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Abstract
Federated learning is a promising privacy-preserving learning par-
adigm in which multiple clients can collaboratively learn a model
with their image data kept local. For protecting data ownership, per-
sonalized watermarks are usually added to the image data by each
client. However, the introduced watermarks can lead to a shortcut
learning problem, where the learned model performs predictions
over-rely on the simple watermark-related features and represents
a low accuracy on real-world data. Existing works assume the
central server can directly access the prede!ned shortcut features
during the training process. However, these may fail in the feder-
ated learning setting as the shortcut features of the heterogeneous
watermarked data are di"cult to obtain.

In this paper, we propose a federated Morozov regularization
technique, where the regularization parameter can be adaptively
determined based on the watermark knowledge of all the clients
in a privacy-preserving way, to eliminate the shortcut learning
problem caused by the watermarked data. Speci!cally, federated
Morozov regularization !rstly performs lightweight local water-
mark mask estimation in each client to obtain the locations and
intensities knowledge of local watermarks. Then, it aggregates the
estimated local watermark masks to generate the global watermark
knowledge with a weighted averaging. Finally, federated Morozov
regularization determines the regularization parameter for each
client by combining the local and global watermark knowledge.
With the regularization parameter determined, the model is trained
as normal federated learning. We implement and evaluate feder-
ated Morozov regularization based on a real-world deployment of
federated learning on 40 Jetson devices with real-world datasets.
The results show that federated Morozov regularization improves
model accuracy by 11.22% compared to existing baselines.
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1 Introduction
With the growth of applying advanced multimedia technology to
commercial applications, concerns about user data privacy have
greatly increased [21], and research on privacy-preserving learn-
ing has come into being. Federated learning [12, 31, 52] emerges
as a promising privacy-preserving learning paradigm, where mul-
tiple clients can collaboratively learn a model without exposing
their private data to the central server. Federated learning has been
widely adopted in many multimedia applications such as medical
image classi!cation [28], anomaly detection in public safety surveil-
lance [61], and sentiment analysis in social media content [59].

For data ownership identi!cation and copyright protection, digi-
tal watermarking technologies are developed and applied in many
multimedia applications [13, 53], through adding the well-designed
digital watermark into the image data by the data owner [5, 20].
Training models with the watermarked data may lead to the short-
cut learning problem, that is the learned model makes predictions
based on the simple shortcut features in the training data, rather
than learning the underlying complex core features of the target
domain, and presents a good performance on the training dataset
but decreased model accuracy on the unseen data [4, 22, 29, 55, 58].
For example, in medical image classi!cation, a trained model de-
tects pneumonia in chest X-rays (CXRs) relying on watermarks
that represent which hospital the patient was seen instead of lung
pathophysiology used by a radiologist [8, 55].

There are many works proposed to overcome the shortcut learn-
ing problem. According to where the shortcut feature is processed,
existing works can be divided into data preprocesing-based [32,
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Figure 1: The task accuracy of a model learned with various
watermark heterogeneity.

36, 38, 44] and regularization-based [18, 34] methods. The data
preprocessing-based methods assume the shortcut features of data
are useless, and they eliminate the shortcut learning problem by de-
tecting and removing the shortcut features from the training dataset.
These methods may fail in learning with the watermarked data as
the shortcut features (i.e., the watermark-related features) are im-
portant for data ownership identi!cation, and cannot be directly
removed in practice. For regularization-based methods, shortcut
features are regularized based on certain prior knowledge during
each training iteration. For example, FD [18] assumes the shortcut
features are represented in speci!c frequency, and designs a feature-
level regularization technique where a randomized !ltering layer is
applied after each convolution layer to prevent CNNs from learning
frequency-speci!c imaging features. wMMD-T [34] assumes the
causal Directed Acyclic Graph (DAG) indicating the relationship
between the input image and output label is known and designs
a regularizer that leverages the causal DAG to e"ciently learn a
classi!er. These regularization-based methods can work well in the
centralized learning setting where the central server can directly
obtain certain characteristics of the shortcut features. However,
they may fail in a federated learning setting with watermarked
data, as the characteristics of each client’s watermark features are
uncertain and unknown to the server for privacy protection.

Moreover, di#erent clients may apply various digital watermark-
ing techniques on the local data, including explicit watermarking
(such as logos for copyright in media data, patient information
text or physical markers in CT images) and implicit watermark-
ing (such as frequency domain embedding with Discrete Cosine
Transform (DCT) and spatial domain embedding with least signif-
icant bits (LSB)). This results in watermark heterogeneity, which
further degrades the accuracy of the learned model. Our initial
experiments show the impact of watermark heterogeneity under
di#erent regularization-based methods. As shown in Fig. 1, with
the watermark heterogeneity degree 𝐿 (detail setting can be seen
in Sec. 4) increasing from 100 to 0.5, the accuracy of the learned
model decreases up to 15.5% under all baselines.

