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Abstract—Interest continues to grow in using federated learn-
ing (FL) for a variety of signal processing and communications
applications. This paper focuses on a robust design for FL to
mitigate the effects of noise and fading channels. To enhance the
efficiency of FL in bandwidth-limited environments, over-the-air
(OTA) computation has been proposed based on the superposition
property of a wireless multiple-access channel (MAC). However,
OTA FL inherently faces challenges with channel noise and
wireless channel fading in the wireless MAC, which could degrade
optimization procedure and significantly reduce the accuracy of
the trained model. To tackle this challenge, we introduce a novel
approach using a Kalman filter (KF)-based OTA FL algorithm
in this paper.

Index Terms—TFederated learning, over-the-air computation,
Kalman filter

I. INTRODUCTION

Conventional machine learning (ML) techniques typically
involve a centralized process, where a data center conducts the
training of ML models by utilizing data obtained from edge
devices. Federated learning (FL) is a promising ML frame-
work for distributed edge learning applications where multiple
clients collaborate under the coordination of a central server
(CS) [11, [2]. In FL systems, the local ML models are trained
on each device using their local data; then, the local model
parameters are uploaded to the CS for global aggregation.
However, the aggregation of local updates on edge devices
becomes a pivotal role, and the uplink rate limitations remain
a notable bottleneck when employing orthogonal transmission
[31.

Over-the-air (OTA) computation is a fast model aggregation
framework, accomplished through the utilization of the signal
superposition characteristic of a wireless multiple-access chan-
nel (MAC) [4]-[7]. In contrast to traditional multiple-access
methods that view other transmitted signals as interference,
OTA computation utilizes co-channel interference as a con-
tributor in the computational process, leading to improved
spectral efficiency and reduced communication latency [8].
OTA computation harnesses the ability to combine multiple
signals on the same channel simultaneously, which can maxi-
mize the overall data throughput and minimize communication
latency. Without decoding each device’s individual data, the
CS attempts to calculate the desired aggregation signal using
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the data from all edge devices. To enable a model aggregation
scheme based on OTA computation, the computation distortion
needs to be minimized [9].

Most prior work on OTA computation in FL systems
assumes perfect channel state information (CSI), which is
impractical [10]-[13]. Also, the effect of channel fading and
noise at the CS should be compensated at the transmitter
to achieve a reliable and high-performing OTA FL system
[14]-[16]. By assuming channel reciprocity, the CSI can be
acquired both at the CS and the edge devices through channel
estimation. However, this approach inherently poses the risk
of channel estimation errors. Moreover, this problem becomes
more challenging in time-varying channels [17].

Recognizing the limitations of existing OTA FL systems,
our research shifts focus towards a more realistic scenario
where CSI is modeled as time-varying and must be imperfectly
tracked. Addressing these challenges, we propose a robust
OTA FL scheme based on channel estimation using a Kalman
filtering to accommodates the imperfect nature of CSI in the
time-varying channel [18]-[21]. Then, we develop a robust
OTA FL scheme by reducing the mean square error (MSE) of
distortion of desired aggregation signal through minimization
based on the estimated channels. The numerical results reveal
that the proposed robust OTA FL scheme exhibits only a slight
performance difference compared to the scenario with perfect
CSL

The remainder of the paper is structured as outlined below.
In Section II, we explain a system model and an optimization
problem of OTA FL system. In Section III, we propose the
Kalman filter-based channel estimator and explain the MSE
optimization problem with the estimated channel. In Section
VI, we proposed the robust OTA FL scheme based on the
worst-case CSI error. Section V presents numerical results to
validate our algorithm, followed by conclusions in Section VL.

Notation: Upper-case and lower-case bold letters are used
to represent matrices and column vectors, respectively. AH
stands for the conjugate transpose of the matrix A, and a*
represents the conjugate of the scalar variable a. E[-] represents
the expectation, and diag(-) denotes the diagonal matrix. | - |
denotes the amplitude of the scalar, and ||-|| is the norm of the
vector. C"™*™" indicates the set of all complex matrices of size
m X n. 0 is the all zero vector, and I, is the identity matrix
of size m x m. CN(m,o?) represents the complex normal
distribution having the average value of m and the variance
of 2.
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Fig. 1. An illustration of OTA FL system. The local devices train each local
ML model, then transmit the model parameter to the CS. The CS receives the
aggregated signal through the OTA superposition. Finally, the global model
is transmitted to each local device from the CS.

