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Abstract

For real-time embedded systems, feasibility, Quality of Service (QoS), reliability,
and energy constraint are among the primary design concerns. In this research, we
proposed a reliability-aware scheduling scheme for real-time embedded systems
with (m,k)-firm deadlines under hard energy budget constraint. The (m,k)-firm
systems require that at least m out of any k consecutive jobs of a real-time task
meet their deadlines. To achieve the dual goals of maximizing the feasibility and
QoS for such kind of systems while satisfying the reliability requirement under
given energy budget constraint, we propose to reserve recovery space for real-
time jobs in an adaptive way based on the mandatory/optional job partitioning
strategy. The evaluation results demonstrate that the proposed techniques signif-
icantly outperform the previous research in maximizing the feasibility and QoS
for (m,k)-firm real-time embedded systems while preserving the system reliabil-
ity under hard energy budget constraint. Moreover, the proposed work has also
addressed some insufficiency in [26] in terms of preserving the system reliability.
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1. Introduction

With the advance of IC technology, energy constraint has been an increasingly
important factor for the design of real-time embedded systems. In some real-time

*Corresponding author. Tel: +1 2028064822.
Email addresses: 1inwei.niu@howard.edu (Linwei Niu),
jonathan.musselwhite@bison.howard.edu (Jonathan Musselwhite)

Preprint submitted to Journal of Systems Architecture March 31, 2024



applications, the systems are driven by power supplies with limited energy budget
constraint, which has to remain operational during a well-defined mission cycle.
Examples include Heart Pacemakers [40] or other portable embedded devices
whose power supply can only be charged to full capacity right before the begin-
ning of certain mission/operation cycle/period(s). For such kind of applications,
efforts must be made by all means to avoid exhausting the energy budget before
the end of the mission cycle.

In traditional hard real-time embedded systems, all task instances are required
to meet their deadlines and any deadline miss will crash the entire application
or system. However, in many practical real-time applications such as multime-
dia processing and real-time communication systems, occasional deadline misses
can often be tolerated. Some other applications may have soft deadlines where
tasks that do not finish by their deadlines can still be completed with a reduced
value [23] or they can simply be dropped provided that the user’s perceived quality
of service (QoS) is satisfied.

QoS requirements dictate under what conditions the system will provide its
service to real-time tasks executed in the embedded processor. To quantify the
QoS requirements, some statistic information such as the average deadline miss
rate can be used. However, even a low overall miss rate (e.g., 2%) cannot prevent
the scenarios where a very large number of deadline misses (e.g., 20 deadline
misses out of 1000 jobs) occur consecutively in a short period of time, which
could generate undesirable results.

The deterministic QoS model is more appropriate for such kind of systems.
Under the deterministic QoS model, tasks have both firm deadlines (i.e., task(s)
with deadline(s) missed generate(s) no useful values) and a throughput require-
ment (i.e., sufficient task instances must finish before their deadlines to provide
acceptable QoS levels) [30]. Two well known deterministic QoS models are the
(m,k)-model [12] and the window-constrained model [43]. The (m,k)-model re-
quires that m jobs out of any sliding window of k consecutive jobs of the task meet
their deadlines, whereas the window-constrained model requires that m jobs out
of each fixed and nonoverlapped window of k consecutive jobs meet their dead-
lines. It is not hard to see that the window-constrained model is weaker than the
(m,k)-model as the latter one is more restrictive.

To ensure the (m, k)-constraints, Ramanathan et al. [35] proposed a partition-
ing strategy which divides the the jobs into mandatory ones and optional ones.
The mandatory ones are jobs that must meet their deadlines in order to satisfy the
(m,k)-constraints. In [43], West et al. tried to set up a corresponding relation-
ship from the window-constrained model to the (m,k) model. They also found a
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method to map the window-constraints to the (m,k)-constraints.

In the meantime, with the aggressive scaling of transistor size in CMOS cir-
cuits, more and more transistors are integrated into a single die and the power con-
sumption of IC chips has been increasing dramatically. For the past two decades,
extensive researches on power management techniques (e.g. [13]) have been re-
ported on energy minimization for embedded real-time systems. Among them dy-
namic voltage scaling (DVFS) and Dynamic Power Management (DPM) are two
widely used techniques to reduce energy dissipation. DVFS dynamically adjusts
the supply voltage and working frequency to reduce power consumption at the
cost of extended circuit delay, whereas DPM techniques try to put the processing
unit in a low-power inactive state when it is not in use.

In recent years, reliability has become increasingly important in the design of
fault tolerant computer systems as system fault could occur anytime during the ex-
ecution cycle of real-time jobs [54]. Moreover, it has been shown that DVES could
affect system reliability negatively because the probability of transient faults could
be much higher at lower supply voltages [54]. In order to satisfy the reliability re-
quirement of a given job, a widely adopted strategy is to reserve a recovery job for
it before scaling its speed using DVFS [54]. If the job has failed due to transient
faults [17], the recovery job should be invoked for execution to compensate the
failed job.

In the context of reliability assurance, the energy-constrained issue is espe-
cially critical as the recovery job(s) (for preserving the system reliability) will
also occupy part of the system utilization, which could leave much less space for
adjusting the speeds of the mandatory jobs to keep the total energy consumption
under control. When the QoS is taken into consideration, the problem becomes
even more challenging as we need to ensure that the baseline (m, k)-constraints be
satisfied all the time without exceeding the given hard energy budget constraint.

In this paper, we study the problem of maximizing the feasibility, QoS, and
energy performance for (m,k)-firm real-time embedded systems while satisfying
the reliability requirement under given hard energy budget constraint.

The rest of the paper is organized as follows. Section 2 talks about the related
work. Section 3 presents the preliminaries. Section 4 presents the motivations.
Section 5 presents our general scheduling algorithm. In section 6, we present our
evaluation results. In section 7 we offer the conclusions.