In this paper, we propose a federated Morozov regularization
method to solve the shortcut learning problem of learning with
watermarked data in a privacy-preserving way. Speci!cally, we
!rst perform the local watermark mask estimation with the maxi-
mum a posteriori (MAP) method to generate the watermark mask,
a matrix that can represent the characteristics of the watermarks.
We observe that the embedded watermarks with various digital
watermarking technologies can all be presented by the location
and intensity map. Therefore, we estimate the watermark mask

based on the distinct statistical distributions of natural images and
arti!cial watermarks, capturing the divergence in their spatial and
frequency domain characteristics. Then, we aggregate the estimated
local watermark mask in the server to generate the global water-
mark mask with a weighted averaging model. Finally, we perform
Morozov regularization-based local training by actively adjusting
the regularization parameters with the estimated local and global
mask. Intuitively, if the model training leads to worse over!tting to
shortcut features, the regularization parameter will be increased,
i.e., to aggressively mitigate over!tting introduced by the water-
mark; and vice versa. We evaluate federatedMorozov regularization
through experiments in real-world settings by deploying it on a
test network of 40 Jetson devices, each with varying computational
capabilities. We also evaluate our method on a real-world federated
watermarked dataset, COVID-FL [54], where watermark hetero-
geneity is present. Evaluation results demonstrate the superior
performance of our method compared to the baselines. federated
Morozov regularization improves the accuracy of the learned model
by up to 11.22%. We also conducted an ablation study of federated
Morozov regularization to validate the contribution of each compo-
nent to FL model performance in watermarked datasets.

The contributions of this paper can be summarized as:

• We are the !rst to formulate the shortcut learning problem
arising from watermarked datasets in federated learning and
!nd that watermark heterogeneity can further degrade the
learning performance.

• We propose federated Morozov regularization, a new regu-
larization method that can automatically adjust the regular-
ization parameters based on the watermark knowledge of
all clients in a privacy-preserving way.

• We evaluate federated Morozov regularization by deploying
a real-world testbed of 40 Jetson devices with diverse com-
putational capacities and comparing it to several baselines
with real-world datasets. Our evaluations show that feder-
ated Morozov regularization outperforms existing baselines,
achieving 11.22% higher accuracy.

2 Background & Related Work
2.1 FL for Multimedia Application
The integration of federated learning (FL) with multimedia appli-
cations is fundamentally motivated by the need to safeguard pri-
vacy [24, 30, 57]. This approach has facilitated the advancement of
multimedia applications involving personal data, such as image clas-
si!cation [28], anomaly detection in public safety surveillance [61],
and sentiment analysis in social media content [59]. The bulk of
current research in this area has been concentrated on tackling
data-centric challenges [33, 60], including non-iid data [27, 60],
data imbalance [46], and the presence of noise [49].

However, a relatively unexplored issue in this domain is the
in$uence of watermarked data in federated learning. Digital water-
marking, a strategy widely adopted in multimedia applications for
asserting data ownership [13, 53] and copyright protection [5, 20],
has found extensive application in data involving privacy and copy-
right issues, such as medical images [43], surveillance videos [13],
and social media [40]. Despite its primary intent, watermarking
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Figure 2: Overview of the federated Morozov regularization in federated learning.

unintentionally introduces detectable patterns into the data, pre-
cipitating a phenomenon known as shortcut learning.

2.2 Shortcut Learning
Shortcut learning refers to a phenomenon where deep learning
models, during training, preferentially latch onto simple, detectable
features—termed as shortcut features—instead of grappling with
the more complex, core features of the data [10, 16]. This inclination
can lead to models that perform well on training and in-distribution
test data but falter signi!cantly when faced with out-of-distribution
inputs. Examples of shortcut learning include models relying on
background elements [2] or speci!c textures for image classi!ca-
tion [15], and even the presence of watermarks [4, 8].

Solutions to shortcut learning have primarily focused on data
prepossessing [32, 36, 38, 44] and regularization techniques [18,
34]. Data prepossessing often involve the removal of shortcut fea-
tures [36, 38] or data augmentation [32, 44]. However, in federated
learning scenarios, watermarks are added due to a lack of trust in
the federated learning applications or to embed ownership directly
into the training model, making their removal impractical. The
regularization method often views shortcuts as a consequence of
model overparameterization [34]. Techniques like FD [18] empha-
size high-frequency shortcut features, while methods like wMMD-
T [34] focus on background elements as shortcut features. Yet, these
shortcut features do not align with those introduced by watermarks.

Moreover, these approaches often require prior knowledge of
the shortcut features from client data, such as labels or !lter param-
eters, which contradicts the privacy-preserving nature of federated
learning. Utilizing global information from the server side also fails
to address the challenges brought by watermark heterogeneity.

2.3 Morozov Regularization
Morozov regularization [41] is one type of tool to adjust regular-
ization parameters actively. One key principle of these methods
is the discrepancy principle [45]. The rationale is that for a good
regularized solution, the norm of the residual should match the
noise level of the data.

Morozov regularization has been used in many applications in
the past, e.g., to regularize noises from satellite sounder measure-
ments for atmospheric pro!ling applications [25], to regularize
sensor noises in digital images [6] and machine learning [19, 41].

The suitability of Morozov regularization for our problem lies in
its precision in targeting speci!c distributions or explicitly formu-
lated noise, o#ering localized regularization rather than a blanket,
global approach. This characteristic is particularly aligned with
the challenges posed by watermarks, which introduce shortcut fea-
tures localized within parts of an image, rather than a#ecting it
uniformly. Unlike other regularization methods that might operate
under broad assumptions about noise or apply regularization uni-
formly across the entire data set, Morozov regularization provides
an adaptive mechanism to !ne-tune the regularization parameter,
thereby mitigating the shortcut learning e#ect.

As compared to other regularization, Morozov regularization
is simple and has less assumptions on noise approximation [1],
practical a-posteriori rules [37], and/or convergence rate [39]. We
choose Morozov regularization for its widely applicability and leave
other types of regularization into future works.

3 Federated Morozov Regularization
3.1 Problem De!nition
Federated Learning leverages a set of distributed clients N =
{1, . . . ,𝑀 } to iteratively learn a global model 𝜴 without leaking
any private local data to the central server [35]. In each client 𝑁 , the
local dataset is de!ned as 𝑂 (𝐿 ) . For data ownership identi!cation,
each data sample 𝑃 (𝐿 )

𝑀
is embedded with a digital watermark 𝑄 (𝐿 )

𝑀
.

