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Data-Centric Methods for Environmental Sound
Classification With Limited Labels

Ali Raza Syed

Abstract—Arctic boreal forests are warming at a rate 2-3 times
faster than the global average. It is important to understand the
effects of this warming on activities of animals that migrate to
and within these environments annually to reproduce. Acoustic
sensors can monitor a wide area relatively cheaply, producing large
amounts of data. Yet, only a small proportion of the recorded
data can be labeled by hand making it challenging to train high
performing sound classifiers for ecoacoustic research. In this work,
we explore data-centric methods for improving model performance
by utilizing labels more efficiently. We show that indeed data
augmentation for a DNN-based multi-label sound classifier yields
a relative improvement (37%) in AUC performance. We are able to
boost this further by 56 % with a novel data valuation method. Our
method estimates Shapley values for a multi-label DNN classifier
enabling curation of a high quality training set and identification of
data quality issues. We demonstrate that with our novel method, we
can achieve these gains using as little as 40 % of the labeled training
data.

Index Terms—Ecoacoustics, environmental sound classification,
data-centric machine learning, data augmentation, data valuation,
Shapley values, limited labels, data curation.

I. INTRODUCTION

RCTIC boreal forests, which are crucial for the breeding
A success of various species such as caribou, waterfowl, and
songbirds, have experienced warming at a rate that is two to three
times the global average, as well as an intensification of human
development [1]. Thus, it is critical to monitor these ecosystems
to measure the impact of climate change on these species, and
to devise effective interventions and mitigation strategies. One
promising approach is the use of acoustic sensors, which offer
several advantages over visual sensors.
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Compared to visual sensors, acoustic sensors consume less
power and data bandwidth, and have a wider field of “view”
and longer range. Moreover, the audio modality, when used
in conjunction with other modalities, can enhance recognition
performance. Once deployed, acoustic sensors can collect vast
amounts of data at a rate that requires automated procedures for
classification and categorization [2].

In recent years, deep learning has been increasingly used
for sound event classification [2], [3], [4]. The performance of
these models depends on the quantity and quality of the labeled
data used to train them. Yet, obtaining high quality labeled
data is costly and sometimes prohibitive [5]. Especially when
the quantity of labeled data is limited, its quality can signif-
icantly impact performance [6]. Ecoacoustic data can contain
multiple overlapping sounds in short clips and annotating these
requires engaging experts in a costly, laborious, and error-prone
process [4]. For this reason, the amount of labeled data is
often limited and subject to quality concerns [2]. In this work,
we explore data-centric methods for making maximal use of
limited labeled data to train and produce high performing sound
classifiers for aiding ecoacoustic researchers.

In machine learning, the usual approach is model-centric.
This involves starting with a fixed dataset and iteratively de-
veloping the model to improve system performance. In contrast,
data-centric methods assume a fixed training procedure for the
model and iterate over the data. This approach is driven by
the observation that performance can depend not only on the
amount of training data but also on the quality of the data, and
how representative those are of conditions where the model will
be deployed. When the amount of data is limited, data-centric
approaches can produce significant gains, particularly for deep
learning [6]. While there are methods for utilizing unlabeled data
(see Section II-C), in this work, we explore ways to efficiently
utilize existing labeled data. We expand on early experiments,
where we found that model- and data-centric methods for clas-
sifying limited labeled data can be complementary [7]. Specifi-
cally, we investigate performance gains in environmental sound
classification from two data-centric methods: data augmentation
and data valuation.

Data augmentation increases the amount of available training
data by simulating new and realistic examples based on existing
ones [8]. We include data augmentation in our investigation
because it has become a standard part of the pipeline for training
modern neural networks and must be included when fixing
the model training procedure to study any other data-centric
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technique. However, we do not perform an extensive comparison
of augmentation techniques and limit ourselves to two state
of the art techniques: Mixup [9] and SpecAugment [10]. They
generate different perspectives of the same data, helping deep
neural networks to generalize. In recent years, both techniques
have gained popularity in the field of audio classification.

Data valuation for machine learning is concerned with quan-
tifying the importance of a training example for a given model.
Ranking the data based on their value allows for identification
of high and low quality data for curating training datasets. While
there are several heuristics for ranking data, only a few principled
methods exist for valuing their importance for any given model.
Shapley valuation [11] is a recent and popular method [12].
Efficient estimation of Shapley values for deep neural networks
(DNN) has been limited to classification tasks using accuracy
as the metric (see Section II-B3). In this work, we introduce a
novel method to estimate Shapley values for a DNN performing
a multi-classification task where the metric of interest is AUC
(area under the ROC curve [13]).

