗ BeV \VG
( 1

2
) , (3.13)

where, for any G ∈ G, μG(· | ÃVG
, Ã ′VG

) is a probability measure on {−1, +1}VG that

depends on Ã, Ã ′ only through the spins ÃVG
, Ã ′VG

and BeV \VG
( 1

2
) is the Bernoulli prob-

ability measure on {−1, +1}V \VG , which assigns independently the values±1 with prob-

ability 1/2 to each x ∈ V \VG . Moreover, the probability measure μG(· | ÃVG
, Ã ′VG

) has

the product structure

μG(· | ÃVG
, Ã ′VG

) = ⊗k
i=1 μGi

(· | ÃVGi
, Ã ′VGi

) ,

where G1, . . . , Gk are the connected components of G.

Proof. We start with a high-temperature expansion, which is valid for any probability
measure on � = {−1, +1}V of the form

γφ(η) =
1

Z
exp

{∑

e

φ(e)η(e)
}
, (3.14)

where e denotes an arbitrary undirected edge e = {x, y} for x, y ∈ V , η(e) = ηxηy ,
and φ(e) ∈ R are some given interaction coefficients. Note that (3.10) is of this form.
By adding a constant independent of η to the exponent, we can rewrite this as

γφ(η) =
1

Z̃

∏

e

(1 + ·e(η(e)),

where

·e(η(e)) = exp {φ(e)η(e) + |φ(e)|} − 1.
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The point of adding |φ(e)| in the exponent is to ensure that ·e(η(e)) ≥ 0. Moreover,
expanding the product yields

Z̃ =
∑

η

∏

e

(1 + ·e(η(e)) =
∑

η

∑

G∈G

∏

e∈EG

·e(η(e)).

Letting G1, . . . , Gk denote the (maximal) connected components of G, we see that

Z̃ =
∑

G∈G

w(G), w(G) := 2|V \VG |
k∏

i=1

wc(Gi ),

where, for any connected graph G ∈ G, we define

wc(G) =
∑

ηVG

∏

e∈EG

·e(η(e)). (3.15)

Since ·e(η(e)) ≥ 0, the weights w(G) are all nonnegative. Therefore, the measure (3.14)
satisfies

γφ(η) =
∑

G∈G

pφ(G) μ̂G ⊗ BeV \VG
( 1

2
),

where

pφ(G) :=
w(G)∑

G ′∈G w(G ′)
(3.16)

is a probability measure pφ ∈ P(G) depending on the interactions φ := {φ(e)}, and μ̂G

is the probability measure on {−1, +1}VG given by the product μ̂G = ⊗
k
i=1vGi

, where,
for any connected graph G ∈ G, we define the probability measure

vG(ηVG
) :=

∏
e∈EG

·e(η(e))

wc(G)

on {−1, +1}VG . We remark that, for any G ∈ G, μ̂G depends on the interactions φG :=
{φ(e), e ∈ EG} only. We now apply this decomposition to the measure (3.5), which by

Lemma 3.2 is (3.14) with the choice φ(e) = J̃xy , e = {x, y}, to obtain

γ (· | Ã, Ã ′) =
∑

G∈G

pJ,Ã,Ã ′(G) μ̂G(· | ÃVG
, Ã ′VG

)⊗ BeV \VG
( 1

2
), (3.17)

for a distribution pJ,Ã,Ã ′ ∈ P(G) that depends on the interactions J = {Jxy} and on
the configurations Ã, Ã ′ through the set D(Ã, Ã ′); see (3.11), (3.15) and (3.16). We note
that, because of the dependance on Ã, Ã ′, this is not sufficient to prove the desired claim
(3.13). We shall use a further coupling argument to lift the decomposition (3.17) to the
decomposition (3.13) with the desired properties.

Observe that the Erdős-Rényi measure νJ defined by (3.12) can be rewritten as
in (3.16) if we redefine the weights w(G) as

w̄(G) =
∏

e∈EG

·̄e, ·̄e := (e4|Jxy | − 1), e = {x, y}.
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We are going to show that for all (Ã, Ã ′), the measure pJ,Ã,Ã ′ is stochastically dominated
by νJ, or equivalently that there exists a coupling π ∈ P(G × G) of νJ and pJ,Ã,Ã ′ such
that for all G, H ∈ G,

∑

G ′∈G

π(G ′, H) = νJ(H),
∑

H ′∈G

π(G, H ′) = pJ,Ã,Ã ′(G), and

∑

G,H∈G:G⊆H

π(G, H) = 1.
(3.18)

In particular, it follows that the conditional distribution π(· | H) of G ∈ G is supported
on graphs G ⊆ H . Moreover, we will also show that for any H ∈ G,

• π(· | H) depends on the spin configurations Ã, Ã ′ only through their values ÃVH
, Ã ′VH

on VH ,
• π(· | H) has the product structure π(· | H) = ⊗k

i=1π(· | Hi ) where H1, . . . , Hk

denote the connected components of H .

Once these facts are established we can quickly conclude the proof of Lemma 3.3 as
follows. Let π be the coupling of pJ,Ã,Ã ′ and νJ as above, so that

pJ,Ã,Ã ′(G) =
∑

H∈G:G⊆H

νJ(H)π(G | H).

From (3.17) we obtain

γ (· | Ã, Ã ′) =
∑

H∈G

νJ(H)
∑

G∈G:G⊆H

π(G | H) μ̂G(· | ÃVG
, Ã ′VG

)⊗ BeV \VG
( 1

2
)

=
∑

H∈G

νJ(H) μH (· | ÃVH
, Ã ′VH

)⊗ BeV \VH
( 1

2
) , (3.19)

where we define

μH (· | ÃVH
, Ã ′VH

) :=
∑

G∈G:G⊆H

π(G | H) μ̂G(· | ÃVG
, Ã ′VG

)⊗ BeVH \VG
( 1

2
). (3.20)

Since π(· | H) depends only on ÃVH
, Ã ′VH

, the measure in (3.20) also depends on Ã, Ã ′

only through ÃH , Ã ′H . Moreover, because of the product structure of μ̂G(· | ÃVG
, Ã ′VG

)

and π(· | H), the measure μH (· | ÃVH
, Ã ′VH

) defined by (3.20) must necessarily also have
the desired product structure

μH (· | ÃVH
, Ã ′VH

) = ⊗k
i=1μHi

(· | ÃVHi
, Ã ′VHi

)

along the connected components H1, . . . , Hk of H . Therefore, the decomposition (3.19)
concludes the proof of the lemma once we establish the desired properties of the cou-
pling π .

To construct the coupling π we use the following coupled Glauber-type Markov
chains. Let U1, U2, . . . denote i.i.d. uniform random variables in [0, 1] and let e1, e2, . . .

denote i.i.d. uniformly random edges e = {x, y} taken among all
(

n
2

)
possible choices.
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For any G ⊆ H ∈ G, any fixed e = {x, y}, let Ge,+ denote the graph G ∪ {e}, and let
Ge,− denote the graph G \ {e}. We define

p(G, e,±) =
w(Ge,±)

w(Ge,−) + w(Ge,+)
, p̄(G, e,±) =

w̄(Ge,±)

w̄(Ge,−) + w̄(Ge,+)

For any fixed G0, H0 ∈ G, we write (X t , Yt ), t = 0, 1, . . . , for the Markov chain with
X0 = G0, Y0 = H0, and such that for any t ≥ 1,

1. if Ut ≤ p(X t−1, et , +) then X t = X t−1 ∪ {e}, otherwise X t = X t−1 \ {e};
2. if Ut ≤ p̄(Yt−1, et , +) then Yt = Yt−1 ∪ {e}, otherwise Yt = Yt−1 \ {e}.

In words, at each step a uniformly random edge et is chosen, and the graphs X t−1, Yt−1

are updated by adding or removing the edge et according to the prescribed probabilities
and the common source of randomness Ut . This defines the Markov chain with state
space G × G. By construction, we have the reversibility conditions

pJ,Ã,Ã ′(G \ {e}) p(G, e, +) = pJ,Ã,Ã ′(G ∪ {e}) p(G, e,−) ;

νJ(H \ {e}) p̄(H, e, +) = νJ(H ∪ {e}) p̄(H, e,−),

for any G, H ∈ G. Therefore, the marginals X t and Yt , t = 0, 1, . . . , are Markov chains
with state space G with stationary distributions pJ,Ã,Ã ′ and νJ respectively.