Let 𝜴 (𝐿 ) be the local model of client 𝑁 , and the global model 𝜴 is
learned by solving the following optimization problem:

𝑅 (𝜴 ) := argmin
𝜴

𝑁∑
𝐿=1

𝑂 (𝐿 )∑
𝑀=1

𝑆 (𝐿 ) (𝜴 ;𝑇𝑈 (𝑃 (𝐿 )
𝑀

,𝑄 (𝐿 )
𝑀

),𝑉 (𝐿 )
𝑀

), (1)

where f(𝐿 ) (𝜴 (𝐿 ) ) = 1
|𝑂 (𝐿 ) |

∑
(𝑃,𝑄)↑𝑂 (𝐿 ) 𝑊 (𝑃,𝑉;𝜴 (𝐿 ) ), |𝑂 (𝐿 ) | is the num-

ber of data sample in client 𝑁 ,𝑇𝑈 (·) is the watermark embedding
function, and 𝑊 (·) is the loss function.
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The integration of digital watermarks into image data for own-
ership identi!cation introduces several challenges in the federated
learning environment. Firstly, accurately modeling the embedded
watermarks (𝑄 (𝐿 )

𝑀
) within the data requires sophisticated techniques

to distinguish and quantify their impact on the learning process.
Secondly, the distributed nature of federated learning complicates
the task of addressing the variability in watermark characteristics
across di#erent clients whilemaintaining globalmodel performance.
Thirdly, it is crucial to mitigate the performance degradation caused
by watermarks without compromising the privacy of the data.

We propose a federated Morozov regularization method to ad-
dress these challenges, and Fig. 2 shows the overview of federated
Morozov regularization during an FL model training round. The
complete training process include four steps. After obtaining user
consent for training data, the client preprocesses the data using
the watermark estimator. This step involves individually inputting
watermarked data 𝑃 (𝐿 )

𝑀
to obtain the watermark estimation mask

𝜶 (𝐿 )
𝑀

for the client’s dataset (Step 1). Mask aggregation involves ag-

gregating local watermark estimation masks 𝜶 (𝐿 )
𝑀

from each client
into a global watermark estimation mask 𝜷 . This step synthesizes
collective watermark characteristics from all participating clients
(Step 2). Local training using watermarked data is conducted under
the Morozov regularization module. This module automatically se-
lects regularization parameters based on the watermark estimation
mask corresponding to the training data, thereby adjusting the local
model parameters to ignore watermarks in the data (Step 3). Finally,
the server aggregates the local models from the selected clients to
form a new global model for the next round of training (Step 4).

3.2 MAP-basd Watermark Mask Estimator
In our federated learning setting, the watermarking techniques
applied by each client may be di#erent and unknown to the server,
making most existing watermark estimation techniques that are
designed based on speci!c watermarking methods unsuitable, such
as NN-based approaches for explicit watermark estimation or hash-
based methods for LSB watermark estimation. However, water-
marks generated by di#erent techniques often present statistical
commonalities, such as similar positions or patterns. To address
this uncertainty while leveraging these commonalities, we adopt
a stochastic approach based on maximum a posteriori (MAP) esti-
mation, as described in [50]. This statistical technique incorporates
prior distribution to estimate watermarks under uncertainty.

Consider the classical problem of watermark embedding, which
involves embedding awatermark into an imagewithout considering
the image content. In the most general form in communication
codec theory [51], the process of𝑇𝑈 (·) can be modeled as 𝑃 ↓ =
𝑃 + 𝑄, where 𝑃 ↓ represents the watermarked data, 𝑃 is the original
data, 𝑃 ↑ R𝑁 with 𝑀 = 𝑈 ↔𝑈 , and 𝑄 denotes the watermark. Our
goal is to estimate 𝑄̂, which is an estimate of the watermark 𝑄.

Under the general assumption [51], we model the watermark as
a Gaussian random variable. Let watermark sample 𝑄𝑅,𝑆 (1 ↗ 𝑋, 𝑌 ↗
𝑈) and image sample 𝑃𝑅,𝑆 (1 ↗ 𝑋, 𝑌 ↗ 𝑈) be de!ned on the vertices
of a grid 𝑈 ↔ 𝑈 . Let all samples be independent and identically
distributed, we have conditional probability density of 𝑄𝑅,𝑆 :

𝑍𝑇𝑀,𝑁 (𝑃𝑅,𝑆 | 𝑄𝑅,𝑆) =
1√(

2𝑎𝑏2𝑇𝑀,𝑁
)𝑁 exp

{
↘ 1
2𝑏2𝑇𝑀,𝑁

ω𝑈𝑇ω𝑇

}
, (2)

where the 𝑏𝑇𝑀,𝑁 of the watermark in the (𝑋, 𝑌) location signi!es its
intensity, ω𝑇 = 𝑃𝑅,𝑆 ↘ 𝑄𝑅,𝑆 . Higher variance indicates a more no-
ticeable watermark (albeit with possible image distortion), whereas
lower variance results in a subtler watermark.