Our contributions: We present a novel method for estimating
Shapley values of training examples for a DNN-based multi-
label sound classifier. In early experiments, we presented re-
sults [7] demonstrating the method’s effectiveness only for a
proxy model. In this work, we validate its effectiveness for
the original CNN model. To our knowledge, this is the first
demonstration of valuing data for a DNN-based multi-label
classifier (that uses AUC as a performance metric). We show
that the method of valuing and curating limited labeled data
can yield a sound classifier with significant performance gains.
Moreover, this approach complements any gains due to data
augmentation techniques and a model-centric method (global
temporal pooling). We also present methods for assessing data
quality issues, particularly annotation errors, through analysis
based on Shapley values. Specifically, we show how to drill
down in multi-label data and identify data quality issues within
classes. Finally, we re-annotated our entire dataset for this work.
While there are techniques for dealing with noisy annotations
in training data, it has been shown that annotation errors are
pervasive in common validation and test sets, and can cast
doubt on benchmark results [14]. We use the the re-annotated
validation and test sets for scoring our methods, thus increasing
confidence in our method. Further, using the re-annotated train-
ing set as “ground truth” provides a rare opportunity to assess
the effectiveness of our data valuation approach. It offers a sharp
contrast to data valuation experiments that artificially introduce
label noise or examine randomly sampled points for quality
issues. We present an empirical distribution of Shapley values for
a multi-label classifier, and their correspondence to annotation
errors for a real-world dataset of environmental sound.

II. RELATED WORK
A. Data Augmentation

We investigate two data augmentation methods: Mixup and
SpecAugment and mixup, the most popular techniques in
DCASE 2022 for audio scene classification and bioacoustic
event detection [15], [16]. Mixup [9], originally developed for
computer vision, creates new samples to balance a dataset [17],
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[18]. It has proven effective for sound event detection. For
instance, it was utilized by top-performing teams in the DCASE
2018 audio tagging challenge [19] and enabled a convolutional
recurrent neural network based system to outperform base-
lines [20]. SpecAugment [10] was introduced for end-to-end
speech recognition and achieved state-of-the-art performance
on the LibriSpeech 960 and and Switchboard 300 h tasks.
A Conformer-based system using a combination of Mixup,
SpecAugment, time-shifting, and noise augmentation demon-
strated superior performance in sound event detection [21].

B. Data Valuation

Data Valuation in machine learning is concerned with quanti-
fying the value of training examples for a model based on their
relative contribution to that model’s performance. The primary
impetus for data valuation has been to compensate data vendors
(e.g., [22]). However, it can also be used for data curation and
selection by ranking and selecting a subset of the data for high
model performance with faster training. In our context, audio
data [23] is relatively cheap to acquire but laborious and expen-
sive to annotate, especially since multiple overlapping sounds
are present in short clips [4]. Thus, we explore the feasibility of
data valuation for curating our limited labeled acoustic data and
identifying examples that are particularly useful or misleading
for our model. We avoid the use of heuristic-based methods
for measuring the importance of data and limit ourselves to
approaches that directly measure the utility of an example for
a model. Two primary methods have been employed in data
valuation for machine learning: influence functions [24] and
Data Shapley values [12].

Influence functions, arising from robust statistics [25], de-
termine the value of an example by measuring the change in
parameters of a model when an example is given a little more
weight than the other examples in a training set. They have
been shown to asymptotically approximate the Leave-One-Out
(LOO) value [26]. The LOO value measures the contribution
of an example to a specific (raining set, the “left in” values.
Although influence functions have been applied successfully for
data valuation [24], they can be difficult or expensive to compute
since their formulation involves inverting the model’s Hessian
matrix (second order derivative of the loss function).

Shapley valuation, originating from economics and cooper-
ative game theory [11], provides a fair method for allocating
rewards to individual players based on their relative contribu-
tions [11]. In machine learning, Shapley valuation has been used
to determine the value of examples based on their importance
for a model [12], [27], [28], [29]. Data valuation experiments
have shown that Shapley values are better at quantifying the
utility of data for complex models like deep neural network
classifiers [12]. For these reasons, we employ Shapley values in
our work.

1) Shapley Value: Inthe supervised learning setting, we view
training examples as participants in a game. The learning algo-
rithm uses these players to achieve a reward: the performance
measured on a held-out set. The Shapley value determines the
relative value of the examples for the model by allocating the
performance metric among the training examples based on their
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utility for the learning algorithm. The Shapley value of an exam-
ple is defined as follows. Suppose a dataset D with N examples
available for training, and a dataset Dy, with Ney, examples
held-out for evaluation. If learning algorithm .4 trains on a subset
of examples, S C D, its performance on D,y is given by F(.5)
(e.g.,F may compute the AUC score). The Shapley value o(z;)
of training example z; is the expected marginal contribution of z;
to any subset of the remaining training examples S C D \ {z;}:

1 1
~ w1 F(SU{z}) -F(S)] @
N SE'DZ‘\{Q::'} (1T3|1)

o(zi) =

Shapley valuation is the unique allocation scheme satisfying
fairness axioms for equitable distribution of rewards in cooper-
ative games [11]. It makes no assumptions about the learning
algorithm, the distribution of the training data, or whether the
examples are independent or identically distributed.

2) Interpreting Shapley Values: As defined, the Shapley
value of an example is the average effect on model performance
when that example is added to any random subset of the training
data. Thus, an example with a positive Shapley value implies that
including that example in a training set would result in improving
the performance of the model. Similarly, an example with anega-
tive Shapley value implies the opposite: including that example
in training would result in degrading the performance of the
model. Examples with Shapley values close to zero are expected
to have little effect on model performance when included in
a training set. This interpretation is in contrast to the that of
Shapley values of features, used for model interpretability [30].
The crucial difference is that those Shapley values are calculated
based on the model response and not its performance metric.

