
Reliability-Aware Scheduling for (m,k)-firm Real-Time

Embedded Systems under Hard Energy Budget

Constraint

Linwei Niua,∗, Jonathan Musselwhite1

aDepartment of Electrical Engineering and Computer Science, Howard University, Washington,

DC, 20059, U.S.A.

Abstract

For real-time embedded systems, feasibility, Quality of Service (QoS), reliability,

and energy constraint are among the primary design concerns. In this research, we

proposed a reliability-aware scheduling scheme for real-time embedded systems

with (m,k)-firm deadlines under hard energy budget constraint. The (m,k)-firm

systems require that at least m out of any k consecutive jobs of a real-time task

meet their deadlines. To achieve the dual goals of maximizing the feasibility and

QoS for such kind of systems while satisfying the reliability requirement under

given energy budget constraint, we propose to reserve recovery space for real-

time jobs in an adaptive way based on the mandatory/optional job partitioning

strategy. The evaluation results demonstrate that the proposed techniques signif-

icantly outperform the previous research in maximizing the feasibility and QoS

for (m,k)-firm real-time embedded systems while preserving the system reliabil-

ity under hard energy budget constraint. Moreover, the proposed work has also

addressed some insufficiency in [26] in terms of preserving the system reliability.

Keywords: Feasibility, QoS, Reliability, Energy Constraint, Scheduling

1. Introduction

With the advance of IC technology, energy constraint has been an increasingly

important factor for the design of real-time embedded systems. In some real-time

∗Corresponding author. Tel: +1 2028064822.

Email addresses: linwei.niu@howard.edu (Linwei Niu),

jonathan.musselwhite@bison.howard.edu (Jonathan Musselwhite)

Preprint submitted to Journal of Systems Architecture March 31, 2024

applications, the systems are driven by power supplies with limited energy budget

constraint, which has to remain operational during a well-defined mission cycle.

Examples include Heart Pacemakers [40] or other portable embedded devices

whose power supply can only be charged to full capacity right before the begin-

ning of certain mission/operation cycle/period(s). For such kind of applications,

efforts must be made by all means to avoid exhausting the energy budget before

the end of the mission cycle.

In traditional hard real-time embedded systems, all task instances are required

to meet their deadlines and any deadline miss will crash the entire application

or system. However, in many practical real-time applications such as multime-

dia processing and real-time communication systems, occasional deadline misses

can often be tolerated. Some other applications may have soft deadlines where

tasks that do not finish by their deadlines can still be completed with a reduced

value [23] or they can simply be dropped provided that the user’s perceived quality

of service (QoS) is satisfied.

QoS requirements dictate under what conditions the system will provide its

service to real-time tasks executed in the embedded processor. To quantify the

QoS requirements, some statistic information such as the average deadline miss

rate can be used. However, even a low overall miss rate (e.g., 2%) cannot prevent

the scenarios where a very large number of deadline misses (e.g., 20 deadline

misses out of 1000 jobs) occur consecutively in a short period of time, which

could generate undesirable results.

The deterministic QoS model is more appropriate for such kind of systems.

Under the deterministic QoS model, tasks have both firm deadlines (i.e., task(s)

with deadline(s) missed generate(s) no useful values) and a throughput require-

ment (i.e., sufficient task instances must finish before their deadlines to provide

acceptable QoS levels) [30]. Two well known deterministic QoS models are the

(m,k)-model [12] and the window-constrained model [43]. The (m,k)-model re-

quires that m jobs out of any sliding window of k consecutive jobs of the task meet

their deadlines, whereas the window-constrained model requires that m jobs out

of each fixed and nonoverlapped window of k consecutive jobs meet their dead-

lines. It is not hard to see that the window-constrained model is weaker than the

(m,k)-model as the latter one is more restrictive.

To ensure the (m,k)-constraints, Ramanathan et al. [35] proposed a partition-

ing strategy which divides the the jobs into mandatory ones and optional ones.

The mandatory ones are jobs that must meet their deadlines in order to satisfy the

(m,k)-constraints. In [43], West et al. tried to set up a corresponding relation-

ship from the window-constrained model to the (m,k) model. They also found a

2

method to map the window-constraints to the (m,k)-constraints.

In the meantime, with the aggressive scaling of transistor size in CMOS cir-

cuits, more and more transistors are integrated into a single die and the power con-

sumption of IC chips has been increasing dramatically. For the past two decades,

extensive researches on power management techniques (e.g. [13]) have been re-

ported on energy minimization for embedded real-time systems. Among them dy-

namic voltage scaling (DVFS) and Dynamic Power Management (DPM) are two

widely used techniques to reduce energy dissipation. DVFS dynamically adjusts

the supply voltage and working frequency to reduce power consumption at the

cost of extended circuit delay, whereas DPM techniques try to put the processing

unit in a low-power inactive state when it is not in use.

In recent years, reliability has become increasingly important in the design of

fault tolerant computer systems as system fault could occur anytime during the ex-

ecution cycle of real-time jobs [54]. Moreover, it has been shown that DVFS could

affect system reliability negatively because the probability of transient faults could

be much higher at lower supply voltages [54]. In order to satisfy the reliability re-

quirement of a given job, a widely adopted strategy is to reserve a recovery job for

it before scaling its speed using DVFS [54]. If the job has failed due to transient

faults [17], the recovery job should be invoked for execution to compensate the

failed job.

In the context of reliability assurance, the energy-constrained issue is espe-

cially critical as the recovery job(s) (for preserving the system reliability) will

also occupy part of the system utilization, which could leave much less space for

adjusting the speeds of the mandatory jobs to keep the total energy consumption

under control. When the QoS is taken into consideration, the problem becomes

even more challenging as we need to ensure that the baseline (m,k)-constraints be

satisfied all the time without exceeding the given hard energy budget constraint.

In this paper, we study the problem of maximizing the feasibility, QoS, and

energy performance for (m,k)-firm real-time embedded systems while satisfying

the reliability requirement under given hard energy budget constraint.

The rest of the paper is organized as follows. Section 2 talks about the related

work. Section 3 presents the preliminaries. Section 4 presents the motivations.

Section 5 presents our general scheduling algorithm. In section 6, we present our

evaluation results. In section 7 we offer the conclusions.

3

2. Related Work

In last decades, plenty of work has been done in integrating QoS constraint

into scheduling for real-time systems. For systems with transient overloaded con-

ditions, Chetto et al. [5] explored scheduling algorithms for firm real-time sys-

tems. For real-time applications organised as pipelines of tasks using resources

of different type, Cucinotta et al. [6] explored how to effectively share the re-

sources such that robust invariance is preserved. Their approach adopted QoS

requirements tightly related to the end-to-end temporal behaviour of the appli-

cation, which is different from our (m,k)-firm model dealing with QoS locally.

For mixed-criticality systems, Gettings et al. [11] and Bruggen et al. [41] pro-

posed new approaches that can provide QoS-guarantee for low-criticality tasks.

Moreover, for general fixed-priority weakly-hard real-time systems, schedulabil-

ity analysis based on the Mixed Integer Linear Programming (MILP) formulation

are provided in [39]. For mixed systems consisting of both periodic and aperi-

odic tasks, Buttazzo et al. [3] studied minimizing aperiodic response times in a

firm real-time environment without considering energy consumption. With given

energy budget constraint in mind, Alenawy et al. [2] proposed an approach to

reduce the number of (m,k)-violations for weakly hard real-time systems. Also

to minimize the number of dynamic failures, Kooti et al. [18] proposed a QoS-

aware approach for (m,k)-firm real-time systems with long-term variations of the

harvested energy.

