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Abstract

We investigate theoretically the one-dimensional compression of a hydrogel layer
by a uniform fluid flow normal to the gel surface. The flow is driven by a pressure
drop across the gel layer, which is modeled as a poroelastic medium. The novelty
comes from considering, for the first time, the impact of interfacial permeability
and compression. This leads to several new features for the flow and gel com-
pression. As the pressure simultaneously drives the Darcy flow through the pores
and compresses the gel, the flux-pressure relationship may become non-monotonic.
Most interestingly, we discover two types of hysteresis when the pressure or the
flux is controlled, which are also confirmed by transient numerical simulations. The
first type of hysteresis stems from the interplay between the gel compression at the
upstream interface and that in the bulk of the gel, and would not be predicted by
models that ignore the interfacial compression. The second type hinges on strain-
hardening in the gel that maintains a non-vanishing permeability at high pressure.
Finally, we suggest experimental setups and conditions to seek such hystereses in
real gels.

1 Introduction

Hydrogels are cross-linked polymer networks swollen by a large amount of absorbed
water. Being soft, porous and biocompatible, hydrogels have found applications in a
wide range of new technologies, including soft sensors and actuators [1, 2], drug deliv-
ery [3] and tissue engineering [4]. For example, hydrogels are widely used to mimic
the extracellular matrix in organ-on-chip devices [5]. In response to ambient changes,
hydrogels spontaneously swell or deform, and can thus serve as automatic flow control
in microfluidic devices [6]. As soft porous media, hydrogels also exhibit interesting solid
and fluid mechanical behavior, which is often denoted by the term poroelasticity [7–9].
In particular, the coupling between fluid flow and solid deformation can give rise to novel
phenomena [10,11]. This paper reports one such phenomenon predicted by a poroelastic
model.

Consider the one-dimensional (1D) compression of a layer of hydrogel by a normal
flow of the solvent (Fig. 1). This flow, in the x direction, is driven by a prescribed
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Figure 1: Schematic of 1D compression of a hydrogel layer. The dashed red line marks
the initial interface between the clear fluid and the hydrogel, the uncompressed thickness
of the hydrogel layer being L. The solid red line marks the displaced interface under
compression. The downstream surface of the gel layer is constrained by a fixed permeable
mesh (the black dashed line), and has zero displacement. The uniform velocity of the
clear fluid Q is driven by a pressure drop P between the fluid upstream and downstream
of the gel layer.

pressure drop across the layer. The gel layer extends to infinity in the y and z directions,
with zero displacement in these transverse directions. The downstream surface of the
gel layer is fixed in space but allows passage of the solvent, as if by a stiff mesh. The
upstream gel surface is displaced by the flow as the layer compacts.

For a rigid porous medium, Darcy’s law posits a fluid flux Q that is linearly propor-
tional to the imposed pressure drop P . For a soft porous material such as a hydrogel,
however, the pressure and Darcy drag compact the solid network and reduce the pore
space. Thus, the flux becomes a nonlinear function of the imposed pressure, falling be-
low the linear prediction of Darcy’s law at a pressure on the order of the bulk modulus
of the hydrogel [12]. Since the compaction problem embodies a key feature of poroe-
lasticity, it has been studied by several groups in the past, e.g., [10, 11, 13–25]. Some
used the problem as a test of their poroelastic models [11,19], while others investigated
compaction of deformable porous media, hydrogels or biological tissues in engineering
and biological applications [14,15,21–23,25].

We will tackle the compression problem with a poroelastic model that differs from
most of the above in the entry boundary condition (EBC) at the upstream interface
between the gel layer and the clear fluid. Prior poroelastic models assumed a continu-
ity of normal stress or pressure at gel-solvent boundaries, following a long tradition of
such treatment for rigid porous media [26–30]. Based on physical intuition of a con-
traction flow into the pores, however, we anticipate a finite pressure drop across the
fluid-gel interface. This idea was developed into pressure-jump interfacial conditions
for rigid porous media via a homogenization procedure [31, 32]. More recently, Lācis
et al. [33] proposed a transpiration-resistance model for the interfacial pressure jump,
and demonstrated interesting physics in a lid-driven flow above a rigid porous medium.
For poroelastic media, we have pursued a similar idea by formulating the interfacial
dissipation in the context of irreversible thermodynamics. Thus, the constraint of a pos-
itive entropy production leads to an EBC that posits a linear proportionality between
the velocity jump and the traction jump across the interface [34, 35]. Subsequently, Xu
et al. [24] have established the superiority of the newly proposed EBC to those in the
porous media literature, and validated it against experimental data in shear flows. Nat-
urally, one wonders if the new EBC would bring new physics into the gel-compression
problem.

This paper presents the theoretical predictions of our model for the 1D compression
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of a hydrogel layer. First, we describe how our model predicts two types of hystereses
in certain parameter regimes, with either the pressure P or the flux Q being controlled.
Second, we examine the roles of EBC and the bulk permeability in the first type of
hysteresis. Finally, we discuss the experimental conditions that may allow the hystereses
to be observed in the laboratory.

2 Formulation of poroelastic model

From this point onward, dimensional quantities will carry an overbar, while dimen-
sionless ones do not. The governing equations are essentially the same among various
poroelastic models published before [11,19,24,36], barring minor differences in simplifi-
cations and notations. We adopt the continuity equations for the fluid and solid phases
and their momentum equations in the absence of gravity:

∂(1− φ)

∂t̄
+∇ · [(1− φ)v̄f ] = 0, (1)

∂φ

∂t̄
+∇ · (φv̄s) = 0, (2)

µ̄

k̄
(1− φ)(vf − vs) +∇p̄ = 0, (3)

∇ · (φσ̄s)−∇p̄ = 0, (4)

where φ is the solid volume fraction and 1 − φ is the fluid volume fraction, also known
as the porosity, and v̄f and v̄s are the intrinsic phase average velocities of the fluid and
solid phases [37]. Summing the first two equations yields an overall continuity equation
∇ · [(1− φ)v̄f + φv̄s] = 0, whose implementation requires the hydrodynamic pressure p̄
as a Lagrange multiplier. Equation (3) is Darcy’s law for the fluid flow, µ̄ being the fluid
viscosity and k̄ the permeability. The Brinkman stress term has been neglected as it is
typically small compared to the Darcy drag; scaling arguments for this common practice
can be found in the literature [26, 38]. Equation (4) is the classical Biot equation that
expresses the overall force balance on the poroelastic two-phase mixture. The extra solid
stress tensor σ̄s is defined such that φσ̄s is Terzaghi’s effective stress [11].