II. SYSTEM MODEL

The use of ML algorithms has significantly increased. How-
ever, training them on a single machine demands an excessive
amount of computations, substantial memory requirements,
and considerably delayed training time. Therefore, recent
studies have focused on distributed and FL algorithms to
address the challenges posed by massive datasets at the mobile
edge, with the goals of enhancing privacy, managing limited
bandwidth, and reducing computational costs. We regard the
FL scenario with a set of distributed devices KX ={1,2,.., K}
and a central server connected over a wireless MAC as
illustrated in Fig. 1. Here, D = {x(i) : ¢ = 1,--- ,N}
represents the dataset used in the training phase. The local
dataset at k-th device is denoted as D C D. The local loss
function in the k-th device is given as

1 .
Fe(w') = i D fwhixi(@), €Y
i€Dg
where w' denotes the model parameters at the ¢-th time slot
and f is the loss function. Accordingly, the global model is
formed by aggregating the local models, and the global loss
function is minimized by
o~ Dxl
. ty k t
min F(w') = k; D] Few’). @
The OTA computation, an analog approach, enables rapid
model aggregation through the exploitation of the superposi-
tion characteristic inherent in wireless channels via computing
a nomographic function [4]. The OTA computation allows lo-
cal edge devices to upload their model updates simultaneously
over fading channels. We assume that both the CS and local
devices are equipped with only one antenna. The received
superposition signal at the CS is

K

y' = iy fpkst + ', 3

k=1

where A, is the channel gain from the k-th device to the CS
at t-th time slot, pf, is the transmit power, s} is transmitted
symbol, and n* ~ CA/(0,02) is the additive complex Gaussian
noise. We assume that the transmitted symbols s, are indepen-
dent for different devices with zero mean and unit variance.
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Fig. 2. The overall procedures of robust OTA FL with the Kalman filter-
based channel estimation. In the channel estimation phase, the CS estimates
the channel using the Kalman filtering based on the pilot transmission. Then,
the each local device transmits their local model parameter to the CS in the
OTA computation phase.

For the channels between the CS and the devices, we assume a
block-fading model where the channel remains time-invariant
within each coherence interval.

To model the time-varying channel, h}, is assumed to follow
the Gauss-Markov process

Rl = axhit 4+ /1 — a2z, )

where «; is the temporal correlation coefficient and zf ~
CN(0,02) represents the innovation process.
The estimated aggregation signal at the CS is

o, = t [ &t o
5 :Ey :Ekz::]-hk p?cskﬂ—fﬂ, (5)

where rt is the receive scaling factor. When we have perfect

CSI in OTA FL systems, the aim is to minimize the MSE

between the desired aggregation signal s* = + Z§K=1 st and
+ K2

estimated aggregation signal &
rihi Pk —1
©)

Therefore, the optimization problem with perfect CSI subject
to the sum-power constraint can be represented as

'.r'thfﬂ,‘pi -1
k=1

K
s.t. Zp?c <P
k=1

Most of the previous OTA FL work assumed perfect CSI,
which does not hold in practice [11]-[13]. Therefore, we
proposed a robust OTA FL system with a Kalman filter-
based channel estimation [22]. The robust OTA FL systems
consist of two phases, which are channel estimation and
OTA computation phases. In the channel estimation phase,

2
Ir'|%on

K

X 1
MSE = E(|5¢ — s|?) = e >
k=1

K 2

{n}%n +|rt?o2 @
P bt
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the CS estimates the time-varying channel based on Kalman
filtering using a pilot transmission from each device. Then,
the local device transmits its model parameter update and the
CS receives the superposition signal in the OTA computation
phase. In each time slot ¢, the transmitted symbol s’ can be
the gradient or model parameter of k-th device. The overall
robust OTA FL system is summarized in Fig. 2.

III. CHANNEL ESTIMATION

In this section, we develop the channel estimation based on
Kalman filtering in OTA FL systems. Using pilot transmission
from each device, the CS estimates the channels from each
devices. Each devices transmit orthogonal pilots, and the
received signal at CS can be represented as

K
Yp =Y \/Phidk +np, ®)
k=1

where yp, € C*7, p is the signal-to-noise ratio (SNR) in the
channel estimation phase, ¢, € CT*1 is the pilot vector for
device k, ¢pp oy = 0 for k # K, ||éy]| = 1, and n,, is the
Gaussian noise, where each element of n, follows CA/(0,1).
To estimate the channel of device k, the pilot vector ¢, is
used as

y;,k = Ypor = V/Phi + n;,k: ®

where nj, , = npey.
To estimate the channel based on the Kalman filtering, we
reformulate the channel model using vectorized notations as

h = ah'™! + g2, (10)
where h! = [h},.. ALY, a = diag(ay,...,ax), B =
diag(Bi, ..., Bx), where B = /l1—ai, and z'! =

[2i,...,2%]T ~ CN(0,V,). The measurement equation in
vectorized form can be expressed as

(€8Y)

where yp = [yp,l, ,yp 5 S = Plk, and 11 =
[ 1, b g]T ~ CN(0,Vy). The Kalman filter-based
channel estimation is summarized in Algorithm 1. After ap-
Elylng the Kalman filter, the channel estimate of k-th device
hi is the k-th element of htlt.