2. Related Work

In last decades, plenty of work has been done in integrating QoS constraint
into scheduling for real-time systems. For systems with transient overloaded con-
ditions, Chetto et al. [S] explored scheduling algorithms for firm real-time sys-
tems. For real-time applications organised as pipelines of tasks using resources
of different type, Cucinotta et al. [6] explored how to effectively share the re-
sources such that robust invariance is preserved. Their approach adopted QoS
requirements tightly related to the end-to-end temporal behaviour of the appli-
cation, which is different from our (m,k)-firm model dealing with QoS locally.
For mixed-criticality systems, Gettings et al. [11] and Bruggen et al. [41] pro-
posed new approaches that can provide QoS-guarantee for low-criticality tasks.
Moreover, for general fixed-priority weakly-hard real-time systems, schedulabil-
ity analysis based on the Mixed Integer Linear Programming (MILP) formulation
are provided in [39]. For mixed systems consisting of both periodic and aperi-
odic tasks, Buttazzo et al. [3] studied minimizing aperiodic response times in a
firm real-time environment without considering energy consumption. With given
energy budget constraint in mind, Alenawy et al. [2] proposed an approach to
reduce the number of (m,k)-violations for weakly hard real-time systems. Also
to minimize the number of dynamic failures, Kooti et al. [18] proposed a QoS-
aware approach for (m,k)-firm real-time systems with long-term variations of the
harvested energy.

With energy consumption in mind, some previous researches have been con-
ducted under the deterministic QoS models. In [29, 25], energy-efficient schedul-
ing schemes were proposed for real-time systems with (m, k) and window-constraints,
respectively. When system-wide energy consumption is considered, in [30], Niu
et al. proposed approaches to reduce the energy for both the processor and pe-
ripheral devices. Recently, with reliability becoming an important concern for
ubiquitous computing systems, a lot of works have also been reported in combin-
ing reliability and energy management for real-time embedded systems. In [54],
Zhu et al. formulated the reliability as the probability of executing the real-time
tasks/jobs successfully. They found that DVFS can affect the system reliability
adversely. In [48], a recovery-sharing scheme was proposed to reduce energy
for “frame-based” real-time task sets. In [50], the above scheme was extended
to systems with precedence constraint. In [20], Li ef al. introduced an adaptive
checkpointing scheme to minimize energy consumption under reliability require-
ment. Their work targeted the “frame-based” real-time systems only. For systems
with more general real-time constraints, Zhao et al. [49] proposed an approach



to reduce energy for periodical real-time tasks with reliability requirement quan-
tified for each task individually. When considering shared resource synchroniza-
tion, Zhang et al. [42] proposed a scheme to reduce energy consumption under
reliability requirement. In [24], Neukirchner et al. presented a methodology for
contract based dynamic task management for mixed-criticality real-time systems.
They provides a close coupling between an admission control scheme and task
management facilities which ensures that the effects of ill-specified components
are properly contained and thus allows safe reconfiguration of mixed criticality
systems. Their approach mainly focused on hard real-time systems and did not
take energy consumption into consideration.

For multicore/multiprocessor systems, some works have also been done to
reduce energy consumption under reliability requirement. In [7], Das et al. pro-
posed an offline approach for mapping tasks onto processor cores to minimize
energy consumption for all processor fault-scenarios. In [15], Haque et al. pro-
posed a standby-sparing technique which makes use of the hardware redundancy
in dual-processor systems to tolerate both transient and permanent faults. In [36],
Roy et al. proposed a scheduling scheme to reduce energy consumption for het-
erogeneous multicore systems while guaranteeing the system reliability. In [45], a
passive primary/backup technique is proposed to reduce power/energy consump-
tion in heterogeneous multicore systems by considering real-time and peak power
constraints while preserving the reliability requirement of the system at a satis-
factory level. The proposed method tries to map the primary and backup tasks
in a mixed manner to remove the overlap between the execution of the primary
and backup tasks. In [8], Dobias et al. explored online mapping and scheduling
of hard real-time systems adopting primary/backup technique in order to improve
the system reliability subject to various constraints regarding such as time, space,
and energy.

Note that most of the above energy-aware approaches are focused on reducing
the energy as much as possible. However, for systems that are driven by power
supplies with limited energy budget, the above best-effort approaches might not
be able to ensure that the system could remain operational during a well-defined
mission cycle. For systems with given fixed energy budget for its operation, Zhao
et al. [47] proposed an approach to maximize the overall reliability for hard real-
time systems. In [31], energy-constrained scheduling schemes for standby-sparing
systems consisting of two Non-DVFS processors are studied. To the best of our
knowledge, energy-constrained DVFS scheduling for (m,k)-firm systems under
the reliability requirement has not been studied yet. In this work, we assume
the system is operating in an energy-constrained system equipped with DVFES
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capability in which the energy consumption of the system must not exceed a given
fixed budget. Based on it, we explore maximizing the feasibility and QoS for the
system while satisfying the (m,k)-constraint under the reliability requirement.

3. Preliminaries

3.1. System models

The real-time task set considered in this paper contains n independent peri-
odic tasks, 7 = {11,71,---,T,}, scheduled according to the earliest deadline first
(EDF) policy [22]. Each task contains an infinite sequence of periodically ar-
riving instances called jobs. Task T; is characterized using five parameters, i.e.,
(P;, Dy, Ci, mj, k;i). P, D; (D; < P;), and C; denote the period, the deadline and
the worst case execution time for T;, respectively. A pair of integers, i.e., (m;,k;)
(0 < m; <k;), are used to represent the (m, k)-constraint for task t; which requires
that, among any k; consecutive jobs, at least m; jobs are executed successfully.
The j’h job of task 7; is denoted as J;; and its arrival time and absolute deadline
are denoted as r;; and d;, respectively. In addition, if job J;; is used as a recovery
job, it is also represented as J;j(R). The hyper-period of the task set, represented
by H, is defined as H = LCM{k;T;}.

We assume the task set is to be executed in a uni-processor system with a
limited energy supply of E units during its mission cycle. Moreover, we assume
this energy budget is a hard constraint in a sense that it cannot be exceeded at any
time during its mission cycle. Without loss of generality, we let the mission cycle
be the hyper period of the task set and assume that the energy supply can only be
charged to full capacity right before the beginning of each hyper period.