For the 1D geometry of the compression problem, the governing equations can be
simplified into scalar forms:

∂(1− φ)

∂t̄
+
∂[(1− φ)v̄f ]

∂x̄
= 0, (5)

∂φ

∂t̄
+
∂(φv̄s)

∂x̄
= 0 (6)

µ̄

k̄
(1− φ)(v̄f − v̄s) +

∂p̄

∂x̄
= 0, (7)

∂(φσ̄s)

∂x̄
− ∂p̄

∂x̄
= 0, (8)

where σ̄s is a shorthand for the solid normal stress σ̄sxx.

2.1 Permeability

In general, the permeability k̄ depends on the pore structure of the medium, including
pore size, porosity, tortuosity and connectivity. In the porous-media literature, k̄ has
been modeled using two different approaches: treating the flow through a porous medium
as external flow around an array of solid particles, or as internal flow through myriad
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conduits. A detailed account of the historical development of both approaches can be
found in Dullien [39], who also evaluated their overlap and differences. In particular, the
external-flow models are more appropriate for high-porosity media, whereas the internal-
flow ones work better for low-porosity media. For our purpose, we will test two widely
used formulas representative of the two types:

k̄D =
2r̄2

9

1− φ
φ

, (9)

k̄KC =
r̄2

45

(1− φ)3

φ2
, (10)

where r̄ is a characteristic length scale for the pores. The Darcy permeability k̄D arises
from the Stokes drag on a dilute array of spheres of radius r̄ separated by an average dis-
tance H̄ such that (4πr̄3/3)/H̄3 = φ. The total drag over a certain volume must balance
the imposed pressure drop across that volume. Comparing this balance with Darcy’s
law gives us Eq. (9), which also agrees with the result of a more formal homogenization
procedure [40]. For denser arrays, hydrodynamic interaction among the particles tends
to decrease the permeability [41,42], but these formulas reduce to k̄D in the limit of high
porosity. The Kozeny-Carman permeability k̄KC is based on modeling the flow in porous
media as through tortuous conduits [11, 39], with r̄ representing the characteristic pore
radius. Our continuum model, of course, does not specify the length scale r̄ directly,
and we will treat the characteristic permeability k̄∗ = 2r̄2/9 as a material property of
the hydrogel.

As hydrogels typically have low solid content and high porosity (φ ∼ 0.02, and can
be as low as 0.003) [10, 43–45], k̄D should be more suitable than k̄KC in our context.
In particular, k̄D captures the correct high-porosity scaling k̄D ∝ φ−1 [39], whereas
k̄KC ∝ φ−2 as φ → 0. Thus, we will adopt k̄D in our model, except when making
explicit comparisons with k̄KC.

2.2 Stress-strain relation

We have used linearly elastic and hyperelastic constitutive equations in the past, mostly
for problems with small to moderate strains [24, 25, 36]. The 1D compression problem
incurs large strains, however, and we must consider the limit at which most of the
pore spaces have been eliminated by the deformation of the solid network. Barring
compressibility or failure of the solid material, no further deformation is possible, and
the solid stress diverges at this maximum strain em. The magnitude of em may depend
on the shape and size distribution of the pores or solid grains, as well as on the packing
configuration.

For hydrogels, such strain-hardening behavior has been studied in shear [46] and
uniaxial stretching or compression [47, 48], but not in 1D compression. To capture the
qualitative feature, we adopt the following constitutive relation for the 1D compression
of a porous medium [19,49]:

σ̄s =
Ē

φ

e

1− e
em

, (11)

with Ē being an elastic modulus and e being the engineering or nominal strain. In
general, Ē depends on the polymer concentration and molecular conformation, including
chain entanglement and crosslinking. For the flow-induced compression, none of these
factors change and we take Ē to be a constant. Compressive strain and stress are
negative by convention. In 1D compression, e is related to the local solid fraction by
e = (φ0−φ)/φ, φ0 being the uniform solid fraction in the undeformed hydrogel [11,19,36].
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Thus, the maximum strain corresponds to a maximum solid fraction φm = φ0/(1 + em).
Now the constitutive equation can be rewritten as:

σ̄s = − Ē
φ

φm − φ0
φ0

φ− φ0
φm − φ

. (12)

2.3 Boundary conditions

Previous models have almost always assumed pressure continuity on the interface [26–
30], which implies zero resistance to the fluid entering small pores, and consequently
zero compression of the solid network at the upstream boundary [19]:

σ̄s = 0. (13)

Intuitively, however, one visualizes the flow entering pores as a contraction flow with
its attendant pressure drop and viscous dissipation. This should amount to an entry
resistance.