With energy consumption in mind, some previous researches have been con-

ducted under the deterministic QoS models. In [29, 25], energy-efficient schedul-

ing schemes were proposed for real-time systems with (m,k) and window-constraints,

respectively. When system-wide energy consumption is considered, in [30], Niu

et al. proposed approaches to reduce the energy for both the processor and pe-

ripheral devices. Recently, with reliability becoming an important concern for

ubiquitous computing systems, a lot of works have also been reported in combin-

ing reliability and energy management for real-time embedded systems. In [54],

Zhu et al. formulated the reliability as the probability of executing the real-time

tasks/jobs successfully. They found that DVFS can affect the system reliability

adversely. In [48], a recovery-sharing scheme was proposed to reduce energy

for “frame-based” real-time task sets. In [50], the above scheme was extended

to systems with precedence constraint. In [20], Li et al. introduced an adaptive

checkpointing scheme to minimize energy consumption under reliability require-

ment. Their work targeted the “frame-based” real-time systems only. For systems

with more general real-time constraints, Zhao et al. [49] proposed an approach

4

to reduce energy for periodical real-time tasks with reliability requirement quan-

tified for each task individually. When considering shared resource synchroniza-

tion, Zhang et al. [42] proposed a scheme to reduce energy consumption under

reliability requirement. In [24], Neukirchner et al. presented a methodology for

contract based dynamic task management for mixed-criticality real-time systems.

They provides a close coupling between an admission control scheme and task

management facilities which ensures that the effects of ill-specified components

are properly contained and thus allows safe reconfiguration of mixed criticality

systems. Their approach mainly focused on hard real-time systems and did not

take energy consumption into consideration.

For multicore/multiprocessor systems, some works have also been done to

reduce energy consumption under reliability requirement. In [7], Das et al. pro-

posed an offline approach for mapping tasks onto processor cores to minimize

energy consumption for all processor fault-scenarios. In [15], Haque et al. pro-

posed a standby-sparing technique which makes use of the hardware redundancy

in dual-processor systems to tolerate both transient and permanent faults. In [36],

Roy et al. proposed a scheduling scheme to reduce energy consumption for het-

erogeneous multicore systems while guaranteeing the system reliability. In [45], a

passive primary/backup technique is proposed to reduce power/energy consump-

tion in heterogeneous multicore systems by considering real-time and peak power

constraints while preserving the reliability requirement of the system at a satis-

factory level. The proposed method tries to map the primary and backup tasks

in a mixed manner to remove the overlap between the execution of the primary

and backup tasks. In [8], Dobias et al. explored online mapping and scheduling

of hard real-time systems adopting primary/backup technique in order to improve

the system reliability subject to various constraints regarding such as time, space,

and energy.

Note that most of the above energy-aware approaches are focused on reducing

the energy as much as possible. However, for systems that are driven by power

supplies with limited energy budget, the above best-effort approaches might not

be able to ensure that the system could remain operational during a well-defined

mission cycle. For systems with given fixed energy budget for its operation, Zhao

et al. [47] proposed an approach to maximize the overall reliability for hard real-

time systems. In [31], energy-constrained scheduling schemes for standby-sparing

systems consisting of two Non-DVFS processors are studied. To the best of our

knowledge, energy-constrained DVFS scheduling for (m,k)-firm systems under

the reliability requirement has not been studied yet. In this work, we assume

the system is operating in an energy-constrained system equipped with DVFS

5

capability in which the energy consumption of the system must not exceed a given

fixed budget. Based on it, we explore maximizing the feasibility and QoS for the

system while satisfying the (m,k)-constraint under the reliability requirement.

3. Preliminaries

3.1. System models

The real-time task set considered in this paper contains n independent peri-

odic tasks, T = {τ1,τ1, · · · ,τn}, scheduled according to the earliest deadline first

(EDF) policy [22]. Each task contains an infinite sequence of periodically ar-

riving instances called jobs. Task τi is characterized using five parameters, i.e.,

(Pi, Di, Ci, mi, ki). Pi, Di (Di f Pi), and Ci denote the period, the deadline and

the worst case execution time for τi, respectively. A pair of integers, i.e., (mi,ki)
(0 < mi f ki), are used to represent the (m,k)-constraint for task τi which requires

that, among any ki consecutive jobs, at least mi jobs are executed successfully.

The jth job of task τi is denoted as Ji j and its arrival time and absolute deadline

are denoted as ri j and di j, respectively. In addition, if job Ji j is used as a recovery

job, it is also represented as Ji j(R). The hyper-period of the task set, represented

by H, is defined as H = LCM{kiTi}.

We assume the task set is to be executed in a uni-processor system with a

limited energy supply of Ē units during its mission cycle. Moreover, we assume

this energy budget is a hard constraint in a sense that it cannot be exceeded at any

time during its mission cycle. Without loss of generality, we let the mission cycle

be the hyper period of the task set and assume that the energy supply can only be

charged to full capacity right before the beginning of each hyper period.

3.2. Fault and Recovery Models

Similar to [32, 14], we focus on transient faults in this paper since transient

faults occur much more frequently than permanent faults in modern semi-conductor

devices [10]. We assume that faults can be detected using sanity (or consistency)

checks [33] when a job finishes its execution and the overhead for detection can

be integrated into the job’s worst case execution time. Moreover, when transient

fault occurs and is detected at the end of a job’s execution, the affected job can be

addressed by re-executing a recovery job with the same worst-case execution time

as the original one [33]. Once released, the recovery job will be executed like a

normal job. Note that, in order to preserve the reliability, the recovery jobs should

always be executed with the maximal speed smax.

6

Following the fault model in [54], we assume that the transient faults will

present Poisson distribution [46] and the average transient fault rate for systems

running at speed s (and the corresponding supply voltage) is [54]:

λ(s) = λ0 ×10
(d× 1−s

1−smin
)

(1)

where λ0 is the average fault rate corresponding to the maximum speed smax and

d(> 0) is a constant representing the sensitivity of transient faults on voltage scal-

ing. Larger value of d means the transient faults are more sensitive to voltage

scaling.

3.3. Power Model

The power/energy consumption on a DVFS processor can be divided into two

parts: the speed-dependent part Pd(s) and the speed-independent part Pnd . The

speed-dependent part Pd(s) mainly comes from the dynamic power consump-

tion and short-circuit power consumption and can be represented as Pd(s) = αsm,

where α and m are constants [54], while the speed-independent part Pnd mainly

comes from the leakage which is due to the subthreshold leakage current and the

reverse bias junction current in the CMOS circuit. The total power consumption

when the processor is active, i.e, Pa(s), is thus Pa(s) = Pd(s)+Pnd.
The processor can be in one of the three states: active, idle and sleeping states.

When the processor is idle, the major portion of the power consumption comes

from the leakage which is increasing rapidly with the continued scaling of IC

technology size. Shutting-down strategy, i.e., put the processor into its sleeping

state, can greatly reduce the leakage energy. However, it has to pay extra en-

ergy and timing overhead to shut down and later wake up the processor. Assume

that the power consumptions of a processor in its idle state and sleeping state are

Pidle and Psleep, respectively, and the energy overhead and the timing overhead of

shutting-down/waking-up the processor are Eo and to, respectively. Then the pro-

cessor can be shut down with positive energy gains only when the length of the

idle interval is larger than Tth = max(Eo

Pidle−Psleep
, to) [32].

When the processor is active executing a job with workload w, the total energy

(Ea(s)) consumed to finish this job with speed s can be represented as Ea(s) =

Pa(s)×
w
s
. Hence, to minimize the energy consumption, we let

∂Ea(s)
∂s

= 0. When

Pd(s) = αsm, the derived speed is s = (m

√
Pnd

(m−1)α), which is the optimal speed to

minimize the active energy for executing a job. We therefore call this speed the

energy-efficient speed, and denote it as see [54]. Note that since the see derived

7

here has not taken timing constraint into consideration, it might not always be

feasible and can only be used as a lower bound of speed scaling for real-time jobs.

3.4. Performance Metrics

3.4.1. Feasibility

Given system T = {τ1,τ2, · · · ,τn} to be scheduled on a variable voltage pro-

cessor with energy budget Ē, T is said to be feasible if the (m,k)-constraints of all

tasks in T are satisfied under a speed schedule S with total energy consumption

not exceeding the given energy budget Ē.

3.4.2. Reliability

For any job Ji j of task τi, the reliability of it under speed si j, represented by

γ(Ji j,si j), is defined as the probability that Ji j could be completed successfully.