3) Estimating Shapley Values: In general, exact calculation
of Shapley values is intractable for realistic dataset sizes. Thus,
Shapley values are usually estimated using Monte Carlo algo-
rithms (MC) that can run in polynomial time [31]. The Truncated
Monte-Carlo (TMC) algorithm can estimate Shapley values for
any model [12]. However, TMC requires re-training the model in
each iteration, which is prohibitive fora deep CNN classifier. The
KNN-Shapley algorithm [27] computes exact Shapley values for
k-nearest neighbors (KNN) models in quasi-linear time without
any re-training. For deep neural network (DNN) classifiers, it is
possible to take advantage of this faster algorithm by learning
a proxy KNN model for the DNN, then computing the Shapley
values for the proxy KNN [32]. Empirical results show that these
values yield a coarse grained ranking of example importance,
thus approximating utility for the original DNN model [32].
However, KNN-Shapley relies on accuracy as the metric of
interest. We use a CNN-based multi-label sound classifier that is
evaluated using the AUC score; thus, we introduce and evaluate
a novel estimation method in Section ITI-B-1.

C. Environmental Sound Classification With Limited Labels

Despite limited labeled data, prior efforts have been able to uti-
lize deep learning for the classification of environmental sounds,
e.g.to predict broad soundscape components, such as human
noise, wildlife vocalizations, and weather phenomena [33] or to
measure audible biotic and anthropogenic acoustic activity [34].
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Our classification task is akin to these, but with a specific
emphasis on natural and less urbanized environments. We also
delve into a more fine-grained classification of ecoacoustic
events, encompassing songbirds, waterfowl, grouse, insects, and
aircraft.

Ecoacoustics researchers address label limitations by in-
corporating unlabeled data through semi-supervised or active
learning. Semi-supervised approaches typically employ transfer
learning with: pseudo-labeling e.g.,to classify calls of birds
and amphibian species [35], pre-trained representations e.g..to
classify orca call types [36], and mean teacher based learning
e.g..to classify sound events from domestic environments [37].
All these methods operate under the shared assumption that
high-quality initial labeled data is available. In reality, mis-
labeled data can skew the initial model and impact perfor-
mance [38]. Our focus on identifying misleading low-quality
data and curating high-quality data complements existing ef-
forts. It enhances label quality with minimal human intervention,
serving as a crucial pre-processing step for semi-supervised
learning. Our method is also complementary to active learning
efforts employed for learning with minimal supervision [39],
classification of rare events [40], [41], recognition of novel
classes [42] and bird species [43], and reducing annotation
efforts e.g.,in low-resource speech recognition [44] and sound
classification [45]. These approaches use heuristics for ranking
unlabeled data based on their expected utility for the model.
In contrast, data valuation methods rank the labeled data based
on their actual contribution to the model’s performance on a
held-out set. These valuations allow for curating better training
sets by identifying high quality data, thus complementing active
learning methods.

Another closely related task to our work is instance selec-
tion [46]. It seeks a high quality subset of the training data
with algorithms falling into two categories: filters and wrappers.
Filters employ heuristics for selecting representative data, often
by removing outliers or noisy examples, while wrappers use the
model to identify thresholds for retaining high quality data with
little reduction in performance. In general, wrapper methods
for neural networks employ rules based on the loss incurred
per example [47] and have been limited to smaller data than
our scenario. Our method may be viewed as wrapper-based
instance selection. Since it is based on Shapley values, it offers
a principled approach to measure the relative contribution of ex-
amples to a model’s performance. This has potential for broader
applications than dataset reduction: a complete ranking of the
data allows for addressing data quality issues in the collection
and annotation pipeline, in addition to curating training data for
high performance models.

II1. METHODS

Environmental sound classification is a machine listening task
which requires identifying which sound classes are present in an
audio clip. This is a multi-label classification task since environ-
mental sound recordings can contain multiple, potentially over-
lapping, sounds. Our audio clips are from the EDANSA-2019
dataset [23] and each clip may be labeled with sound events from
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TABLEI
NUMBER OF CLIPS PER LABEL IN EACH DIVISION OF THE DATASET

Label Train  Validation Test  Total
Biophony 1729 472 490 2691
Bird 1461 420 470 2351
Songbird 492 98 84 674
Waterfowl 158 48 78 284
Grouse 93 29 6 128
Insect 222 25 6 253
Anthrophony 162 64 58 284
Aircraft 44 54 22 120
Silence 17 22 14 53
Total 4378 854 1228 6460

up to 9 sound classes (Table I). Our investigations employ a con-
volutional neural network (CNN) to perform multi-label sound
classification. The performance within each class is scored using
AUC, the area under the ROC curve [13]. Since the classifier will
be used for identifying and tracking multiple events of interest,
we report performance of the multi-label classifier using the
macro-averaged AUC score, the mean of per class AUC scores.
This ensures that the classifier’s evaluation is not skewed by
class imbalance (micro-averaging, or weighting the per class
scores by class size, would give prominence to performance
within majority classes and neglect performance within minority
classes) [48].

We address the limited amount of labeled data for our audio
classification task by employing data augmentation methods.
We evaluate the quality of our multi-labeled data, which may
indicate the presence of multiple events, with Shapley values.