Let us now observe that the above coupled process preserves ordering, in the sense
that if G0 ⊆ H0 ∈ G then X t ⊆ Yt for all t = 1, 2, . . . . In view of our construction, to
prove this it suffices to note that, for any G ⊆ H and any e,

p(G, e, +) ≤ p̄(H, e, +) . (3.21)

For e = {x, y}, one has

p(G, e, +) =

∑
ηx ,ηy

·e(η(e))
∑
{ηz ,z �=x,y}

∏
e′∈G:e′ �=e ·e′(η(e′))

∑
ηx ,ηy

[1 + ·e(η(e))]
∑
{ηz ,z �=x,y}

∏
e′∈G:e′ �=e ·e′(η(e′))

. (3.22)

This is an increasing function of the nonnegative variable ·e(η(e)) and thus, using

·e(η(e)) = exp {φ(e)η(e) + |φ(e)|} − 1 ≤ ·̄e = e4|Jxy | − 1,

where e = {x, y}, η(e) = ηxηy , and φ(e) = J̃xy , one has p(G, e, +) ≤ p̂(G, e, +)

where the latter is defined as in (3.22) with ·e(η(e)) replaced by ·̄e. On the other hand
it is not hard to see that

p̂(G, e, +) =
e4|Jxy | − 1

e4|Jxy |
= p̄(H, e, +) ,

for any G, H ∈ G. This proves the desired monotonicity (3.21).
The monotone coupling π of pJ,Ã,Ã ′ and νJ may then be defined as the stationary

distribution of the Markov chain (X t , Yt ). The required property (3.18) is a consequence
of the above construction and the inequality (3.21), since if we start the Markov chain
at (X0, Y0) with X0 ⊆ Y0 we will have X t ⊆ Yt at all times and thus the limiting
distribution π as t →∞ must be supported on ordered pairs.

Finally, we need to check that for any H ∈ G, the conditional distribution π(· | H) of
G ⊆ H depends on the spin configurations Ã, Ã ′ only through their values ÃVH

, Ã ′VH
on

VH . To this end, observe that π(· | H) is the stationary distribution of the Markov chain
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(X t , Yt ) obtained by conditioning on Yt = H for all t , or equivalently the Markov chain
defined as above with the restriction that any transition that would result in adding or
removing an edge from the graph Yt = H is rejected. This yields the Markov chain X H

t ,
t = 0, 1, . . . with state space GH = {G ∈ G : G ⊆ H} and transition probabilities given
by (3.22) with the restriction that adding an edge e is only allowed if G∪{e} ⊆ H . Since
the expression (3.22) factorizes over connected components of G, and since G ⊆ H it

follows that (3.22) only depends on the coefficients φ(e) = J̃xy , where e = {x, y} ∈ H ,
and therefore the stationary distribution π(· | H) has the same property. This ends the
proof of Lemma 3.3. ��

So far we have not used the weak interaction assumption (3.2), so Lemma 3.3 holds
for arbitrary coefficients Jxy . Next, we observe that the condition (3.2) implies a strong
sparsity property of the measure νJ in Lemma 3.3. From the definition (3.12), this
measure is the inhomogeneous Erdős-Rényi random graph where each edge e = {x, y},
x, y ∈ V , is included independently with probability

pxy = 1− e−4|Jxy |. (3.23)

In particular, using (ez − 1)e−z ≤ z for z ≥ 0, one has pxy ≤ 4|Jxy |, and if (3.2) holds,
then for any x ∈ V ,

νJ(VG � x) ≤
∑

y: y �=x

pxy ≤ 4·0.

Moreover, if ·0 is sufficiently small, then for any given x ∈ V the size of the connected
component of G at x has an exponential tail. We make this precise in Lemma 3.8 below.

3.3. Fragmentation with noise. We now develop the main construction behind the con-
vergence result in Theorem 3.1. It is based on a perturbed fragmentation process, i.e.,
a process that combines the random fragmentations of the non-interacting case (as de-
scribed in Sect. 2.4) with some competing noise represented by the random graphs en-
coding dependencies.

Given a set A ⊆ [n] and a random graph G ∈ G, we define the random set A′

as the vertex set of the union of all connected components of G that have non-empty
intersection with A. More formally, write G = ∪�

i=1Gi where Gi are the connected
components of G and let

G(A) =
⋃

i : VGi
∩A �=∅

Gi .

Then we set A′ = VG(A). We may sample A′ starting from A by a breadth-first search, i.e.,
by revealing sequentially for each x ∈ A the neighborhood of x in G, then recursively
the neighborhood of each vertex revealed at the previous step, and so on until there are
no more neighbors to reveal. Clearly, A′ may contain sites that are not in A. However, if
x ∈ A ∩ V c

G then x /∈ A′. If A\A′ �= ∅, for every x ∈ A\A′, we independently declare
x to be in or out by a fair coin flip. We thus obtain two random sets Ain and Aout, such
that

Ain ∪ Aout = A \ A′, Ain ∩ Aout = ∅.
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Next, for any A ⊆ [n], we define two sets �0(A),�1(A) by

�0(A) = �1(A) = ∅ , if |A| ≤ 1 , (3.24)

and

�0(A) = A′ ∪ Ain , �1(A) = A′ ∪ Aout , if |A| ≥ 2 . (3.25)

Definition 3.4. The fragmentation plus noise process Ft , t = 0, 1, . . . is the random
process defined as follows. For each t ∈ N, Ft consists of 2t labeled fragments, i.e.,

(possibly empty) subsets F
(t)
1 , . . . , F

(t)

2t , F
(t)
i ⊆ [n], obtained by repeated application

of the following rule. At time zero we have F0 = [n], i.e., F
(0)
1 = [n]. At time t ∈ N,

if Ft−1 = (F
(t−1)
1 , . . . , F

(t−1)

2t−1 ), then for each i independently, we replace F
(t−1)
i by

(�0(F
(t−1)
i ),�1(F

(t−1)
i )) where �0,�1 are the random maps defined by (3.24)–(3.25),

so that

Ft = (F
(t)
1 , . . . , F

(t)

2t )

= (�0(F
(t−1)
1 ),�1(F

(t−1)
1 ), �0(F

(t−1)
2 ),�1(F

(t−1)
2 ), . . . , �0(F

(t−1)

2t−1 ),�1(F
(t−1)

2t−1 )) .

We say that the process dies out if there is a time t such that all fragments are empty,

i.e., F
(t)
i = ∅ for all i = 1, . . . , 2t . With slight abuse of notation, we write Ft = ∅ for

the latter event.

In the non-interacting case J = 0 one has pxy = 0 for all {x, y}, and thus A′ =
∅, �0(A) = Ain,�1(A) = Aout and A �→ (�0(A),�1(A)) is one step of a pure
fragmentation process, where the set A is partitioned into two subsets using independent

fair coin flips for each vertex. In this case F
(t)
i ∩ F

(t)
j = ∅ for all i, j = 1, . . . , 2t and

for all t ∈ N. In particular, it is not hard to see that in this case

P(Ft �= ∅) ≤ n(n − 1) 2−t , t = 1, 2, . . . (3.26)

Indeed, by construction Ft �= ∅ implies that there exist two vertices x, y ∈ [n] that
belong to the same fragment up to time t − 1. Thus (3.26) follows as in the analysis of
Sect. 2.4. In the interacting case, there is a first stage where the set A grows according to
the local branching at every x ∈ A, and the fragmentation occurs only on those vertices
that have an empty neighborhood in G. Our main technical result below establishes that
the fragmentation plus noise process also satisfies a bound of the form (3.26), with a
slightly weaker exponential decay rate, provided (3.2) holds for a suitably small ·0 > 0.

Lemma 3.5. For any · ∈ (0, 1), there exists ·0 > 0, and a constant C· > 0 such that if

(3.2) holds with constant ·0 then

P(Ft �= ∅) ≤ n2C· (2− ·)−t , t = 1, 2, . . .

The proof of this lemma is quite technical and is postponed to Sect. 3.5. We turn first
to the proof of Theorem 3.1.
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3.4. Proof of Theorem 3.1. We now have the tools to conclude the proof of Theorem
3.1, our main result for nonlinear block dynamics. Recall again the construction of Tt (p)

in terms of the binary derivation tree in Sect. 2.4.
By the invariance property (2.8), the target measure μJ,h can be obtained at the root

by taking the distribution μJ,h on each leaf. Thus, Theorem 3.1 says that when each leaf
is given a distribution p with the same marginals as μJ,h, the two distributions Tt (p)

and μJ,h can be coupled with an error at most Cn2e−ct for any t . We shall actually
prove the following stronger result. Let �p = (p1, . . . , p2t ) and �q = (q1, . . . , q2t ) be
arbitrary vectors of distributions in P(�) whose marginals on Ãx at all sites x agree, i.e.,
pi , qi ∈ P(�) satisfy

(pi )x = (p j )x = (qi )x = (q j )x , i, j = 1, . . . , 2t , x ∈ V . (3.27)

Let Tt ( �p) (resp., Tt (�q)) denote the distribution at the root of the binary tree of depth
t , where the leaf labeled i = 1, . . . , 2t is equipped with the distribution pi (resp., qi );
recall Fig. 1 for the case t = 2.