This idea has been formulated via a procedure of irreversible thermodynamics to
derive EBCs that ensure positive interfacial entropy production [24, 34, 35]. Thus we
arrive at an EBC that stipulates a proportionality between the jump in normal velocity
across the fluid-gel interface and the jump in normal stress:

Q̄− v̄f = η̄(σ̄s + P̄E), (14)

where the positive coefficient η̄ can be called an interfacial permeability [34], analogous
to the Darcy permeability k̄, and P̄E > 0 is the entry pressure drop across the upstream
surface of the gel layer. This EBC implies that the normal stress imbalance between the
outer fluid and the solid skeleton injects the solvent into the gel, with 1/η̄ being effectively
an interfacial resistance to the injection. Two additional boundary conditions are the
continuity of the fluid flow: Q̄ = (1−φ)v̄f +φv̄s, and normal force balance: P̄E = −φσ̄s.
The latter represents the pressure drop across the entry boundary being sustained by
Terzaghi’s effective stress in the solid network, the Brinkman stress for the pore fluid
having been neglected. Using these, our EBC can be rewritten as

P̄E = −φσ̄s =
φ2

(1− φ)2
Q̄− v̄s
η̄

=
µ̄

η̃
(Q̄− v̄s), (15)

where η̃ = µ̄η̄(1−φ)2/φ2 is a penetration length [50,51]. It absorbs the solvent viscosity
µ in anticipation of P̄E ∝ µ̄, and is thus a geometric quantity comparable to the Navier
slip length. Obviously, the stress-free EBC of Eq. (13) can be recovered from Eq. (15) in
the limit of η̃ →∞. In general, η̃ is a function of the pore size r̄ and the solid fraction
φ, and scaling dictates η̃ = ψ(φ)r̄, with a dimensionless function ψ(φ). Using pore-
scale models for the gel surface, Xu et al. [51] have recently studied ψ(φ) by numerical
computation and scaling arguments, and recommended the following semi-analytical
expression that adequately represents the numerical data:

η̃ =
(1− φ)2

1 + φ2
r̄, (16)

which will be used in this study. This formula implies that η̃ is on the order of r̄. Thus,
interfacial penetration is governed by the same pore size as determines the bulk per-
meability k̄∗. Besides, η̃ decreases with increasing solid fraction φ, signifying increasing
resistance to penetration. The new EBC of Eq. (15) is key to the predictions of our
model, as will be illustrated in Section 3. In steady state, we set v̄s = 0 in Eq. (15).

At the downstream boundary (Fig. 1), the solid network is fixed: v̄s = 0, and the
pressure is set to zero: p̄ = 0. As the problem is one-dimensional, there is no transverse
flow or displacement along the y direction.
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2.4 Scaling

The following scalings are used to render the governing equations and boundary condi-
tions dimensionless:

x = x̄/L̄, (vs, vf ) = (v̄s, v̄f )/V̄ , (σs, p) = (σ̄s, p̄)/Ē, (17)

where L̄ is the undeformed thickness of the gel layer, and V̄ = Ēk̄∗/(L̄µ̄) is the charac-
teristic velocity, with the characteristic permeability k̄∗ = 2r̄2/9. Naturally, L̄/V̄ serves
as the time scale. Thus, the problem is governed by four dimensionless parameters:

η = r̄L̄/k̄∗, P = P̄ /Ē, φm, φ0. (18)

The penetration length η̃ ∝ r̄ is scaled by k̄∗/L̄ into η, which carries the physical
meaning of the ratio between the interfacial and bulk permeability. It also represents
the number of pores in the gel thickness: η = 4.5L̄/r̄, and is related to the Darcy number
Da = k̄∗/L2: η ∼ Da−1/2. Obviously, a continuum description of the porous medium
requires η � 1 or Da� 1. The Darcy and Kozeny-Carman permeabilities are scaled as

kD =
k̄D
k̄∗

=
1− φ
φ

, (19)

kKC =
k̄KC

k̄∗
=

(1− φ)3

10φ2
, (20)

kD being the default used in most of the results below, and kKC only used when the two
are compared.

Finally, we collect the dimensionless governing equations below:

∂φ

∂t
+
∂(φvs)

∂x
= 0, (21)

∂

∂x
[φvs + (1− φ)vf ] = 0, (22)

1− φ
k

(vf − vs) +
∂p

∂x
= 0, (23)

∂(φσs)

∂x
− ∂p

∂x
= 0, (24)

σs +
φm − φ0
φ0

φ− φ0
φ(φm − φ)

= 0, (25)

where k is the dimensionless permeability of Eq. (19) or (20). The boundary conditions
are:

Entry to hydrogel: σs = − 1 + φ2

φ(1− φ)2
Q− vs
η

, (26)

Exit of hydrogel: vs = 0, p = 0. (27)

3 Model predictions

We will present steady-state Q(P ) relationships that exhibit hystereses, and transient
simulations of the hystereses as may be realized in an experiment. The steady solutions
can be obtained largely analytically following [19]; details are given in Appendix A.
The transient simulations are done numerically, adapting a two-dimensional algorithm
for flow through hydrogel [36] to the 1D setup here. Either P or Q is varied by small
increments, and the other variable evolves in time as a result.
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3.1 Hystereses

The interfacial penetration length η is key to interesting dynamics in the Q(P ) rela-
tionship. Figure 2 depicts the steady-state flux Q as a function of the pressure drop P
for a range of η values. Two distinct behaviors can be identified. For smaller η values,
e.g., η = 50, Q initially increases with P , reaches a maximum, and then declines as P
increases further. In this regime, there is a single Q value for each P , and no hystere-
sis exists. At a threshold η ≈ 100, a portion of the Q(P ) curve becomes vertical past
the maximum. For larger η values, the curve overturns as a breaking wave to produce
three Q for an intermediate range of P . Now hysteresis is expected if one varies P in
small increments and monitors the reaction of Q. With increasing η, the curve extends
farther toward the upper-right of the plot. The hysteresis is delayed to higher ranges of
pressure, and the achievable fluxes are also higher.

The non-hysteretic behavior at lower η is straightforward to understand. With in-
creasing P , the solid network is compressed, and the solid fractions φ1 at the upstream
interface and φ2 at the downstream interface both increase. This tempers the increase
in Q until it reaches a peak. Increasing P further elevates φ2 toward φm = 1, with all
pores being squeezed shut and the Darcy permeability kD decreasing toward zero. Thus,
our model predicts Q → 0 in the limit of P → ∞. If φm < 1, then some pores will
persist in the limit of high pressure, and Q will not decline toward zero. This scenario
will be considered separately later in this section.