3.2. Fault and Recovery Models

Similar to [32, 14], we focus on transient faults in this paper since transient
faults occur much more frequently than permanent faults in modern semi-conductor
devices [10]. We assume that faults can be detected using sanity (or consistency)
checks [33] when a job finishes its execution and the overhead for detection can
be integrated into the job’s worst case execution time. Moreover, when transient
fault occurs and is detected at the end of a job’s execution, the affected job can be
addressed by re-executing a recovery job with the same worst-case execution time
as the original one [33]. Once released, the recovery job will be executed like a
normal job. Note that, in order to preserve the reliability, the recovery jobs should
always be executed with the maximal speed s,



Following the fault model in [54], we assume that the transient faults will
present Poisson distribution [46] and the average transient fault rate for systems
running at speed s (and the corresponding supply voltage) is [54]:

A(s) = Ao x 10150 (1)

where A is the average fault rate corresponding to the maximum speed s, and
d(> 0) is a constant representing the sensitivity of transient faults on voltage scal-
ing. Larger value of d means the transient faults are more sensitive to voltage
scaling.

3.3. Power Model

The power/energy consumption on a DVFS processor can be divided into two
parts: the speed-dependent part P;(s) and the speed-independent part P,;. The
speed-dependent part Py(s) mainly comes from the dynamic power consump-
tion and short-circuit power consumption and can be represented as P,;(s) = ous™,
where a0 and m are constants [54], while the speed-independent part P,; mainly
comes from the leakage which is due to the subthreshold leakage current and the
reverse bias junction current in the CMOS circuit. The total power consumption
when the processor is active, i.e, P,(s), is thus P,(s) = P;(s) + Pg-

The processor can be in one of the three states: active, idle and sleeping states.
When the processor is idle, the major portion of the power consumption comes
from the leakage which is increasing rapidly with the continued scaling of IC
technology size. Shutting-down strategy, i.e., put the processor into its sleeping
state, can greatly reduce the leakage energy. However, it has to pay extra en-
ergy and timing overhead to shut down and later wake up the processor. Assume
that the power consumptions of a processor in its idle state and sleeping state are
Pigre and Pyy.p, respectively, and the energy overhead and the timing overhead of
shutting-down/waking-up the processor are E, and ¢,, respectively. Then the pro-
cessor can be shut down with positive energy gains only when the length of the
idle interval is larger than T}, = max(l)wf—‘;)slm,to) [32].

When the processor is active executing a job with workload w, the total energy

(E4(s)) consumed to finish this job with speed s can be represented as E,(s) =
P4(s) x *. Hence, to minimize the energy consumption, we let % = 0. When

P;(s) = as™, the derived speed is s = ( ¥ (mfz"]‘) &) Which is the optimal speed to

minimize the active energy for executing a job. We therefore call this speed the
energy-efficient speed, and denote it as s., [54]. Note that since the s., derived



here has not taken timing constraint into consideration, it might not always be
feasible and can only be used as a lower bound of speed scaling for real-time jobs.

3.4. Performance Metrics
3.4.1. Feasibility

Given system 7 = {1,T2, -, T, } to be scheduled on a variable voltage pro-
cessor with energy budget E, 7 is said to be feasible if the (m, k)-constraints of all
tasks in 7 are satisfied under a speed schedule § with total energy consumption
not exceeding the given energy budget E.

3.4.2. Reliability
For any job J;; of task T;, the reliability of it under speed s;;, represented by
Y(Jij,sij), is defined as the probability that J;; could be completed successfully.
According to [54], y(J;j,s;;) is given as:
G
_k(sij) X W (2)
Under the QoS-constraint (either in the (m,k)-constraint of (m;,k;), or the
window-constraint of m; /k;), the reliability of the I'"" window Wj; of task T;, repre-
sented by Y(Wj), is defined as the probability that at least m; jobs in Wj; could be

completed successfully.
Based on it, the reliability of task t; is defined as,

Y(Jij,sij) = e

y(u) = [ Tv(Wa) 3)

where z; is the number of windows in 7T; that need to be inspected.
And the reliability of the whole system 7 is defined as,

wwzﬁmo )

3.4.3. Quality of Service

Based on the above system models, we define the metrics to measure the qual-
ity of service of a task t;, represented by QoS(7;) to be the ratio of the number of
jobs completed successfully and the total number of jobs within the hyperperiod
H. Based on it, we define the actual quality of service of a task T;, represented by
QoS;, as followed:

QoS; = 5)
Yi



where x; is the number of valid jobs and y; is the total number of jobs, both within
the hyperperiod H.
And the system quality of service is defined as

Q0Ssys =Y Q0S(T;)®; (6)
i=1

where ; is the weight of task T; (could be user-defined).
Meanwhile, with the window reliability in mind, we also define the expected
quality of service of a task t;, represented by QoS;, as followed:
By (mi xyWa) _ i Eiv(Wa)

/\O_Si — —
0 Zi X ki ki %

(7

Correspondingly, the expected system quality of service @TS” sys 18 defined as

n

Q\Ofgsys = Z Q\Ogimi )]

i=1

where ; is the weight of task 7;.

4. Motivations

To satisfy the reliability requirement, one essential part is to reserve recov-
ery jobs for the tasks when applying DVFES to reduce energy. Prior to that, a
key problem for ensuring the (m, k)-constraints is to judiciously partition the jobs
into mandatory jobs and optional jobs [34]. A well-known partitioning method
is called the the evenly distributed pattern (or E-pattern) [35]. According to E-
pattern, the pattern 7;; for job J;;, i.e., the jth job of a task 7;, is used to indicate
whether job J;; is partitioned as mandatory or optional job. Specifically, ;; is
defined as followed:

172 B . (j—1)><m,~ ﬁ
T — 1”7 if j= U—ki | x miJ +1 . )
“0” otherwise j=12,--

where T;; = 1 represents the mandatory job and 7;; = O represents the optional
job. In [21], a variation of E-pattern called ER-pattern was achieved by reversing
the pattern horizontally to let the optional jobs happen first, which can preserve
the schedulability of E-pattern [21].
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Figure 1: (a) The original schedule for task set {t; = (16,16,6,3,5); T, = (24,24,8,3,5);
13 = (40,40,6,2,8)} based on E-pattern without reliability/energy management; (b) The
schedule based on the original (m, k)-constraint managed with recovery jobs (only recov-
ery jobs for task T can be accommodated);(c) The schedule under the maximal speed with
recovery jobs reserved for T and T3 based on window-constraints that could be transferred
to their original (m, k)-constraints; (d) The schedule for the tasks in (c) after the speeds of
the mandatory jobs are scaled.
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Note that based on the E-pattern given in Equation (9), without energy man-
agement, i.e., all mandatory jobs to be executed under the maximal speed without
recovery, the reliability of any window Wj; of k; jobs could be calculated as:

