
32868 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 20, 15 OCTOBER 2024

C2R: A Novel ANN Architecture for Boosting
Indoor Positioning With Scarce Data

Roman Klus , Graduate Student Member, IEEE, Jukka Talvitie , Member, IEEE, Joaquín Torres-Sospedra ,
Darwin P. Quezada Gaibor , Sven Casteleyn , Danijela Cabric , Fellow, IEEE,

and Mikko Valkama , Fellow, IEEE

Abstract—Improving the performance of artificial neural
network (ANN) regression models on small or scarce data sets,
such as wireless network positioning data, can be realized by
simplifying the task. One such approach includes implementing
the regression model as a classifier, followed by a probabilistic
mapping algorithm that transforms class probabilities into the
multidimensional regression output. In this work, we propose
the so-called classification-to-regression model (C2R), a novel
ANN-based architecture that transforms the classification model
into a robust regressor, while enabling end-to-end training.
The proposed solution can remove the impact of less likely
classes from the probabilistic mapping by implementing a novel,
trainable differential thresholded rectified linear unit layer. The
proposed solution is introduced and evaluated in the indoor posi-
tioning application domain, using 23 real-world, openly available
positioning data sets. The proposed C2R model is shown to
achieve significant improvements over the numerous benchmark
methods in terms of positioning accuracy. Specifically, when
averaged across the 23 data sets, the proposed C2R improves
the mean positioning error by 7.9% compared to weighted
k-nearest neighbors (kNN) with k = 3, from 5.43 to 5.00 m, and
by 15.4% compared to a dense neural network (DNN), from
5.91 to 5.00 m, while adapting the learned threshold. Finally, the
proposed method adds only a single training parameter to the
ANN, thus as shown through analytical and empirical means in
the article, there is no significant increase in the computational
complexity.
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I. INTRODUCTION

OVER the recent decades, data-driven solutions for regres-
sion and classification tasks have been dominated by

artificial neural networks (ANNs), which commonly outper-
form the other competing machine learning (ML) models and
architectures in terms of scalability, generality, versatility, and
especially performance [1], [2]. Numerous scientific fields,
including biomedicine, robotics, and natural language process-
ing, utilize various different ANN models on a day-to-day
basis. Additionally, and importantly, applying ML and neural
network solutions at different protocol layers of communica-
tion networks and Internet of Things (IoT) systems is one very
timely research area [3], [4], [5], [6]. Furthermore, accurate
and continuous positioning and navigation capabilities—and
overall, the ability to extract situational awareness—are central
technical enablers in various industrial IoT applications such as
autonomous systems and connected industrial vehicles [7], [8],
for enhanced efficiency and safety.

ANNs are, in general, supervised learning models, requiring
labeled training data in order to operate. Their performance
is determined not only by the selected model architecture or
hyperparameters but equally by the quality and the quantity of
the data they are trained with. Consequently, even a “perfect”
model can perform only as well as the data it was trained
on. The training data scarcity and low quality are among
the foremost causes for selecting a different model for the
task due to ANN’s susceptibility to over- and under-fitting—
especially when considering regression tasks. To this end,
fingerprinting-based indoor positioning with wireless network
data is one timely and important example, where matching
algorithms, such as k-nearest neighbors (kNN) or Bayesian
models, often offer superior positioning accuracy over the off-
the-shelf ANNs [5], [9], [10], [11], [12], [13], [14].

A. Technical Scope and Prior Art

In this article, we focus on the challenging problem of
indoor wireless positioning with scarce data. Specifically,
we propose a novel mechanism for performing a regression
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task with an ANN model, which translates the model’s
superior classification capabilities [15], [16], [17] into a robust
multidimensional estimation space, effectively reducing the
complexity of the function performed within the core ANN.
In this regard, in the existing literature, numerous ML
models translating a classification problem into a regres-
sion task are already developed [18], including traditional
kNN [19], [20], weighted kNN (WkNN) [21], [22], [23],
Bayesian models [17], [24], reinforcement learning-based
approaches [25], [26], or the probabilistic ANNs [15], [16],
[27], [28], [29], [30], [31], [32]. The most relevant prior art
methods are shortly reviewed below.

1) kNN-Based Models: While the models mentioned above
offer competitive performance in terms of positioning error,
the complexity of kNN and WkNN models increases with
the number of samples within the available database, limiting
their use in large-scale deployments. Numerous techniques
introduced in the literature address this drawback, however,
often also reducing the positioning accuracy in the pro-
cess [22], [33], [34]. Moreover, fine-tuning the kNN requires
exhaustive hyperparameter sweeping in the offline phase.
Similarly, Bayesian fusion models parametrize each point
within the deployment followed by applying similarity-based
matching, resulting into similar tradeoffs.

2) Regression via ANNs: There are several options for
using an ANN to perform a regression task. One straightfor-
ward solution is to utilize a continuous-output model [5], [10],
[11], [12]. Many works implement a classification architecture,
which matches the class estimates to a discrete-space set of
classes [27], [28], [29], [30], [31], inferring improved accu-
racy. Another feasible option is to use the ANN as a feature
extractor to transform the inputs into an alternative representa-
tion [16], [17], [32]. The approach in [25], in turn, iteratively
reduces the search volume while using reinforcement learning.
Furthermore, utilizing classification ANN as the regression
model has already been studied within the fingerprinting-
based literature with promising results. The classifiers are
trained on one-hot encoded labels and transform the class-wise
probabilities to continuous-space estimates [15], [27], [28],
[29], [30], [31]. The feature extractor ANNs are generally
followed by a Bayesian model with the linearly weighted
matching algorithm [16], [17], [26], [32]. Consequently, when
operating under scarce data, each class of the classification
problem is poorly represented, raising additional challenges
for ML-based solutions to learn properly [35].