According to [54], γ(Ji j,si j) is given as:

γ(Ji j,si j) = e
−λ(si j)×

Ci
si j (2)

Under the QoS-constraint (either in the (m,k)-constraint of (mi,ki), or the

window-constraint of mi/ki), the reliability of the lth window Wil of task τi, repre-

sented by γ(Wil), is defined as the probability that at least mi jobs in Wil could be

completed successfully.

Based on it, the reliability of task τi is defined as,

γ(τi) =
zi

∏
l=1

γ(Wil) (3)

where zi is the number of windows in τi that need to be inspected.

And the reliability of the whole system T is defined as,

γ(T) =
n

∏
i=1

γ(τi) (4)

3.4.3. Quality of Service

Based on the above system models, we define the metrics to measure the qual-

ity of service of a task τi, represented by QoS(τi) to be the ratio of the number of

jobs completed successfully and the total number of jobs within the hyperperiod

H. Based on it, we define the actual quality of service of a task τi, represented by

QoSi, as followed:

QoSi =
xi

yi
(5)

8

where xi is the number of valid jobs and yi is the total number of jobs, both within

the hyperperiod H.

And the system quality of service is defined as

QoSsys =
n

∑
i=1

QoS(τi)ωi (6)

where ωi is the weight of task τi (could be user-defined).

Meanwhile, with the window reliability in mind, we also define the expected

quality of service of a task τi, represented by Q̃oSi, as followed:

Q̃oSi =
Σzi

l=1(mi × γ(Wil))

zi × ki
=

mi

ki
×

Σzi

l=1γ(Wil)

zi
(7)

Correspondingly, the expected system quality of service Q̃oSsys is defined as

Q̃oSsys =
n

∑
i=1

Q̃oSiωi (8)

where ωi is the weight of task τi.

4. Motivations

To satisfy the reliability requirement, one essential part is to reserve recov-

ery jobs for the tasks when applying DVFS to reduce energy. Prior to that, a

key problem for ensuring the (m,k)-constraints is to judiciously partition the jobs

into mandatory jobs and optional jobs [34]. A well-known partitioning method

is called the the evenly distributed pattern (or E-pattern) [35]. According to E-

pattern, the pattern πi j for job Ji j, i.e., the jth job of a task τi, is used to indicate

whether job Ji j is partitioned as mandatory or optional job. Specifically, πi j is

defined as followed:

πi j =

{
“1” if j = ++ (j−1)×mi

ki
,× ki

mi
,+1

“0” otherwise j = 1,2, · · ·
(9)

where πi j = 1 represents the mandatory job and πi j = 0 represents the optional

job. In [21], a variation of E-pattern called ER-pattern was achieved by reversing

the pattern horizontally to let the optional jobs happen first, which can preserve

the schedulability of E-pattern [21].

9

16
 96
80
64
48
32

96
72
24

T1

T2

48

80
40

T3

0

112
 192
176
160
144
128

192
168
120
 144

200
160
120

(b)

208
 224
 240

216

240

240

T1

T2

T3

0

(c)

T1

T2

T3

0

(d)

s11=0.6

s1D =0.75
s1A =0.5
 s1B =0.5

recovery job

s17=0.6

s33=0.6

J
18
(R)

J
35
(R)

J
18
(R)
J
14
(R)
 J
1C
(R)

16
 96
80
64
48
32
 112
 192
176
160
144
128
 208
 224
 240

16
 96
80
64
48
32
 112
 192
176
160
144
128
 208
 224
 240

96
72
24
 48
 192
168
120
 144
 216
 240

96
72
24
 48
 192
168
120
 144
 216
 240

80
40
 200
160
120
 240

80
40
 200
160
120
 240

s31=0.6
 s36=0.75

s1F =0.75

16
 96
80
64
48
32

96
72
24

T1

T2

48

80
40

T3

0

112
 192
176
160
144
128

192
168
120
 144

200
160
120

(a)

208
 224
 240

216

240

240

J
1C
(R)

J
35
(R)

s19=0.375

Figure 1: (a) The original schedule for task set {τ1 = (16,16,6,3,5); τ2 = (24,24,8,3,5);
τ3 = (40,40,6,2,8)} based on E-pattern without reliability/energy management; (b) The

schedule based on the original (m,k)-constraint managed with recovery jobs (only recov-

ery jobs for task τ1 can be accommodated);(c) The schedule under the maximal speed with

recovery jobs reserved for τ1 and τ3 based on window-constraints that could be transferred

to their original (m,k)-constraints; (d) The schedule for the tasks in (c) after the speeds of

the mandatory jobs are scaled.

10

Note that based on the E-pattern given in Equation (9), without energy man-

agement, i.e., all mandatory jobs to be executed under the maximal speed without

recovery, the reliability of any window Wil of ki jobs could be calculated as:

γ(Wil) =
(l−1)×ki+ki

∏
p=(l−1)×ki+1

{γ(Jip,smax) | πip = 1} (10)

It is also noted that the job patterns defined with E-pattern have the property

that they define a minimal set of mandatory jobs that “just” satisfies the given

(m,k)-constraint in each sliding window. Due to this property, before the speed

for any task is scaled to save energy, a popular approach is to reserve a recov-

ery job for each mandatory job of the task to satisfy the reliability of the same

task. Conversely, under window-constraint, this requirement could be greatly re-

laxed as we only need to reserve one recovery job within each separate window

so long as we can guarantee that reliability of the window under consideration

is preserved1, i.e., not lower than that calculated with Equation (10). However,

the problem is, since window-constraint is weaker than (m,k)-constraint, a task τi

satisfying the window-constraint of mi/ki does not necessarily satisfy the (m,k)-
constraint of (mi,ki). Fortunately, in [43] it is shown that the window-constraint

of mi/ki can be transferred to the (m,k)-constraint of (mi,2ki −mi). That means

if we can reserve recovery jobs for the tasks such that it could satisfy the window

constraint of mi/ki, it will satisfy the (m,k)-constraint of (mi,2ki −mi) automati-

cally. Since in this case we only need to reserve one recovery job for each separate

window of ki jobs, it could leave us more space to keep the energy under control

than reserving recovery jobs for all mandatory jobs under E-pattern for tasks with

(m,k)-constraints of (mi,2ki −mi), which could be illustrated using the following

example.

Consider a task set of three tasks, i.e., τ1 =(16,16,6,3,5), τ2 =(24,24,8,3,5),
and τ3 = (40,40,6,2,8), to be executed in a processor with energy budget before

time 240 to be 150 mJoule. Figure 1(a) shows the schedule for the mandatory jobs

based on E-pattern. If we assume the probability of transient fault for the system

running at full speed is 10−6, without reliability management, based on Equa-

1Note that, in this paper, similar to the work in [53, 51] we assume the reliability of the original

system executing at the maximal speed is satisfactory and our goal is to schedule the system while

guaranteeing that the resulting reliability of the system is never lower than that under the maximal

speed, i.e., with the reliability preserved. But we can also set the reliability requirement higher

than that if necessary.

11

tion (10), the reliability of each window in τ1, τ2, and τ3 will be 0.9999820002,

0.9999760003, and 0.9999880001, respectively. Based on Equation (4), the cor-

responding system reliability will be 0.9999460015. Meanwhile, if we assume all

tasks in Equation (8) have equal weights, i.e., ωi =
1
n

for all tasks in T , the QoS

of the whole system based on Equation (8) will be 0.48332393344.