(l—l)XkH—ki
YWa) = 1 (VUipsSmax) | ip =1} (10)

p=(—1)xki+1

It is also noted that the job patterns defined with E-pattern have the property
that they define a minimal set of mandatory jobs that “just” satisfies the given
(m, k)-constraint in each sliding window. Due to this property, before the speed
for any task is scaled to save energy, a popular approach is to reserve a recov-
ery job for each mandatory job of the task to satisfy the reliability of the same
task. Conversely, under window-constraint, this requirement could be greatly re-
laxed as we only need to reserve one recovery job within each separate window
so long as we can guarantee that reliability of the window under consideration
is preservedl, i.e., not lower than that calculated with Equation (10). However,
the problem is, since window-constraint is weaker than (m, k)-constraint, a task T;
satisfying the window-constraint of m; /k; does not necessarily satisfy the (m,k)-
constraint of (m;,k;). Fortunately, in [43] it is shown that the window-constraint
of m;/k; can be transferred to the (m,k)-constraint of (m;,2k; — m;). That means
if we can reserve recovery jobs for the tasks such that it could satisfy the window
constraint of m; /k;, it will satisfy the (m, k)-constraint of (m;, 2k; — m;) automati-
cally. Since in this case we only need to reserve one recovery job for each separate
window of k; jobs, it could leave us more space to keep the energy under control
than reserving recovery jobs for all mandatory jobs under E-pattern for tasks with
(m, k)-constraints of (m;,2k; — m;), which could be illustrated using the following
example.

Consider a task set of three tasks, i.e., Ty = (16,16,6,3,5), 1, = (24,24,8,3,5),
and 13 = (40,40,6,2,8), to be executed in a processor with energy budget before
time 240 to be 150 mJoule. Figure 1(a) shows the schedule for the mandatory jobs
based on E-pattern. If we assume the probability of transient fault for the system
running at full speed is 10~%, without reliability management, based on Equa-

Note that, in this paper, similar to the work in [53, 51] we assume the reliability of the original
system executing at the maximal speed is satisfactory and our goal is to schedule the system while
guaranteeing that the resulting reliability of the system is never lower than that under the maximal
speed, i.e., with the reliability preserved. But we can also set the reliability requirement higher
than that if necessary.
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tion (10), the reliability of each window in Ty, T2, and T3 will be 0.9999820002,
0.9999760003, and 0.9999880001, respectively. Based on Equation (4), the cor-
responding system reliability will be 0.9999460015. Meanwhile, if we assume all
tasks in Equation (8) have equal weights, i.e., ®; = % for all tasks in 7, the QoS
of the whole system based on Equation (8) will be 0.48332393344.

If we apply the state-of-the-art reliability management strategy, i.e., to re-
serve a recovery job for each mandatory job whenever possible to do so, Fig-
ure 1(b) shows the schedule for the mandatory jobs based on E-pattern for the
original given (m,k)-constraints, with a recovery job reserved for each mandatory
job of task T;. Note that in this case after reserving recovery jobs for task 7y,
there is not enough room for reserving recovery jobs for task T, or task T3 any
more. Therefore, only the reliability of each window in T; could be improved to
0.99999999996 while the reliability of each window in tasks T, and T3 will remain
the same. As a result, the reliability of the whole system based on Equation (4)
1s now 0.99996400056. And in this case the QoS of the whole system based on
Equation (8) is 0.48332753339. Compared with the above schedule in Figure 1(a)
without reliability management, there is some improvement in the system relia-
bility and very slight improvement in system QoS. However, the problem is that
it might not be able to meet the given hard energy budget constraint. For ease of
presentation here we assume the task set to be executed in an Intel XScale proces-
sor [4]. According to [4], the power consumption function for Intel XScale [16]
can be modeled approximately as P, (s) = 1.52s> +0.08 Watt by treating 1GHz as
the reference speed 1. Other parameters such as idle power consumption and shut
down overhead can be found in [4]. Note that, after recovery jobs are reserved
for task 71, there is no room for reducing the speed for task t; any more. Conse-
quently no task in the whole task set got a chance to have its speed reduced. Also
note that in this example even though the reserved space for the recovery jobs
in task 7; could be freed and become slack time reclaimable by other mandatory
jobs of T, (or 13) after their “primary jobs” are completed successfully, according
to [53], the slack times need to be used to reserve recovery jobs for the job(s)
under consideration (for example, J>;) first. In this particular example, after re-
serving recovery jobs for the mandatory jobs of T, (or T3) using the slack from
freed recovery jobs in Ty, there will be no slack time left that could be used to help
scale the speeds of the mandatory job(s) anymore. Consequently still no manda-
tory job could get chance to have its speed reduced. As a result the total worst case
energy consumption before the hyper period, i.e., 240, is 182.4 mJoule, which has
exceeded the given energy budget constraint. Therefore the task set is infeasible.

Different from the above schedule, if we reserve the recovery jobs to satisfy
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the window-constraints first, we can still meet the original (m, k)-constraints with
opportunities to reduce the speeds of the mandatory jobs, thereby meeting the
given energy budget constraint while preserving the reliability. This is illustrated
in Figure 1(c). As can be seen, in this case the mandatory jobs of T; and T3 are
determined to satisfy the window constraints of 3 /4 and 2/5 first. Then according
to the aforementioned mapping relationship they can meet their original (m,k)-
constraints of (3,5) and (2,8), respectively. Note that in this particular example
although there is enough space for reserving recovery jobs for task T, as well, we
still prefer to determine its mandatory jobs using EX-pattern based on its original
(m, k)-constraint due to the need of leaving more space to facilitate speed scaling
for the mandatory jobs of tasks T and t3. Based on the above configuration, with
the aforementioned flexibility of window-constraints in preserving reliability in
each separate window, we only need to reserve one recovery job for each window
under consideration. For convenience here we assume the last optional job within
each separate window is reserved as the shared recovery job for all mandatory
jobs in the same window, as shown in Figure 1(c). It is not hard to see that in
this case after reserving recovery jobs for tasks T; and T3, there is still some space
that could be used to scale the speeds of the mandatory jobs. Since both T; and
73 have already had recovery jobs reserved for them, we can scale the speeds of
all mandatory jobs in them arbitrarily, which will be very helpful in keeping the
overall energy consumption under control, i.e., within the given energy budget
constraint.