The hysteretic behavior, exemplified by η = 150 in Fig. 2, is more intricate. Transient
simulations largely confirm the expectations from the analytical steady solution, with
hysteretic jumps when P crosses thresholds while increasing and decreasing (Fig. 3).
There is a small discrepancy in that the transient curves seem to “overshoot” the steady
solutions slightly near the threshold. This is due to the transient term ∂φ/∂t in the
continuity equations as well as truncation errors that will diminish with the refinement
of time step and mesh size. Examination of the solid velocity shows that the simulation
is nearly quasi-static except during the abrupt jumps at the hysteresis.

We can explore the hysteresis from the dynamics of φ1(P ) in Fig. 3(b), which clearly
indicates bistability in the solution for pressure between a lower threshold PL = 151.2
and an upper threshold PU = 231.2 (shown by the vertical dashed lines). There is,
of course, a third intermediate solution that is unstable (shown by the grey dashed
curve). A slight increase in P would cause the gel layer to compress continually until
the solution falls onto the more compressed stable branch with reduced Q, and a slight

0 200 400 600

0

100

200

300

400

Figure 2: The flux-pressure Q(P ) curves at different interfacial penetration η =
50, 100, 150, 200. The grey dashed line marks the vertical segment of the curve at the
threshold η ≈ 100, and the red dashed curve represents the limit of η → ∞, at which
the stress-free EBC is recovered. The other parameters are φm = 1 and φ0 = 0.1.
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decrease in P would cause the solution to jump onto the more expanded stable branch.
As P increases from below PL, the interfacial compression (i.e., the strain e at the
interface) remains small and the upstream portion of the gel layer stays “relaxed”,
until P reaches the upper threshold PU , when the upstream portion of the gel suddenly
becomes “compressed”, accompanied by a drop in the fluid velocity. A similar hysteresis
occurs when P decreases from above the upper threshold PU . Note that φ2 changes
smoothly across the thresholds, with no hysteresis. Its value is completely determined
by the upstream pressure P according to the total force balance φ2σs2 + P = 0, where
σs2 is the solid stress at the downstream interface (see Eq. A.6 in Appendix A).

A deeper understanding of the hysteresis can be obtained by noting that the total
pressure drop P is expended to overcome two forms of resistance: P = PE + PD. PE
counters the entry resistance described by the EBC of Eq. (26), with vs = 0 in steady
state:

PE =
1 + φ21

η(1− φ1)2
Q, (28)

whereas PD balances the Darcy drag in the bulk of the gel layer, and can be computed
by integrating the momentum balance of Eq. (23):

PD = Q

∫ Ls

0

dx

kD(φ)
, (29)

(a)
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(c)
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Figure 3: Hysteresis observed at η = 150 by increasing P gradually from P = 80 to 255,
and then decreasing it back to 80, at a constant rate dP/dt = ±2000. (a) The flux Q
as function of the imposed pressure drop P . The red solid lines represent the transient
solution, with the arrows marking the direction of the jumps, whereas the blue dashed
lines the steady-state solution (η = 150 curve of Fig. 2). (b) The solid fractions φ1 and
φ2 at the upstream and downstream gel surface, respectively. The two vertical dashed
lines indicate the thresholds PL and PU for hysteresis. (c) The thickness of hydrogel
layer Ls. The other parameters are φm = 1 and φ0 = 0.1.
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where x = 0 and x = Ls are the upstream and downstream interfaces of the gel layer,
and we have used the continuity equation (1 − φ)vf = Q in steady state. In keeping
with Fig. 3(b), we plot the inverse functions φ1(PE) and φ1(PD) in Fig. 4, together
with φ1(P ). PE(φ1) is monotonic, as can be expected from the interfacial stress balance
PE = −φ1σs1. Conversely, PD(φ1) has a distinct non-monotonic shape that reflects
the fact that at lower P , the flux and Darcy drag increase with P , whereas at high P ,
compression of the gel causes the flux and Darcy drag to decrease with P . In the limit
of large P , PD → 0 and the P and PE curves converge. A small interfacial penetration,
say η = 50, favors PE relative to PD so that the φ1(P ) curve retains the monotonicity
of φ1(PE) (Fig. 4a), and no hysteresis appears. A larger η = 150 tends to reduce PE
and accentuate the role of PD so as to produce a multi-valued φ1(P ) curve (Fig. 4b).
Now we can understand why the hysteresis occurs only for a sufficiently large interfacial
permeability η, which brokers the tradeoff between pressure losses at the interface and
in the interior of the gel.

It is only thanks to gel compression that PE manages to compete with PD and
make the hysteresis possible. In a rigid porous medium, we can estimate the entry
pressure drop using a scaling argument, P̄E ∼ µ̄Q̄/r̄, and the bulk pressure drop based
on Poiseuille flow, P̄D ∼ µ̄Q̄L̄/r̄2. Thus, one expects PE/PD = P̄E/P̄D ∼ r̄/L̄� 1. This
inequality indeed holds for small P in both plots of Fig. 4, where the gentle pressure has
barely compressed the gel. With increasing P and more severe compression, however,
the Darcy flow is suppressed and eventually PD drops below PE .

All the discussion so far has assumed a maximum solid fraction φm = 1. That
is to say, as the pressure increases without bound, the fluid pores will eventually be
completely closed. In reality, however, strain-hardening of the solid material and the
shape of the solid grains may be such that some pores will remain open regardless of
the pressure imposed. Having φm < 1 allows a second rise of Q with P as φ→ φm, and
the possibility of a second kind of hysteresis that occurs when Q is varied continually.
This is illustrated in Fig. 5 for φm = 0.9.