If we apply the state-of-the-art reliability management strategy, i.e., to re-

serve a recovery job for each mandatory job whenever possible to do so, Fig-

ure 1(b) shows the schedule for the mandatory jobs based on E-pattern for the

original given (m,k)-constraints, with a recovery job reserved for each mandatory

job of task τ1. Note that in this case after reserving recovery jobs for task τ1,

there is not enough room for reserving recovery jobs for task τ2 or task τ3 any

more. Therefore, only the reliability of each window in τ1 could be improved to

0.99999999996 while the reliability of each window in tasks τ2 and τ3 will remain

the same. As a result, the reliability of the whole system based on Equation (4)

is now 0.99996400056. And in this case the QoS of the whole system based on

Equation (8) is 0.48332753339. Compared with the above schedule in Figure 1(a)

without reliability management, there is some improvement in the system relia-

bility and very slight improvement in system QoS. However, the problem is that

it might not be able to meet the given hard energy budget constraint. For ease of

presentation here we assume the task set to be executed in an Intel XScale proces-

sor [4]. According to [4], the power consumption function for Intel XScale [16]

can be modeled approximately as Pa(s) = 1.52s3+0.08 Watt by treating 1GHz as

the reference speed 1. Other parameters such as idle power consumption and shut

down overhead can be found in [4]. Note that, after recovery jobs are reserved

for task τ1, there is no room for reducing the speed for task τ1 any more. Conse-

quently no task in the whole task set got a chance to have its speed reduced. Also

note that in this example even though the reserved space for the recovery jobs

in task τ1 could be freed and become slack time reclaimable by other mandatory

jobs of τ2 (or τ3) after their “primary jobs” are completed successfully, according

to [53], the slack times need to be used to reserve recovery jobs for the job(s)

under consideration (for example, J21) first. In this particular example, after re-

serving recovery jobs for the mandatory jobs of τ2 (or τ3) using the slack from

freed recovery jobs in τ1, there will be no slack time left that could be used to help

scale the speeds of the mandatory job(s) anymore. Consequently still no manda-

tory job could get chance to have its speed reduced. As a result the total worst case

energy consumption before the hyper period, i.e., 240, is 182.4 mJoule, which has

exceeded the given energy budget constraint. Therefore the task set is infeasible.

Different from the above schedule, if we reserve the recovery jobs to satisfy

12

the window-constraints first, we can still meet the original (m,k)-constraints with

opportunities to reduce the speeds of the mandatory jobs, thereby meeting the

given energy budget constraint while preserving the reliability. This is illustrated

in Figure 1(c). As can be seen, in this case the mandatory jobs of τ1 and τ3 are

determined to satisfy the window constraints of 3/4 and 2/5 first. Then according

to the aforementioned mapping relationship they can meet their original (m,k)-
constraints of (3,5) and (2,8), respectively. Note that in this particular example

although there is enough space for reserving recovery jobs for task τ2 as well, we

still prefer to determine its mandatory jobs using ER-pattern based on its original

(m,k)-constraint due to the need of leaving more space to facilitate speed scaling

for the mandatory jobs of tasks τ1 and τ3. Based on the above configuration, with

the aforementioned flexibility of window-constraints in preserving reliability in

each separate window, we only need to reserve one recovery job for each window

under consideration. For convenience here we assume the last optional job within

each separate window is reserved as the shared recovery job for all mandatory

jobs in the same window, as shown in Figure 1(c). It is not hard to see that in

this case after reserving recovery jobs for tasks τ1 and τ3, there is still some space

that could be used to scale the speeds of the mandatory jobs. Since both τ1 and

τ3 have already had recovery jobs reserved for them, we can scale the speeds of

all mandatory jobs in them arbitrarily, which will be very helpful in keeping the

overall energy consumption under control, i.e., within the given energy budget

constraint.

After the mandatory/recovery job patterns are determined in Figure 1(c), we

can apply DVFS to scale the speeds of all mandatory jobs within the windows

with recovery jobs reserved for them to be as close to the energy-efficient speed

as possible, which is shown in Figure 1(d). It is not hard to see that in this case all

mandatory jobs of τ1 and τ3 got chance to reduce their speeds. As a result the total

worst case energy consumption before time 240 is 140.9 mJoule, which is within

the energy budget before time 240, therefore feasible. Moreover, under the new

speed schedule, the reliability of each window Wil of task τi should be calculated

as:

γ(Wil) =
(l−1)ki+ki

∏
p=(l−1)ki+1

{γ(Jip,sip) | πip = 1}

+
(l−1)ki+ki

∑
p=(l−1)ki+1

{
(l−1)ki+ki

∏
q=(l−1)ki+1

{γ(Jiq,siq) | πiq = 1, q ̸= p}

× (1− γ(Jip,sip))× γ(Jip,smax)} (11)

13

Based on Equation (11), the reliability of each window in task τ1 will be cal-

culated as γ(W11) = γ(W12) = 0.9999999218, γ(W13) = 0.9999995614, γ(W14) =
0.9999999931. Since none of them is lower than that calculated using Equation

(10), the reliability of task τ1, i.e., γ(τ1), under the new speed schedule will not

be lower than its original reliability with all mandatory jobs executed under the

maximal speed. Similarly, we can verify that the reliabilities of tasks τ2 and τ3,

i.e., γ(τ2) and γ(τ3), under the new speed schedule are not lower than their origi-

nal reliabilities under the maximal speed, either. Thus the reliability of the whole

system is preserved. In addition, the system QoS based on Equation (8) in this

case is improved to 0.5833224976, which is 20.7% higher than that in Figure 1(b)

(and that without energy/reliability management in Figure 1(a) as well).

Note that in the above example in Figure 1(d), tasks τ1 and τ3 have their own

recovery jobs reserved separately and no recovery jobs are shared between them.

In practice, some recovery jobs from different tasks could overlap with each other

in time and it is possible to share some of them across different tasks to reduce

the energy further. For example, two recovery jobs in Figure 1(d), i.e., J1C(R)
and J35(R), from τ1 and τ3, respectively, can actually be merged into one “shared”

recovery job across tasks τ1 and τ3, leaving more space for other mandatory jobs

to have their speeds reduced further to save more energy. More details for the

implementation of it could be found in [26].

From the above example, it is easy to see that it is very promising to determine

the job/recovery patterns in such a way that the task set satisfies the window-

constraint first which could be transferred to the corresponding original (m,k)-
constraint automatically. In [26], more advanced techniques are also introduced

to determine the recovery jobs that could be shared most efficiently. However,

even with such kind of techniques the system might not be able to accommodate

recovery jobs for all tasks yet. Therefore, how to select the subset of tasks that can

be managed with reliability/energy will be an important issue. Regarding that, in

next section we will propose a method based on “branch-and-bound” to choose

the proper subset of tasks that could be managed with reliability/energy.

5. The General Algorithm

In this section, we will introduce our general scheduling algorithm. Our algo-

rithm consists of two stages: an off-line stage and an on-line stage.

The goal for the off-line stage is to determine the (shared) recovery jobs for

the tasks and set up the static processor speed schedule for the mandatory jobs

such that the task set is feasible under the given energy budget constraint and the

14

Algorithm 1 Reserving recovery jobs for the task set

1: Input: task set T with mandatory jobs determined by ER-pattern (with no recovery

job(s) reserved for any task yet);

2: Output: task set Γ=Ω∪Θ, where Ω is the subset of tasks in T with recovery jobs

reserved for each task and Θ is the subset of tasks in T with no recovery jobs;

3: Ω = /0; Θ = T ; Γ=Ω∪Θ;

4: Sort the tasks in Θ according to non-increasing order of miCi

kiPi
, i = 1, ..,n;

5: Ē = The given hard energy budget constraint of the system ;

6: Q̃oSb = The Q̃oSsys of task set T based on Equation (8) under original (m,k)-
constraints;

7: Recovery-Reservation (Ω, Θ, Q̃oSb, Γ);

8: Recompute the total energy consumption E of task set Γ based on line 27;

9: if Γ is non-schedulable with LPEDFR or E > Ē then

10: Output: Task Set Infeasible!