After the mandatory/recovery job patterns are determined in Figure 1(c), we
can apply DVFS to scale the speeds of all mandatory jobs within the windows
with recovery jobs reserved for them to be as close to the energy-efficient speed
as possible, which is shown in Figure 1(d). It is not hard to see that in this case all
mandatory jobs of T and T3 got chance to reduce their speeds. As a result the total
worst case energy consumption before time 240 is 140.9 mJoule, which is within
the energy budget before time 240, therefore feasible. Moreover, under the new
speed schedule, the reliability of each window W;; of task t; should be calculated
as:

(I=1)kj+k;
Y(W/l ) = H {Y(Jipvsip> | Tip = 1}
p=(1—1)ki+1
(I—1)ki+k; (I—1)ki+k;
+ Y A {Yig»sig) | mig =1, ¢ # p}
p=(I—D)ki+1 g=(I—1)ki+1
X (1 =YUip,Sip)) X Y(Jips Smax) } (11)
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Based on Equation (11), the reliability of each window in task T; will be cal-
culated as y(W1) = 7(Wi2) = 0.9999999218, y(W;3) = 0.9999995614, y(W4) =
0.9999999931. Since none of them is lower than that calculated using Equation
(10), the reliability of task 7Ty, i.e., Y(T;), under the new speed schedule will not
be lower than its original reliability with all mandatory jobs executed under the
maximal speed. Similarly, we can verify that the reliabilities of tasks T and 13,
i.e., ¥(T2) and Y(73), under the new speed schedule are not lower than their origi-
nal reliabilities under the maximal speed, either. Thus the reliability of the whole
system is preserved. In addition, the system QoS based on Equation (8) in this
case 1s improved to 0.5833224976, which is 20.7% higher than that in Figure 1(b)
(and that without energy/reliability management in Figure 1(a) as well).

Note that in the above example in Figure 1(d), tasks T; and T3 have their own
recovery jobs reserved separately and no recovery jobs are shared between them.
In practice, some recovery jobs from different tasks could overlap with each other
in time and it is possible to share some of them across different tasks to reduce
the energy further. For example, two recovery jobs in Figure 1(d), i.e., Jic(R)
and J35(R), from t; and 13, respectively, can actually be merged into one “shared”
recovery job across tasks T; and T3, leaving more space for other mandatory jobs
to have their speeds reduced further to save more energy. More details for the
implementation of it could be found in [26].

From the above example, it is easy to see that it is very promising to determine
the job/recovery patterns in such a way that the task set satisfies the window-
constraint first which could be transferred to the corresponding original (m,k)-
constraint automatically. In [26], more advanced techniques are also introduced
to determine the recovery jobs that could be shared most efficiently. However,
even with such kind of techniques the system might not be able to accommodate
recovery jobs for all tasks yet. Therefore, how to select the subset of tasks that can
be managed with reliability/energy will be an important issue. Regarding that, in
next section we will propose a method based on “branch-and-bound” to choose
the proper subset of tasks that could be managed with reliability/energy.

5. The General Algorithm

In this section, we will introduce our general scheduling algorithm. Our algo-
rithm consists of two stages: an off-line stage and an on-line stage.

The goal for the off-line stage is to determine the (shared) recovery jobs for
the tasks and set up the static processor speed schedule for the mandatory jobs
such that the task set is feasible under the given energy budget constraint and the
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Algorithm 1 Reserving recovery jobs for the task set

1:

AN AN

* A

10:
11:
12:
13:
14:
15:
16:
17:

18:
19:
20:

21:
22:
23:
24:
25:

26:
27:

28:
29:
30:
31:
32:
33:
34:

35:
36:

Input: task set 7 with mandatory jobs determined by EX-pattern (with no recovery
job(s) reserved for any task yet);

Output: task set '=QUO, where Q is the subset of tasks in 7" with recovery jobs
reserved for each task and @ is the subset of tasks in 7 with no recovery jobs;
Q=0;0=7T;T'=QuUO;

Sort the tasks in ® according to non-increasing order of ",:[’g’ Jg=1,..,n;

EAf The given hard energy budget constraint of the system ;

QoS;, = The QoS of task set T based on Equation (8) under original (m,k)-
constraints; -

Recovery-Reservation (2, ®, QoS,, I');

: Recompute the total energy consumption E of task set I" based on line 27;

if I" is non-schedulable with LPEDF® or E > E then
Output: Task Set Infeasible!

else
Output (IN);

end if

FUNCTION Recovery-Reservation(Q, O, Q\o@b, I
for each task 7; € ® do
Re-determine the mandatory jobs of 7T; using E-pattern based on the window-
constraint that can be transferred to its original (m, ky-constraint;
Remove 71; from ©;
Add T; to Q;
Determine the recovery jobs of the tasks in Q by reserving the last optional job
within each separate window as the share recovery job;
Apply the LPEDFX algorithm from [32] to the task set QU®;
if QUO is schedulable with LPEDFR® then
Get the simulation trace based on the speed schedule generated by LPEDFX;
Merge the recovery jobs for the tasks in Q according to Algorithm 2 in [26];
Re-apply the LPEDFR algorithm from [32] to the task set QU® with recovery
jobs merged; -
Compute the new QoS of the updated task set U® based on Equation (8);
Recompute the total energy consumption E of task set 7 as E =
Ycauei (0 x ()" 4+ Pu) x %} + ZJ<X>(R)67~({(O(‘ X (Smax)™ 4 Pua) X Caxs X
(1 =TI{Y(ip:sip) | Jip € Wy managed by Jo.~(R) and m;, = 1}) +Piaje X (H —
y J[.GQU@{%}), where s; is the scaled speed of any mandatory job J; under
LPEDF®.
if E < E and QoS,,, > Q0S), then

é;»/Sb = QOSsys;