A. Data Augmentation for Audio Classification

We use Mixup and SpecAugment for data augmentation.
The original Mixup approach combines two randomly selected
samples (z;,y;) and (z;,y;) from training data linearly. We
modify this slightly, such that the data points are still combined
linearly, but their labels are logically OR-ed:

T =z + (1 —7)z;

g = max(y;, y;)- 2

~ € [0,1] is typically chosen by sampling from a beta dis-
tribution Beta(a, a) for o € (0, 00), but we fix it at 0.5 for
simplicity. Our modification to the label combination captures
the fact that a linear combination of two sounds contains all
of the sounds in either mixture, unlike linear combinations of
images, in which partially transparent objects may not fully
represent their original class. We select the samples randomly
in a manner that ensures an equal probability of selection from
all classes. This strategy is instrumental for a balanced dataset,
thereby reducing the potential for bias in our results.

SpecAugment works by masking a set of consecutive fre-
quency channels and/or time frames of the log-mel spectrogram,
with the option to apply time warping as well.
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B. Data Valuation

1) Hybrid MC-Proxy Method: For our model and task, we
use a novel hybrid approach: learn a proxy KNN model for
the deep CNN classifier, estimate the Shapley values for that
proxy model using a Monte-Carlo (MC) algorithm, and use these
“proxy” values as estimated Shapley values for the CNN model.
In contrast with the proxy method employing KNN-Shapley
algorithm [32], our method proposes to estimate the Shapley
values for the proxy KNN itself. To our knowledge, our initial
experiments [7] were the first application of this method. A
priori, it is not evident that these estimated values will serve as
good measures of data importance for the original DNN model.
Thus, we validate this with empirical results.

To estimate the Shapley values for the multi-label proxy KNN,
in each iteration of the MC algorithm, we measure the proxy
model’s AUC score for a random training subset and its AUC
score when an example is added to that subset. The difference
in scores is the marginal contribution of that example to arandom
subset. This process can be repeated several times until all the
Shapley values have converged. In practice, we use an equivalent
and computationally efficient sampling method, by sampling
a random permutation of the training data, then scanning the
permutation to determine the random example and subsets [31].
For an example being scanned, the preceding examples in the
list constitute a random subset, and the change in performance
with and without the example is a marginal contribution statistic
for that example. Each iteration of the procedure yields one
marginal contribution statistic per training example. The TMC
algorithm [12] uses an additional heuristic for early stopping:
as a training subset becomes larger, the changes in performance
diminish. We stop scanning the permutation once the change
falls below a tolerance level.

Since the MC approach is agnostic to both the model and
performance metric, it can be used with a multi-label KNN
classifier scored using AUC. Although MC methods require re-
training the model in every iteration, this approach is still feasible
for our scenario because retraining a KNN is much faster than
retraining a CNN. To our knowledge, we are the first to use the
MC approach with proxy KNN model to estimate Shapley values
for a CNN. The inherent limitation of the MC-based approach
is that while it is feasible for our data (((10%) examples), it
will not scale to much larger data (e.g.,0(10°) examples). We
show that the resulting Shapley values are good estimates for
the proxy model. We conduct experiments to determine if the
values are also indicative of example importance for the actual
CNN model.

IV. DATA AND EXPERIMENTS
A. Data

The data utilized in this study originates from the EDANSA-
2019 dataset, a comprehensive ecoacoustic collection we gath-
ered and published in a separate scholarly work [23]. The dataset
encompasses sound recordings from the North Slope of Alaska
and neighboring areas over the summer of 2019. Our partners
placed recording devices at 100 sites throughout an area of
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9000 square miles in the Prudhoe Bay region, the 10-02 area of
the Arctic National Wildlife Refuge, and the Ivvavik National
Park along with two 400-mile latitudinal transects along the
Dalton and Dempster roads. From May to August, each recorder
collected data in 150-minute segments, separated by 120-minute
gaps, totaling 50,000 hours of recordings.

We selected 34 sites from these locations seeking a diverse
range of acoustic sources based on domain knowledge of their
acoustic characteristics. From each site, one 75-minute excerpt
was randomly chosen across the recording season from those
uncontaminated with an undue amount of audio clipping. An
expert analyst inspected the spectrograms of these excerpts to
identify all non-background sound events, which were then
labeled based on listening. Here, background sounds are those
not generated by humans or any type of animal, e.g.,wind and
rain. The annotated segments ranged from a few seconds to a few
minutes. The labeled segments were split into non-overlapping
10-second clips. A total of 97 samples that were shorter than
2 seconds were discarded, based on the consideration that shorter
samples may not provide sufficient information for reliable
classification of multiple overlapping sounds. To split samples
into segments, we assigned all labels for the duration of the
original annotated clips to the fixed-length segments used for
model inputs.

All recordings were sampled at 48 kHz and collected in stereo.
The audio includes noise due to wind and rain and some data
is lost due to clipping when the sound becomes louder than the
recording device’s dynamic range. Rather than averaging both
channels of the audio, we select the channel with less clipping
for each 10 s clip. We take clipped samples to be those with the
maximum or minimum integer value. We calculate the clipping
rate by dividing the number of clipped samples in a clip by the
total number of samples.

Our annotator created a taxonomy of the sounds present in the
recordings, shown in Table I. We refer to the three taxonomic
ranks in the dataset as coarse, medium, and fine. The coarse
level consists of biophony, anthrophony, and silence; the medium
level consists of bird, aircraft, and insect; and the fine level
consists of songbird, waterfowl (which includes ducks, geese,
and swans), and grouse (which includes different species of
grouse and ptarmigan). All clips annotated with a child label
in the hierarchy are also labeled with the parent label, although
some clips are only annotated with coarse or medium labels.
The dataset used for our experiments include samples with the
following labels: biophony, bird, songbird, waterfowl, grouse,
insect, anthrophony, aircraft, and silence.