11: else

12: Output (Γ);

13: end if

14:

15: FUNCTION Recovery-Reservation(Ω, Θ, Q̃oSb, Γ)

16: for each task τi ∈ Θ do

17: Re-determine the mandatory jobs of τi using E-pattern based on the window-

constraint that can be transferred to its original (m,k)-constraint;

18: Remove τi from Θ;

19: Add τi to Ω;

20: Determine the recovery jobs of the tasks in Ω by reserving the last optional job

within each separate window as the share recovery job;

21: Apply the LPEDFR algorithm from [32] to the task set Ω∪Θ;

22: if Ω∪Θ is schedulable with LPEDFR then

23: Get the simulation trace based on the speed schedule generated by LPEDFR;

24: Merge the recovery jobs for the tasks in Ω according to Algorithm 2 in [26];

25: Re-apply the LPEDFR algorithm from [32] to the task set Ω∪Θ with recovery

jobs merged;

26: Compute the new Q̃oSsys of the updated task set Ω∪Θ based on Equation (8);

27: Recompute the total energy consumption E of task set T as E =

∑Ji∈Ω∪Θ{(α× (si)
m + Pnd)×

Ci

si
}+∑J<x>(R)∈R̃ {(α× (smax)

m + Pnd)×C<x> ×

(1−∏{γ(Jip,sip) | Jip ∈Wy managed by J<x>(R) and πip = 1}) +Pidle × (H −

∑Ji∈Ω∪Θ{
Ci

si
}), where si is the scaled speed of any mandatory job Ji under

LPEDFR.

28: if E f Ē and Q̃oSsys > Q̃oSb then

29: Q̃oSb = Q̃oSsys;

30: Γ=Ω∪Θ;

31: end if

32: Recovery-Reservation (Ω, Θ, Γ, Q̃oSb);

33: else

34: Restore the mandatory jobs of τi to the original ones based on E-pattern (with

no recovery job(s)) and put it back to Θ;

35: end if

36: end for

15

expected QoS of the system is maximized while the system reliability is preserved.

One essential part of it is to determine the mandatory jobs for the tasks and reserve

recovery jobs for them based on the window-constraints (that can be transferred

to the corresponding original (m,k)-constraints) if possible. However, since the

system might not be able to accommodate recovery jobs for all tasks, how to select

the subset of tasks that can be managed with reliability/energy is not a trivial

problem. Meanwhile, since recovery jobs also consume part of the processor

utilization, reserving recovery jobs for too many tasks might leave much less space

to scale the speeds of the mandatory jobs, therefore causing the overall energy

consumption to go beyond the hard energy budget constraint. On the other hand,

in order to preserve the system reliability, tasks with no recovery jobs reserved

for them should not have their speeds scaled [53]. Then the problem becomes

how to select the subset of tasks to be managed with recovery jobs to achieve the

best energy efficiency. In [53], it is shown that even without consideration of QoS

and energy constraint this problem is NP-hard. Although some heuristics [53]

are proposed for hard real-time systems regarding the selection of tasks, they are

not applicable any more for soft real-time systems with (m,k)-constraints. In

order to solve the problem, in this section, we propose a “branch-and-bound”

method to divide the task set T into two parts: the subset Ω in which the tasks

will be managed with recovery jobs and the subset Θ in which the tasks will not

be managed with recovery jobs. The details are presented in Algorithm 1.

As can be seen in Algorithm 1, by applying the branch-and-bound strategy,

our approach determines task by task if the mandatory jobs of each task should be

based on the original (m,k)-constraint (with no recovery jobs reserved) or based

on the window-constraint (with recovery jobs reserved according to Algorithm 1

from [26]). When Algorithm 1 is finished, it is possible to reach certain hybrid

configuration in which the tasks in Ω are partitioned based on window-constraints

with recovery jobs reserved in each separate window, while the tasks in Θ are still

partitioned based on the original (m,k)-constraints with no recovery jobs reserved

for them. Moreover, to make the mandatory/recovery workload of the whole task

set distribute more evenly (to facilitate the speeds scaling), we let the tasks in

Ω be partitioned under E-pattern while the tasks in Θ be partitioned under ER-

pattern [21]. And the resulting configuration should be the one with the maximal

expected QoS and with energy consumption not exceeding the energy budget con-

straint Ē.

The branch-and-bound strategy applied in Algorithm 1 is commonly used to

solve the optimization problem. Although it is essentially an exhaustive search

strategy with worst case time complexity of O(2n), since it can be done offline, we

16

Algorithm 2 Window Reliability Management

1: Input: Merged recovery job set R̃ output by Algoirthm 2 in [26];

2: for each recovery job J<x>(R) ∈ R̃ do

3: W = /0;

4: for each Window Wy (jointly) managed by J<x>(R) do

5: W = W ∪ Wy;

6: end for

7: Let γ̂(W) be the original reliability of W , calculated based on Equation (10), with

all mandatory jobs in it executed under smax;

8: Let γ(W) be the reliability of W , calculated based on Equation (11), with all

mandatory jobs in it executed under their current speed schedule;

9: if γ(W) < γ̂(W) then

10: repeat

11: Increase the speed(s) of the job(s) with the lowest speed in W to be the next

higher level speed in the whole speed schedule;

12: Re-calculate γ(W) under the new speed schedule;

13: until γ(W) g γ̂(W)
14: end if

15: end for

can afford to have it with task sets with not very large size n of task sets. Moreover,

to improve its efficiency, the task set is initially sorted according to the values of
miCi

kiPi
, i = 1, ..,n (line 4) because the higher the value, the higher the possibility

that the task set becomes unschedulable when the task has recovery jobs reserved

based on window-constraint and its job speeds are reduced accordingly.

Note that in lines 17-23 of Algorithm 1, a variation of Yao’s LPEDF Algo-

rithm [44], i.e., LPEDFR [32], is applied to determine the speeds of the manda-

tory jobs and to compute their expected energy consumption within each iteration.

The details of it could be found in [32].

By running Algorithm 1, after the subset Ω of a given task set T is determined,

the static speed schedule for the mandatory jobs from all tasks in it is also available

(generated by the LPEDFR algorithm in line 22). At the same time, the speeds of

all mandatory jobs from tasks in Θ should be set as the maximum speed smax.

It does not escape our attention that, similar to the work in [26], in some occa-

sional cases, for example, when the length of a window managed by a recovery job

is very long and the scaled speed(s) of the job(s) belonging to the window is (are)

extremely low, it is possible that the reliability of the window under consideration

could drop below its original reliability (under the maximal speed, calculated by

17

Algorithm 3 Online algorithm

1: Upon job arrival:

2: Run jobs in the ready queue according to EDF scheme with their predetermined

speed;

3:

4: Upon job completion (assuming Ji is just completed at fi):

5: if the execution of Ji is found to have failed then

6: Let Ji’s original non-shared recovery job in R be Jw(R)
7: Invoke the shared recovery job in R̃ which contains w in its index vector and set

its actual execution time to be Ci [26];

8: Increase the speeds of all the other mandatory jobs after the faulty job within all

windows (jointly) managed by shared recovery job to smax;

9: else

10: if Ji ∈ Ω and all windows sharing the same shared recovery job as Ji’s have got

enough number of jobs belonging to them completed successfully then

11: Drop the shared recovery job of Ji;

12: end if

13: if the ready queue is empty then

14: Compute the latest starting time, i.e., TLS(Jn), for the upcoming manda-

tory/recovery job set Jn;

15: if (TLS(Jn)− fi)> Tth then

16: Shut down the processor and set up the wake-up timer to be (TLS(Jn)− fi);
17: end if

18: end if

19: end if

18

Equation (10)). For such kind of windows, to preserve the reliability, we need to

revise the job speed(s) in them to increase their reliability correspondingly. The

details are provided in Algorithm 2.

As shown in Algorithm 2, for each shared recovery job J<x>(R) in R̃ [26],

we scan all windows (jointly) managed by J<x>(R) and put them in a temporary

pool W . If the reliability of all mandatory jobs in W under the current speed

schedule is less than their original reliability under the maximal speed smax (line

9), we need to increase the lowest job speeds in W to certain level such that

their original reliability could be preserved 2 (line 10-13). The time complexity

of Algorithm 2 depends on the number of shared recovery jobs in R̃ , the max-

imal possible number of tasks jointly managed by any shared recovery job, and

the number of mandatory jobs in each window, which are max{ H
mi+ki

2 Pi

}, n and

max{mi}, respectively. From Algorithm 2, the time complexity of it should be

O(H
mi+ki

2 Pi

nmi), which is pseudo-polynomial in the number of tasks n and still suit-

able for an offline algorithm due to its low overhead in practice.