3) Label Estimation Techniques: The models discussed
above transform the classification problem into a regression
task by interpolating between the estimated classes either
uniformly (kNN) or by weighting their similarities (WkNN) or
probabilities (ANN and Bayesian). While a linearly weighted
average represents a traditional and the most common solu-
tion to obtain the matching algorithm’s estimate, alternative
approaches also exist within the State-of-the-Art (SotA) litera-
ture. To this end, the algorithm proposed in [27] first computes
the center coordinates as the linearly weighted average given
by an ANN classifier, followed by weighting the impact of
each class based on the physical distance from the center
coordinate. This solution outperforms the standard approach,

among other benchmarks. Similarly, Bi et al. [23] adapted
the WkNN algorithm to remove the distant samples in the
original data domain, followed by spatial-domain filtering of
neighbors. Sun et al. [31] performed weighted matching of the
class probability estimates from the ANN while considering
only a limited number of most likely classes. Furthermore,
the model introduced in [15] implements an ANN combining
classification and regression architecture, enabling end-to-end
training of the classification layer directly on the continuous
space labels. The algorithm matching the class probabilities
with the labels is realized as a densely connected layer with
frozen, predefined weights, while the class-wise estimates
are obtained using a common softmax function. In general,
the ANN-based solutions available within SotA limit the
accuracy of the neural network by training the model as the
classifier [27], [28], [29], [30], [31] followed by the separate
matching function, or by utilizing a simplistic mapping after
the classification layer [15], [16], [28], [29], [30], [32].

B. Contributions

In comparison to the existing literature, reviewed above, this
work proposes adding a functional structure with only a single
trainable parameter—introduced within a novel differentiable
thresholded ReLU (dtReLU) layer to the traditional ANN
classification model—creating a robust ANN architecture for
multidimensional regression. The implementation enables the
model to be trained in an end-to-end fashion directly on the
labels designated for the multidimensional regression task. At
the same time, the proposed solution suppresses the impacts
of insignificant classes within the probabilistic estimate, thus
alleviating the requirement of voluminous training databases.
The novel proposed architecture denoted as classification to
regression—C2R—is introduced, described, and evaluated in
the important application domain of wireless fingerprinting-
based indoor positioning, although we also highlight that it
can be generalized to solve other regression problems as well.

The main technical contributions and novelty of this article
can be stated and summarized as follows.

1) We provide an overview of the ANN functionalities in
terms of classification and regression tasks, and propose
a novel structure for transforming the classification
model into a robust regressor.

2) We propose a novel layer, denoted as dtReLU, that can
learn to adapt its cut-off threshold. We also provide a
description of its functional parametrization and describe
an efficient initialization method.

3) We introduce and describe the proposed overall
classification-to-regression model (C2R), an end-to-end
trainable architecture for boosting the performance in
regression tasks with specific emphasis on wireless
network-based positioning.

4) We evaluate and benchmark the proposed models in
the scope of indoor positioning on a large number
of fingerprinting data sets varying in deployment size,
sample count, radio frequency (RF) technology, and
surveying methodology, to provide robust performance
comparison in heterogeneous conditions. We show the
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superior capabilities of the C2R solution across the
different scenarios, compared to the prevailing SotA
methods.

5) We also propose and describe the so-called variable
C2R model (vC2R), an experimental extension of the
C2R, which considers the cut-off threshold as a variable
within a model, instead of a trainable constant, while
providing corresponding experimental assessment and
performance comparisons.

Compared to the existing SotA, the proposed methods
improve the capabilities to solve challenging regression tasks
with ANNs when operating with small or scarce, and com-
monly also heterogeneous, data sets. The proposed model can
be trained in an end-to-end fashion as a regression problem,
while incorporating the classification layers. This alleviates the
challenges related to data granularity, loss function selection,
sparse-class representation, and skewed probability mapping,
among others, directly improving the resulting performance
with similar inference complexity.

The remainder of this article is organized as follows.
Section II reviews the relevant background of classification
and regression ANNs while also introducing the idea of
probability mapping and the novel model structure. Section III
describes the proposed models, their implementation, and
the parametrization and initialization of the dtReLU layer.
Section IV introduces the evaluation environment and the
benchmark solutions while presenting the obtained numerical
results and their analysis in the wireless fingerprinting-based
indoor positioning context. Finally, Section V concludes the
work.

II. METHODS

In this section, we introduce the relevant concepts and
functionalities, further exploited to form the proposed model.
We note the scalar variables as x, vectors as x, and matrices
as X. The “hyperparameters” denote the model parameters that
are defined prior to the training and determine the general
behavior of the ML model, while the “parameters” represent
the learned properties of the model, such as weights, biases,
and so forth.

A. Data Scarcity

The scarcity of the data is one of the leading challenges in
deep learning, in general, as well as in the positioning appli-
cation domain [35], [36]. Scarcity occurs when not enough
data is available to properly learn and adapt the ML model
to the given environment. This issue is especially relevant
in the deep learning field, where complex neural networks
require hundreds of thousands, or even millions of samples
to train properly. The limited availability of images from a
certain class is an example of a data scarcity issue in the
popular image classification domain. In the scope of indoor
positioning, the low data density, imperfect deployment cover-
age, and difficulties with site surveys are the main reasons for
data scarcity, which leads to serious performance deterioration
either in selected deployment areas of the considered wireless
network or more generally. Recent solutions in the indoor

localization domain utilize several downlink (DL) techniques
to address data scarcity, specifically generative adversarial
networks [37] or adversarial autoencoders [38] which augment
the original data set, or a few-shot learning approach [39],
accelerating ANN’s ability to learn.