I'=QuUo;
end if 15
Recovery-Reservation (Q2, ©, I', QoS,);

else
Restore the mandatory jobs of T; to the original ones based on E-pattern (with
no recovery job(s)) and put it back to ©®;
end if
end for




expected QoS of the system is maximized while the system reliability is preserved.
One essential part of it is to determine the mandatory jobs for the tasks and reserve
recovery jobs for them based on the window-constraints (that can be transferred
to the corresponding original (m, k)-constraints) if possible. However, since the
system might not be able to accommodate recovery jobs for all tasks, how to select
the subset of tasks that can be managed with reliability/energy is not a trivial
problem. Meanwhile, since recovery jobs also consume part of the processor
utilization, reserving recovery jobs for too many tasks might leave much less space
to scale the speeds of the mandatory jobs, therefore causing the overall energy
consumption to go beyond the hard energy budget constraint. On the other hand,
in order to preserve the system reliability, tasks with no recovery jobs reserved
for them should not have their speeds scaled [53]. Then the problem becomes
how to select the subset of tasks to be managed with recovery jobs to achieve the
best energy efficiency. In [53], it is shown that even without consideration of QoS
and energy constraint this problem is NP-hard. Although some heuristics [53]
are proposed for hard real-time systems regarding the selection of tasks, they are
not applicable any more for soft real-time systems with (m,k)-constraints. In
order to solve the problem, in this section, we propose a “branch-and-bound”
method to divide the task set 7 into two parts: the subset Q in which the tasks
will be managed with recovery jobs and the subset ® in which the tasks will not
be managed with recovery jobs. The details are presented in Algorithm 1.

As can be seen in Algorithm 1, by applying the branch-and-bound strategy,
our approach determines task by task if the mandatory jobs of each task should be
based on the original (m,k)-constraint (with no recovery jobs reserved) or based
on the window-constraint (with recovery jobs reserved according to Algorithm 1
from [26]). When Algorithm 1 is finished, it is possible to reach certain hybrid
configuration in which the tasks in Q are partitioned based on window-constraints
with recovery jobs reserved in each separate window, while the tasks in © are still
partitioned based on the original (m, k)-constraints with no recovery jobs reserved
for them. Moreover, to make the mandatory/recovery workload of the whole task
set distribute more evenly (to facilitate the speeds scaling), we let the tasks in
Q be partitioned under E-pattern while the tasks in © be partitioned under ER-
pattern [21]. And the resulting configuration should be the one with the maximal
expected QoS and with energy consumption not exceeding the energy budget con-
straint E.

The branch-and-bound strategy applied in Algorithm 1 is commonly used to
solve the optimization problem. Although it is essentially an exhaustive search
strategy with worst case time complexity of O(2"), since it can be done offline, we
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Algorithm 2 Window Reliability Management

1: Input: Merged recovery job set R output by Algoirthm 2 in [26];

2: for each recovery job J_~ (R) € R do

3: W =0;

4. for each Window W, (jointly) managed by J.,- (R) do

5: W =W UW,;

6 end for

7. Let{(‘W) be the original reliability of W/, calculated based on Equation (10), with
all mandatory jobs in it executed under s,,.y;

8:  Let y(7/) be the reliability of W, calculated based on Equation (11), with all
mandatory jobs in it executed under their current speed schedule;

9: ify(W) < J(W) then

10: repeat

11: Increase the speed(s) of the job(s) with the lowest speed in ‘W to be the next
higher level speed in the whole speed schedule;

12: Re-calculate (%) under the new speed schedule;

13: until (W) > (W)

14:  endif

15: end for

can afford to have it with task sets with not very large size n of task sets. Moreover,
to improve its efficiency, the task set is initially sorted according to the values of
',':lf;fc,lf,i = 1,..,n (line 4) because the higher the value, the higher the possibility
that the task set becomes unschedulable when the task has recovery jobs reserved
based on window-constraint and its job speeds are reduced accordingly.

Note that in lines 17-23 of Algorithm 1, a variation of Yao’s LPEDF Algo-
rithm [44], i.e., LPEDF® [32], is applied to determine the speeds of the manda-
tory jobs and to compute their expected energy consumption within each iteration.
The details of it could be found in [32].

By running Algorithm 1, after the subset Q of a given task set 7 is determined,
the static speed schedule for the mandatory jobs from all tasks in it is also available
(generated by the LPEDFR algorithm in line 22). At the same time, the speeds of
all mandatory jobs from tasks in ® should be set as the maximum speed s,

It does not escape our attention that, similar to the work in [26], in some occa-
sional cases, for example, when the length of a window managed by a recovery job
is very long and the scaled speed(s) of the job(s) belonging to the window is (are)
extremely low, it is possible that the reliability of the window under consideration
could drop below its original reliability (under the maximal speed, calculated by
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Algorithm 3 Online algorithm
1: Upon job arrival:
2: Run jobs in the ready queue according to EDF scheme with their predetermined
speed;

Upon job completion (assuming J; is just completed at f;):
if the execution of J; is found to have failed then
Let J;’s original non-shared recovery job in & be J,,(R)
Invoke the shared recovery job in & which contains w in its index vector and set
its actual execution time to be C; [26];
8:  Increase the speeds of all the other mandatory jobs after the faulty job within all
windows (jointly) managed by shared recovery job to $,ax;
9: else
10:  if J; € Q and all windows sharing the same shared recovery job as J;’s have got
enough number of jobs belonging to them completed successfully then

AN A

11: Drop the shared recovery job of J;;

12:  endif

13:  if the ready queue is empty then

14: Compute the latest starting time, i.e., Trs(J,), for the upcoming manda-
tory/recovery job set Jy;

15: if (Trs(9,) — f;) > T, then

16: Shut down the processor and set up the wake-up timer to be (Trs(%,) — fi);

17: end if

18:  end if

19: end if
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Equation (10)). For such kind of windows, to preserve the reliability, we need to
revise the job speed(s) in them to increase their reliability correspondingly. The
details are provided in Algorithm 2.

As shown in Algorithm 2, for each shared recovery job J.,~(R) in R [26],
we scan all windows (jointly) managed by J-,~ (R) and put them in a temporary
pool W. If the reliability of all mandatory jobs in W/ under the current speed
schedule is less than their original reliability under the maximal speed s,y (line
9), we need to increase the lowest job speeds in W/ to certain level such that
their original reliability could be preserved 2 (line 10-13). The time complexity
of Algorithm 2 depends on the number of shared recovery jobs in R, the max-
imal possible number of tasks jointly managed by any shared recovery job, and
the number of mandatory jobs in each window, which are max{%}, n and

5 1P

max{m;}, respectively. From Algorithm 2, the time complexity of it should be
O(mi%kipnm,—), which is pseudo-polynomial in the number of tasks n and still suit-

able for an offline algorithm due to its low overhead in practice.