To estimate the watermark throughout an image, we use a local
estimation mask 𝜶 = [𝑄̂𝑅,𝑆]1↗𝑅,𝑆↗𝑉 , which is a matrix represent
each client’s watermark information in local dataset. The index
(𝑋, 𝑌) in this mask represents the watermark location. Each 𝑄̂𝑅,𝑆 is
determined by the MAP criterion:

𝑄̂𝑅,𝑆 = argmax𝑇̃𝑀,𝑁 ↑R𝑂
(
ln 𝑍𝑃𝑀,𝑁 (𝑃 ↓ | 𝑄̃𝑅,𝑆) + ln 𝑍𝑇𝑀,𝑁 (𝑄̃𝑅,𝑆)

)
, (3)

where 𝑄̃ represents a hypothetical watermark value being consid-
ered during the optimization process to maximize the posterior
probability. The estimation accuracy enhancement is due to MAP
estimation’s statistical convergence towards the true watermark
distribution as the dataset grows.

3.3 Global Watermark Mask Aggregation
In FL environments, the aggregation of local models is a crucial step
for synthesizing a global model that bene!ts from the distributed
learning process. Analogously, the aggregation of local watermark
estimationmasks is essential for constructing comprehensive global
watermark knowledge.

The aggregation of the global watermark estimation mask, de-
noted by 𝜷 , incorporates contributions from local watermark esti-
mation masks 𝜶 (𝐿 ) from each client 𝑁 within the network N . The
aggregation process is governed by the equation:

𝜷 =
∑
𝐿↑N

(
|𝑂 (𝐿 ) |∑

𝑊↑N |𝑂 ( 𝑊 ) |
· 𝑐 (𝐿 )

)
𝜶 (𝐿 ) , (4)

where the weight for each client’s local mask𝜶 (𝐿 ) is determined by
the product of two key factors. The !rst factor, |𝑂 (𝐿 ) |∑

𝑃 ↑N |𝑂 ( 𝑃 ) | , consider

the relative data sample size |𝑂 (𝐿 ) | of the 𝑁-th client, indicating the
proportion of data contributed by this client in comparison to the
total data volume across all clients in N . The second factor, 𝑐 (𝐿 ) ,
corresponds to the average size of the watermark estimation mask
for the 𝑁-th client, which is computed as the mean of the dimensions
of the mask 𝜶 (𝐿 ) . This measure re$ects the spatial extent of the
watermark information present within the client’s data.

3.4 Morozov Regularization
After obtaining the global watermark estimation mask 𝜷 , it is
a mask integration with the local masks to re!ne the watermark
knowledge for each client. The re!ned local mask for client 𝑁 , de-
noted by 𝜶≃(𝐿 ) , is achieved by blending 𝜷 with 𝜶 (𝐿 ) :

𝜶≃(𝐿 ) = 𝐿 (𝐿 )𝜷 + (1 ↘ 𝐿 (𝐿 ) )𝜶 (𝐿 ) , (5)

where 𝐿 (𝐿 ) ↑ [0, 1] is an adaptive hyperparameter that controls
the degree to which the global mask in$uences the re!ned local
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mask. The value of 𝐿 (𝐿 ) is dynamically adjusted based solely on the
training performance di#erence, ωAcc(𝐿 ) , which is the di#erence
between the highest validation accuracy among all clients and the
validation accuracy of the current client 𝑁 . To ensure 𝐿 (𝐿 ) scales
appropriately between 0 and 1, it is calculated as follows:

𝐿 (𝐿 ) =
exp(↘ωAcc(𝐿 ) )

max𝑊↑N exp(↘ωAcc( 𝑊 ) )
, (6)

This formula uses an exponential function to decrease the in$uence
of ωAcc(𝐿 ) as it increases, ensuring that 𝐿 (𝐿 ) remains within the
desired range and e#ectively balances the contribution of the global
mask based on the relative performance of each client.

Regularization adds a term 𝑑𝑒𝑓(·) to the loss function 𝑆 (𝜴 ;𝑃,𝑉),
comprising a parameter matrix 𝜸 and norm 𝑔(𝜴 ), formulated as
𝑑𝑒𝑓(𝜴 ) = 𝜸𝑔(𝜴 ). The matrix 𝜸 balances regularization’s impor-
tance, with higher values increasing bias and reducing over!tting,
and lower values doing the opposite. This balance is captured by
𝜸 = 𝜸 (𝑕), where 𝑕 measures deviation from real data.

Mathematically, refer to [26], the loss function with regulariza-
tion is formulated as below,

𝑅 (𝜴 ≃) := argmin
𝜴 ,𝜶

𝑁∑
𝐿=1

𝑂 (𝐿 )∑
𝑀=1

(
𝑆 (𝜴 ;𝑃𝑀 + 𝑄𝑀 ,𝑉𝑀 ) + 𝑖 | |𝜴 | |22

)
. (7)

Morozov regularization is a principle for choosing a regulariza-
tion parameter, i.e., 𝜸 , to stabilize the machine learning model to
be trained. Speci!cally, let 𝑃𝑋 be

𝑃𝑋 = argmin
𝑃

{
1
2
⇐𝑗 (𝑃) ↘ 𝑉⇐2 + 𝜸𝑔(𝜴 )

}
. (8)

𝜸 can be considered as a control parameter. If 𝜸 is too small,
the model over!ts the watermarked in the data; and if 𝜸 is too
big, the model loses the essential details. If 𝑉𝑌 is the watermarked
data and assume that 𝑕 is the known noise level introduced by the
watermarked data, then 𝜸 is chosen such that:

⇐𝑗 (𝑃𝑋 ) ↘ 𝑉𝑌 ⇐ = 𝑕 = 𝜶≃
𝑀 . (9)

In other words, Morozov regularization chooses the value of 𝜸
that can make the norm | | · | | equal to the noise level (also called
the Morozov’s discrepancy principle [45]).