The left portion of the Q(P ) curve resembles that of Fig. 3(a), albeit for a lower
η = 50 without the first kind of hysteresis. For the moment, let us imagine increasing
P gradually as before. Q increases with P until the peak A, and then declines as the
medium continues to compact, till the nadir at D. Afterwards, instead of continually
declining toward 0, Q turns up and increases with P without bound, thanks to a min-
imum level of porosity that persists despite the increasing P . Now if we change the
protocol to gradually varying Q, a second type of hysteresis appears, from point A to

(a)

0 100 200 300 400

0

0.2

0.4

0.6

0.8

1

(b)

0 100 200 300 400

0

0.2

0.4

0.6

0.8

1

Figure 4: The solid fraction at the interface, φ1, changes with the total pressure drop P
at (a) η = 50 and (b) η = 150. P is divided into the interfacial pressure drop PE (red
dashed line) and the bulk Darcy pressure drop PD (blue dashed line).
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B with increasing Q, and from point D to C with decreasing Q, each accompanied by a
sudden jump in P . Of course, each jump corresponds also to a jump in the solid fraction
(Fig. 5b), with sudden compaction (A → B) or expansion (D→ C) of the gel layer. One
important difference between the two kinds of hystereses is the behavior of φ2. In the
first kind, φ2 varies smoothly with P (Fig. 3b), whereas in the second, φ2 experiences
hysteresis with changing Q (Fig. 5b).

In terms of its physical origin, therefore, the second kind of hysteresis is rather
straightforward. In comparison, the first kind is more intricate and warrants further
analysis. It turns out to hinge on the entry boundary condition (Eq. 26) as well as the
bulk permeability (Eq. 19). In what follows, we keep φm = 1 and examine each factor
in turn.

3.2 Effect of the entry boundary condition

To test the effect of the entry boundary condition (EBC), we replace our EBC (Eq. 26)
by the stress-free EBC (Eq. 13). The latter implies zero compression at the upstream
surface of the gel: φ1 = φ0. This can be plugged into the flux Q of Eq. (A.4), which,
together with φ2 of Eq. (A.7), gives us the red dashed Q(P ) curve of Fig. 2 corresponding
to the η →∞ limit. It differs from the finite-η curves of Fig. 2 in two obvious ways: Q
increases monotonically with P , and Q→∞ as P →∞. Both can be easily verified from
equations (A.4) and (A.7), and they reflect the fact that φ2 → 1 and Q ∝ − ln(1− φ2)
as P →∞. Note that the second feature is despite the fact φm = 1.

With the stress-free EBC, therefore, no hysteresis exists. This is consistent with
our previous observation that the hysteresis stems from a tradeoff between interfacial
compression and bulk compression in the gel layer.

3.3 Effect of the bulk permeability

In this test, we replace the Darcy permeability kD (Eq. 19) by the Kozeny-Carman
permeability kKC (Eq. 20), while retaining our EBC (Eq. 26). Algebraically, the solution
procedure is affected only by replacing Eq. (A.4) with Eq. (A.5). The solution is depicted
in Fig. 6 for η = 50, 100 and 200 by the three solid curves.

At each η, Q rises monotonically with increasing P toward a finite asymptotic value.
With increasing η, this asymptote increases toward an upper bound, indicated by the

(a)

A B

C D

(b)

A

B
D

C

Figure 5: (a) A second type of hysteresis at φm = 0.9 and η = 150, with sudden jumps
in P for gradually changing Q, indicated by the grey dashed lines and arrows. (b) The
variations of φ1 (red line) and φ2 (black line) with the gradually varying Q. Note the
different abscissa from Fig. 3(b).
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red dashed curve, which coincides with the solution of Hewitt et al. [19] based on kKC

and the stress-free EBC. In our solution, therefore, changing the bulk permeability from
kD to kKC has two significant consequences: the first kind of hysteresis disappears, and
the asymptotic limit of Q(P → ∞) changes from zero to a finite value. Both can be
understood by analyzing the interplay between the interfacial resistance and the Darcy
drag in the bulk.

To rationalize the first kind of hysteresis in Fig. 3, we separated the total pressure P
into two parts, PE and PD. The same analysis applies here, except that the bulk pressure
drop due to Darcy drag, PD, takes on different forms according to the permeability
function kD or kKC:

PD
D = Q

∫ Ls

0

φ

1− φ
dx, PKC

D = Q

∫ Ls

0

10φ2

(1− φ)3
dx. (30)

The interfacial resistance PE remains the same as in Eq. (28). The change from kD
to kKC has given PD much more weight relative to PE . This is because kKC is more
sensitive to φ; as the gel is compressed and φ rises in the bulk, kKC(φ) falls more steeply
than kD(φ). As a result, PKC

D rises faster than PE of Eq. (28). This demands more of P
to be expended on Darcy drag, and thus gives the bulk resistance more weight relative
to the interfacial resistance.

The elevation of PD relative to PE explains the two main differences brought on by
kKC. First, because of the reduced role of PE , it can no longer compete effectively with
PD (more details in Appendix B). In particular, the gel layer compacts monotonically
with P (Fig. B.1), and the first type of hysteresis, seen at higher η in Fig. 2, disappears.
A smaller η does raise PE relative to PD, but its effect is minor and inadequate. If,
however, one modifies the EBC ad hoc to give it a stronger dependence on (1− φ), this
can raise the importance of PE and restore the hysteresis (see Appendix B for details).
Second, the asymptotic behavior at P → ∞ is now dominated by PD. This behavior
has been analyzed by Hewitt et al. [19] before, albeit for their zero-stress EBC. Their
analysis applies here because the effect of PE (determined by the EBC) is insignificant.
In particular, as P increases, φ2 → 1 and kKC drops sufficiently rapidly to provide
enough resistance to counter the higher P . Thus the flux Q tends to a finite constant
as P → ∞. In fact, Hewitt et al. [19] showed how this limit is governed in general by
the competition between the k(φ) and σs(φ) constitutive equations.