The parent classes in our taxonomy encompass a wide variety
of sound types. For instance, the anthrophony class includes
sounds such as cars and flares from oil rigs, among others.
However, due to the limited number of samples for some of
these, they were not included as separate labels for training the
model. It is important to note that the total number of labels
(6,460) is larger than the total number of clips (3,083) because
each clip can contain sounds from multiple sources, and thus,
can be associated with multiple labels.

For better generalization, we ensure that data from each
recording site occur in only one of the training, validation, or test
sets. We formulate a multiple knapsack problem where sites are
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items, weights are the number of samples per site, and knapsacks
are the training, validation, and test sets. Using Google OR-
Tools [49], we determine optimal solutions per class, picking the
solution with the lowest total cost over all classes. Validation and
test knapsacks are constrained to be identically sized at 10-20%.
The solution score is found by summing the Jensen-Shannon
divergence between set distributions and the 60%-20%-20%
target distribution per label.

It is important to note that due to the unique distribution
of certain classes, such as aircraft and silence, the splitting
scheme does not strictly adheres to the 60%-20%-20% target
distribution. These classes are predominantly found in specific
locations, such as near airports for the aircraft class. As we
ensure that data from each recording site only occurs in one of
the training, validation, or test sets, it is not always possible to
maintain the target distribution for all classes. This is reflected in
Table I, where the membership of these classes in the validation
set makes up 40-50% of the class samples. This approach was
chosen to prioritize the diversity of locations in each set, which
is crucial for the generalization of our model.

B. CNN Baseline

For these experiments, we chose not to conduct a parameter or
architecture search. Instead we employed a CNN based architec-
ture [50]. The inputs to our model consist of mel spectrograms
derived from the 10 s clips. Specifically, we extracted log-scale
mel frequency spectrograms utilizing a window size of 42 ms, a
hop size of 23 ms, and 128 mel frequency bins. Our model, which
is trained entirely from scratch, is composed of 4 convolutional
layers with akernel size of 5 x 5, succeeded by 2 fully connected
layers, following other successful architectures in sound event
detection [51].

Moreover, subsequent to the final convolutional layer we
conducted a comparative analysis between the use of a global
max pooling operation over the time dimension to the averaging
of the predictions over time after the softmax [3]. We refer to
this global pooling in our experiments as GPool (cf. Table I1I).
The CNN was trained over 1500 epochs, utilizing a learning
rate of 0.001 and a batch size of 32. The model from the epoch
that yielded the highest minimum AUC across labels on the
validation set was chosen for evaluation on the test set. This
approach was adopted to optimize the performance of the worst
label, thereby ensuring a consistent level of performance across
all labels.

C. Data Valuation

We represent examples by extracting 512-dimensional neural
features from the penultimate fully connected layer, i.e.,before
the softmax output layer of the CNN with the best validation
performance and use the 9 labels described above as targets. We
use the validation set to tune a multi-label KNN model using
scikit-learn [52] and determine k = 29. The final proxy KNN
model achieves AUC scores of 0.812 and 0.676 on the validation
and test sets, respectively. We use the TMC algorithm [12] to
estimate Shapley values of training examples for the KNN proxy
model on the validation set. We sample one permutation per it-
eration to determine value updates, and perform 1,000 iterations
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TABLE II
VALIDATION SET PERFORMANCE WITH DIFFERENT DATA AUGMENTATION METHODS (WITH AND WITHOUT GLOBAL POOLING)
Model Biophony Bird Songbird Waterfowl  Anthrophony Insect Grouse  Aircraft Silence AUC
GPool Augmentation
- 0.75 0.83 080 0.82 0.9 097 09 0.92 0.88 0.86
mixup 0.84 082 074 0.92 0.89 097 091 0.9 0.92 0.88
OFF  mixup+SpecAugment 0.84 082 078 0.88 0.9 097 097 0.96 0.81 0.88
SpecAugment 0.77 082 080 0.87 0.89 0.92 093 0.82 0.82 0.85
- 0.91 0.89 0.84 0.87 0.86 0.92 0.89 0.89 0.98 0.89
mixup 0.86 087 078 0.89 0.91 0.95 094 0.9 0.93 0.89
ON mixup+SpecAugment 0.89 085 076 0.9 0.96 0.83 0.79 0.92 0.95 0.87
SpecAugment 0.92 0.9 0.80 0.85 0.91 0.92 0.95 0.93 0.99 091
The class columns report the per class AUC score. The last column reports the macro-averaged AUC score. Best scores are indicated in bold.
TABLE III
TEST SET PERFORMANCE WITH DIFFERENT DATA AUGMENTATION METHODS
Model Biophony Bird  Songbird Waterfowl Anthrophony Insect Grouse  Aircraft  Silence AUC
GPool Augmentation
- 0.66 076 0.66 0.70 0.77 074 077 0.78 0.79 0.73
mixup 0.74 077 062 0.87 0.77 078 080 0.85 0.88 0.78
OFF  mixup+SpecAugment 0.72 077 056 0.84 0.83 092 067 0.86 0.63 0.76
SpecAugment 0.67 073 0.60 0.76 0.82 079 088 0.77 0.73 0.75
- 0.84 079  0.59 0381 0.86 081 065 0.88 0.92 0.79
mixup 0.80 077 064 0.85 0.91 095 089 0.95 0.91 0.85
ON  mixup+SpecAugment 0.77 076 061 0.89 0.88 072 080 0.95 0.94 0.81
SpecAugment 0.82 080 077 0.83 0.84 083 076 0.84 0.94 0.82
The class columns report the per class AUC score, The last column reports the macro-averaged AUC score, Cormresponding values to best results in validation set are indicated in
italic.
Since our Shapley values are estimates based on a proxy KNN
0.85 model, we investigate their ultimate utility for the original CNN
0.80 model. We order the data by Shapley values in descending order
(“best first”) and gradually add these examples to a training
0-75 subset for a CNN. In each evaluation step, the CNN is trained
070 in the same way as the CNN used for the complete training
‘g’ data set. The CNN model settings are selected based on the
069 model with the highest AUC score on the validation set from the
0.60 previous experiments (see Table IT). The final Shapley evaluation
Data ordering results are then reported by measuring the CNN’s performance
0.55 —— Best First -
— Random on the test set. For computational reasons, we evaluate the CNN
0.50 —— Worst First using 7 training subsets based on the top 7%, 10%, 15%, 20%,
40%, 60%, and 80% fractions of the training data based on their
0% 20% 40% 60% 80% 100%