The federated Morozov regularization for FL in Alg. 1 operates in
three main phases: watermark estimation, mask aggregation, and
regularization parameter computation. Initially, each client’s model
parameters 𝜴 (𝐿 ) are initialized. The watermark estimation phase
involves using MAP-based method to estimate the 𝑄̂ (𝐿 )

𝑀
in each data

point of client 𝑁’s dataset 𝑘 (𝐿 ) and get the 𝜶 (𝐿 ) (Lines 4–7).
The watermark aggregation use the clients’ watermark estima-

tion mask to aggregate a global mask with Eq. (4) before federated
learning training process (Lines 10–11).

During the federated learning process, each client re!nes the
watermark estimation mask as outlined in Line 14. In this phase,
the learning module of each client employs Morozov regularization
to compute the regularization parameters. This involves setting
an initial discrepancy tolerance and 𝜸 (𝐿 )

𝑀
, which are iteratively

re!ned based on model predictions 𝑉 (𝐿 )
𝑀

, residuals, and discrepancy
measures until they converge within the set tolerance (Lines 15–21).

Algorithm 1: Federated Morozov Regularization

Data: Loss function 𝑆 (·) in client 𝑁 , data 𝑃𝐿 in client 𝑁 .
Result: Regularized loss function.

1 Initialization:
2 for client 𝑁 in N do
3 for data 𝑃 (𝐿 )

𝑀
in 𝑂 (𝐿 ) do

4 Compute 𝜶 (𝐿 )
𝑀

using Eq.(3);
5 end

6 Combine dataset mask 𝜶 (𝐿 ) = 1
|𝑂 (𝐿 ) |

∑ |𝑂 (𝐿 ) |
𝑀=1 𝜶 (𝐿 )

𝑀
;

7 Upload 𝜶 (𝐿 ) to server;
8 end
9 Server:

10 Aggregate 𝜷 using Eq. (4) and {𝜶 (𝐿 ) }N𝐿=1 from clients;
11 Broadcast global watermark mask 𝜷 to each client;
12 Start FL training:
13 for each client 𝑁 in N do
14 Re!ne 𝜶≃(𝐿 ) based on ωAcc(𝐿 ) and Eq. (5);
15 Apply watermark estimation 𝑄̂ (𝐿 )

𝑀
⇒ 𝜶≃(𝐿 )

𝑀
;

16 Initialize 𝜸 (𝐿 )
𝑀

and set tolerance 𝑙𝑚𝑛 ;
17 while 𝑘𝑁𝑐𝑜𝑑𝑒𝑍𝑝𝑄𝑜𝑉 > 𝑙𝑚𝑛 do
18 Compute the model prediction 𝑉 (𝐿 )

𝑀
⇒ 𝑆 (𝜴 (𝐿 ) ;𝑃 (𝐿 )

𝑀
);

19 Compute the residual: 𝑑𝑒𝑐𝑁𝑘𝑋𝑝𝑛 (𝐿 )
𝑀

=
...𝑉 (𝐿 )𝑀

↘ 𝑉 (𝐿 )
𝑀

...2
2
;

20 Compute the discrepancy:

𝑘𝑁𝑐𝑜𝑑𝑒𝑍𝑝𝑄𝑜𝑉 = 𝑑𝑒𝑐𝑁𝑘𝑋𝑝𝑛 (𝐿 )
𝑀

↘
...𝑄̂ (𝐿 )𝑀

...2
2
;

21 Update 𝜸 (𝐿 )
𝑀

;
22 end
23 return 𝜸 (𝐿 )

𝑀
;

24 Update Regularized Loss:
𝑅𝑍𝑎𝑏 (𝜴 (𝐿 ) ) ⇒ 𝑆 (𝜴 (𝐿 ) ;𝑃 (𝐿 )

𝑀
+ 𝑄̂ (𝐿 )

𝑀
,𝑉 (𝐿 )

𝑀
) + 𝜸 (𝐿 )

𝑀
| |𝜴 (𝐿 ) | |22;

25 end

Finally, the algorithm utilizes the re!ned 𝜸 (𝐿 )
𝑀

to adjust each
client’s model parameters 𝜴 (𝐿 ) . This adjustment considers the loss
function 𝑆 (·), regularization parameter 𝜸 (𝐿 )

𝑀
, and the estimated

watermark 𝑄̂ (𝐿 )
𝑀

. Consequently, the regularized loss 𝑅𝑍𝑎𝑏 (𝜴 (𝐿 ) ) is up-
dated to re$ect these changes, ensuring that the model parameters
are optimized in alignment with the FL objectives and constraints.

Subsequently, each client performs local model training and
adheres to the FL training protocol depicted in Step 4 of Fig. 2.
Throughout the FL cycles, Alg. 1 systematically incorporates these
updates into the overall FL training scheme.

4 Evaluation
4.1 Evaluation Settings
We assess the performance of our technique in a client-server
testbed. The server is equipped with an Nvidia RTX 3090 GPU
and an AMD Ryzen 9 5900X CPU, running on Ubuntu 20.04 LTS.
For client devices, we employ 40 Nvidia Jetson. The performance
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and quantity detail can be seen in Table. 1. Our testbed equation1
have been shown in Fig. 3 to understand the e"cacy of federated
Morozov regularization in heterogeneity edge clients.We connected
each client device to switches via an Ethernet cable. Data exchange
in federated learning, including metadata and models, is facilitated
by accessing the IP bound to each device. The communications
protocol uses sockets. The underlying Jetson driver is supported
by Jetpack 5.1.

Switch Orin Nano 8GB AGX Orin

Nano

Orin 
Nano 
4GB

Figure 3: Evaluation testbed in the lab.