To summarize, both the entry boundary condition and the bulk permeability are

0 20 40 60 80
0

5

10

Figure 6: The flux-pressure curve with our entry boundary condition (Eq. 26) and the
Kozeny-Carman permeability model (Eq. 20), for φm = 1, φ0 = 0.1 and η = 50, 100, 200
(the three solid curves). The red dashed curve represents the limit of η →∞. The grey
dashed curve shows the effect of strain-hardening, with φm = 0.9, φ0 = 0.1 and η = 200.
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important to the Q(P ) curve. The zero-stress EBC ensures Q increasing monotonically
with P for either permeability model. Our EBC, on the other hand, introduces an
interfacial barrier that allows the interplay between the two opposing effects of increasing
P—increasing Darcy flow and compacting the porous medium—and the possibility of
a non-monotonic Q(P ) curve. The first kind of hysteresis appears if the interfacial
resistance plays a prominent role. Changing the Darcy permeability kD to the Kozeny-
Carman kKC diminishes that role and suppresses the first kind of hysteresis.

Incidentally, either the zero-stress EBC or the bulk permeability kKC will also elim-
inate the second kind of hysteresis, because under either condition, Q increases mono-
tonically with P . This is illustrated by the grey dashed curve in Fig. 6 for φm = 0.9
and η = 200. The strain-hardening resists network compaction and yields a higher Q
than the solid curve for φm = 1 and η = 200. As φ approaches φm with increasing P ,
Q increases without bound.

3.4 Relevance to real materials

Can the two kinds of hystereses be observed in the laboratory? The first kind requires
three conditions: a bulk permeability that allows the entry pressure PE to compete with
the bulk pressure PD, a sufficiently large η value, and a sufficiently high range for the
pressure P . Of the two permeabilities tested, kD allows the hysteresis but kKC does not,
because kKC declines too rapidly with rising solid fraction φ. Although other forms of
bulk permeability are possible [52], in general a high porosity favors kD over kKC [39].
Hydrogels can have an initial solid fraction φ0 of a few percent or lower [43, 45], and
their high porosity should be conducive to the first kind of hysteresis.

The dimensionless η = 4.5L̄/r̄ represents the number of pores within the gel thick-
ness. The hysteresis requires η ≥ 100, or L̄/r̄ ≥ 22.2, an easily achieved goal in lab-
oratory experiments. Take a pore size of r̄ = 50 microns [44, 53, 54], this requirement
amounts to a gel thickness greater than 1.1 mm.

Finally, our dimensionless pressure P has been scaled by the Young’s modulus
Ē of the solid network, defined in Eq. (11). There have been numerous reports of
Young’s modulus for hydrogels, measured using macroscopic or AFM indentation and
micropipette aspiration, among other methods [55]. Ē is sensitive to the solid content
in the gel and the degree of crosslinking, ranging from Ē ∼ 100 Pa for the softer poly-
acrylamide and poly(ethylene glycol) hydrogels [56, 57] to a few kPa for collagen and
ECM gels [58]. Taking Ē = 500 Pa as an example, the first kind of hysteresis can be
observed for P ∼ 200 or a dimensional pressure P̄ ∼ 100 kPa, within the range of prior
compression experiments [23]. Of course, thicker gel layers, with a larger η, will require
a higher P .

The second kind of hysteresis, illustrated in Fig. 5, requires a non-monotonic Q(P )
curve, strain-hardening with a solid fraction φm < 1 at maximum compaction, and a
sufficiently high pressure to achieve maximum compaction. These are essentially the
same requirements as for the first kind of hysteresis, plus an additional one on strain-
hardening. Strain-hardening is a well-known characteristic of soft tissues and biological
gels [59], and to a lesser extent also of synthetic gels [48]. So far, the quantification of
strain-hardening is mostly through shear and uniaxial elongation or compression [46,47].
We have found no report of 1D compression of hydrogel layers. Typically, uniaxial
compression exhibits a maximum strain at which the stress diverges [47, 48]. Assuming
the kinematics of 1D compression, we can infer maximum solid fractions φm ∼ 0.6
from the uniaxial-compression data for double-network hydrogels [47]. Based on the
limited knowledge available, we expect the strongest strain-hardening, with the lowest
φm, for biological tissues or “reinforced hydrogels”, e.g., via a second network. Such
materials can exhibit strong resistance to compression, thanks to microstructures that
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may maintain a finite porosity under high pressure.
It is interesting that previous experiments by Li et al. [10,16] have already reported

non-monotonic dependence of Q on P owing to gel compression in a confined channel.
But their geometry is multi-dimensional, and compression from the side walls may have
contributed to the compaction of the gel. In addition, McGuire et al. [15] have observed
a bell-shaped Q(P ) curve in intratumoral infusion, and attributed it to the tissue being
compressed by the interstitial flow in a spherically symmetric geometry. In both cases,
the non-monotonic Q(P ) can be likened to our model prediction for a lower η (Fig. 2).
Unidirectional 1D compression has been tested in deformable porous media made of
packed beds of soft spheres or foam [19, 23]. Those experiments have documented hys-
tereses in the Q(P ) curve when P is varied, but ascribed them to factors such as particle
rearrangement or wall friction. They are probably unrelated to our first kind of hystere-
sis. In fact, such macroscopic porous media have high solid fraction (φ0 ∼ 0.6) and large
sample sizes, both factors disfavoring the realization of the hysteresis predicted here.
The high φ0 means that the material probably follows the Kozeny-Carman permeability
rather than the Darcy permeability [19]. A large sample thickness implies large η values,
which would in turn raise the pressure P required to access the hysteresis (Fig. 2). For
example, Hewitt et al. [19] had pore radius r̄ = 0.19 mm and gel thickness L̄ = 11.4 cm,
and thus η = 2700. Lutz et al. [23] had r̄ = 0.025 mm, L̄ = 8 cm and η = 14400. Both
η values are much higher than those tested here in our study, and the hysteresis would
require much higher pressure than those employed in their experiments.