Theorem 3.6. There exist absolute constants ·0 > 0, c > 0 and C > 0 such that, if

(3.2) holds with constant ·0 then for any choice of initial distributions �p, �q as in (3.27),

‖Tt ( �p)− Tt (�q)‖TV ≤ Cn2e−c t , t ∈ N. (3.28)

Clearly, Theorem 3.6 implies Theorem 3.1 since we may take pi ≡ p ∈ P(�) and
qi ≡ μJ,h, where the external fields h are chosen in such a way that p and μJ,h have the
same marginals.

We shall prove Theorem 3.6 by analyzing the interaction history backwards in time,
i.e., from the root to the leaves. This is reminiscent of the coupling from the past approach
for linear Markov chains [34,42], and to some extent our proof is inspired by ideas that
have been developed in that context. In particular, our proof is related to the information
percolation framework developed by Lubetzky and Sly in [35].

Each internal node of the tree is associated with an interaction, or collision, which
according to (3.4) is specified by the random set � with distribution γ (· | Ã, Ã ′). For each
such interaction we reveal the realization of the graph G and of the Bernoulli variables
B in V \ VG that are used in sampling �; see Lemma 3.3. In this way, starting from the
root, we have a pair (G, B), G ∈ G and a subset B ⊆ V \VG is identified with the set of
x ∈ V \ VG for which ηx = +1. Suppose the descendants of the root have distributions
p and q respectively, as in Fig. 2. Then, according to Lemma 3.3, the distribution at the
root is given by

p ◦ q =
∑

(G,B)

ν(G, B) T (p, q |G, B) ,

where ν(G, B) = 2−|V \VG |νJ(G), and for each realization (G, B), T (p, q |G, B) ∈
P(�) is the distribution

T (p, q |G, B)(Ä ) =
∑

Ã,Ã ′

p(Ã )q(Ã ′)
∑

ηVG

μG(ηVG
| ÃVG

, Ã ′VG
) 1Ä∼(Ã,Ã ′,ηVG

,B). (3.29)

Here, for Ä ∈ �, the notation Ä ∼ (Ã, Ã ′, ηVG
, B) is shorthand for

Ä ∼ (Ã, Ã ′, ηVG
, B) ⇔

{
Äx = Ãx , x ∈ V : ηx = +1;

Äx = Ã ′x , x ∈ V : ηx = −1,
(3.30)
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Fig. 2. Graphical representation of the distribution at the root, when t = 2 and the leaves are equipped with
distributions p′, q ′, p′′, q ′′. Each internal node is equipped with a realization of the random pair (G, B), where
G ∈ G and B ⊆ V \VG

with the understanding that the value of η on V \ VG is specified by B ⊆ V \ VG , i.e.,
ηy = +1 for y ∈ B and ηy = −1 for y /∈ B.

For every G ∈ G, μG(· | ÃVG
, Ã ′VG

) depends on (Ã, Ã ′) only through (ÃVG
, Ã ′VG

), and

for every ηVG
∈ {−1, 1}VG , Ä ∈ {−1, 1}n and B ⊆ V \VG , the condition (3.30) depends

on (Ã, Ã ′) only through

{Ãx , x ∈ VG ∪ B}, {Ã ′x , x ∈ VG ∪ ((V \ VG) \ B)}.

Therefore, to compute the distribution T (p, q |G, B) we only need the marginals pVG∪B

and qVG∪B′ , where B ′ = (V \VG)\B. Note that we may identify VG ∪ B with the set
�0([n]) and VG ∪ B ′ with the set �1([n]), where �0,�1 are the maps defined in (3.25).
Indeed, by definition of the measure νJ, these random sets have the same distribution
since, when A = [n], VG is equivalent to A′ and B is equivalent to Ain. One way to
rephrase this is to say that, as far as the distribution T (p, q |G, B) is concerned, the
only relevant information about the distribution p is contained in the set �0([n]) and
the only relevant information about the distribution q is contained in the set �1([n]).

Next, we move one step backwards in time and consider the interaction that produced
the distribution p from the previous computation. Suppose that p′, q ′ are the distribu-
tions at the two descendants of p respectively, so that p = p′ ◦ q ′, as in Fig. 2. Suppose
we revealed the realization (G ′, B ′) of the graph and Bernoulli variables associated with
this interaction. Note that we can use the same expressions (3.29)–(3.30) to compute
T (p′, q ′ |G ′, B ′), provided we replace (p, q) by (p′, q ′) and (G, B) by (G ′, B ′). How-
ever, the key point is that we now only need the marginal of p on the set �0([n]), and
therefore when we compute T (p′, q ′ |G ′, B ′)(Ä ) as above we can sum away all Äy ,
y /∈ �0([n]), so that the indicator function (3.30) is relevant only for sites x ∈ �0([n]),
and the distribution of ηx , x ∈ VG ′∩�0([n]), under μG ′(· | ÃVG′

, Ã ′VG′
) is only influenced

by the spins Ãy, Ã
′
y for y ∈ G ′(�0([n])), where we recall that G ′(A) is the union of all

connected components of G ′ that have nonempty intersection with the set A. The latter
property is a consequence of the product structure of the measure μG ′(· | ÃVG′

, Ã ′VG′
);

see Lemma 3.3. Hence we can neglect all connected components of G ′ that do not inter-
sect �0([n]), and we can discard the information about all Bernoulli variables at sites
y ∈ V \ VG ′ such that y /∈ �0([n]). A close inspection of our definition of the maps �0

and �1 then reveals that the only information about the distributions p′, q ′ that is needed
to compute T (p′, q ′ |G ′, B ′) is contained in the marginals p′

�0(�0([n]))
and q ′

�1(�0([n]))
.

Similarly, considering the interaction which produced the distribution q = p′′ ◦ q ′′

(see Fig. 2), we may fix a realization (G ′′, B ′′) of the graph and Bernoulli variables,
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and repeating the above reasoning one has that the only information about the distribu-
tions p′′, q ′′ that is needed to compute T (p′′, q ′′ |G ′′, B ′′) is contained in the marginals
p′′
�0(�1([n]))

and q ′′
�1(�1([n]))

. We note that, after two steps of the evolution, conditional on

the realizations of the variables (G, B), (G ′, B ′), (G ′′, B ′′), we have obtained a prob-
ability measure at the root depending only on (G, B), (G ′, B ′), (G ′′, B ′′) and on the
marginals

p′�0(�0([n])))
, q ′�1(�0([n])), p′′�0(�1([n]))

, q ′′�1(�1([n]))
.

Equivalently, using the notation introduced in Definition 3.4, after two steps we have
that the correlations of the initial distributions at the leaves are entirely contained in the
fragments

F2 = (F
(2)
1 , F

(2)
2 , F

(2)
3 , F

(2)
4 )

= (�0(�0([n])),�1(�0([n])),�0(�1([n])),�1(�1([n]))).

Example 3.7. Consider the following simple example with n = 4. Suppose G = {{1, 2}},
i.e., G consists of the single edge {1, 2} and suppose that B = ∅, i.e., both 3 and 4 are

out. This gives F
(1)
1 = �0([n]) = {1, 2}, F

(1)
2 = �1([n]) = {1, 2, 3, 4}. Suppose also

that G ′ = {{3, 4}}, and B ′ = {1}. Thus F
(2)
1 = {1}, and F

(2)
2 = {2}. Suppose finally

that G ′′ = ∅, B ′′ = {1, 2}. Then F
(2)
3 = {1, 2}, and F

(2)
4 = {3, 4}. Thus, one has the

following fragmentation after two steps

F0 = {1, 2, 3, 4},

F1 = ({1, 2}, {1, 2, 3, 4}),

F2 = ({1}, {2}, {1, 2}, {3, 4}).

Note that in this example, conditionally on the given realizations of the variables (G, B),

(G ′, B ′), and (G ′′, B ′′), the distribution p ◦ q at the root in Fig. 2 can be computed only
using the marginals

(p′){1}, (q
′){2}, (p′′){1,2}, (q

′′){3,4}

of the input distributions p′, q ′, p′′, q ′′.

Repeating the above procedure one has that, after t steps, conditional on the realiza-
tions of all graphs and Bernoulli variables involved in each of the 2t −1 interactions, the
only information needed from leaf i is contained in the marginal of the distribution at

that leaf on the fragment F
(t)
i , for each i = 1, . . . , 2t , as defined in Definition 3.4. The

crucial observation is that, as soon as a fragment either becomes empty or contains one
site only, then the information carried by the corresponding leaf is irrelevant. Indeed, if
it is empty this is obvious, while if it contains one site only then the marginal at that site
is irrelevant since all marginals are assumed to be fixed, and in particular they are the
same in any choice of the initial conditions �p or �q . This explains why we introduced the
killing step (3.24) in our definition of the fragmentation plus noise process Ft , which in
turn is crucial to the probability of extinction we are able to establish in Lemma 3.5.