In this work, we consider 23 different indoor positioning
data sets introduced in Section IV-A with varying data density,
deployment area, and accuracy, to comprehensively demon-
strate the capabilities of the utilized models in heterogeneous
conditions. The proposed C2R model introduced later in this
article provides means to 1) reduce the ANN’s requirements on
training data volume and training procedure itself; 2) adapt its
functionality based on the varying availability and quality of
the data throughout the deployment by learning the threshold;
and 3) automatically learn to ignore outlier measurements
in the training set due to an efficient end-to-end training
procedure.

B. Neural Classification and Regression

The general difference between the classification and regres-
sion ANNs in terms of their architecture is in their last
functional layer [40]. Usually, classifiers include one neuron
in the output layer per available class, with the exception
of binary classifiers. Regressors, on the other hand, include
one neuron in the output layer per variable it estimates (e.g.,
three neurons estimating longitude, latitude, and altitude in
the context of positioning). To this end, augmenting ANNs
to perform the classification task requires adjusting the output
layer to be able to return the indexes of the estimated label
as well as enabling the training process to efficiently learn on
the discrete labels.

Traditionally, adjusting the output layer to return the indexes
of the estimated label is realized by including the last
functional layer to contain as many neurons as the number
of classes available in the data, while adding the softmax
activation afterward [40]. Softmax, or normalized exponential
function, takes a vector x = [x1, x2, . . . , xn] as an input, where
n denotes the number of classes, and returns the probabilities
of each class, expressed as

fsoftmax(x) = ex
∑n

j=1 exj
(1)

where ex refers to a vector with elements of the form exj .
Consequently, the model returns an array of probabilities for
each individual class as the softmax function output. The
training labels are transformed into the discretized array using
a one-hot-encoder function.

Enabling efficient training on the probabilities is realized by
applying a loss function that can numerically force the model
to output the highest probabilities for the most likely class. The
loss function called categorical cross-entropy (XE) computes
the cost by comparing the probabilities to the binary array of
labels [40]. The formula for computing the loss between the
label estimates and the true labels can be expressed as

LXE(p, q) = −
n∑

i=1

qilog(pi) (2)
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Fig. 1. General system model illustrating the considered overall structure with an ANN as the classification model, in an example case with four classes. The
softmax layer transforms hidden variables x1–x4 into probabilities p̃1–p̃4, followed by thresholding and normalization functions (or layers). For thresholding, we
consider thrReLU or dtReLU functions described in (4) and (7), respectively, while for normalization, the L1 (Manhattan) norm is adopted. The likelihood-based
matching algorithm sums together the products of the label coordinates L1–L4 with the corresponding probabilities p̃1–p̃4 to obtain the final estimates.

where LXE(·, ·) denotes the XE loss function, vector p =
[p1, p2, . . . , pn] refers to the estimated class probabilities and
the vector q = [q1, q2, . . . , qn] denotes the binary labels.

The disadvantage of the XE loss is the necessity for the
labels to be strictly binary. In case the two classes are relevant,
such as mixing, e.g., a green color from the combination of
red, green, and blue classes, so that the target classes are
[0.5, 0.5, 0], the XE can never achieve zero loss (yet target
[1, 1, 0] can). In the scope of positioning, utilizing XE loss
limits the training labels to match the class-specific coordinates
perfectly.

Alternatively, continuous loss functions, such as mean-
squared error (MSE) or mean absolute error (MAE) can also
be utilized for classification. Nevertheless, the loss functions
average the values across all elements, slowing down the
convergence speed and limiting the practical performance of
the classification model [41]. The MSE, later utilized within
the proposed solution, computes the loss between the label
estimates p and the true labels q according to

LMSE(p, q) = 1

n

n∑

i=1

(qi − pi)
2 (3)

while at the same time alleviating the requirement of strictly
binary labels. The MSE is utilized in the proposed solution
while the benchmarks consider either MSE or XE.

In general, augmenting the ANN to perform a regression
task requires the model to output a continuous value across
the required interval and select the appropriate loss capable of
numerically reflecting the obtained loss. The MAE and MSE
are the most commonly utilized loss functions, while simply
neglecting the nonlinear function in the last functional layer
of the model enables obtaining continuous values.

C. Proposed Regression Through Classification

Across the literature, many wireless localization approaches
utilize classification models to generate so-called probability
maps, later serving for regression purposes, while arguing
that ANNs’ performance as the classifier is superior to the
regression [15], [16], [17]. The idea of probability maps is
to perform the classification on the discretized deployment or

area first, followed by transforming the class-wise probabilities
to the physical coordinates. Nevertheless, probability mapping
raises several crucial challenges that have not been clearly
addressed in the literature so far. First, the softmax function
generally utilized at the classification output is impractical
in case the number of classes is relatively large. Due to
the inability of the softmax function to return zeros, the
mapping itself can become skewed. Second, the XE loss
function requires strictly binary labels at the output, which
introduces severe constraints on the utilized data when training
the model as a classifier separately—as done, for exam-
ple, in [27], [28], and [32]. Finally, the transformation from
label probabilities to the coordinates can be implemented
in many ways, often causing biases and inaccuracies in the
performance [15].

The solution proposed in this work is composed of several
functional steps after the generic softmax classification (SC)
layer, that can adaptively regulate the multilabel classification
to enable consistent performance. Moreover, the model can
be trained in an end-to-end fashion as a regression problem,
alleviating all aforementioned challenges.