Based on the discussion above, one can probe the first kind of hysteresis by using
high-porosity, soft gels at a moderate gel thickness. The second kind would further re-
quire strong strain-hardening under compression, as typically found in biological tissues,
biopolymer-based or double-network hydrogels.

4 Conclusion

Using a poroelastic model, we predict two types of hysteresis when a hydrogel layer
is compressed by a uniform flow normal to the layer. The first type happens when
the pressure drop over the hydrogel layer is gradually increased or decreased; the flux
may undergo sudden jumps at different thresholds of pressure and form a hysteresis
loop. The second type occurs when the flux is controlled, with the pressure jumping
discontinuously.

The physics underlying these hystereses can be understood from how the flow com-
presses the porous medium to reduce the permeability and produce a non-monotonic
relationship between the flux Q and pressure drop P . For the first kind of hysteresis,
the mechanism can be traced further to the competition between interfacial and bulk
compression. The former determines the entrance pressure drop PE across the upstream
interface, whereas the latter affects the pressure drop PD through the bulk of the gel
to overcome the Darcy drag. The two add up to the total pressure drop P . This type
of hysteresis can be suppressed by a bulk permeability that drops too sharply with di-
minishing porosity as the pores are squeezed by increasing pressure. This makes PD
dominant over PE and obviates their competition. If we then modify the form of the
interfacial permeability to strengthen PE , the hysteresis can be restored.

The second kind of hysteresis hinges on strain-hardening of the solid network in the
hydrogel such that some pores stay open regardless of how high P becomes. This ensures
that after a decline of Q with P owing to compaction of the gel layer, Q will eventually
rise again at higher P . Thus, the second type of hysteresis occurs when Q is controlled
and varied gradually.

To seek the hystereses predicted here in a laboratory experiment, one should choose
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material properties and geometries conducive to each kind. The first kind of hysteresis is
facilitated by high-porosity, low-modulus hydrogels of moderate thickness; these factors
favor interfacial compression over bulk compression. The second kind hinges on strain-
hardening against compression, and requires strong gels that can maintain porosity
under high pressure. As many engineering and biomedical processes involve compression
of soft porous materials [19,21,25], the presence of hysteresis will have an impact on such
applications. For example, sudden changes in flow rate during injection into biological
tissues [15] or geological formations [60] may be undesirable. But hysteresis can also be
exploited in designing smart sensors and actuators [61].
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Appendix A Steady-state solution

Here we illustrate the algebraic procedure for obtaining the steady-state Q(P ) curve
for our model, following a similar procedure in Hewitt et al. [19]. This is accomplished
in two steps. First, integrating the continuity and momentum equations, we derive an
algebraic formula linking Q to P and the solid fraction φ1 at the upstream surface of
the gel layer. Second, from the EBC we derive another algebraic formula linking Q to
φ1. Between the two formulae, Q(P ) is obtained.

In the steady state, the Darcy drag compresses the solid skeleton to establish a φ(x)
profile. From the governing equations of poroelasticity, we can relate the steady flux Q
to this φ(x) profile. This relationship is general, and can be specialized to the different
permeability functions kD and kKC. We start from an overall solid-volume conservation
equation: ∫ Ls

0

φ(x) dx = φ0, (A.1)

where x = 0 is the upstream interface of the gel layer and x = Ls the downstream
interface. Following Hewitt et al. [19], we use the continuity and momentum equations
to relate the flux to the solid stress:

Q = −k∂(φσs)

∂x
= −k∂(φσs)

∂φ

∂φ

∂x
= −k(φσ′s + σs)

∂φ

∂x
, (A.2)

where the bulk permeability k can be kD or kKC. Now Eq. (A.1) can be transformed

into
∫ φ2

φ1
−φk(φσ′s + σs)/Qdφ = φ0, with φ1 = φ(0), φ2 = φ(Ls). Thus

Q =

∫ φ2

φ1

φk(φσ′s + σs)

φ0
dφ. (A.3)

Again, this holds in steady state for all EBCs and all k(φ) forms. Using the consti-
tutive equation for σs (Eq. 25) and the Darcy permeability kD (Eq. 19), we integrate
analytically to obtain

Q =
(φm − φ0)2

φ20

[
(1− φm)(φ2 − φ1)

(φ1 − φm)(φ2 − φm)
+ ln

φm − φ1
φm − φ2

]
φm→1−−−−→ (1− φ0)2

φ20
ln

1− φ1
1− φ2

. (A.4)
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For later reference, we can carry out the integration using the Kozeny-Carman perme-
ability kKC (Eq. 20) to get

Q =
(φm − φ0)2

10φ20

(
φ1 − φ2 + φm ln

φ2
φ1

)
φm→1−−−−→ (1− φ0)2

10φ20
(φ1 − φ2 + lnφ2 − lnφ1) . (A.5)

The solid fraction φ2 at the downstream surface of the hydrogel is determined by the
overall force balance for the whole layer:

−φ2σs2 = P, (A.6)

where P is the pressure in the upstream clear fluid and the pressure downstream of the
gel layer is set to zero. Since the solid stress σs2 is related to φ2 via the constitutive
relation (Eq. 25), φ2 can be solved from Eq. (A.6) as

φ2 = φ0
φm − φ0 + Pφm
φm − φ0 + Pφ0

φm→1−−−−→ φ0
1− φ0 + P

1− φ0 + Pφ0
. (A.7)

Note that as P → ∞, the solid fraction at the downstream edge of the compressed gel
φ2 → φm, as expected. Using φ2(P ), we can express Q in terms of P and the solid
fractions φ1, the latter depending on the EBC.