Table 1: Performance Comparison of Edge Devices
Device Quantity GPU CPU

AGX Orin 2 248 TOPS 8-core, 2.2 GHz
Orin Nano-8 3 40 TOPs 6-core, 1.5 GHz
Orin Nano-4 5 20 TOPS 6-core, 1.5 GHz

Nano 30 472 GFLOPS 4-core, 1.4 GHz

Models and datasets. In the experimental phase, our investigation
employed a range of neural network architectures to perform the
image recognition task. The !rst is a Lite-CNN2, characterized by
its simplicity yet e#ectiveness. Alongside our custom CNN, we inte-
grated two well-established models: VGG [47] and ResNet-18 [14].
The initial learning rate is set to 0.1, and the batch size is set to
64 by default. Using the SSP [17] synchronization strategy, the lo-
cal epochs are set to 5 by default. In our experimental setup, we
evaluated the performance of our proposed method using widely
recognized image classi!cation datasets, includingMNIST [9], Cifar-
10 [23], Tiny-ImageNet [7] and COVID-FL [54]. We chose these
datasets to cover various image types and complexities, from sim-
ple handwritten digits to more complex real-world images that is
originally collected with watermarks (i.e., COVID-FL). We used
Lite-CNN for MNIST, VGG for Cifar-10, and ResNet for both Tiny-
ImageNet and COVID-FL. These models were chosen to match the
complexity and scale of each dataset, from simple tasks to more
challenging multi-classi!cation problems.
Watermark setting. In the creation of our watermarked dataset,
various watermark embedding techniques, including frequency wa-
termark: DWT, DCT, DFT, LSB, and spatial watermark: LSB, explicit
watermarking [3, 43], are employed. Speci!cally, for each clean
dataset (i.e., MNIST, CIFAR-10, and Tiny-ImageNet), we simulate
the watermarked dataset with four watermarking techniques(i.e.,
DWT, DCT, DFT, and LSB), and the amount of data processed by
each watermarking technique is determined by the watermark
1The 4GB and 8GB Jetson Orin Nano boards have the same appearance.
2Lite-CNN consists of two 5↔5 convolutional layers (64 channels each) with 3↔3 max
pooling, followed by two dense layers (384 and 192 units) and a softmax output layer.

heterogeneity parameter 𝐿 . The COVID-FL dataset was originally
collected with di#erent watermarks from the real world.

Although the adjustment parameters for watermark intensity
vary across di#erent methods (for instance, the intensity in explicit
watermarks refers to transparency, while in some frequency do-
main watermarks, like DFT, it refers to modulation amplitude), we
normalize the intensity of all watermarks to a 0-1 scale. The embed-
ding location in spatial domain watermarks denotes the position
of the watermark within the image (such as the center or edges),
whereas in frequency domain watermarks, it refers to the frequency
within the image spectrum (like high, mid, or low frequency; in
DCT, this ranges from the LL to HH domain).

The watermark embedding intensity is adjusted between 0.01
and 1 for our experiments. Each client in the FL employs the same
watermarking method and parameters, ensuring consistency across
the dataset.
Evaluation metrics. Our performance evaluation focuses FL per-
formance. Referring to the evaluation metric of the shortcut learn-
ing research [18, 34, 38], FL performance is assessed using task
accuracy, which measures the percentage of correct predictions
by the FL models on a distributed dataset, and loss, indicating the
prediction error with lower values signifying better performance.
Benchmark methods. We compare the federated Morozov reg-
ularization with the following peer robust training methods in
FL [42] [11], generalized regularization [56] and regularization for
shortcut learning [18].

• FedAvg [35]: Used to establish a performance baseline in our
experiments, serving as a foundation for comparison with
other FL algorithms.

• GroupLasso [56]: a generalized regularization for machine
learning by adding a penalty term. We modi!ed GroupLasso
to federated learning version based on the client-level pro!l-
ing setting.

• AFL [11]: Using global model transmission, local gradient
calculations, and averaging, with hyperparameters set to
𝑖1 = 0.75,𝑖2 = 0.01,𝑖3 = 0.1 in our experiments.

• RFA [42]: A Roubstness aggregation method for corrupted
data. We applied with hyperparameters as per the original
paper: R = 3 and 𝑌 = 10↘6.

• FD [18]: A feature regularization with frequency !lter tools.
We modi!ed FD to federated learning version (Fed-FD) based
on the client-level pro!ling setting.

4.2 Evaluation Results & Analysis
4.2.1 Improvement with federatedMorozov regularization. The eval-
uationmetric was task accuracy in FL, compared under two di#erent
training and inference conditions: with watermarked data but clean
inference, and with both watermarked training and inference.

The experimental design in Table 2, bifurcates the analysis into
two scenarios: inference on clean data and inference under water-
marked conditions. This distinction aims to uncover the impact of
shortcut learning induced by watermarks, which a#ects not only
the inference with watermarked features but also the performance
on clean data, highlighting the pervasive in$uence of watermarks
on model behavior. The settings for data and watermark hetero-
geneity are set to 𝑖 = 0.5, 𝐿 = 0.5, which be de!ned in Sec. 4.2.2.
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Table 2: FL method benchmark accuracy(%) comparison under di"erent settings.