The general structure and system model related to the
proposed approach is depicted in Fig. 1, showing the step-by-
step solution after the fundamental or underlying ANN model.
To this end, the softmax activation returns the class-specific
probabilities so that the combined likelihood always equals
1 (100%). To diminish the effects of less likely classes, the
thrReLU layer is applied after softmax. The thrReLU acts
as an identity function for inputs equal to or larger than the
adjustable parameter γthr, while returning 0 for values lower
than γthr. This is expressed formally as

fthrReLU(x, γthr) =
{

0, if x < γthr
x, if x ≥ γthr

(4)

where x is an arbitrary number or set of numbers. Furthermore,
to ensure the applicability of the proposed solution to an
arbitrary task, the solution has to train and learn the value of
the threshold parameter γthr in order to adapt the model to
the available data. Nevertheless, as the function considers the
γthr parameter only in the condition [see (4)], the function is
nondifferentiable with respect to γthr, which in turn prevents
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(a) (b)

Fig. 2. Illustration of the step function approximation using sigmoid with
varying k, shown in (a), and comparison of thrReLU and dtReLU with varying
hyperparameter k, shown in (b).

the model to obtain gradients for γthr. For example, with the
“ThresholdedReLU” layer in the TensorFlow implementation,
assigning θ (γthr) as a trainable parameter results in constant
θ during the training process.

To address the challenge and ensure the differentiability
of the thrReLU, we first decompose the function into its
components, namely, the identity function y = x, and the step
function defined as

fstep(x, γthr) =
{

0, if x < γthr
1, if x ≥ γthr

(5)

whose element-wise multiplication with the input results in the
thrReLU. While neither of the functions are differentiable with
respect to γthr, it is possible to approximate the Heaviside step
function [42] analytically. While there are numerous smooth
approximations of the Heaviside function, we consider the
sigmoid function, defined as

fsigmoid(x, k, γthr) = 1

1+ exp(−k(x− γthr))
(6)

where the hyperparameter k defines the steepness of the curve
and γthr specifies the midpoint of the function. By increasing
the value of k, the sigmoid function sharpens, while improving
the approximation of the Heaviside step function, as visualized
in Fig. 2(a).

According to (4) and (5), the dtReLU with differentiable
parameter γthr can then be expressed as

fdtReLU(x, k, γthr) = x

1+ exp(−k(x− γthr))
(7)

with adequately selected hyperparameter k. A visual com-
parison of the thrReLU and dtReLU is shown in Fig. 2(b),
highlighting the requirement of selecting k as a relatively
high value in order to approximate the function accurately.
However, overly large values of k can also restrict the interval
of exploitable gradient values. At the output, all classes with
probabilities lower than γthr are greatly suppressed or omitted,
which reduces the overall sum of class likelihoods (i.e., the
sum of labels is ≤ 1). Consequently, dtReLU represents a fully
differentiable activation function with a trainable threshold
capable of suppressing insignificant neurons at an arbitrary,
nonnegative value. In addition to its applicability in improving

regression capabilities of an ANN model, as proposed and
presented in this work, it can be used in, e.g., convolutional
neural networks to pass only the impactful masks to the
consecutive layers.

To compensate for the suppressed probabilities, as also
illustrated in Fig. 1, L1 normalization is applied. This is
expressed as

fL1(p) = p
∑n

i=1(pi)
(8)

which results in the sum of probabilities in p to equal 1
after the normalization. Consequently, a classical matching
algorithm weighing the relevant class labels represented as
matrix L with their probabilities can then be applied. The
solution to the regression problem is thus obtained as

fmatch(p, L) =
n∑

i=1

piLi (9)

where Li represents the ith row vector from the matrix (or
tensor) of labels L, which can be any set of labels, such
as xi, yi, and zi coordinates, corresponding to the ith class.
Since with the considered dtReLU all functions used in the
sequence are differentiable, the whole structure can be built
as a single ANN and trained end-to-end as a regression model
applying a proper loss function, such as MSE loss, to the
final label estimates. Furthermore, the manual tuning of the
threshold value can be omitted by considering the γthr as a
single trainable parameter within the network, thus saving a
considerable amount of manual effort.

III. ANN ARCHITECTURES AND IMPLEMENTATIONS

In this section, the implementation of the proposed model
is presented, along with its alternatives and parametrization.

A. General ANN Model

The proposed solution is basically capable of performing
and operating with any ANN architecture. To present a fair
comparison across the solutions and benchmarks, a network
with three hidden layers with Gaussian error linear unit
(GELU) [43] activations is utilized across the solutions, with
the number of outputs being equal to the number of unique
labels within the training data while having no activation in
the last layer. The GELU activation generally outperforms
the traditional activations when applied in intermediate lay-
ers [44], [45], and can be expressed as

fGELU(x) = x�(x) (10)

where �(·) is the cumulative distribution function of the
standard Gaussian distribution.

All ANN models are trained in the same fashion, first for
a predefined number of epochs without additional constraints
while considering a constant learning rate (LR). This is
followed by retraining the model with an early stopping
mechanism and reduced LR to avoid both underfitting and
overfitting issues. Since we propose a general solution, a
popular Adam optimizer [46] was selected as a versatile
method.
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Fig. 3. General illustration of the different solutions. The gray box encapsulates the model elements that are trained as classification ANN, while blue boxes
indicate the regression ANNs. The yellow box denotes the single-neuron layer determining the value of γthr in the vC2R model.

B. FCN—Function-Based Implementation

To demonstrate the positive impact of the end-to-end
training, the first implementation of the system depicted in
Fig. 1 is realized by separately training the generic ANN
model with an additional softmax activation at the output as
a classifier, considering one-hot-encoded labels, then imple-
menting the subsequent steps within a stand-alone function.
Such function-based implementation considers the thrReLU
as the threshold function in Fig. 1 since the training is
restricted to the classification model only. The advantage of
this solution is the ability to freely evaluate the achieved
model’s performance at different values of γthr without the
need for retraining the same model or to test the classifier’s
performance when utilizing various loss functions, as well
as omitting the nonlinearities caused by approximating the
step function. Algorithm 1 introduces the pseudocode for the
function-handle (FCN) solution after obtaining the per-label
probabilities p from the classification model, where ỹ denotes
the vector of label estimates and p̃ represents the intermediate
class probabilities. The FCN model’s architecture is visualized
along Fig. 3. Notably, while considering γthr = 0, the thrReLU
and L1 normalization layers do not alter any class estimates.