The above discussion shows that, if we denote by

( �G, �B) = (G(1), B(1), . . . , G(2t−1), B(2t−1))
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the vector of realizations of the random graphs and Bernoulli variables involved in each
interaction at the 2t − 1 internal nodes of the binary tree of depth t , one can write

Tt ( �p) =
∑

( �G, �B)

ν̂( �G, �B) Tt ( �p | �G, �B) (3.31)

where

ν̂( �G, �B) =

2t−1∏

i=1

νJ(G
(i)) 2−|V \V

G(i) | (3.32)

is the distribution of the random graphs and Bernoulli variables, while Tt ( �p | �G, �B) is

some probability measure that may depend on ( �G, �B) and on �p = (p1, . . . , p2t ) in a
complicated way but has the property that its dependence on the distribution pi from

the i-th leaf occurs only through the marginal of pi on the fragment F
(t)
i . In particular,

if Ft = ∅, i.e., F
(t)
i = ∅ for all i , then Tt ( �p | �G, �B) = Tt (�q | �G, �B). We note that the

event Ft = ∅ is measurable with respect to ( �G, �B), so that we may write

Tt ( �p | �G, �B) = Tt (�q | �G, �B), ( �G, �B) ∈ {Ft = ∅}, (3.33)

and hence

‖Tt ( �p)− Tt (�q)‖TV ≤
∑

( �G, �B)/∈{Ft=∅}

ν̂( �G, �B).

Next, we note that

∑

( �G, �B)/∈{Ft=∅}

ν̂( �G, �B) = P(Ft �= ∅), t ∈ N, (3.34)

where the latter is the probability estimated in Lemma 3.5. Indeed, (3.34) is a con-
sequence of our definition of the fragmentation plus noise process: we have already
observed that each step of the fragmentation

F
(t−1)
i −→ (�0(F

(t−1)
i ),�1(F

(t−1)
i ))

is produced with the correct distribution, and the product structure (3.32) of the measure

ν̂( �G, �B) guarantees that all such steps are performed independently. From Lemma 3.5
we thus conclude that, for any · ∈ (0, 1), there exists a constant ·0 > 0 in (3.2), and a
constant C· > 0 such that

‖Tt ( �p)− Tt (�q)‖TV ≤ n2C· (2− ·)−t , t = 1, 2, . . .

This implies (3.28) (and in fact shows that we can take the constant c as close as we
wish to log 2 provided ·0 is taken suitably small). This ends the proof of Theorem 3.6
and Theorem 3.1. ��

We now need to provide the missing proof of Lemma 3.5.
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3.5. Proof of Lemma 3.5. The event Ft �= ∅ implies that there exists a fragment F
(t−1)
i

at time t − 1 that has cardinality |F
(t−1)
i | ≥ 2. Indeed, by construction, if all fragments

have size at most 1 at time t−1, then Ft = ∅; see (3.24). Since there are 2t−1 fragments

at time t , and since all the F
(t−1)
i have the same distribution, by a union bound it suffices

to show that for any · ∈ (0, 1),

P(|F
(t−1)
1 | ≥ 2) ≤ n2C· (4− ·)−t , t = 1, 2, . . . , (3.35)

provided (3.2) holds with a sufficiently small ·0 > 0. To prove (3.35) we shall use a

stochastic domination argument that bounds the evolution of the fragment F
(t−1)
1 , t ≥ 1

by means of independent labeled branching processes.
Consider n independent processes X y := {X

y

� , � = 0, 1, . . . }, y ∈ [n], such that for

each y ∈ [n], X y is the labeled branching process with X
y
0 = {y} and such that, at time

t ∈ N, each individual with label x in the (t−1)-th generation independently gives birth
to the set of individuals U ⊆ [n] with offspring distribution

μx (U ) =

{
1
2
(1− ρx ) U = ∅ or U = {x};∑

G∈G νJ(G) 1G(x)=U |U | ≥ 2,
(3.36)

where G(x) denotes the connected component of G containing x and, for any x ∈ [n],

ρx := 1−
∏

z∈[n]\{x}

(1− pxz) =
∑

G∈G

νJ(G) 1G(x) �=∅ (3.37)

is the probability that x has a non-empty neighborhood in the random graph defined
by (3.23). Notice that by definition either G(x) is empty or |G(x)| ≥ 2, and therefore
(3.36), for any x ∈ [n], defines a probability measure on subsets of [n]: a sample U from
μx is obtained by first sampling the neighborhood G(x) from νJ; if |G(x)| ≥ 2 then we
set U = G(x); if G(x) = ∅ then we flip a fair coin and set U = ∅ if heads and U = {x}
if tails.

Let N y(t) denote the size of the whole population of the labeled branching process
X y at time t − 1, i.e., the total number of individuals generated up to time t − 1. The
proof of Lemma 3.5 is based on the following bound on the exponential moment of the
random variable X y(t).

Lemma 3.8. For all a ∈ (0, 1), there exists ·0 > 0 and Ca > 0 such that if (3.2) holds

with constant ·0 then, for all y ∈ [n] and all t ∈ N,

E[2aN y(t)] ≤ Ca . (3.38)

We postpone the proof of Lemma 3.8 and conclude the proof of Lemma 3.5 assuming
the validity of this bound.

Now denote by X
y

� the set of all individuals generated at the �-th step, i.e., the �-th

generation of the process X y , and let |X
y

� | denote its cardinality. With this notation, an

inspection of the definition of the fragmentation plus noise process shows that F
(t−1)
1

is stochastically dominated by the union of the X y’s, i.e., {F
(�−1)
1 , � ∈ N} and the

independent processes {X y, y ∈ [n]} can be coupled so that, for any � = 1, 2, . . . ,

|F
(�−1)
1 | ≤

∑

y∈[n]

|X
y

�−1| . (3.39)
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Fig. 3. Illustration of the event in (3.40). The dashed line represents a time s up to which both processes X y

and X z have cardinality at least 1 and after which the process X y has cardinality at least 2

The main observation at this point is that, from the definition of fragmentation plus noise,

the event |F
(t−1)
1 | ≥ 2 implies that |F

(�−1)
1 | ≥ 2 for all 1 ≤ � ≤ t . This in turn, by the

domination (3.39), implies that at all times 1 ≤ � ≤ t − 1 one has

∑

y∈[n]

|X
y

� | ≥ 2.

For this to happen there must be two processes X y, X z and a time s < t such that
both X y, X z are alive up to time s and such that X y has at least two individuals in each
generation from time s + 1 to time t − 1. For example, taking s = t − 1, this includes
the case where both X y, X z are alive up to time t − 1, while taking s = 0 it includes the
case where all processes die at the first time step, except for X y which has |X

y

� | ≥ 2 for
all 1 ≤ � ≤ t − 1. We refer to Fig. 3 for an illustrative example.

Using the independence of X y, X z , and the union bound one has the estimate

P(|F
(t−1)
1 | ≥ 2) ≤

∑

y,z∈[n]

t−1∑

s=0

P
(
|X

y

� | ≥ 1 , ∀ 0

≤ � ≤ s , |X
y

� | ≥ 2 , ∀s < � < t
)
P
(
|X z

�| ≥ 1 , ∀ 0 ≤ � ≤ s
)
. (3.40)

Letting N y(t) denote the size of the whole population of X y up to time t − 1, one has

N y(t) =

t∑

�=1

|X
y

�−1| = 1 +

t−1∑

�=1

|X
y

� |.

We note that for any s ≥ 0, the event {|X
y

� | ≥ 1 , ∀ 0 ≤ � ≤ s} implies N y(s +1) ≥ s +1,

and the events {|X
y

� | ≥ 1, ∀ 0 ≤ � ≤ s} and {|X
y

� | ≥ 2, ∀s < � < t} together imply

N y(t) ≥ 2(t − s − 1) + s + 1 = 2t − s − 1.

Therefore, for any fixed a ∈ (0, 1), from Lemma 3.8 and Markov’s inequality we obtain

P(|X
y

� | ≥ 1 , ∀� ≤ s , |X
y

� | ≥ 2 , ∀s < � < t) P(|X z
�| ≥ 1 , ∀� ≤ s) ≤ C2

a 2−2at .
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In conclusion, we deduce that

P(|F
(t−1)
1 | ≥ 2) ≤ n2t C2

a 2−2at .

Since a can be taken arbitrarily close to 1, this proves the desired estimate (3.35) by
taking t2−2at ≤ (4−·)−t for all t large enough and adjusting the value of the constant C·

in order to cover all values of t ∈ N. This concludes the proof of Lemma 3.5. ��
Finally, it remains only to prove Lemma 3.8.