Setting Watermarked Dataset & Clean Inference Watermarked Dataset & Inference
MNIST Cifar-10 Tiny. COVID-FL MNIST Cifar-10 Tiny. COVID-FL

FedAvg 95.35±0.04 71.29±0.72 25.56±1.06 77.30±1.42 92.10±0.02 64.07±0.83 15.45±1.14 74.43±1.23
GroupLasso 96.44±0.02 71.30±0.71 28.94±1.00 81.43±1.53 92.59±0.01 64.14±0.51 19.22±0.83 74.29±1.43

AFL 96.05±0.02 72.52±0.35 30.42±0.53 83.41±2.56 91.53±1.03 65.10±0.07 22.52±0.51 75.41±1.51
RFA 96.73±0.03 72.54±0.87 30.62±1.03 84.52±1.98 94.14±0.01 67.89±1.12 25.70±0.97 77.62±1.83

Fed-FD 96.86±0.01 76.89±0.75 33.80±0.71 84.09±1.27 93.83±0.02 68.04±0.90 24.03±0.95 79.93±1.25
Ours 97.35±0.03 80.86±1.04 35.43±0.73 87.14±1.03 95.24±0.02 79.26±1.09 33.29±1.01 84.10±1.68

(a) MNIST dataset (b) Cifar-10 dataset (c) Tiny-ImageNet dataset (d) COVID-FL dataset

Figure 4: Task accuracy and convergence with epoch growing of method benchmark in di"erent watermarked datasets.

Our method demonstrates superior accuracy across all datasets
and settings, underscoring its e#ectiveness inmitigating the adverse
e#ects of shortcut learning in FL. Speci!cally, in the clean inference
setting, our approach achieves an accuracy of 97.35% on MNIST,
80.86% on Cifar-10, 35.43% on Tiny-ImageNet (denoted as Tiny.),
and 87.14% on COVID-FL. These results are notably higher than
those obtained with other methods, such as FedAvg, GroupLasso,
AFL, RFA, and Fed-FD. The improvement is even more pronounced
in the watermarked dataset & inference setting, with scores of
95.24% on MNIST, 79.26% on Cifar-10, 33.29% on Tiny-ImageNet,
and 84.10% on COVID-FL. The detail learning performance with
epoch growing can be seen in Fig. 4.

The underperformance of other methods can be attributed to
their inability to e#ectively address the dual challenge posed by
non-IID data and the presence of watermarks. Methods like FedAvg
and GroupLasso, while foundational in FL, lack speci!c mechanisms
to counteract the nuanced e#ects of watermarked data, leading to
compromised accuracy. AFL and RFA, despite introducing robust-
ness in aggregation, do not directly tackle the issue of shortcut
learning induced by watermarks. Fed-FD, which applies feature
regularization, shows promise but still falls short of fully mitigating
the impact of watermarks on model learning.

4.2.2 Results on Data and Watermark Heterogeneity. In FL, data-
level heterogeneity is primarily manifested through the presence of
non-IID (independent and identically distributed) data challenges.
For the non-IID problem in the FL experiment, we de!ne the degree
of non-IID data and non-IID watermark as follows:

In a multi-client training scenario, each client’s data is inde-
pendently sampled with class labels from 𝑀 classes, following a
categorical distribution with vector 𝑞 (𝑞𝐿 ⇑ 0, 𝑁 ↑ [1,𝑀 ], ⇐𝑞⇐1 = 1).
Non-IID client data is simulated by sampling 𝑞 from a Dirichlet dis-
tribution, Dir(𝑖p), where p is the prior class distribution, and 𝑖 > 0
determines client similarity. An in!nite 𝑖 implies uniform client

distributions, while 𝑖 near zero results in maximum divergence
among clients.

In the context of non-IID watermark settings, we adopt a distri-
bution similar to the Dirichlet distribution to manage the variability
in watermark characteristics such as intensity (𝑟 ) and location (𝑠).
Intensity ranges from 0 (no watermark) to 1 (maximum intensity),
while location varies from low-frequency areas or image edges to
high-frequency areas or central regions. We introduce a parameter
𝐿 in Dir(𝐿p) to control the degree of non-IID in the watermark
distribution. A higher 𝐿 indicates more uniformity in watermark
characteristics across clients, leading to similar intensity and loca-
tion settings. Conversely, a lower 𝐿 results in greater diversity, with
each client having distinct watermark intensity and placement. This
approach allows us to simulate a spectrum of watermark patterns
across di#erent clients, re$ecting various degrees of intensity and
placement. For the real-world dataset COVID-FL, the data is already
divided among di#erent clients by medical institutions, thus we
utilize the o"cial non-IID con!guration distribution to proceed.
The variation in equipment used by di#erent medical institutions,
along with their respective watermark design preferences, inher-
ently introduces non-IID watermarks. Therefore, COVID-FL, as
a more realistic watermarked dataset, can be considered a refer-
ence for real-world issues and does not require additional non-IID
watermark design and settings.

In our experimental analysis, the combined impact of non-IID
data and non-IID watermark on the federated Morozov regular-
ization technique is depicted through heatmaps, revealing a com-
pounded decrease in accuracy with the simultaneous presence of
both non-IID conditions. We have selected Fed-FD as the bench-
mark for testing our method based on its superior performance as
demonstrated in Sec. 4.2.1. When the non-IID degree for both data
and watermark is at its highest, we observe a notable reduction in
accuracy, illustrating the challenges posed by these conditions. For
example, with 𝑖 of 0.5 and 𝐿 of 0.5, the accuracy drops to around
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68.04%. Modi!cations to the technique, as re$ected in the second
heatmap, show improvements in this challenging scenario with a
notable increase in accuracy. Under the same high non-IID condi-
tions, the accuracy improves to 79.26%. The third heatmap, which
focuses on the percentage of improvement, highlights the e#ec-
tiveness of our modi!cations. In scenarios with non-IID data and
watermark, our method achieves a substantial improvement, with
the most pronounced increase in accuracy reaching up to 11.22%.