Percentage of training data used

Fig. 1.  Test set performance of multi-label KNN, with macro-averaged AUC
over all classes, as training data is added in order determined by Shapley values.
The Random curve depicts mean performance from three runs with a 95%
bootstrapped confidence interval.

per “round.” We repeat the procedure until convergence with a
tolerance of 0.05.

We evaluate the approximated Shapley values by examining
the KNN model’s performance on held out test examples by
incrementally adding the lowest- or highest-valued training ex-
amples to the KNN’s training set, as is typical in the data valu-
ation literature [12]. We also measure the model’s performance
when adding examples at random and record results from three
random runs for comparison with the ordering determined by
Shapley values. The results are shown in Fig. 1 and discussed in
Section V.

Shapley values. For a baseline, we perform the same procedure
but with randomly ordered data. We randomly sample batches
with 10%, 20%, 40%, and 80% of the training data and measure
the performance scores. This is repeated three times at each point
and we use the average as the baseline score. Fig. 2 shows the
evaluation results for the CNN.

V. RESULTS AND DISCUSSION
A. Data Augmentation Techniques

Tables II and III show the average AUC across classes on the
validation and test sets. We report test set results only to assess
generalization performance and avoid their use for any decision
making in our experiments. We also show the performance with
different model settings. The results on the validation set show
that systems using mel spectrogram features and global temporal
pooling consistently outperform the alternatives. We hypothe-
size that even though the information per frame is condensed
before reaching the FC layer through global pooling, the FC
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Fig. 2. Test set performance of the multi-label CNN classifier when examples

are added to training set in a specific order. The Best First curve depicts
performance as examples are ordered from highest to lowest Shapley values.
The dotted lines show the corresponding per-class scores. The Random curve
depicts mean performance from three runs when examples are added in random
order, with a 95% bootstrapped confidence interval.

TABLE IV
AUC PER LABEL OF THE BEST MODEL ON THE VALIDATION AND TEST SETS
ALONG WITH THE GENERALIZATION GAP BETWEEN THEM (A)

Label Val.  Test A
Biophony 092 0382 010
Bird 090 080 010
Songbird 080 077 003
Waterfowl 0.85 0.83 0.02
Grouse 095 076 019
Insect 092 083 009
Anthrophony 091 084 007
Adircraft 093 084 009
Silence 099 094 005
Average 091 082 009

layer can still process data over time. However, without global
pooling, averaging is applied after the softmax function, and
the FC layer’s perspective is limited to shorter time frames. In
terms of augmentations, results are less consistent, although the
best validation performance is achieved by SpecAugment alone.
This best system achieves a relative improvement (in 1 — AUC)
of 37% on the validation set and 33% on the test set over
the baseline system using no global pooling or augmentation.
Considering class-wise performance, we find that SpecAugment
tends to improve performance in classes with more examples,
while Mixup tends to improve performance more in classes with
fewerexamples. Given SpecAugment’s superior performance on
the validation set, we selected it for further investigations.
Table IV shows the AUC per label of the single best model,
using mel spectrogram features, global temporal pooling, and
SpecAugment only. For this model, the “songbird” label has
the lowest AUC on the validation set and one of two lowest
on the test set. However, the small generalization gap between
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the validation and test sets for “songbird” suggests that it is a
difficult class to learn. This motivates our Shapley value analysis
of this class below. Except for the biophony label, the use of
data augmentation results in higher scores. The Mixup data
augmentation method results in more best performing labels
overall than the other data augmentation methods.

B. Data Valuation Techniques

1) Evaluation of Shapley Values With the Proxy KNN Model:
We evaluate the estimated Shapley values using the method
described in Section I'V-C. Fig. 1 shows test set scores of average
AUC across labels for the multi-label KNN classifier as we
add training data in batches of size 32 ordered by the Shapley
values computed from the validation set. We observe that the
performance using randomly ordered data, averaged over three
runs, tends to stay relatively constant, with minor fluctuations.
The random ordering of data produces models that underperform
the best-first ordering and overperform the worst-first ordering
of data. Thus, the Shapley values determine a ranking of the data
which is indicative of their utility for the model’s performance.