3.6. Proof of Lemma 3.8. We note that a cannot be taken larger than 1 since at each
step there is a probability at least 1/2 of staying alive, so that the event N y(t) ≥ t has
probability at least 2−(t−1). We start by considering the distribution of the component
G(x), namely

νx (U ) =
∑

G∈G

νJ(G) 1G(x)=U ,

and establish an exponential tail bound on its size. To this end, define

ρ0 := max
x

∑

y �=x

pxy ,

and note from the discussion at the end of Sect. 3.2 that ρ0 ≤ 4·0, where ·0 is the constant
in the Dobrushin condition (3.2). Now observe that if ρx is given by (3.37), then by the
union bound

ρx = 1− νx (∅) ≤
∑

y �=x

pxy ≤ ρ0 .

Let Ux denote the random variable with distribution νx . Note that either |Ux | = 0 or
|Ux | ≥ 2. We are going to prove a tight tail estimate for |Ux |.

Lemma 3.9. Suppose ρ0 < 1/4. For every x ∈ [n], the size of the connected component

Ux satisfies

P(|Ux | ≥ �) ≤ 2(4ρ0)
�−1 , � ≥ 2. (3.41)

Proof. We shall argue that the random variable Ux can be stochastically dominated by
the total population of a labeled branching process where at each step an individual x

gives birth to a set S distributed according to the neighborhood of x . More formally, let
Vx denote the set of neighbors of x in G, i.e., Vx = {y ∈ VG : {x, y} ∈ EG} and denote
by γx the distribution of Vx : thus, for any S ⊆ [n]\{x},

γx (S) =
∏

y∈S

pxy

∏

z∈([n]\{x})\S

(1− pxz). (3.42)

Consider the labeled branching process W x with initial value W x
0 = {x} and offspring

distribution γx . A breadth-first search starting at x then shows that Ux is stochastically
dominated (in the sense of inclusion) by the total population of W x , i.e., the union of all
sets W x

� , � = 0, 1, . . . , where W x
� represents the �-th generation of W x . To control the
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size of the total population of W x , we note that for any integer � ≥ 1, a union bound
and the multinomial theorem show that

νJ(|Vx | ≥ �) =
∑

S: |S|≥�

γx (S) ≤
∑

S: |S|=�

∏

y∈S

pxy

≤
∑

{ny}:
∑

y ny=�

∏

y

p
ny
xy =

(∑

y �=x

pxy

)�

≤ ρ�
0 , (3.43)

where the third sum extends over all nonnegative integer vectors {ny, y ∈ [n]\{x}} such
that

∑
y ny = �. We use (3.43) to define a random variable N such that the size |Vx |

of the neighborhood at x is stochastically dominated by N , and N has distribution μ̄

given by

μ̄(0) = 1− ρ0 , μ̄(�) = ρ�
0(1− ρ0) , � ≥ 1 . (3.44)

Indeed, provided ρ0 < 1, (3.44) defines the geometric distribution with parameter 1−ρ0,
and by (3.43) one has

νJ(|Vx | ≥ �) ≤
∑

k≥�

μ̄(k) = ρ�
0 ,

for all � ≥ 0. This implies the desired stochastic domination, so that Vx and N can be
coupled so that |Vx | ≤ N . Thus, the size of the total population of W x is dominated by
the total size |T | of the Galton Watson tree T with offspring distribution μ̄. In particular,
we can use a coupling of Ux and T such that |Ux | ≤ |T |.

Let ϕ(s) = E[sN ] denote the moment generating function of N . Standard calcula-
tions show that the extinction probability for T is given by the smallest positive solution
sext of s = ϕ(s), and since E[N ] = ρ0/(1− ρ0) < 1 here one has sext = 1. Recall also
that ϕ is increasing and convex. With similar calculations one finds that for any fixed
u > 0, the exponential moment

E

[
u|T |

]
= s∗(u) , (3.45)

where s∗(u) is defined as the smallest positive solution of the equation s = uϕ(s).
Note that we are free to choose u. Let us show that, if we take u = 1/(4ρ0), then
s∗(u) ≤ 1/(2ρ0). Indeed, by explicit calculation,

ϕ(s) =
1− ρ0

1− sρ0
,

and ϕ(s) ≤ (1− ρ0)(1 + 2sρ0) ≤ 1 + 2sρ0 if sρ0 ≤ 1/2. Therefore,

uϕ(s) =
ϕ(s)

4ρ0
≤ ϕ0(s) :=

1

4ρ0
+

s

2
.

Noting that the solution of the equation s = ϕ0(s) is s0 = 1/(2ρ0), we see that the
desired solution s∗(u) of s = uϕ(s) exists and satisfies s∗(u) ≤ 1/(2ρ0).

From (3.38) and the previous arguments, using Markov’s inequality one finds

P(|Ux | ≥ �) ≤ P(|T | ≥ �) ≤ (4ρ0)
�
E

[
(4ρ0)

−|T |
]
≤ 2(4ρ0)

�−1 , � ≥ 2 .

This proves (3.41). ��
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We now turn to the proof of Lemma 3.8. Recall the definition of X y as the labeled

branching process with offspring distribution μx from (3.36). Call Ũx the random vari-
able with distribution μx . Let ν̃ be defined as

ν̃(0) = 1
2
− ρ∗ , ν̃(1) = 1

2
, ν̃(�) = 2(1− 4ρ0)(4ρ0)

�−1 , � ≥ 2 ,

where ρ∗ = 8ρ0. Note that this is a well defined probability provided 16ρ0 ≤ 1. Let

Ñ denote the integer valued random variable with distribution ν̃. Lemma 3.9 implies

that |Ũx | is stochastically dominated by Ñ . To see this, note that for any k ≥ 2, the

event |Ũx | = k has the same probability as the event |Ux | = k, where Ux is the random
variable with distribution νx . From Lemma 3.9 we know that

P(|Ũx | ≥ �) = P(|Ux | ≥ �) ≤ 2(4ρ0)
�−1 =

∑

k≥�

ν̃(�) , � ≥ 2 .

Moreover, by the definition of μx one has P(|Ũx | = 1) = 1
2
− ρx ≤

1
2

, and therefore

P(|Ũx | ≥ �) ≤
∑

k≥�

ν̃(�) , � ≥ 0 .

This proves the stochastic domination |Ũx | ≤ Ñ .
Recall that N y(t) denotes the size of the whole population of the labeled branching

process X y up to time t − 1. The above domination argument implies that, for any

t ∈ N, we can dominate N y(t) by the size |T̃ | of the total population of the Galton

Watson tree T̃ with offspring distribution ν̃, so that

E

[
2aN y(t)

]
≤ E

[
2a|T̃ |

]
.

As in (3.45) we have that, for any fixed u > 0, E

[
u|T̃ |

]
= s̃∗(u), where s̃∗(u) is the

smallest solution of the equation s = uϕ̃(s), for

ϕ̃(s) = E

[
sÑ

]
,

the generating function of ν̃. We calculate

ϕ̃(s) =
1

2
− ρ∗ +

s

2
+ 2(1− 4ρ0)

∑

�≥2

(4ρ0)
�−1s� ≤

1

2
(1 + s + s κ(sρ0)),

where κ(t) = 16t/(1 − 4t). Set u = 2(1 − η) = 2a for some fixed positive η ≤ 1/2,
and note that κ(t) ≤ η if t ≤ η/18 for all η ∈ [0, 1/2]. Thus, assuming sρ0 ≤ η/18,
one has

uϕ(s) ≤ (1− η)(1 + s(1 + η)) ≤ (1− η) + s(1− η2).

Therefore, s̃∗(u) ≤ (1 − η)/η2. For this value of s to also satisfy the requirement
sρ0 ≤ η/18, we need ρ0 ≤ η3/(18(1 − η)). By the discussion at the end of Sect. 3.2,
·0 ≤ η3/(72(1− η)) is sufficient for this to hold. Under this assumption one has

E

[
2a|T̃ |

]
≤ η−2.

The estimate (3.38) then holds with 2(1−η) = 2a , Ca = η−2, provided ·0 ≤ η3/(72(1−
η)). This completes the proof of Lemma 3.8. ��
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Remark 3.10. Note that the value of ·0 required for Lemma 3.8 to hold is precisely the
value of ·0 that we will require in the high-temperature condition (3.2) in our main
result for the nonlinear block dynamics, Theorem 3.1. We have made no attempt here
to optimize the dependence of ·0 on our arguments, and with further work one could
no doubt obtain a better, explicit bound. However, it is clear that our current arguments
will not be able to obtain an optimal value of ·0, matching Dobrushin-type thresholds
for rapid mixing for linear Markov chains. For instance, in the mean field case where
J ≡ β/n, the threshold for the equilibrium phase transition is β = 1, and thus ·0 < 1
would be an optimal condition.