Table 3: Accuracy(%) comparison for di"erent datasets on
varying non-IID degrees.

Dataset 𝐿
𝑖 Fed-FD Ours

100.0 5.0 0.5 100.0 5.0 0.5

Cifar10
0.5 72.01 71.16 68.04 81.29 80.71 79.26
10.0 75.43 72.21 68.51 82.55 81.42 81.73
100.0 83.86 74.99 69.07 83.92 81.85 81.14
w/o 85.13 78.61 75.63 85.46 82.50 81.26

MNIST
0.5 96.54 95.69 93.83 96.75 96.43 95.24
10.0 96.81 96.10 95.61 97.57 97.00 96.34
100.0 97.85 96.72 96.24 98.21 97.41 96.83
w/o 98.64 97.31 97.20 98.63 97.59 97.16

Tiny.
0.5 28.12 23.85 24.03 34.65 34.28 33.29
10.0 33.43 29.19 26.92 35.93 34.47 33.82
100.0 36.59 34.72 33.74 38.14 37.72 35.46
w/o 39.73 38.98 36.80 39.51 39.27 36.75

Table 4: Accuracy(%) comparison in ablation study. The bot-
tom line is the component of our method.

(a) Study on watermark estimation.

Method MNIST Cifar-10 Tiny. COVID-FL
Blind 93.86 64.89 26.80 79.00
Stacking 93.55 66.58 26.29 81.26
MAP 95.24 79.26 33.29 84.10

(b) Study on estimation mask aggregation.

Method MNIST Cifar-10 Tiny. COVID-FL
w/o. 94.45 72.52 30.50 83.23
Avg. 95.05 73.57 33.42 83.50
Aggr. 95.24 79.26 33.29 84.10

(c) Study on feature extractor regularization.

Method MNIST Cifar-10 Tiny. COVID-FL
Tik. 94.24 73.44 31.46 80.29
L1 93.93 76.25 30.21 80.41
Moro. 95.24 79.26 33.29 84.10

4.2.3 Ablation Study. We analyze three components designed for
such environments: MAP-based watermark estimation (MAP), wa-
termark estimation aggregation (Aggr.) and Morozov regularization
(Moro.) in Table. 4. The goal is to evaluate how e#ectively these
components, can counteract the reduction in accuracy often caused
by watermarking, compared to alternative methods or variations.
Study on watermark estimation. Our exploration delved into
the e"cacy of MAP-based watermark estimation by comparing it

against both its variants and analogous statistical methodologies.
One is Blind Image Quality Measurement (denoted as Blind) [48], a
technique predicated on leveraging statistical attributes to gauge
image quality. Another is the strategy of stacking all dataset images
to generate a uniformly weighted mask, tantamount to an averaged
weightedMAP-based estimation (denoted as Stacking). As shown in
Table 4a, the MAP approach manifested a notably superior accuracy
enhancement relative to its counterparts, with a 12.68% increment
over Stacking within the Cifar-10 dataset. Such !ndings underscore
that methodologies centered on image quality estimation (Blind)
and indiscriminate estimation of images and watermarks (Stacking)
are ine#ectual in procuring a robust watermark estimation.
Study on estimation mask aggregation.We delve into the e"-
cacy of watermark mask aggregation by both omitting this com-
ponent (denoted as w/o.) and evaluating its variants, speci!cally
average aggregation (denoted as Avg.), where the local masks from
all clients undergo aggregation with equal weighting. As evidenced
in the Table. 4b, aggregation demonstrates enhanced performance
in the Cifar-10 dataset, characterized by strong heterogeneity and
a smaller quantity of images. Conversely, for datasets with a larger
volume and more uniform data, such as Tiny-ImageNet and COVID-
FL, the performance di#erence compared to average aggregation
is minimal. This phenomenon can be attributed to the intrinsic
purpose of mask aggregation, which is to furnish a global mask
that aids clients with less data in obtaining a more applicable mask.
Therefore, if the local datasets of clients are su"ciently large, the
improvement brought about by aggregation may be marginal.
Study on Morozov regularization. In our ablation study focus-
ing on Morozov regularization, we maintained identical inputs for
the estimation mask while employing a simpli!ed form of regu-
larization. Morozov regularization, conceptualized as a variant of
Tikhonov regularization, introduces parameter adjustments that are
more !nely tuned to the noise levels encountered. Thus, Tikhonov
regularization (denoted as Tik.) is utilized as a comparative mea-
sure to ascertain the signi!cance of adjustments in regularization
parameters. Furthermore, we investigate whether L1 regularization,
a widely referenced regularization technique, also demonstrates
improvements in the context of prior information on watermark
estimation (denoted as L1). Insights from Table. 4c reveal that the
enhancements attributed to Morozov Regularization are predomi-
nantly observed in datasets with smaller capacities, such as Cifar-10,
and in datasets where the watermark patterns are relatively !xed,
such as COVID-FL. It is also observed that, although other forms of
regularization exhibit limited improvements over the baseline, their
compatibility with watermark estimation is not as pronounced.

5 Conclusion
Our paper introduces federatedMorozov regularization, a technique
for federated learning on watermarked data. federated Morozov reg-
ularization addresses the challenges of diverse watermarking across
FL participants without prior knowledge of watermark speci!cs. It
probes watermark details and uses Morozov regularization to adapt
local model training. Experiments on 40 Jetson edge devices show
federated Morozov regularization improves accuracy by 11.22%.
An ablation study validates each component’s contribution to FL
model performance on watermarked datasets.
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