Moreover, during the online stage, if any mandatory job encountered transient
fault, since its shared recovery job J-,~ (R) will be consumed by the faulty job, all
the other mandatory jobs after the faulty job within all windows (jointly) managed
by J<x~(R) needs to have their speeds raised to the maximal speed s,,,y in order to
preserve the original reliability, which is reflected in the online Algorithm 3 (line
8) as well.

Based on the adjusted speed schedule output by Algorithm 2, the mandatory
jobs can be scheduled according to the EDF scheme during the online stage.

During the online stage, as shown in Algorithm 3, a job ready queue will be
maintained. Upon arrival, a mandatory job determined during the off-line stage
is inserted into the ready queue. Note that a recovery job needs to be inserted
into the ready queue to be executed only if some mandatory job within the same
window has failed. Otherwise the recovery job will simply be dropped. All jobs
in the ready queue will be executed following the EDF scheme. If the current job
J; is found to have failed at its completion time, its shared recovery job in & [26]
will be invoked with actual execution time set to be the worst execution time of J;
and inserted into the ready queue at its arrival time (line 7).

If the execution of J; is successful, Algorithm 3 determines whether its shared

ZNote that we can also set the target reliability for the mandatory jobs in % higher if necessary,
which is beyond the scope of this paper.
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recovery job, if any, should be dropped depending on the number of successful
jobs so far in each window sharing it (lines 10-12). At the same time, if the job
ready queue is empty, Algorithm 3 determines whether it is necessary to shut
down the processor or to keep it idle depending on if the predicted idle interval
length, with future mandatory/recovey jobs delayed to Tys(J,), is larger than the
shut down threshold 7;;, (lines 13-18).

One important part to the success of Algorithm 3 is to compute the latest
starting time Tys(,) for the upcoming mandatory/recovery job set when the ready
queue is empty (line 14), which is also the main complexity of Algorithm 3. The
latest starting time could be computed using an advanced version of Theorem 1
from [28], whose online time complexity is O(N'M’), where M’ is the number of
mandatory/recovery jobs with arrivals before the earliest deadline of the upcoming
mandatory jobs and N’ is the total number of jobs arriving within the interval
between the arrival time and the deadline of any job aforementioned. Since N’
and M’ are usually very small for periodic task sets [27], the complexity above is
suitable for online use as well. More details could be found in [26].

6. Evaluation

In this section, we evaluate the performance of our approach by comparing
with the existing approaches in literature. Specifically, the performance of four
different approaches were studied:

* NPM The task sets are partitioned with E-pattern, and all mandatory jobs
are always executed with the highest speed.

* RAEM The task sets are partitioned with deeply-red pattern to satisfy the
given (m,k)-constraints. Then the mandatory jobs are scheduled with the
approach from [49].

* ECRA This is our newly proposed approach in Section 5.

* ECRAgs This is our newly proposed approach in Section 5 enhanced with
the shared slack time reclaiming technique in [26].

The periods of the real-time task sets were randomly chosen in the range of
[30ms, 100ms|. The worst case execution time (WCET) was set to be uniformly
distributed and the m; and k; for the user defined (m, k)-constraints were also ran-
domly generated such that &; is uniformly distributed between 2 to 10, and m; < k;.
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Figure 2: (a) The feasibility comparison for the different approaches under given hard
energy budget constraint; (b) The QoS comparison for the different approaches; (c) The
comparison on the probability of job failure (PoJF) for the different approaches.

For the processor model we adopted a widely used embedded processor model,
i.e., the Freescale MPC8536E [38]. The default value of P,; was set to be 10% of
the maximum speed-dependent power. The shutdown threshold 7;;, is set to be 1
ms.

For the fault and recovery model we adopted the same model as used in [54],
i.e., the transient faults are assumed to follow the Poisson distribution with an
average fault rate of Ay = 107 at the maximum speed s,,4, (and corresponding
supply voltage). We assume the sensitivity value d = 3. That is, the average fault
rate is 1000 times higher at the lowest speed s,,i, [54].

The simulations were performed using a discrete event simulator in a desk top
computer with 4.7Ghz processor and Windows 10 OS. During the simulation,
whenever an activated job has reached its deadline with pending/uncompleted
workload, it is regarded as having missed its deadline and will be discarded. In
particular, when simulating with the (m,k) model, any mandatory job activation
not completing by its deadline will be aborted at the deadline and any optional job
will be dropped to save energy.

Firstly, we inspect the feasibility of the different approaches under different
energy budget constraints. We assume the maximal energy budget constraint to
be 99% of the energy consumption by NPM and then scale the energy budget con-
straint with a step reduction of about 10%. Based on it we checked the feasibility
of the task sets by the different approaches. Note that since under this scenario
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NPM is not feasible in nearly all cases, we just show the feasibility of RAEM and
ECRA as well as ECRAgs. The results (normalized to that by ECRA) are shown
in Figure 2(a). As can be seen, when the energy budget is sufficiently large, i.e.,
larger than 90%, usually the task set could be feasible by all of them because their
total energy consumptions estimated based on the statically scaled speed sched-
ules would seldom exceed the energy budget constraint in this case. So the total
number of task sets feasible by them are close to each other. However, when the
energy budget constraint became tighter, for example, between 40% and 80%,
the feasibilities of ECRA and ECRAgg are much better than that of RAEM. This
is because, by reserving recovery jobs at each separate window frame (to satisfy
the (m, k)-constraints through the corresponding window-constraints) and sharing
the recovery jobs whenever possible to do so, ECRA and ECRAgs can greatly
reduce the space required f or reserving recovery jobs. As a result, there was
more space in them to help scale the speeds of the mandatory jobs. Meanwhile,
the schedulability of the deeply-red pattern adopted by RAEM is not as good as
the E-pattern adopted in our approach [21], which also limited the feasibility of
RAEM to some extent. Moreover, as a side effect, generally ECRA also allowed
more tasks from the task set to have recovery jobs reserved for them. So it could
provide more freedom for the mandatory jobs of the whole task set to scale their
speeds more aggressively. As a result, the total energy consumption required by
ECRA and ECRAgs could be much lower than that by RAEM, therefore allowing
better feasibility when the energy budget constraint is relatively tighter. Also it is
not surprising to see that when the energy budget is extremely low, most task sets
are not feasible by any of the approaches. So under this scenario their feasibilities
are also close to each other.