Moreover, during the online stage, if any mandatory job encountered transient

fault, since its shared recovery job J<x>(R) will be consumed by the faulty job, all

the other mandatory jobs after the faulty job within all windows (jointly) managed

by J<x>(R) needs to have their speeds raised to the maximal speed smax in order to

preserve the original reliability, which is reflected in the online Algorithm 3 (line

8) as well.

Based on the adjusted speed schedule output by Algorithm 2, the mandatory

jobs can be scheduled according to the EDF scheme during the online stage.

During the online stage, as shown in Algorithm 3, a job ready queue will be

maintained. Upon arrival, a mandatory job determined during the off-line stage

is inserted into the ready queue. Note that a recovery job needs to be inserted

into the ready queue to be executed only if some mandatory job within the same

window has failed. Otherwise the recovery job will simply be dropped. All jobs

in the ready queue will be executed following the EDF scheme. If the current job

Ji is found to have failed at its completion time, its shared recovery job in R̃ [26]

will be invoked with actual execution time set to be the worst execution time of Ji

and inserted into the ready queue at its arrival time (line 7).

If the execution of Ji is successful, Algorithm 3 determines whether its shared

2Note that we can also set the target reliability for the mandatory jobs in W higher if necessary,

which is beyond the scope of this paper.

19

recovery job, if any, should be dropped depending on the number of successful

jobs so far in each window sharing it (lines 10-12). At the same time, if the job

ready queue is empty, Algorithm 3 determines whether it is necessary to shut

down the processor or to keep it idle depending on if the predicted idle interval

length, with future mandatory/recovey jobs delayed to TLS(Jn), is larger than the

shut down threshold Tth (lines 13-18).

One important part to the success of Algorithm 3 is to compute the latest

starting time TLS(Jn) for the upcoming mandatory/recovery job set when the ready

queue is empty (line 14), which is also the main complexity of Algorithm 3. The

latest starting time could be computed using an advanced version of Theorem 1

from [28], whose online time complexity is O(N′M′), where M′ is the number of

mandatory/recovery jobs with arrivals before the earliest deadline of the upcoming

mandatory jobs and N′ is the total number of jobs arriving within the interval

between the arrival time and the deadline of any job aforementioned. Since N′

and M′ are usually very small for periodic task sets [27], the complexity above is

suitable for online use as well. More details could be found in [26].

6. Evaluation

In this section, we evaluate the performance of our approach by comparing

with the existing approaches in literature. Specifically, the performance of four

different approaches were studied:

• NPM The task sets are partitioned with E-pattern, and all mandatory jobs

are always executed with the highest speed.

• RAEM The task sets are partitioned with deeply-red pattern to satisfy the

given (m,k)-constraints. Then the mandatory jobs are scheduled with the

approach from [49].

• ECRA This is our newly proposed approach in Section 5.

• ECRASS This is our newly proposed approach in Section 5 enhanced with

the shared slack time reclaiming technique in [26].

The periods of the real-time task sets were randomly chosen in the range of

[30ms, 100ms]. The worst case execution time (WCET) was set to be uniformly

distributed and the mi and ki for the user defined (m,k)-constraints were also ran-

domly generated such that ki is uniformly distributed between 2 to 10, and mi < ki.

20

(a)
 (b)
 (c)

40

50

60

70

80

90

100

110

10
 20
 30
 40
 50
 60
 70
 80
 90
 99

 Energy Budget (%)

N
u

m
b

e
r
 o

f
F

e
a

s
ib

le
 T

a
s

k
 S

e
ts

RAEM
 ECRA
 ECRA_SS

1.00E-06

1.00E-05

1.00E-04

1.00E-03

0.0 -

0.1

0.1 -

0.2

0.2 -

0.3

0.3 -

0.4

0.4 -

0.5

0.5 -

0.6

0.6 -

0.7

0.7 -

0.8

0.8 -

0.9

0.9 -

1.0

(m,k)-Utilizatoin

P
r
o

b
a

b
il

it
y

 o
f

J
o

b
 F

a
il

u
r
e

NPM
 RAEM

ECRA
 ECRA_SS

50

60

70

80

90

100

110

120

130

140

0.0 -

0.1

0.1 -

0.2

0.2 -

0.3

0.3 -

0.4

0.4 -

0.5

0.5 -

0.6

0.6 -

0.7

0.7 -

0.8

0.8 -

0.9

0.9 -

1.0

 (m,k)-Untilization

N

o
r
m

a
li

z
e

d
 Q

o
S

L

e
v

e
ls

NPM
 RAEM
 ECRA
 ECRA_SS

Figure 2: (a) The feasibility comparison for the different approaches under given hard

energy budget constraint; (b) The QoS comparison for the different approaches; (c) The

comparison on the probability of job failure (PoJF) for the different approaches.

For the processor model we adopted a widely used embedded processor model,

i.e., the Freescale MPC8536E [38]. The default value of Pnd was set to be 10% of

the maximum speed-dependent power. The shutdown threshold Tth is set to be 1

ms.

For the fault and recovery model we adopted the same model as used in [54],

i.e., the transient faults are assumed to follow the Poisson distribution with an

average fault rate of λ0 = 10−6 at the maximum speed smax (and corresponding

supply voltage). We assume the sensitivity value d = 3. That is, the average fault

rate is 1000 times higher at the lowest speed smin [54].

The simulations were performed using a discrete event simulator in a desk top

computer with 4.7Ghz processor and Windows 10 OS. During the simulation,

whenever an activated job has reached its deadline with pending/uncompleted

workload, it is regarded as having missed its deadline and will be discarded. In

particular, when simulating with the (m,k) model, any mandatory job activation

not completing by its deadline will be aborted at the deadline and any optional job

will be dropped to save energy.

Firstly, we inspect the feasibility of the different approaches under different

energy budget constraints. We assume the maximal energy budget constraint to

be 99% of the energy consumption by NPM and then scale the energy budget con-

straint with a step reduction of about 10%. Based on it we checked the feasibility

of the task sets by the different approaches. Note that since under this scenario

21

NPM is not feasible in nearly all cases, we just show the feasibility of RAEM and

ECRA as well as ECRASS. The results (normalized to that by ECRA) are shown

in Figure 2(a). As can be seen, when the energy budget is sufficiently large, i.e.,

larger than 90%, usually the task set could be feasible by all of them because their

total energy consumptions estimated based on the statically scaled speed sched-

ules would seldom exceed the energy budget constraint in this case. So the total

number of task sets feasible by them are close to each other. However, when the

energy budget constraint became tighter, for example, between 40% and 80%,

the feasibilities of ECRA and ECRASS are much better than that of RAEM. This

is because, by reserving recovery jobs at each separate window frame (to satisfy

the (m,k)-constraints through the corresponding window-constraints) and sharing

the recovery jobs whenever possible to do so, ECRA and ECRASS can greatly

reduce the space required f or reserving recovery jobs. As a result, there was

more space in them to help scale the speeds of the mandatory jobs. Meanwhile,

the schedulability of the deeply-red pattern adopted by RAEM is not as good as

the E-pattern adopted in our approach [21], which also limited the feasibility of

RAEM to some extent. Moreover, as a side effect, generally ECRA also allowed

more tasks from the task set to have recovery jobs reserved for them. So it could

provide more freedom for the mandatory jobs of the whole task set to scale their

speeds more aggressively. As a result, the total energy consumption required by

ECRA and ECRASS could be much lower than that by RAEM, therefore allowing

better feasibility when the energy budget constraint is relatively tighter. Also it is

not surprising to see that when the energy budget is extremely low, most task sets

are not feasible by any of the approaches. So under this scenario their feasibilities

are also close to each other.

Next, we inspect the maximal QoS levels each approach can provide. This

time we set the energy budget constraint to be 100% of the energy consumption

by NPM. For simplicity, we assumed all tasks in Equation (8) were assigned the

equal weights, i.e., ωi =
1
n

for any task τi ∈ T . To investigate the performance

of different approaches under different workload, we divided the total (m,k)-
utilization, i.e., ∑i

miCi

kiPi
, into intervals of length 0.1. To reduce the statistical er-

rors, we required that each interval contain at least 20 task sets schedulable with

E-pattern, or until at least 5000 task sets within each interval had been generated.