The worst-first curve shows performance degradation as the
lowest valued examples are used for training. As more examples
are added, the resulting models show little to slight improvement
up to the 20% point. Subsequently, the performance begins to
improve until about 85% of the examples are added. On adding
the last 15% of examples, i.e.,the highest valued examples, there
is a sharp rise in performance.

The best-first curve shows a steep increase in performance
as the highest valued examples are used for training. A model
trained with about 20% of the training data, using the highest
valued examples, achieves the highest AUC of about 0.867.
Using the entire training data, we achieve an AUC of 0.816;
thus, we can obtain a 28 % relative improvement (in1 — AUC) by
excluding 80% of the data. After the 20% point, the performance
declines very gradually. On adding the lowest valued examples
(about 5% of the training data), there is a steeper decline in
performance.

The lowest Shapley values are effective for identifying the
lowest quality data that are likely misleading the model or
especially difficult for learning. These examples can either be
discarded or analyzed to identify annotation errors or other
data quality issues (see Section V-B-3). In addition, the highest
Shapley values effectively identify the highest quality subset of
training data for learning the best-performing classifier. These
examples are likely conveying the most information required
for a high performing classifier. Finally, a large portion of the
data may be conveying redundant information. This is suggested
by the relatively constant random curve and the gradual perfor-
mance change in the middle regions of the other two curves.
This demonstrates that the estimated Shapley values capture
the relative contribution of each example to the classifier’s
performance. This is especially true for the examples with the
lowest and highest values.

2) Evaluation With the CNN Model: While the preceding
results are encouraging, we are primarily interested in how well
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Fig. 4. Performance curve for multi-label KNN classifier when we flip the
labels for worst valued examples. We use the Shapley values from a binary
KNN classifier to determine which labels to flip.

they apply to the CNN classifier. We repeat the evaluation exper-
iments using the CNN model for the best-first and random cases
and obtain the results in Fig. 2. We show the overall model perfor-
mance using the macro-averaged AUC over all classes (“Mean”
curve). In addition, we show performance within classes using
the per-class AUC scores. The highest performing model with
an AUC of 0.917 is obtained when training on a subset with
the top 40% of Shapley values. Using the enlire training set, we
can achieve an AUC of 0.813. Thus, we can obtain a relative
improvement (in 1 — AUC) of 56% indicating that we can build
the CNN classifier using as little as 40% of the training data.

In the previous evaluation, which used the proxy KNN model,
roughly 20% of the training data were sufficient for achieving
the highest performance. In comparison, the neural network
requires at least twice as much data (40%). We suspect that
the main reason is that the neural network implicitly learns a
representation space while learning the classification boundary
for the multi-label classification task. In contrast, the KNN
model begins with the neural features as inputs and learns
only the classification boundary. These neural features are the
embeddings of the examples in the representation space learned
by the neural network. Since our Shapley estimation scheme
uses the proxy KNN meodel, it can only learn the importance of
the (embedded) examples for learning the decision boundary,
but not their importance for learning the representation itself.
This suggests that, for our task, the neural network may require
at least twice as much data for representation learning alongside
classifier learning.

The Shapley values estimated through the proxy KNN model
are particularly effective for identifying lowest-valued exam-
ples. This is seen by the steep drop in performance at the tail
end of the evaluation curve when the bottom 20% of the data

— best first

random —— worst first

Test set performance when we evaluate the Shapley values for each proxy binary classifier as training data is added in the order determined by the Shapley

are included for training. We suspect these examples are either
misleading or difficult to learn, potentially due to incorrect
annotations. Simply excluding the bottom 20% of the examples
yields the best classifier with an AUC of 0.917.

While the neural net takes atleast 10 hours (and up to 68 hours)
to train, the KNN takes 208 ms, on average, for training. The
Shapley values estimated from the proxy KNN can also measure
example utility for the original CNN model (as shown in Fig. 2).
This justifies our use of a proxy nearest neighbors model for
efficient and effective estimation of Shapley values for a multi-
label neural network classifier.

3) Analysis of Low Shapley Values: In our dataset, 76% of the
examples are labeled as birds and 26% are labeled as songbirds.
The proportion of songbirds appears quite low and we suspect
that a number of songbird examples were missed during anno-
tation. We believe that the classifier is underperforming partly
due to missing annotations. The Shapley values estimated from
the proxy multi-label classifier capture the utility of data exam-
ples for the original CNN model. Since each example has 9 la-
bels, it is difficult to examine exactly why points might have low
Shapley values. To drill into class-specific issues and perform
further analysis, we train a proxy binary KNN classifier per class
and determine the Shapley values of the training examples for
the binary classifiers on the validation set. Then, we evaluate the
utility of the Shapley values on the test set by adding training data
in the order determined by the Shapley values for each binary
classifier.