The channel estimation error is defined as

y; = Sh® + n;,

ARL = Bt — hE. (12)

With the estimated CSI, the optimization problem in (7) can
be reformulated as

K
min h + ARl — 1 +|r (13)
pin, 2|+ AR Jrk — 1| + 1o

K
s.t. prc <P
k=1

Algorithm 1 Kalman Filter-Based Channel Estimation
1: Initialization:

-t =oM% =1
2: Prediction:
htlt—1 — oht—1lt-1
3: Minimum prediction MSE:
M1 = ant-lit-1H 4 gy, gH
4: Kalman gain:
Kt = Mili-1gH (SMt|t—1SH +Vn)_1
5: Correction:
Rlt = Ril-1 4 Kt ( Sﬁ:|:—1)
6: Minimum MSE:

Mt|t — (IK _ Kts) Mtlt—l

IV. PrRoOPOSED ROBUST OTA FL SCHEME
In this section, we propose a robust OTA FL approach based

on the worst-case CSI error. We assume that the CSI error AR,
is bounded!

|ARL| <e, (14)
where ¢ is the CSI error bound. In the presence of worst-

case CSI error, the optimization problem subject to sum-power
constraint can be formulated as

rt(h + ARL)\/pL —1
k=1
K
Zpic <P

|Ah | < e Vk.

K
+|r'?e2 (15)

min max
{pi}.rt AR

The objective of the optimization problem is non-convex,
which renders global optimization more difficult. To tackle
this issue, we propose an alternative optimization methodology
where we fix certain parameters while optimizing the rest.
When we assume that {p{} and r* are fixed, the problem in
(15) can be separated into K individual sub-problems

min —

2
t flt ARt t_q
_ ' (hy + Ahg )/ Py

st. |ARLZ — €2 <0.

(16)

IThis assumption does not hold in the Kalman filtering, but we assume that
the error is bounded to handle the CSI error.
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We apply the Karush-Kuhn-Tucker (KKT) conditions [23] to
(16)

in  L(AhL, A 17
A (Ahg, Ak) am
= — |rt(hL + ARL) /Pt — 1 +Ak(|Ah |2 —€?)
OL(Ahg, Ar)
et e LA
> OARL? ’
|ARL)? — €2 <0,
Ak(JARE? — €2) =0,
Ak 2 0:

where Ay, is the KKT multiplier for k-th device. The derivative
of KKT condition is

OL(ARL, M)

oan [mbPARL + AcARL,

(18)
pl.. By setting (18) to zero, the optimal

= —|m}*hf +mi” —

where mf = rf

solution of AR}, is

m th mt*
Ant = Ml = mi ;' P k (19)
Then, the objective is given by
K ¢t
myhy —1 t)2_2
—E—| +|r'|%o (20)
; L= A mi? "

The optimization problem in (15) can be reformulated as
K

min Z mkht 1
{m} kll_kl |

s.t. prc <P

Since the larger p leads to the smaller MSE, the power
constraint can be an active, i.e., Zk Py, = P. Therefore,
the optimization problem in (21) becomes

mihi —

2 K
. 4+ % 2
{1;111;?} 1 _Ak—ll t|2 P Z mkl ’

Then, we further decouple the above optimization problem

+|rt|?02 21

K
(22)

k=1

into K sub-problems for each k € {1,...,K'}
t1t 2
: myhy —1 In, 12
— T — 23
e [T PR @
In KKT conditions, we have
Ae(|ARL[* —€%) = 0. (24)
With A\ # 0, we have
. 2
mt th i#*
|ARL? = € — ‘—I ;}1 — |m?¢|2k = (25

When we use (25), the optimization problem in (23) becomes

2 [Axl? On t12
— . 26
r;l}lkn € | t*|2+ p Ml (26)
By plugging Ax > 0 based on (25), we have
min @I 1On* — ImE PRI/ 0B o
£
m | [? P
=min g(m}) = €|mi|* + 2m}.*||mf Rk — 1]
my
tx|2 2
my In, 12
- — — . 27
mil| TP @

The optimal value of m} is obtained by minimizing g(m)

based on the truncated Newton-conjugate gradient, an algo-
rithm implements a search along conjugate directions and gen-
erally results in more rapid convergence compared to utilizing
steepest descent directions [24], [25]. With the optimal value
of mf, we can get the optimal value of r* and pf using
mt = rt/pt and Y5, p. = P. With the optimal value of
r* and pf, the estimated aggregation signal §* can be obtained.