C. C2R—Proposed Model-Based Implementation

To enable end-to-end training without the necessity of
having all labels perfectly aligned, as well as to provide
γthr as a trainable parameter, we next construct the whole
model as a single ANN structure. In our implementation,
all steps following the softmax activation are considered as
custom layers in Python’s TensorFlow environment, where the
dtReLU introduced in (7) is utilized as the threshold function

Algorithm 1: Function-Handle Solution
load p, L, γthr ;
p̃ ← fthrReLU(p, γthr);
p̃ ← fL1(p̃);
ỹ ← fmatch(p̃, L);
return ỹ

(layer), followed by the L1 normalization as shown in (8).
The matching algorithm can either be a multiplication layer
that takes the list of label coordinates as an additional input,
or include a densely connected layer with the corresponding
(frozen) weights set as the label coordinates, as considered
in [15], both resulting in the same result. The model is then
trained end-to-end as a regressor, while considering the MSE
loss function. The proposed model-based implementation is
further denoted as C2R and its per-layer architecture is also
shown along Fig. 3.

When considering the end-to-end trained C2R model, the
proposed dtReLU layer requires an appropriate selection of the
hyperparameter k, and an initialization for γthr that provides a
reliable starting point for the model to train. To this end, as
shown in Fig. 2(a), the sigmoid function’s transition interval
varies based on the selection of k. When considering k = 1,
the transition can be considered to occur roughly within an
interval of −6 ≤ x ≤ 6, creating 12 units wide transition
region, inversely proportional to k. As such, k needs to be
selected high enough to provide a consistent cut-off, yet
avoiding overly high values to enable solvable gradients within
the transition interval. To minimize the transition of dtReLU
on the left side of the γthr while enabling efficient training,
we implement the dtReLU layer with dual hyperparameter k.
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The implementation considers a higher value of k when the
input is lower than γthr, limiting the transition interval on the
left side. When the input is larger than or equal to γthr, the
dtReLU function tolerates a wider transition interval, since
x ≥ γthr only introduces a slight nonlinearity, as shown
in Fig. 2(b).

In general, the initialization of the trainable parameter γthr
needs to enable the training of the general ANN model
and all considered classes. The dtReLU follows the soft-
max activation, resulting in nonnegative-valued inputs with
a sum of 1. Moreover, each wireless positioning data set
consists of a different number of classes n (unique loca-
tions), distributing the inputs into sets of different sizes.
Consequently, the parameter γthr within the dtReLU layer is
initialized as

γthr = 0.1

n
(11)

which effectively diminishes the lowest probabilities from
intermediate features right after initialization, while enabling
the training of all weights within the model.

D. vC2R—Extension of the C2R Model

The dtReLU layer introduces a trainable threshold that
remains consistent throughout all evaluated samples during
online inference. In the following, we introduce the dtReLU
layer that considers γthr as an input variable, which results in
the capability of the model to adaptively select the desired
value of γthr based on the input feature, rather than a single
trained value for each model. Such modification of the above
C2R model that considers the threshold as an input variable
is further denoted as vC2R and is considered as a natural
extension of the C2R.

The implementation of the model follows the vC2R
architecture depicted in Fig. 3, with an additional densely
connected layer with a single neuron and no activation, when
compared to the proposed C2R. The layer considers the
softmax outputs as its input vector. The altered dtReLU layer
then considers the single output of the single-neuron layer as
the input γthr, as shown in (7).

The initialization of the new layer in the vC2R model
follows the general idea of initializing the original parame-
ter γthr. The layer input includes n nonnegative numbers which
sum to 1, and to be consistent with the idea of removing
the lowest features, the weights are initialized as a truncated
normal distributed variable with mean μ = (0.1/n2) and
standard deviation σ = (0.05/n2). The used truncated normal
distribution limits the values to a maximum of 2σ offset from
the mean μ, thus avoiding negative initial weights (as μ =
2σ). After the aggregation of n weighted inputs, the initial
value of γthr = (0.1/n) is consistent with the original model
while adapting the γthr based on the relevant classes. The
magnitude of μ and σ can be increased in the cases where
the number of available classes is relatively high (e.g., 104) to
avoid near-zero initial weights, which can otherwise degrade
the training process.

TABLE I
BASIC INFORMATION FOR CONSIDERED DATA SETS

IV. EVALUATION ENVIRONMENT AND

NUMERICAL RESULTS

The numerical evaluation was carried out using MATLAB
version R2020b with Statistics and ML Toolbox and Python
3.6 environment utilizing Scipy, Numpy, Scikit-learn, and
TensorFlow libraries.

A. Evaluation Data and Performance Metrics

The models are evaluated on 18 IEEE 802.11 Wireless
LAN (Wi-Fi) and 5 Bluetooth low-energy (BLE) received
signal strength (RSS)-based fingerprinting indoor positioning
data sets, all building on real-world measurements. The
individual data sets vary in size, data density, surveying
methodology, and many other aspects so that the proposed
solution’s performance is assessed on heterogeneous data.
The considered data sets are openly available online [47],
[48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58],
[59], [60], and their applicability has been confirmed by their
utilization across the prior literature [10], [11], [27], [33], [61],
[62]. All considered data sets are unambiguously split into
independent training and testing subsets and contain access
point (AP)-specific Wi-Fi/BLE RSS measurements as features,
together with x, y, and z coordinates as labels y = [x y z]
for each sample. Table I highlights and summarizes the basic
information for each data set, including the number of training
samples, Ntrain, the number of test samples, Ntest, the number
of APs, NAP, the deployment area size of each data set, and
the wireless technology the data was acquired with. Many
of the data sets can be considered scarce—the UEXB3 data
set representing an extreme example where only 240 training
samples are available within an area of 5800 m2.