The results (normalized to that by NPM) are shown in Figure 2(b). From Fig-

ure 2(b), we can see that the newly proposed approaches, i.e., ECRA and ECRASS

can achieve much better QoS levels than the previous approaches. Compared with

RAEM and NPM, the maximal QoS improvement could be nearly 30%. This is

because, different from RAEM and NPM which could only provide a minimum set

22

(a)
 (b)
 (c)

VCS

40

50

60

70

80

90

100

10
 20
 30
 40
 50
 60
 70

 Energy Budget (%)

N
u

m
b

e
r
 o

f
F

e
a
s
ib

le
 T

a
s
k
 S

e
ts

RAEM
 ECRA
 ECRA_SS

VCS

50

60

70

80

90

100

110

120

130

0.0 - 0.1
 0.1 - 0.2
 0.2 - 0.3
 0.3 - 0.4
 0.4 - 0.5

 (m,k)-Untilization

N

o
r
m

a
li
z
e
d

 Q
o

S

L

e
v
e
ls

NPM
 RAEM
 ECRA
 ECRA_SS

VCS

1.00E-06

1.00E-05

1.00E-04

1.00E-03

0.0 - 0.1
 0.1 - 0.2
 0.2 - 0.3
 0.3 - 0.4
 0.4 - 0.5

(m,k)-Utilizatoin

P
r
o

b
a
b

il
it

y
 o

f
J
o

b
 F

a
il
u

r
e

NPM
 RAEM

ECRA
 ECRA_SS

Figure 3: (a) The feasibility comparison for the different approaches under given hard

energy budget constraint; (b) The QoS comparison for the different approaches; (c) The

comparison on the probability of job failure (PoJF) for the different approaches.

of jobs that “just” satisfied the (m,k)-constraints, ECRA and ECRASS, by adopt-

ing more adaptive recovery job reservation and sharing techniques, could utilize

the time space more efficiently. Therefore it could generally accommodate more

valid jobs in its schedule, generating better QoS levels.

Finally, with system reliability in mind, we also inspected the probability of

job failure (denoted as PoJF) of the different approaches, which is defined as the

ratio of the number of jobs failed over the total number of jobs executed. The

results in different (m,k)-utilization intervals are shown in Figure 2(c). As seen,

in most utilization intervals, the PoJF of RAEM is lower than that by NPM. The

effect is especially obvious when the utilization is not very high. That conforms

to the conclusion in [52] that the reservation of recovery jobs could generally help

reduce the probability of job failure. The average PoJFs of ECRA and ECRASS

are even lower than that by RAEM. This is mainly because, by reserving shared

recovery jobs based on window-constraints (that can be transferred to the corre-

sponding original (m,k)-constraints) first, the mandatory jobs of more tasks could

have (shared) recovery jobs reserved for them when compared with RAEM. More-

over, it is noted that the average PoJs of ECRASS is stil little lower than that by

ECRA mainly because its capability of sharing the slack time among different

mandatory jobs such that more jobs could use the slack time to reserve recovery

jobs for them when necessary.

23

6.1. Evaluations with Real World Benchmark

Next, we tested our conclusions in a more practical environment. The test is

based on a real world benchmark: VCS (Vehicle Control System) [19]. The tim-

ing parameters such as the deadlines, periods, and execution times were adopted

from the practical application directly [19]. For the processor model used in this

group of experiments, we adopt the Samsung Exynos 4210 processor [9] to test

the energy saving performance of our approaches. The Samsung Exynos 4210

processor can operate with five operating frequencies: (0.3, 0.6, 0.8, 1.008, 1.2)

GHz with power consumption of (0.1018, 0.2738, 0.4607, 0.7548, 1.0675) Watt,

respectively [1, 37].

Similar to the experiments on synthesized task sets, we also performed three

sets of experiments to check the feasibility, QoS. and probability of job failure of

the different approaches. The results are shown in Figure 3.

From Figure 3, the above analysis on synthesized task sets also conforms to

the experimental results on the real world benchmark VCS as well. For example,

ECRA and ECRAss still have much better feasibility and QoS levles than the other

approaches. As shown in Figure 3(a), compared with RAEM, when the energy

budget constraint is between 40% and 80%, the feasibilities of ECRA and ECRAss

are much better than RAEM. Meanwhile, in terms of QoS, ECRA and ECRAss can

also achieve much better QoS levels than the previous approaches with maximal

QoS improvement of nearly 30%. Also, for probability of job failure (PoJF), the

PoJF of RAEM is lower than that by NPM and the average PoJFs of ECRA and

ECRAss are even lower than that by RAEM for the same reasons as stated above.

Overall, the experimental results for synthesized systems as well as real world

application have clearly demonstrated the effectiveness of our approaches in max-

imizing the feasibility and QoS while satisfying the (m,k)-constraints and pre-

serving the system reliability under hard energy budget constraint.

7. Conclusions

In this paper, we explored maximizing the feasibility and QoS for (m,k)-firm

real-time embedded systems while satisfying the reliability requirement under

given hard energy budget constraint. Regarding that, we proposed a reliability-

aware energy-constrained scheduling scheme which implemented recovery space

sharing for real-time jobs in an adaptive way based on the mandatory/optional

job partitioning strategy. Through extensive simulations, our evaluation results

demonstrated that the proposed techniques significantly outperformed the previ-

ous research in feasibility and QoS while preserving the system reliability under

24

given hard energy budget constraint. Moreover, the proposed work has also ad-

dressed some insufficiency in [26] in terms of preserving the system reliability.

Acknowledge*

This work is supported in part by NSF under projects HRD-2135345 and

ECCS-2302651.

References

[1] Samsung exynos 4210 processor user’s manual, Samsung Corporation, Oc-

tober 2012.

[2] T. A. AlEnawy and H. Aydin. Energy-constrained scheduling for weakly-

hard real-time systems. RTSS, 2005.

[3] G. C. Buttazzo and M. Caccamo. Minimizing aperiodic response times in

a firm real-time environment. IEEE Transactions on Software Engineering,

25(1):22–32, 1999.

[4] J.-J. Chen and T.-W. Kuo. Procrastination determination for periodic real-

time tasks in leakage-aware dynamic voltage scaling systems. In ICCAD,

2007.

[5] M. Chetto. Graceful overload management in firm real-time systems. Jour-

nal of Information Technology and Software Engineering, 5(3):1–3, 2015.

[6] T. Cucinotta and L. Palopoli. Qos control for pipelines of tasks using multi-

ple resources. IEEE Transactions on Computers, 59(3):416–430, 2010.

[7] A. Das, A. Kumar, and B. Veeravalli. Energy-aware task mapping and

scheduling for reliable embedded computing systems. ACM Trans. Embed.

Comput. Syst., 13(2s):72:1–72:27, Jan. 2014.

[8] P. Dobias. Online Fault Tolerant Task Scheduling for Real-Time Multipro-

cessor Embedded Systems. PhD thesis, 10 2020.

[9] L.-T. Duan, B. Guo, Y. Shen, Y. Wang, and W.-L. Zhang. Energy analysis

and prediction for applications on smartphones. Journal of Systems Archi-

tecture, 59(10, Part D):1375 – 1382, 2013.

25

[10] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim, and

K. Flautner. Razor: circuit-level correction of timing errors for low-power

operation. Micro, IEEE, 24(6):10–20, 2004.

[11] O. Gettings, S. Quinton, and R. I. Davis. Mixed criticality systems with

weakly-hard constraints. In Proceedings of the 23rd International Confer-

ence on Real Time and Networks Systems, RTNS ’15, pages 237–246, 2015.

[12] M. Hamdaoui and P. Ramanathan. A dynamic priority assignment technique

for streams with (m,k)-firm deadlines. IEEE Transactions on Computes,

44:1443–1451, Dec 1995.

[13] J.-J. Han, M. Lin, D. Zhu, and L. Yang. Contention-aware energy man-

agement scheme for noc-based multicore real-time systems. Parallel and

Distributed Systems, IEEE Transactions on, 26(3):691–701, March 2015.