4. Nonlinear Glauber Dynamics

Recalling the definition (2.9), the interaction (2.11) in the nonlinear Glauber dynamics
takes the form

p ◦ q =
1

n

∑

x∈[n]

∑

Ã,Ã ′

1
2
(p(Ã )q(Ã ′) + q(Ã )p(Ã ′))Qx (· | Ã, Ã ′), (4.1)

where Qx (Ä | Ã, Ã ′) :=
∑

Ä ′ QJ,x (Ã, Ã ′; Ä, Ä ′). We write St (p), t ∈ N, for the t-th
iteration of p �→ p◦ p. From Theorem 2.7 we know that for any fixed interaction matrix
J, and any initial distribution p ∈ P(�), the above dynamics converges to μ,h, where
h is the unique vector of external fields such that μJ,h and the initial state p have the
same marginals on Ãx , for all x ∈ V . Our main result for the nonlinear Glauber (single
site) dynamics, Theorem 1.2 in the introduction, establishes a tight bound on the rate of
convergence as a function of n = |V |, under the same Dobrushin-type condition (3.2)
on the interaction as in the case of block dynamics. We restate this theorem here for
convenience.

Theorem 4.1. There exist absolute constants ·0 > 0, c > 0 and C > 0 such that, if

(3.2) holds with constant ·0, then for any p ∈ P(�) and t ∈ N,

‖St (p)− μJ,h‖TV ≤ C n e−c t/n,

where h ∈ R
n is the unique choice of external fields such that px = (μJ,h)x for all

x ∈ [n]. In particular, for any ¸ > 0, one has ‖St (p) − μJ,h‖TV ≤ ¸ as soon as

t ≥ n
c

log n + C1(¸), where C1(¸) =
n
c

log(C/¸).

The main difference with respect to Theorem 3.1 is the rate of exponential decay,
which is n times slower in this case. This reflects the intuitive fact that only one spin is
exchanged at each time step whereas �(n) spins are exchanged in a typical transition
of the nonlinear block dynamics studied in Theorem 3.1.

The proof of Theorem 4.1 follows a similar strategy to that of Theorem 3.1, but with
some important technical differences. We begin with an analog of Lemma 3.3, in which
the role of Erdős-Rényi graphs is now played by random star graphs centered at a specific
vertex x .

4.1. Coupling with inhomogeneous random star graphs. We start with a single site
version of Lemma 3.2.
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Lemma 4.2. For any x ∈ [n], Ã, Ã ′ ∈ �,

αx (Ã, Ã ′) =
1

1 + exp
{
(Ãx − Ã ′x )

∑
y: y �=x Jxy(Ãy − Ã ′y)

} . (4.2)

Proof. The expression (4.2) follows directly from (1.3), the definition (2.9) and the
observation that

∑

y,z

Jy,z

[
(ÃyÃz + Ã ′yÃ

′
z)− ([ÃxÃ

′
[n]\{x}]y[ÃxÃ

′
[n]\{x}]z + [Ã ′xÃ[n]\{x}]y[Ã

′
xÃ[n]\{x}]z)

]

= (Ãx − Ã ′x )
∑

y: y �=x

Jxy(Ãy − Ã ′y) .

��

Remark 4.3. Consider the random variable ηx which takes the value−1 with probability
αx (Ã, Ã ′), and +1 with probability 1 − αx (Ã, Ã ′). Then by Lemma 4.2, its probability
density can be written as αx (· | Ã, Ã ′), where

αx (ηx | Ã, Ã ′) ∝ exp
{
ηx

∑

y: y �=x

J̃xy

}
, ηx ∈ {−1, +1},

and J̃xy is defined as in (3.11). This also shows that αx (· | Ã, Ã ′) coincides with the
distribution of ηx obtained by conditioning γ (· | Ã, Ã ′) on the event that {ηy = 1, ∀ y �=
x}, where γ (· | Ã, Ã ′) is the distribution from Lemma 3.2. Note also that, if Ãx = Ã ′x , then

J̃xy = 0 for all y �= x , and therefore αx (· | Ã, Ã ′) = Be(1/2) is the Bernoulli probability
measure on {−1, +1} with parameter 1/2.

Fix x ∈ [n], and let Gx be the set of all subgraphs of the star graph Sx = (V, Ex )

with vertex set V = [n], and edge set Ex := {{x, y}, y ∈ [n] \ {x}}. We view G ∈ Gx

as a collection of edges, i.e., a subset of Ex , with no isolated vertices, and write P(Gx )

for the set of probability measures over Gx . Note that any G ∈ Gx is always connected,
but can be the empty graph (with no vertices). We use VG , EG for the vertex and edge
sets of G ∈ Gx , respectively. The following is the single site version of Lemma 3.3.

Lemma 4.4. Fix x ∈ [n]. Let νx
J be the inhomogeneous random star measure associated

with the weights λxy = e4|Jxy | − 1, i.e.,

νx
J (G) ∝

∏

{x,y}∈EG

(e4|Jxy | − 1), G ∈ Gx .

Then

αx (· | Ã, Ã ′) =
∑

G∈Gx

νx
J (G) μx

G(· | ÃVG
, Ã ′VG

) ,

where, for any G ∈ Gx , μx
G(· | ÃVG

, Ã ′VG
) is a probability measure on {−1, +1} that

depends on Ã, Ã ′ only through the spins ÃVG
, Ã ′VG

and such that if G = ∅, then

μx
G(· | ÃVG

, Ã ′VG
) = Be( 1

2
) is the Bernoulli probability measure on {−1, +1}, with pa-

rameter 1/2.

Proof. The proof is similar to that of Lemma 3.3 and is omitted. ��
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4.2. Coupon collecting with noise. In the case of single site updates, fragmentation
involves hitting each site at least once. The analog of fragmentation plus noise can
therefore be viewed as a coupon collecting process, again perturbed by a local growth
described by simpler star graphs.

Given a set A ⊆ [n], a uniformly random vertex x ∈ [n], a Bernoulli variable
B ∈ {−1, +1} with parameter 1/2 and a random graph G ∈ Gx with distribution νx

J , we
define the random sets

�0(A) = �1(A) = ∅ , if |A| ≤ 1 , (4.3)

and, if |A| ≥ 2,

(�0(A),�1(A)) =

§
⎪⎪⎪̈

⎪⎪⎪©

(A,∅) if x /∈ A

(A,∅) if x ∈ A , G = ∅ and B = −1

(A \ {x},∅) if x ∈ A , G = ∅ and B = +1

(A ∪ VG , VG) if x ∈ A and G �= ∅

(4.4)

Definition 4.5. The coupon collecting plus noise process Ct , t = 0, 1, . . . is the random
process defined as follows. For each t ∈ N, Ct consists of 2t labeled fragments, i.e.,

(possibly empty) subsets C
(t)
1 , . . . , C

(t)

2t , C
(t)
i ⊆ [n], obtained by repeated application

of the following rule. At time zero we have C0 = {[n]}, i.e., C
(0)
1 = [n]. At time t ∈ N,

if Ct−1 = (C
(t−1)
1 , . . . , C

(t−1)

2t−1 ), then for each i independently, the fragment C
(t−1)
i is

replaced by (�0(C
(t−1)
i ),�1(C

(t−1)
i )) where �0, �1 are the random maps defined by

(4.3)-(4.4), so that

Ct = (C
(t)
1 , . . . , C

(t)

2t )

= (�0(C
(t−1)
1 ),�1(C

(t−1)
1 ),�0(C

(t−1)
2 ),�1(C

(t−1)
2 ), . . . , �0(C

(t−1)

2t−1 ),�1(C
(t−1)

2t−1 )) .

The process is said to die out if there is a time t such that C
(t)
i = ∅ for all i = 1, . . . , 2t .

In the latter case, with slight abuse of notation, we write Ct = ∅.

Remark 4.6. In the non-interacting case J = 0 one has always G = ∅ and thus �1(A) =
∅, so that the process Ct is a monotone decreasing sequence obtained by iterations of the
map A �→ �0(A), where at each step one picks a uniformly random vertex x ∈ [n] and
if x ∈ A the vertex x is removed from A with probability 1/2. This yields a lazy version
of the standard coupon collecting process, and therefore the union bound shows that

P(Ct �= ∅) ≤ n
(
1− 1

2n

)t
≤ n e−t/(2n) , t = 1, 2, . . . (4.5)

In the interacting case, the event G �= ∅ causes the splitting of A into two nontrivial sets
(�0(A),�1(A)). This local growth can slow down the convergence to the absorbing
state ∅. However, we will show that if the growth is sufficiently subcritical (ensured by
the Dobrushin condition (3.2)) then a bound of the form (4.5) continues to hold.