The considered performance metric is the 3-D positioning
error, calculated as the Euclidean distance between the label
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estimate ỹ and true label y expressed as

E3D(y, ỹ) =
√
√
√
√

3∑

i=1

(yi − ỹi)
2. (12)

Additionally, we consider the sample-wise prediction time, τ ,
as the general measure of the algorithmic complexity of each
solution.

B. Model Design and Hyperparameters

In the following, we next shortly introduce the ANN model
hyperparameters to enable the reproducibility and repeatability
of our experiments.

To this end, the input features were preprocessed so that the
unmeasured RSS values are considered as 0, while the valid
RSS measurements were linearly scaled to positive values
based on their magnitude (denoted as positive data represen-
tation in [33]). The outputs (labels) of each data set were
centered around [0, 0, 0] coordinates to avoid deployment-
specific bias. The training data set was randomly split into 80%
training and 20% validation sets to avoid overfitting during
ANN training.

The general ANN model consists of an input layer deter-
mined by the feature vector length, followed by three densely
connected layers with 128 neurons each with GELU activation,
and a dense output layer with size equal to the number of
unique locations in each data set. Every ANN model was first
trained for 100 epochs with Adam optimizer with LR= 0.001
and gradient clipping set to 1, followed by 500 epochs with
reduced LR= 0.0001 and an early stopping mechanism with
the patience of 10. The regression models consider MSE loss,
while the classification-based models consider either XE or
MSE loss functions.

The C2R and vC2R models consider the value of 600 for
the dual k hyperparameter, when x ≤ γthr, and 200 when
x > γthr, corresponding to transient intervals of 1% and 3%,
respectively.

C. Considered Benchmark Solutions

We next describe shortly the benchmark ANN-based solu-
tions introduced earlier in the literature as well as the
commonly utilized kNN model, serving as the reference
methods in numerical evaluations. As the first benchmark,
we consider a generic ANN classification model (introduced
in Section III-A) with a softmax activation at the output,
trained with two distinct losses, namely, XE and MSE. The
positioning function matches the estimated probabilities with
the labels separately. This solution is further denoted as SC
and was considered with varying classifier architectures in,
e.g., [28], [29], and [30]. The second considered benchmark
is a regression model that consists of the generic ANN model
with a softmax activation, followed by the matching layer,
enabling end-to-end training. The solution, further denoted
as softmax regression (SR), was utilized in [15]. The third
considered model builds the ANN model as the generic
ANN directly, followed by a 3-neuron regression layer. Such

straight-forward regression for the positioning task was con-
sidered and implemented in, e.g., [5], [10], [11], [12], [13], and
[14] and is further denoted as dense neural network (DNN).
The SR and DNN benchmarks consider MSE loss and their
training process is conceptually identical to the C2R solution,
while the SC models were trained as classifiers on one-hot-
encoded labels with the same training hyperparameters. The
differences in the architectures and the approaches are depicted
in Fig. 3.

Moreover, in the following evaluations and assessments,
we consider additional kNN-based benchmarks as the widely
recognized solutions in the scope of indoor positioning. We
implement kNN which is a simple, yet effective nonparametric
model with k = 1 and the L1 similarity metric (Manhattan
distance), as in [20] and [33], further denoted as the 1NN
benchmark. As the model that directly matches the features
with the training set of samples, kNN often outperforms even
the off-the-shelf deep learning models, especially when small
or scarce datasets are considered. As the improved version of
the algorithm that interpolates between the neighbors based
on their similarity distance, a weighted kNN with k = 3 is
also implemented, denoted as W3NN benchmark, where the
number of considered neighbors was selected after hyperpa-
rameter sweeping for the overall best performing setting across
all considered scenarios.

D. Numerical Results

In the following, we present the obtained positioning
performance results of the benchmark solutions as well as
those of the methods proposed in this work. To this end, the
mean positioning errors achieved on the different considered
data sets are shown and summarized in Table II, where the
left section encapsulates the ANN-based benchmarks, namely,
SC(MSE), SC(XE), SR, and DNN. The positioning error
highlighted in bold denotes the lowest mean positioning error
across all considered models for a given data set.

When considering the ANN-based benchmarks, the SR
model outperforms the remaining benchmark solutions on
a majority of the data sets, achieving the lowest mean
positioning error on 16 data sets across the considered
models. The DNN model generally lags behind in terms
of performance by a slight margin, while both SC models
perform the poorest, with the exception of LIB2, UEXB1,
and UEXB2 data sets. Their performance is especially poor
on voluminous data sets with a large number of unique
locations, such as UJI1, UJI2, or SAH1. The SC with
XE loss generally outperforms the one trained with MSE,
demonstrating XE loss superiority for classification tasks. The
results show that the end-to-end trained regression models
(SR and DNN) are capable of providing reliable performance
across deployments without significant outliers. The results
further confirm the claims in [15], [16], and [17], stating
that neural classification offers superior performance to the
regression when considering that all models were trained
with the same procedure and hyperparameter settings. The
models trained as classifiers do not receive information about
class similarity or dissimilarity, considering the same loss
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TABLE II
PERFORMANCE EVALUATION RESULTS ON ALL CONSIDERED MODELS AND REAL-WORLD DATA SETS, WITH

BEST PERFORMING METHODS HIGHLIGHTED IN BOLD

when misclassifying two distant or two neighboring loca-
tions.

In the central section of Table II, we additionally provide
the numerical overview of the positioning performance of
the remaining benchmark models, the function-handle models,
and the proposed C2R, while the results for C2R solution
additionally include the trained threshold γthr. At first glance,
the bold values reveal that the best performing model varies
across the datasets. The results corresponding to the bench-
mark kNN solutions provide superior performance to the ANN
structures on the selected data sets, supporting the popularity
and robustness of this simple, yet reliable algorithm.