Our EBC of Eq. (26) relates Q to φ1. In steady state, this becomes

Q = −η φ1(1− φ1)2

(1 + φ21)
σs(φ1). (A.8)

Plugging in the solid stress σs of Eq. (25) evaluated at φ = φ1, we obtain

Q = η
(1− φ1)2

(1 + φ21)

φm − φ0
φ0

φ1 − φ0
φm − φ1

φm→1−−−−→ η
(1− φ0)

φ0

(1− φ1)(φ1 − φ0)

(1 + φ21)
, (A.9)

which is a function of φ1 with η as a parameter. Eliminating φ1 and φ2 from equa-
tions (A.4), (A.7) and (A.9), we obtain Q(P ) with η as a parameter. Algebraic complex-
ity precludes an analytical expression and numerical calculations are used to generate
the data in Fig. 2. A similar procedure works for the zero-compression EBC of Hewitt
et al. [19] (Eq. 13) and the Kozeny-Carman permeability model (Eq. 20).

Appendix B Further analysis of the bulk permeabil-
ity

As noted in section 3.3 of the main text, changing the bulk permeability model from
kD to kKC (Eqs. 19, 20) suppresses the first kind of hysteresis, and changes the large-
pressure limit of the flux from zero to a finite value. Both can be traced to the fact
that kKC elevates the importance of the bulk pressure drop PD, due to the Darcy drag,
relative to the interfacial pressure drop PE , due to the entrance boundary condition.

To demonstrate the dominance of PD over PE with bulk permeability kKC, we plot
their relationship to the interfacial solid fraction φ1 in Fig. B.1. Physically it might be
more intuitive to think of P , PE and PD as functions of φ1, but φ1 is plotted as the
dependent variable to facilitate comparisons with figures 3 and 4 in the main text. A key
difference from Fig. 4 is that now PD dominates PE over the entire range of pressures.
Consequently, the interfacial compression becomes much milder than with the Darcy
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Figure B.1: The solid fraction φ1 as functions of the pressure P and its two components
PE and PD at interfacial penetration η = 50. The other parameters are φm = 1 and
φ0 = 0.1. Relative to the bulk permeability kD, kKC elevates the importance of PD so
that it dominates PE . At larger η values, PE will be even smaller according to Eq. (28).
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Figure B.2: An artificially modified EBC restores the first kind of hysteresis with the
Kozeny-Carman permeability model (Eq. 20). (a) The flux-pressure curve with our
high-order EBC (Eq. B.1) for η =100, 125, 150, 175. (b) The interfacial solid fraction
φ1 as functions of the total pressure P and its components PE and PD at η = 125.

permeability kD. These differences obviate the competition between the two pressure
drops and eliminate the hysteresis.

To provide additional support to the above argument, we elevate ad hoc the inter-
facial resistance PE and demonstrate that this can restore its competition with PD and
reinstate the hysteresis. This can be accomplished by raising the power of the porosity
in the EBC (Eq. 26) from 2 to 6, so as to produce an interfacial pressure drop

PE =
Q

η

φ21 + 1

(1− φ1)6
(B.1)

with a stronger dependence on 1−φ than PKC
D of Eq. (30). For this new EBC, Fig. B.2(a)

presents a series of Q(P ) curves for increasing values of η. For smaller η, such as 100 and
125, the flux Q increases initially before declining as P →∞. This is owing to the fact
that PD is now dominated by PE in that limit (Fig. B.2b). Importantly, a hysteresis
of the first kind reappears for η = 125. Even greater values of η, however, are able
to weaken PE sufficiently to suppress the hysteresis again. For example, at η = 175,
φ1 → 0.244 as P → ∞, only moderately above φ0 = 0.1 and much below the limit of
Fig. B.2(b). Such a mild interfacial compression is again unable to compete with PD.
In this case, Q tends to a finite non-zero asymptote as in Fig. 6.
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[33] U. Lācis, Y. Sudhakar, S. Pasche, S. Bagheri, Transfer of mass and momentum at
rough and porous surfaces, J. Fluid Mech. 884 (2020) A21.

18



[34] Y.-N. Young, Y. Mori, M. J. Miksis, Slightly deformable Darcy drop in linear flows,
Phys. Rev. Fluids 4 (2019) 063601.

[35] J. J. Feng, Y.-N. Young, Boundary conditions at a gel-fluid interface, Phys. Rev.
Fluids 5 (2020) 124304.

[36] L. Li, J. Zhang, Z. Xu, Y.-N. Young, J. J. Feng, P. Yue, An arbitrary Lagrangian-
Eulerian method for simulating interfacial dynamics between a hydrogel and a fluid,
J. Comput. Phys. 451 (2022) 110851.

[37] M. Minale, Momentum transfer within a porous medium. II. Stress boundary con-
dition, Phys. Fluids 26 (2014) 123102.

[38] O. Coussy, Poromechanics, John Wiley & Sons, 2004.

[39] F. A. L. Dullien, Chapter 3: Single-phase transport phenomena in porous media,
in: Porous Media: Fluid Transport and Pore Structure, 2nd Edition, Academic
Press, San Diego, 1992, pp. 237–317.

[40] R. E. Caflisch, J. Rubinstein, Chapter 6: Flow in porous media, in: Lectures on the
mathematical theory of multi-phase flow, New York University, 1986, pp. 64–76.

[41] H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a
dense swarm of particles, Appl. Sci. Res. A1 (1947) 27–34.

[42] T. S. Lundgren, Slow flow through stationary random beds and suspensions of
spheres, J. Fluid Mech. 51 (1972) 273–299.

[43] N. Annabi, J. W. Nichol, X. Zhong, C. Ji, S. Koshy, A. Khademhosseini, F. De-
hghani, Controlling the porosity and microarchitecture of hydrogels for tissue engi-
neering, Tissue Eng. B 16 (2010) 371–383.

[44] A. Salerno, R. Borzacchiello, P. A. Netti, Pore structure and swelling behavior of
porous hydrogels prepared via a thermal reverse-casting technique, J. Appl. Polym.
Sci. 122 (2011) 3651–3660.
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