Despite the formal similarities between Definition 4.5 and Definition 3.4, the two
processes are quite different. Note in particular the strong asymmetry between the dif-
ferent fragments in the case of Definition 4.5. Let us first consider the evolution of the

leftmost fragment C
(t)
1 , t = 0, 1, . . . .
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Lemma 4.7. There exist absolute constants ·0 > 0, a > 0 and C > 0 such that if (3.2)
holds with constant ·0 then

P(C
(t)
1 �= ∅) ≤ Cne−at/n , t = 1, 2, . . .

Proof. The leftmost fragment C
(t)
1 = �0 ◦ · · · ◦�0([n]) is obtained by iterating t times

the map �0. It may be represented by the following labeled branching process. Consider
random variables W := {Wt , t = 0, 1, . . . }, where W0 = [n] and for each t , Wt ⊆ [n]
is updated to Wt+1 ⊆ [n] by the rule

• pick x ∈ [n] u.a.r.
• if x /∈ Wt then set Wt+1 = Wt

• if x ∈ Wt then let Vx denote the neighborhood of x in G, i.e., the random variable
with distribution as in (3.42): if Vx �= ∅, set Wt+1 = Wt ∪ Vx ; if instead Vx = ∅, set

Wt+1 =

{
Wt \ {x} with prob. 1

2

Wt with prob. 1
2

From our definitions we see that C
(t)
1 has the same distribution as Wt .

Next, consider a continuous time version of the process Wt . Namely, let T1, T2, . . .

denote the arrival times of the Poisson point process with intensity 1 on [0,∞) and call
W̃t , t ≥ 0, the process obtained by repeating the steps above at each arrival time T j , so

that Wt = W̃Tt for every t ∈ N.

From standard properties of the Poisson process, the random process W̃t can be
equivalently obtained by attaching to each x ∈ [n] an independent Poisson process with
intensity 1/n, and performing updates at x independently at the arrival times of the pro-
cess at x . Neglecting the overlap between different branches, and using the domination
argument in the proof of Lemma 3.9, one can stochastically dominate the cardinality of
W̃t by

|W̃t | ≤
∑

x∈[n]

M x
t ,

where M x
t , x ∈ [n] are i.i.d. copies of the continuous time branching process obtained

by setting M x
0 = 1 and then letting each branch evolve independently with branching

times given by exponential random variables with parameter 1/n. In this process, each
individual gives birth to � individuals with probability μ∗(�) given by

μ∗(�) =

§
⎪̈

⎪©

1
2
μ̄(0) � = 0

1
2
μ̄(1) � = 1

μ̄(�) � ≥ 2

where μ̄ is defined as in (3.44) with the same value of ρ0. (See [5] for background on
continuous time branching processes.) Since M1

t is subcritical as soon as ·0 is sufficiently
small, and μ̄ has exponential tails, standard estimates on subcritical continuous time
branching processes imply that P(M1

t > 0) ≤ Ae−at/n for some constants a, A > 0. It
follows that

P(|W̃t | > 0) ≤ n P(M1
t > 0) ≤ n Ae−at/n .
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To conclude the proof, recall that Wt = W̃Tt and that Tt is the sum of t i.i.d. exponentials
of parameter 1, so that

P(Tt ≤ t/2) ≤ e−ct ,

for some constant c > 0. Therefore, for all t ∈ N,

P(C
(t)
1 �= ∅) ≤ P(|W̃Tt | > 0) ≤ P(|W̃t/2| > 0) + e−ct ≤ n Ae−at/(2n) + e−ct ,

completing the proof of the lemma. ��

Next, we extend the idea of the proof of Lemma 4.7 to obtain the following stronger
estimate.

Lemma 4.8. There exist absolute constants ·0 > 0, a > 0 and C > 0 such that if (3.2)
holds with constant ·0 then

P(Ct �= ∅) ≤ Cne−at/n , t = 1, 2, . . . (4.6)

Proof. The idea is to add all individuals from the other fragments to the evolution of the
first fragment, which we interpret as the “master evolution" to which all further fragments
are added, and to dominate this global process by a single sub-critical branching process.
Indeed, notice that every time there is a branching event in the coupon collecting plus

noise process, at a fragment C
( j)
i , say at vertex x , if a nonempty neighborhood Vx of x is

drawn, then the set Vx is added to both �0(C
( j)
i ) and �1(C

( j)
i ). Thus, recursively, we can

add all of them to the master evolution and obtain a global process C̃ = {Ct , t = 0, 1, . . . }
that evolves like the first fragment, with the rule that every time a Vx �= ∅ is drawn then
two copies of that set are added to the current configuration, each of which continues its
evolution independently according to the same branching rules as above. In particular,
the same argument as in the proof of Lemma 4.7 shows that

P(Ct �= ∅) ≤ P(ZTt �= ∅) , (4.7)

where Z t , t ≥ 0, is the continuous time process defined by Z t =
∑n

i=1 Z i
t , where Z i

t are

i.i.d. copies of a process Z1
t defined as follows. At time 0 there is one individual, and each

individual that is alive at any time s ≥ 0, independently of all others, waits an exponential
time with parameter 1/n and then branches into 0, 1, or 2 j individuals, with probabilities
given, respectively by, μ∗(0), μ∗(1), and μ∗( j), j ≥ 2. If the branching produces 2 j

individuals, then these are divided into two groups (y1, . . . , y j ) and (y′1, . . . , y′j ), which

continue their evolutions independently except that the branching times of the two groups
are coupled so that they are identical. (This slightly strange coupling is a consequence
of the discrete nature of time in the original process Ct .)

Let us first consider the simpler situation where we do not have the coupling of
branching times every time a branching produces 2 j individuals. Indeed, let us call Z̃1

t

the process evolving as above with the feature that the two groups (y1, . . . , y j ) and
(y′1, . . . , y′j ) evolve in a fully independent way following the above described rules.

Thus, Z̃1
t is a pure continuous-time branching process with offspring distribution

ν∗(�) =

§
⎪̈

⎪©

1
2
μ̄(0) � = 0

1
2
μ̄(1) � = 1

μ̄(�/2) � = 4, 6, . . .
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The process Z̃1
t is subcritical as soon as ·0 is sufficiently small, and since μ̄ has expo-

nential tails, for some constants a, A > 0 one has

P(Z̃1
t > 0) ≤ Ae−at/n .

In particular, letting Z̃ t =
∑n

i=1 Z̃ i
t , we conclude, as in the proof of Lemma 4.7, that

P(Z̃Tt �= ∅) ≤ n Ae−at/(2n) + e−ct . (4.8)

Thus the proof would be complete if we could replace ZTt with Z̃Tt in (4.7). In order to
finish the proof it is then sufficient to show that

P(Ct �= ∅) ≤ P(Z̃Tt �= ∅) + e−ct , (4.9)

for some constant c > 0.

To prove (4.9), recall the definition of the random process W̃t obtained by attaching

independent Poisson processes with intensity 1/n to each x ∈ [n], such that C
(t)
1 = W̃Tt .

Let us add to the master evolution C
(t)
1 all other evolutions as explained above by doubling

the splittings every time there is a branching involving a nonempty neighborhood of x .
This yields a global process Qt , t ≥ 0 on a single evolution, such that {Ct = ∅} = {QTt =
∅}. Note that the branching times (but not the choices of vertices x to be updated) of
newly added evolutions are fully coupled to the branching times of the master evolution
dictated by the original Poisson process. If, for every newly opened evolution we use
instead an independent realization of the Poisson point process, then we obtain a global
process Q̃t , which is dominated as explained above by the process Z̃ t . Thus it is sufficient
to find a coupling of Qt and Q̃t such that

P(QTt �= ∅) ≤ P(Q̃Tt �= ∅) + e−bt ,

for some constant b > 0.

Note that if b > 0 is a sufficiently small constant, then a simple large deviation
bound shows that the probability that a Poisson process of intensity 1 has a total number
of arrivals in a time t/2 that is less than bt , is at most 3−t . Thus, if there are 2t such
processes, the event Et that all of them have at least bt arrivals within time t/2 satisfies

P(Ec
t ) ≤ 2t 3−t = (2/3)t .