The numerical results provided for FCN(MSE) and
FCN(XE) models are based on manually finding the best
performing value for γthr. Their positioning performance is
identical to the SC benchmark when γthr = 0 (no classes
are omitted). The results in Table II show that the function-
based implementations [i.e., FCN(MSE) and FCN(XE)] lag
behind in terms of performance, providing similar localization
capabilities as the SC benchmark on all considered baselines.

The positioning performance achieved by the proposed C2R
model provides the lowest positioning error (highest accuracy)
in 7 out of 23 data sets. Moreover, when strictly speaking
outperformed, the C2R provides competitive performance,
only lagging behind the best performing model by a very
small margin (being 2nd best in 8 out of 16 cases). The last
row of Table II displays the average across the positioning
errors for all data sets and each model, determining the C2R
model’s superiority over W3NN, the second-best performing
model, by a margin of 0.43 m, which corresponds to 7.9%
difference in the mean positioning error. The straight-forward

ANN regression model denoted with DNN is outperformed
by C2R by 0.91 m, corresponding to an increment of 15.4%
in the positioning error. The trained γthr of the C2R solution
varies between 0.009 (0.9%) and 0.077 (7.7%), proving the
adaptive nature of the proposed solution.

Furthermore, and importantly, we graphically illustrate the
relative accuracy results in Fig. 4, where each error in Table II
was quantified as a percentage increment toward the best
performing model’s error on the given data set. The SC
benchmark was omitted from the evaluation as its performance
is equal to the FCN solution when γthr = 0. In Fig. 4, the
method-specific empirical cumulative distribution functions
(ECDFs) clearly show and highlight that 1) for how many data
sets the given model provides the best accuracy and 2) what
is the performance deficit behind the best performing model.
The proposed C2R solution outperforms all other models in
comparison, providing the best positioning accuracy in over
30% of cases, while its performance degradation at the 80th
percentile is less than 10% compared to the best performing
individual model. In comparison, the SR benchmark provides
the best performance in 20% of the cases while its 80th
percentile performance degrades by over 20%.

To determine and present the full performance of the
proposed solution, Fig. 5 visualizes the distributions of the
positioning error in the form of ECDFs. Across the distri-
butions, the proposed C2R model always performs close-to
optimally, minimizing the number of outliers in the process.
Fig. 5 additionally shows, that regardless of the data set, the
proposed C2R solution always reaches reliable performance,
so that on data set LIB2 its performance follows the one of
the FCN(MSE), on data set MINT1 it performs consistently
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Fig. 4. Distributions of the percentage error differences relative to the best
performing model, illustrating the robust and reliable performance of the
proposed C2R approach.

with SR model, and on data set UJI2 its performance
approximates the W3NN benchmark. The simple, yet effective
implementation of the mapping mechanism within the C2R
solution enables the model to optimally set the value of
γthr while training the classification model in the process.
The performance of the extended model (vC2R) is separately
discussed in Section IV-F, after the complexity assessment that
comes next.

E. Complexity Analysis and Scalability

Next, we study and assess the complexity of the ML
models during the inference in the online phase. The com-
plexity of the offline training is omitted as it needs to be
performed only once while utilizing a powerful processing
engine or a corresponding cloud system. We first investigate
the theoretical complexity in terms of the unsimplified big
O (O) notation [66], followed by an empirical assessment
and comparison of the inference times of the evaluated
models.

The theoretical computational complexity of the kNN-based
models to estimate a single sample can be expressed as
O(Ntraind) [67], where Ntrain denotes the number of samples
in the training set to which the input features need to be
compared to and d denotes the cardinality of the feature vector.
The cardinality parameter d is identical to NAP utilized along
Table I, while a shorter notation is deliberately used here for
presentation brevity. The complexity of the similarity metric
can additionally affect the inference time of kNN [33]. The
complexity of the ANN-based models depends, in turn, on the
network architecture and the hyperparameters of each layer
and activation [68], which in our implementation differs across
datasets due to varying dimensions of the input vector d.
To determine the complexity increment of the proposed C2R
solution over the stand-alone model, we refer the complexity
of the general ANN model to O(g(d, n)), where g(·) is a
function determined by the hyperparameters of the ANN
while n denotes the corresponding number of classes, on

top of which we are adding additional layers (as shown in
Fig. 3). The DNN benchmark adds a single densely connected
layer with 3 neurons, resulting in additional theoretical com-
plexity of forward propagation relative to O(3n). The L1
normalization, thrReLU, and dtReLU scale with O(n), while
softmax requires computing the exponentials as well as the
normalization, resulting in O(n2) complexity. The matching
layer operates as a densely connected layer with three neurons
and no bias terms, resulting in a complexity of O(3n). The
resulting approximated theoretical complexity of each model
is included in Table III, shown in unsimplified notation, as
we aim to express the complexity of models with finite
units.

A numerical evaluation of the empirical inference times is
also carried out and visualized in Fig. 6 which shows the
average inference times per testing sample of each model
across the considered data sets. Each curve represents a
different model, while each point in the figure refers to a
different data set. The curves representing the 1NN and W3NN
benchmarks show the dependency of the model complexity
on the training set size, performing the fastest on small data
sets (UEXB1 with Ntrain = 417 training samples and NAP =
30 APs) and the slowest on the voluminous ones, such as
UJI2 with over 20 000 training samples and 520 APs. From
the ANN-based models, DNN performed the fastest, closely
followed by SR and the proposed C2R. While comparing
the complexity of end-to-end trained models (SR, DNN, and
C2R) and the ones with an external matching function (SC
and FCN), there is a slight gap in the inference time, which
can be attributed to the separate functional implementation in
Python. Overall, the evaluation results in Fig. 6 clearly show
that the increase in the model complexity of the proposed
C2R approach over the DNN and SR reference schemes is
essentially negligible.