Next, we inspect the maximal QoS levels each approach can provide. This
time we set the energy budget constraint to be 100% of the energy consumption
by NPM. For simplicity, we assumed all tasks in Equation (8) were assigned the
equal weights, i.e., ®; = % for any task t; € 7. To investigate the performance
of different approaches under different workload, we divided the total (m,k)-
utilization, i.e., }; ",le—g’ into intervals of length 0.1. To reduce the statistical er-
rors, we required that each interval contain at least 20 task sets schedulable with
E-pattern, or until at least 5000 task sets within each interval had been generated.
The results (normalized to that by NPM) are shown in Figure 2(b). From Fig-
ure 2(b), we can see that the newly proposed approaches, i.e., ECRA and ECRAgg
can achieve much better QoS levels than the previous approaches. Compared with
RAEM and NPM, the maximal QoS improvement could be nearly 30%. This is
because, different from RAEM and NPM which could only provide a minimum set

22



VCS VCS VCS
-8-NPM —~RAEM
ORAEM  BECRA  DECRASS . ONPM BRAEM OECRA mECRA_SS T ECRA o ECRA SS
@ 10 1.00E-03
3 o o
e 9 . ) 5
? 2 10 H
80 . - L 1.00E04
o @ 10 ] /D//Q//E
o
% 0 [ | g % 2 D//Q’/% ﬁéﬁ
3 % w0 2
Lo . N 2 100805
5 T 70 3 ¥
g 50 H E [
2 5 60 2
£ z 4
5 4 =a 50 Q. 1.00E-06
z 0 20 30 4 5 60 70 00-01 01-02 02-03 03-04 04-05 00-01 04-02 02-03 03-04 04-05
Energy Budget (%) (m,k)-Untilization (m.K)-Utilizatoin
(a) (b) (c)

Figure 3: (a) The feasibility comparison for the different approaches under given hard
energy budget constraint; (b) The QoS comparison for the different approaches; (c) The
comparison on the probability of job failure (PoJF) for the different approaches.

of jobs that “just” satisfied the (m, k)-constraints, ECRA and ECRAgg, by adopt-
ing more adaptive recovery job reservation and sharing techniques, could utilize
the time space more efficiently. Therefore it could generally accommodate more
valid jobs in its schedule, generating better QoS levels.

Finally, with system reliability in mind, we also inspected the probability of
Jjob failure (denoted as PoJF) of the different approaches, which is defined as the
ratio of the number of jobs failed over the total number of jobs executed. The
results in different (m, k)-utilization intervals are shown in Figure 2(c). As seen,
in most utilization intervals, the PoJF of RAEM is lower than that by NPM. The
effect is especially obvious when the utilization is not very high. That conforms
to the conclusion in [52] that the reservation of recovery jobs could generally help
reduce the probability of job failure. The average PoJFs of ECRA and ECRAsg
are even lower than that by RAEM. This is mainly because, by reserving shared
recovery jobs based on window-constraints (that can be transferred to the corre-
sponding original (m, k)-constraints) first, the mandatory jobs of more tasks could
have (shared) recovery jobs reserved for them when compared with RAEM. More-
over, it is noted that the average PolJs of ECRAg; is stil little lower than that by
ECRA mainly because its capability of sharing the slack time among different
mandatory jobs such that more jobs could use the slack time to reserve recovery
jobs for them when necessary.
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6.1. Evaluations with Real World Benchmark

Next, we tested our conclusions in a more practical environment. The test is
based on a real world benchmark: VCS (Vehicle Control System) [19]. The tim-
ing parameters such as the deadlines, periods, and execution times were adopted
from the practical application directly [19]. For the processor model used in this
group of experiments, we adopt the Samsung Exynos 4210 processor [9] to test
the energy saving performance of our approaches. The Samsung Exynos 4210
processor can operate with five operating frequencies: (0.3, 0.6, 0.8, 1.008, 1.2)
GHz with power consumption of (0.1018, 0.2738, 0.4607, 0.7548, 1.0675) Watt,
respectively [1, 37].

Similar to the experiments on synthesized task sets, we also performed three
sets of experiments to check the feasibility, QoS. and probability of job failure of
the different approaches. The results are shown in Figure 3.

From Figure 3, the above analysis on synthesized task sets also conforms to
the experimental results on the real world benchmark VCS as well. For example,
ECRA and ECRAG; still have much better feasibility and QoS levles than the other
approaches. As shown in Figure 3(a), compared with RAEM, when the energy
budget constraint is between 40% and 80%, the feasibilities of ECRA and ECRA
are much better than RAEM. Meanwhile, in terms of QoS, ECRA and ECRA can
also achieve much better QoS levels than the previous approaches with maximal
QoS improvement of nearly 30%. Also, for probability of job failure (PoJF), the
PoJF of RAEM is lower than that by NPM and the average PoJFs of ECRA and
ECRA;; are even lower than that by RAEM for the same reasons as stated above.

Overall, the experimental results for synthesized systems as well as real world
application have clearly demonstrated the effectiveness of our approaches in max-
imizing the feasibility and QoS while satisfying the (m,k)-constraints and pre-
serving the system reliability under hard energy budget constraint.

7. Conclusions

In this paper, we explored maximizing the feasibility and QoS for (m,k)-firm
real-time embedded systems while satisfying the reliability requirement under
given hard energy budget constraint. Regarding that, we proposed a reliability-
aware energy-constrained scheduling scheme which implemented recovery space
sharing for real-time jobs in an adaptive way based on the mandatory/optional
job partitioning strategy. Through extensive simulations, our evaluation results
demonstrated that the proposed techniques significantly outperformed the previ-
ous research in feasibility and QoS while preserving the system reliability under
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given hard energy budget constraint. Moreover, the proposed work has also ad-
dressed some insufficiency in [26] in terms of preserving the system reliability.
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