[14] Q. Han, L. Niu, G. Quan, S. Ren, and S. Ren. Energy efficient fault-tolerant

earliest deadline first scheduling for hard real-time systems. Real-Time Syst.,

50(5-6):592–619, Nov. 2014.

[15] M. A. Haque, H. Aydin, and D. Zhu. Energy-aware standby-sparing for

fixed-priority real-time task sets. Sustainable Computing: Informatics and

Systems, 6:81 – 93, 2015.

[16] INTEL-XSCALE. http://developer.intel.com/design/xscale/. 2003.

[17] B. P. R. J. J. Srinivasan, A. S.V. and C.-K. Hu. Ramp: A model for reliability

aware microprocessor design. IBM Research Report, RC23048, 2003.

[18] H. Kooti, N. Dang, D. Mishra, and E. Bozorgzadeh. Energy budget manage-

ment for energy harvesting embedded systems. In 2012 IEEE International

Conference on Embedded and Real-Time Computing Systems and Applica-

tions, pages 320–329, Aug 2012.

[19] J. Li, Y. Song, and F. Simonot-Lion. Providing real-time applications with

graceful degradation of qos and fault tolerance according to (m,k)-firm

model. Industrial Informatics, IEEE Transactions on, 2(2):112–119, May

2006.

[20] Z. Li, S. Ren, and G. Quan. Energy minimization for reliability-guaranteed

real-time applications using dvfs and checkpointing techniques. Journal of

Systems Architecture, 61(2):71–81, Feb. 2015.

26

[21] Linwei Niu and Gang Quan. Energy minimization for real-time systems with

(m,k)-guarantee. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 14(7):717–729, July 2006.

[22] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming

in a hard real-time environment. Journal of the ACM, 17(2):46–61, 1973.

[23] J. Liu. Real-Time Systems. Prentice Hall, NJ, 2000.

[24] M. Neukirchner, S. Stein, H. Schrom, J. Schlatow, and R. Ernst. Contract-

based dynamic task management for mixed-criticality systems. In 2011 6th

IEEE International Symposium on Industrial and Embedded Systems, pages

18–27, 2011.

[25] L. Niu. Energy efficient scheduling for real-time systems with qos guarantee.

Journal of Real-Time Systems, 47(2):75–108, 2011.

[26] L. Niu. Reliability-aware energy-efficient scheduling for (m, k)-constrained

real-time systems through shared time slots. Microprocessors and Microsys-

tems, 77:103110, 2020.

[27] L. Niu and W. Li. Energy-efficient scheduling for embedded real-time sys-

tems using threshold work-demand analysis. Journal of Circuits, Systems

and Computers, 26:1750091, 02 2017.

[28] L. Niu and G. Quan. Reducing both dynamic and leakage energy consump-

tion for hard real-time systems. CASES’04, Sep 2004.

[29] L. Niu and G. Quan. Leakage-aware scheduling for embedded real-time sys-

tems with (m, k)-constraints. International Journal of Embedded Systems,

5(4):189–207, 2013.

[30] L. Niu and G. Quan. Peripheral-conscious energy-efficient scheduling for

weakly hard real¨ctime systems. International Journal of Embedded Sys-

tems, 7(1):11–25, 2015.

[31] L. Niu and D. B. Rawat. Energy-constrained standby-sparing for weakly

hard real-time systems. In 2020 IEEE Real-Time Systems Symposium

(RTSS), pages 257–269, 2020.

27

[32] L. Niu and J. Xu. Improving schedulability and energy efficiency for

window-constrained real-time systems with reliability requirement. Journal

of Systems Architecture, 61(5):210–226, May 2015.

[33] D. K. Pradhan, editor. Fault-tolerant Computing: Theory and Techniques;

Vol. 2. Prentice-Hall, Inc., USA, 1986.

[34] G. Quan and X. Hu. Enhanced fixed-priority scheduling with (m,k)-firm

guarantee. In RTSS, pages 79–88, 2000.

[35] P. Ramanathan. Overload management in real-time control applications us-

ing (m,k)-firm guarantee. IEEE Trans. on Paral. and Dist. Sys., 10(6):549–

559, Jun 1999.

[36] A. Roy, H. Aydin, and D. Zhu. Energy-aware standby-sparing on heteroge-

neous multicore systems. In 2017 54th ACM/EDAC/IEEE Design Automa-

tion Conference (DAC), pages 1–6, June 2017.

[37] Samsung-Exynos-4210-Processor. file/sys/devices/system/cpu/cup0/cpufreq.

[38] F. Semiconductor. Mpc8536e powerquicc iii integrated processor hard-

ware specifications, document number: Mpc8536eec rev. 7, 07/2015.

https://www.nxp.com/docs/en/data-sheet/MPC8536EEC.pdf, 2015.

[39] Y. Sun and M. D. Natale. Weakly hard schedulability analysis for fixed

priority scheduling of periodic real-time tasks. ACM Trans. Embed. Comput.

Syst., 16(5s):171:1–171:19, Sept. 2017.

[40] A. Taherin, M. Salehi, and A. Ejlali. Reliability-aware energy management

in mixed-criticality systems. IEEE Transactions on Sustainable Computing,

3(3):195–208, July 2018.

[41] G. v. d. Bruggen, K. Chen, W. Huang, and J. Chen. Systems with dynamic

real-time guarantees in uncertain and faulty execution environments. In 2016

IEEE Real-Time Systems Symposium (RTSS), pages 303–314, Nov 2016.

[42] Y. wen Zhang, H. zhen Zhang, and C. Wang. Reliability-aware low energy

scheduling in real time systems with shared resources. Microprocessors and

Microsystems, 52:312 – 324, 2017.

28

[43] R. West, Y. Zhang, K. Schwan, and C. Poellabauer. Dynamic window-

constrained scheduling of real-time streams in media servers. IEEE Trans.

on Computers, 53(6):744–759, June 2004.

[44] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu

energy. In AFCS, pages 374–382, 1995.

[45] S. Yari-Karin, R. Siyadatzadeh, M. Ansari, and A. Ejlali. Passive

primary/backup-based scheduling for simultaneous power and reliability

management on heterogeneous embedded systems. IEEE Transactions on

Sustainable Computing, 8(1):82–93, 2023.

[46] Y. Zhang, K. Chakrabarty, and V. Swaminathan. Energy-aware fault toler-

ance in fixed-priority real-time embedded systems. In ICCAD, 2003.

[47] B. Zhao, H. Aydin, and D. Zhu. On maximizing reliability of real-time

embedded applications under hard energy constraint. IEEE Trans. Industrial

Informatics, pages 316–328, 2010.

[48] B. Zhao, H. Aydin, and D. Zhu. Generalized reliability-oriented energy man-

agement for real-time embedded applications. In Proceedings of the 48th

Design Automation Conference, DAC ’11, pages 381–386, 2011.

[49] B. Zhao, H. Aydin, and D. Zhu. Energy management under general task-

level reliability constraints. In Proceedings of the 2012 IEEE 18th Real Time

and Embedded Technology and Applications Symposium, RTAS ’12, pages

285–294, Washington, DC, USA, 2012.

[50] B. Zhao, H. Aydin, and D. Zhu. Shared recovery for energy efficiency and re-

liability enhancements in real-time applications with precedence constraints.

ACM Trans. Des. Autom. Electron. Syst., 18(2):23:1–23:21, Apr. 2013.

[51] D. Zhu. Reliability-aware dynamic energy management in dependable em-

bedded real-time systems. ACM Trans. Embed. Comput. Syst., 10:26:1–

26:27, January 2011.

[52] D. Zhu and H. Aydin. Energy management for real-time embedded systems

with reliability requirements. In ICCAD, 2006.

[53] D. Zhu and H. Aydin. Reliability-aware energy management for periodic

real-time tasks. Computers, IEEE Transactions on, 58(10):1382–1397,

2009.

29

[54] D. Zhu, R. Melhem, and D. Mosse. The effects of energy management on

reliability in real-time embedded systems. In ICCAD, 2004.

30