We can couple Qt , Q̃t in such a way that, on the event {Tt ≥ t/2} ∩ Et , we have
{QTt �= ∅} ⊂ {QTbt

�= ∅}. It follows that,

P(Ct �= ∅) = P(QTt �= ∅) ≤ P(QTt �= ∅, Tt ≥ t/2, Et ) + (2/3)t + e−ct

≤ P(Q̃Tbt
�= ∅) + (2/3)t + e−ct . (4.10)

On the other hand, Q̃t �= ∅ implies Z̃ t �= 0, and thus, by (4.8),

P(Q̃Tbt
�= ∅) ≤ n Ae−abt/(2n) + e−bct . (4.11)

Combining (4.10) and (4.11) proves the desired estimate (4.6). ��
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4.3. Proof of Theorem 4.1. As in the proof of Theorem 3.1, the first step is to use the
coupling with random (star) graphs and Bernoulli variables to decompose the distribution
at every internal node of the interaction tree. For this we use Lemma 4.4. This leads to
the analysis of the branching process, which in this case takes the form of coupon
collecting with noise. The conclusion then follows from Lemma 4.8. With the notation
from Theorem 3.6 we are going to establish that there exist absolute constants ·0 > 0,
c > 0 and C > 0 such that, if (3.2) holds with constant ·0 then, for any choice of initial
distributions �p, �q with the same marginals as in (3.27),

‖St ( �p)− St (�q)‖TV ≤ Cne−c t/n, t ∈ N, (4.12)

where St ( �p) denotes the distribution at the root of the binary tree when the leaves are
equipped with the distributions �p and the single site interaction (4.1) occurs at each
internal node.

For each interaction we draw a uniformly random vertex x ∈ [n], and reveal a
realization of the neighborhood G = Vx and a Bernoulli variable B ∈ {−1, +1}. Then,
according to Lemma 4.4, the interaction (4.1) has the form

p ◦ q =
1

2n

∑

x,G,B

νx
J (G) 1

2
(S(p, q | x, G, B) + S(q, p | x, G, B)) (4.13)

where

S(p, q | x, G, B)(Ä ) =
∑

Ã,Ã ′

p(Ã )q(Ã ′)
∑

ηx∈{−1,+1}

μx
G,B(ηx | ÃVG

, Ã ′VG
) 1Ä∼(Ã,Ã ′,ηx ),

and, for Ä ∈ �, the notation Ä ∼ (Ã, Ã ′, ηx ) stands for

Ä ∼ (Ã, Ã ′, ηx ) ⇔

§
⎪̈

⎪©

Äx = Ãx , ηx = +1

Äx = Ã ′x , ηx = −1

Äy = Ãy , ∀y �= x

and μx
G,B(· | ÃVG

, Ã ′VG
) is a probability distribution on {−1, +1} that depends on Ã, Ã ′

only through ÃVG
, Ã ′VG

if G �= ∅, while it assigns the value ηx = B deterministically if

G = ∅. This definition reflects the fact that if G = ∅ then we assign the value of ηx by
a fair coin flip B, whereas if G �= ∅ then B is irrelevant and we sample ηx according to
μx

G(· | ÃVG
, Ã ′VG

).

We remark that our definition of the maps �0 and �1 in Definition 4.5 is such that the
only information about the distributions p, q that is needed to compute S(p, q | x, G, B)

is contained in the marginals p�0([n]) and q�1([n]). Note the asymmetry between p, q in

this expression: symmetry is restored in (4.13) by the averaging 1
2
(S(p, q | x, G, B) +

S(q, p | x, G, B)). The choice between the two options will then be encoded by a further
Bernoulli variable B ′ with parameter 1/2, that we sample afresh at each interaction.

Repeating the argument in the proof of Theorem 3.6, one has that after t steps,

conditional on the realizations �x of all random vertices, all graphs �G and Bernoulli

variables �B, �B ′ involved in each of the 2t − 1 interactions, the fragment C
(t)
i , i =

1, . . . , 2t , as defined in Definition 4.5, contains all the information needed from the
distribution at the leaf �B ′(i), which is determined by taking the left or right descendant
from the root at each internal node according to whether B ′ = +1 or B ′ = −1 at that
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node. As before, we observe that as soon as a fragment becomes either empty or contains
one site only, then the information carried by the corresponding leaf is irrelevant.

In analogy with (3.31), we write

St ( �p) =
∑

(�x, �G, �B, �B′)

ν̂(�x, �G, �B, �B ′) St ( �p | �x, �G, �B, �B ′)

with

ν̂(�x, �G, �B, �B ′) =

2t−1∏

i=1

1
4n

νx
J (G(i))

where St ( �p | �x, �G, �B, �B ′) is some probability measure that may depend on (�x, �G, �B, �B ′)
and on �p = (p1, . . . , p2t ) in a complicated way but has the property that

St ( �p | �x, �G, �B, �B ′) = St (�q | �x, �G, �B, �B ′), if (�x, �G, �B, �B ′) ∈ {Ct = ∅}.

Arguing as in (3.33)-(3.34), it follows that

‖St ( �p)− St (�q)‖TV ≤ P(Ct �= ∅).

The conclusion (4.12) now follows from Lemma 4.8. This ends the proof of Theorem
4.1. ��

5. Concluding Remarks and Open Questions

Our results leave open a number of interesting directions for further research, some of
which we briefly mention here, along with some additional observations and extensions.

1. Can we prove exponential decay (even with an exponentially bad dependence on n)
for the nonlinear Ising dynamics for arbitrary interactions J, without the high-
temperature condition? Recall that we did prove convergence for arbitrary J in The-
orem 1.1, but unlike its analogs for linear Markov chains our proof apparently gives
no useful rate information (see Remark 2.5).

2. Can our high-temperature condition maxx

∑
y∈V |Jxy | ≤ ·0 be relaxed to accommo-

date an optimal value for ·0, in particular in the case of the complete graph (mean-field

or Curie-Weiss model)? Here all interactions Jxy =
β
n

, and β = 1 marks the phase
transition. Thus one might hope to sharpen our results to require only ·0 < 1 in this
case. One might also hope to replace the �1 condition on J by a spectral condition,
as e.g. in the recent works [6,18].

3. We have proved rapid convergence in total variation distance, a natural goal. However,
one might naturally also ask whether one can prove sharp bounds on the rate of
contraction of relative entropy, a more delicate question. This was done recently in
the non-interacting (population genetics) case in [11,12].

4. As mentioned in the introduction, our results for the Ising model generalize to any
spin system with a constant number of spins at each vertex and bounded pairwise
interactions, including the q-state Potts model, under an analogous Dobrushin-type
condition (3.2). (In that condition, the sum is now over the maximum absolute values
of all interactions involving any given site x .) This follows from the fact that, as
can readily be checked, the representation of the measure γ (· | Ã, Ã ′) in terms of a
two-spin system as described in Lemma 3.2 still holds in this more general setting,
and beyond that point the rest of the analysis depends only on that representation.
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5. We note that, in contrast to linear Markov chains (which can be simulated using
a single point walking randomly around the state space), nonlinear dynamics do
not immediately provide an efficient algorithm for sampling from the stationary
distribution, even when the convergence time is short. This is a consequence of the
fact that, in order to obtain a single sample from the time-t distribution Tt (p), we
would naively need to simulate the entire evolutionary tree of depth t , which begins
with 2t independent random samples from p at the leaves. (Indeed, Arora et al.
[4] prove that simulating arbitrary reversible quadratic dynamics is in fact Pspace-
complete.) However, for both of the dynamics we consider here, our analysis does
in fact also provide a polynomial time algorithm for sampling from (very close to)
the stationary distribution μJ,h. This is immediately obvious for the nonlinear block
dynamics: since Theorem 1.3 establishes that t = O(log n) steps are enough for
convergence, the entire tree is of polynomial size and thus can be constructed in
polynomial time. (A detail here is that each interaction in the tree requires sampling
the set of sites � to be exchanged according to the distribution (3.11). However,
this itself is a high-temperature Ising Gibbs measure, and thus can be sampled from
efficiently by other means.) For the nonlinear Glauber dynamics, a polynomial time
simulation is also possible once we observe from our analysis that the actual size of the
master evolution for St (p) is O(t); since the master evolution is sufficient to construct
our time-t sample, this can be done in poly(n) time. The simulations in the previous
paragraph leave much to be desired algorithmically, as they are rather unwieldy and,
more significantly, do not retain the underlying pairwise interaction structure of the
nonlinear dynamics. An interesting related question, for both processes, is whether
a more explicit simulation is possible: namely, starting with a finite population of
size N = poly(n), each member of which is sampled independently from the initial
distribution p, evolve this population in the obvious way (by carrying out interactions
between randomly chosen pairs to construct the next-generation population of the
same size). The question is whether the time-t population in this finite implementation
is close to the true population Tt (p), at least for modest times t—this is not obvious
since unwanted correlations will arise due to the finite population size, though these
will decrease with the population size N . (This implementation, which is actually a
Markov chain on a very large state space, is known as the “Kac model" in kinetic
theory [32], and the convergence to the true population is referred to as “propagation
of chaos".) In the non-interacting (population genetics) case, it was shown that a low-
degree polynomial population size does in fact suffice [12,43]. It would be interesting
to see if this argument can be extended to the Ising model at high temperature; in
particular, since the key insight in [43] comes from the fragmentation process, the
question boils down to whether the same insight carries through in the presence of
noise.
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