V. NUMERICAL RESULTS

In this section, we present the numerical results to access
the performance of the proposed robust OTA FL scheme. We
assume the OTA FL system consists of a single CS and K
local devices, each equipped with a single antenna. We define
the SNR as P/o2. We also define the error bound as e =
0|h%|, where ¢ is the error bound coefficient. We compare
the proposed scheme to the perfect CSI case. For the perfect
CSI case, we employ the proposed scheme with sum-power
constraint in [26]. The MSE is considered as the performance
metric, using

MSE = E(|5° — s*|?), (28)

where st is the desired aggregation signal and 5 is the
estimated aggregation signal.

In our OTA FL system, we employ the MNIST dataset,
which consists of 28 x 28 images depicting handwritten digits
[27]. The MNIST dataset has 10 classes with 60,000 training
and 10,000 test samples. For the classification of MNIST
dataset, we use a convolution neural network (CNN). The
CNN model consists of a single convolution layer with a
5 x 5 filter and 64 channels, followed by a max pooling layer
with a 2 x 2 filter and strides of 2. After that, there are two
fully connected layers with 128 neurons mapped by the ReLU
activation layer and 10 neurons, followed by the softmax layer.
In OTA FL scheme, each device has the independent and
identically distributed (i.i.d.) MNIST dataset to train its local
model. Then, each device transmits their local model updates
to the CS. Finally, the test accuracy is evaluated through the
global model.

Fig. 3 shows the MSEs of the proposed scheme with various
CSI error bound and the perfect CSI case according to SNR.
We set K =8 and é = 0.01,0.05,0.1,0.2. The figure clearly
shows that the proposed scheme performs better with the lower
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Fig. 3. MSE of proposed scheme with various CSI error bound and perfect
CSI case according to SNR with K = 8.

error bound. With 6 = 0.01 = 0, we have the nearly the same
performance of the perfect CSI case.

Fig. 4 reveals the MSEs of the proposed scheme with
various CSI error bound and the perfect CSI case according
to number of local devices K with SNR = 10 dB. The
figure reveals that the MSEs of proposed scheme and perfect
CSI case decrease as the number of local devices increase.
Furthermore, it can be interpreted that the improvement in
MSE performance is due to the noise averaging effect, which
is a consequence of the increased number of local devices.

In Fig. 5, we evaluate the test accuracy of the proposed
schemes and the perfect CSI case according to communication
round. We set ar = 0.95, K = 4, and SNR = 25 dB.
As the number of communication rounds increases, the test
accuracy of the proposed schemes improves. The perfect CSI
case assumes that the CS in each communication round knows
the current CSL In the proposed robust OTA FL scheme,
the CS first estimates the current channel based on Kalman
filtering. Then, the aggregation model can be obtained using
the estimated channel. The proposed OTA FL schemes give
substantial test accuracy even with the CSI error. Moreover,
the test accuracy becomes worse when the CSI error bound is
set to high.

VI. CONCLUSION

In this paper, we proposed a robust OTA FL scheme
based on the Kalman filter-based channel estimation. First, we
developed the Kalman filter-based channel estimation in OTA
FL system. Then, we proposed the robust OTA FL scheme
by minimizing the distortion of the aggregation model. In the
proposed robust OTA FL scheme, we consider a CSI error
bound to handle the imperfect CSI. The numerical results
showed that the proposed robust OTA FL scheme achieves
comparable performance compared to the perfect CSI case in
terms of the MSE performance and the test accuracy.

Potential future work involves deriving the MSE perfor-
mance in closed form and implementing a multi-antenna
framework for both the the CS and the local devices.
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Fig. 4. MSE of proposed scheme with various CSI error bound and perfect
CSI case according to number of local devices K with SNR = 10 dB.
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Fig. 5. Test accuracy of proposed scheme with 4 = 0.05,0.1 and perfect
CSI case according to communication round with SNR = 25 dB.
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