Fig. 3 shows the performance evaluation curves per class.
In particular, we see that the songbirds evaluation curve fol-
lows a similar trend as the multi-label evaluation curve. The
best-first curve improves steadily until performance degrades
sharply given roughly the bottom 5% of the data. Upon listening
to several of the worst-valued examples, we note a number
of clips have songbirds present, but are missing the songbird
label. This confirms that some examples are actively misleading
for the songbird classifier. We compare the labels with the ground
truth labels (i.e..,from the re-annotated training set) and find
that 30% (328) of the examples with negative Shapley values
have annotation errors. In comparison, only 4% (124) of the
positive valued examples have annotation errors. This significant
portion of examples with annotation errors can partly explain
why the model’s performance improves when these examples
are excluded from the training set in Fig. 3.

We further investigate using Shapley values to automatically
adjust labels to see if model performance can be improved
without inspecting individual examples. We want to see if simply
flipping labels (i.e.,changing O s to 1 s, and 1 s to 0 s) for
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Distribution of Shapley values, for binary classifiers, grouped by their annotation status as True Negatives (TN), False Positives (FP), True Positives (TP),

and False Negatives (FN) between the initial and secondary labeling processes. The FN and FP status means that these examples were initially annotated incorrectly
as negative or positive, respectively. The vertical axis shows the standardized Shapley values. Subplot titles also show the number and proportion of clips with this
label. To improve the visualization of minority cases, the distributions have been scaled to have the same width.

the worst-valued examples can improve performance. Since
Shapley values estimated for the multi-label classifier cannot
inform on which label to adjust for an example, we use the
Shapley values estimated for the binary classifiers to perform
this experiment. However, we measure the effect of adjusting
those labels on the original multi-label classification problem.
First, we train a proxy multi-label KNN classifier using all of the
examples and measure its performance. For each class, we create
a list of the training examples indices, ordered by the Shapley
values estimated from that class’s proxy binary KNN classifier
(learned in the earlier experiment). This yields 9 orderings of
the training examples, one per class. We perform a number of
iterations, flipping 9 labels (one label per class) in each iteration:
for each class, we always remove the lowest valued example’s
index from that class’s list, then flip the corresponding class label
for that example in the training set. After every 10 iterations, we
re-train the proxy multi-class KNN classifier with the training
set that contains updated labels and record the performance on
a held-out validation set. We continue iterating until we see
a drop in the performance for two successive iterations. The
results are shown in Fig. 4 along with the corresponding test
set performance. From the validation set curve, we see that the
performance increases until we have flipped 450 labels (i.e.,50
iterations) and then begins to degrade. The final performance on
the test set is measured with AUC of 0.837, an 11.4% relative
improvement in (1-AUC) over the performance on the original
training data. This shows that we can use Shapley values o deter-
mine the likelihood of annotation errors among lowest-valued
data using the proxy KNN models. It also suggests that it is
possible to use Shapley values to automatically adjust labels
and improve model performance using a simple heuristic.

Fig. 5 provides more details on the distribution of Shapley val-
ues per sub-components based on their annotation status when
compared to the cleaned (re-annotated) training set. Overall,
Shapley values for False Positives tend to have larger variances,
but also more negative values. This is particularly true for the
songbirds class. False Negatives also tend to skew towards
lower values for minority classes. For a high majority class
like biophony (81% positive examples), very few examples
have negative Shapley values and thus, few examples hurt the
model’s performance within that class. This is likely because
the classifier has an abundance of positive examples to learn
a good decision boundary and there is little confusion with
other classes. For a highly minority class like aircraft (3%
positive examples), the lowest and negative-valued examples
tend to be false positives (examples that were incorrectly labeled
as aircraft). This makes sense: due to the scarcity of positive

examples, the classifier struggles to learn the boundary when
positive examples are mislabeled.

Considering the more balanced songbirds class, we see that
the lowest quality and negatively valued examples tend to be
false positives (i.e.,examples mislabeled as songbirds). From
these false positive annotations, we consider examples having
Shapley values more than two standard deviations below zero,
and select ten random examples. After listening to these, we
find that two clips contain bird sounds mislabeled as songbirds.
We also note from the songbird distribution that a portion
of true negative examples (i.e.,correctly labeled as not having
songbirds) have negative Shapley values. We select ten random
examples for listening and find one example that has songbirds
present. This suggests that some examples may have been missed
or annotated incorrectly in the second round of annotation. Thus,
we are still able to identify annotation errors by concentrating
on the negatively valued examples. We also see that the false
negatives (examples incorrectly labeled as lacking songbirds)
have very low Shapley values, close to zero. These are likely
examples that would make higher contributions to the classifier if
they were labeled correctly. Our analysis verifies that analyzing
Shapley values for binary classifiers can help with analysis of
model errors and assessment of data quality issues.

V1. CONCLUSION AND FUTURE WORK

We validate a novel Shapley value estimation method for
a multi-label classifier using AUC as the performance metric,
showcasing its effectiveness for the original CNN classifier. We
demonstrate that this approach, of valuing and curating limited
labeled data, complements the data-augmentation method that
artificially increase the amount of training data. We also present
methods for assessing data quality issues, particularly annotation
errors, through analysis based on Shapley values. Specifically,
we show how to drill down in multi-label data and identify data
quality issues within sound classes. Although our method does
not scale to very large data, we show that it is efficient and
effective for limited labeled scenarios common in ecoacoustic
research. Taken together, our methods provide a path for ecoa-
coustic researchers to make maximal use of scarce labels, both by
curation of high quality data, and by identification of data quality
issues that may arise from annotation or collection processes.
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