In terms of scalability, the kNN models are strictly inferior
to the ANN solutions due to the direct computational depen-
dency on the training data set size. While many solutions have
been developed to address this drawback, they generally also
deteriorate the positioning performance [10], [20], [69].

Additionally, when utilizing ANNs, many hyperparameters
affect their scalability, especially with convolutional models.
Based on the numerical results provided in Table II, the ANN
models trained as classifiers, namely, SC and FCN, fail to
properly converge in data sets with a large number of training
samples and training locations, specifically UJI1, UJI2, and
SAH1, while the models trained as regressors (SR, DNN, and
C2R) successfully converged to their respective optima in only
100 epochs.

Moreover, the layer matching the probabilities to the indi-
vidual classes includes the most training parameters and can
thus be considered as one of the aspects potentially impacting
the scalability. The advantages of implementing such a layer
are clearly shown in this article, adding only selected sim-
ple operations during the inference. Most importantly, the
matching layer supports the generalization properties of the
ANN, as shown by comparing the performance of the proposed
solution with the DNN benchmark on a large-scale UJI 1 data
set, which spans three buildings and a total of 13 floors. The
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Fig. 5. Individual ECDFs of the positioning errors with the different utilized models on all data sets.

difference in positioning error is more than 50% in favor of
the model with the matching layer and thus, we can conclude
that despite the involved minor increase in the complexity,

the layer directly improves the scalability of the ANN. The
same holds for the two other large-scale data sets, UJI2
and SAH1.
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TABLE III
FUNDAMENTAL INFERENCE COMPLEXITY COMPARISON OF THE

UTILIZED MODELS

Fig. 6. Comparison of the averaged sample-wise localization times for the
different solutions across the available data sets. The values on the x-axis are
in logarithmic scale.

F. Numerical Evaluation of the Extended Model

Finally, we discuss the obtained numerical performance
of the extended vC2R model, shown for comparison pur-
poses already as part of Table II (the last column). As can
be observed, the vC2R shows in many cases comparable
performance with the C2R model while even outperforming
it in selected deployment cases. The vC2R model is also
evaluated and shown along Figs. 4–6. However, the model
also strongly underperforms on some data sets—specifically
UJI1, UJI2, and UTS1, showing similar weaknesses as the
FCN model. The vC2R model’s inability to converge in
the selected scenarios is attributed to the deployment size of
the selected data sets and the volume of their training database.
Moreover, the UJI1, UJI2, and UTS1 scenarios consist of
sparse measurements in their features, where over 95% of the
training matrix includes missing data.

To overcome the inability to train properly in the selected
scenarios, we augmented the training process by increasing
the initial number of epochs from 100 to 400, while keeping
LR = 0.001 and decreasing the gradient clipping parameter
from 1 to 0.1 to ensure prolonged, steady, and consistent learn-
ing. Consequently, the vC2R model is able to adapt in all three
scenarios, achieving 10.35 m of mean 3-D positioning error on
data set UJI1, 9.02 m of mean 3-D positioning error on data
set UJI2, and 8.23 m of mean 3-D positioning error on data

TABLE IV
REFINED POSITIONING RESULTS OF VC2R MODEL WITH SELECTED

DATA SETS

set UTS1, as shown in Table IV under the vC2R (improved)
column. Although the positioning results do not outperform
the best performing model on any of these aforementioned
data sets, there is a consistent improvement in positioning
performance, showing the capability of the vC2R model to
converge with increased training effort and resources when
processing scarce data. However, the proposed C2R solution
can be observed and concluded to provide more consistent
performance, especially in challenging cases with scarce or
limited data. The results also show that including γthr as
an input variable to the layer increases the vC2R’s model’s
complexity, requiring more resources to be invested in its
training in order to achieve competitive performance.

V. CONCLUSION

Extracting location information and situational awareness is
of decisive importance in various industrial IoT applications
such as industrial robotics and connected industrial vehicles.
This work introduced a novel ANN architecture for solving
a regression task by transforming it first into a classification
problem, effectively simplifying the function that the general
ANN needs to adapt to. The proposed C2R model, trained in
an end-to-end fashion, is capable of achieving almost optimal
performance on sparse data sets by including a novel dtReLU
layer with a trainable threshold, followed by L1 normalization,
which removes the negative impact of low-probability classes.
Specifically, the proposed dtReLU layer enables data-driven
threshold learning, especially when considered as a trainable
parameter within the network. The proposed approach was
then applied in the challenging application domain of indoor
fingerprinting-based wireless positioning. To this end, the
numerical evaluation on 23 real-world fingerprinting data sets
shows the superior and robust performance of the proposed
C2R solution when compared to a multitude of benchmarks
from the prior literature in terms of positioning accuracy, with
only a marginal increment in model complexity. Specifically,
the C2R improves the mean positioning error by 7.9% and
15.4% compared to the weighted kNN and DNN benchmarks,
respectively, when averaged across all 23 data sets. The
extended vC2R model further introduces the trainable thresh-
old as a variable within the C2R model, enabling each sample
to determine the threshold level with promising results—
however, the most consistent performance especially in cases
with challenging scarce data was observed and obtained with
the proposed C2R model. Our future work will focus on
extending the C2R implementations and applications beyond
the indoor positioning area, and will further investigate the
ways to boost the model’s generalization properties. We aim
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to study the applicability of the proposed dtReLU layer
within convolutional networks, where limiting the number of
masks passed to the consecutive layers promises improved
performance while reducing complexity. We will also continue
evaluating and enhancing the vC2R model in different types
of scenarios to pursue the full potential of the model.
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